Rules In DISA STIG for Oracle Linux 7


Total Missing Implemented Coverage STIG ids missing rule
237 1 236 99.58% OL07-00-030819
V-ID CCI CAT Title Description Check Procedures Fixtext Version Mapped Rule
V-221652 1496 high The Oracle Linux operating system must be configured so that the file permissions, ownership, and group membership of system files and commands match the vendor values. Permissions on system binaries and configuration files that are too generous could allow an unauthorized user to gain privileges that they should not have. The permissions set by the vendor should be maintained. Any deviations from this baseline should be investigated. The following command will list which files on the system have permissions different from what is expected by the RPM database: $ rpm -Va | awk '{ if (substr($0,2,1)=="M") print $NF }' Is it the case that there is output? The RPM package management system can check file access permissions of installed software packages, including many that are important to system security. Verify that the file permissions of system files and commands match vendor values. Check the file permissions with the following command:
$ sudo rpm -Va | awk '{ if (substr($0,2,1)=="M") print $NF }'
Output indicates files that do not match vendor defaults. After locating a file with incorrect permissions, run the following command to determine which package owns it:
$ rpm -qf FILENAME

Next, run the following command to reset its permissions to the correct values:
$ sudo rpm --setperms PACKAGENAME
OL07-00-010010 rpm_verify_permissions
V-221653 1749 high The Oracle Linux operating system must be configured so that the cryptographic hash of system files and commands matches vendor values. The hashes of important files like system executables should match the information given by the RPM database. Executables with erroneous hashes could be a sign of nefarious activity on the system. The following command will list which files on the system have file hashes different from what is expected by the RPM database. $ rpm -Va --noconfig | awk '$1 ~ /..5/ && $2 != "c"' Is it the case that there is output? Without cryptographic integrity protections, system executables and files can be altered by unauthorized users without detection. The RPM package management system can check the hashes of installed software packages, including many that are important to system security. To verify that the cryptographic hash of system files and commands matches vendor values, run the following command to list which files on the system have hashes that differ from what is expected by the RPM database:
$ rpm -Va --noconfig | grep '^..5'
A "c" in the second column indicates that a file is a configuration file, which may appropriately be expected to change. If the file was not expected to change, investigate the cause of the change using audit logs or other means. The package can then be reinstalled to restore the file. Run the following command to determine which package owns the file:
$ rpm -qf FILENAME
The package can be reinstalled from a yum repository using the command:
$ sudo yum reinstall PACKAGENAME
Alternatively, the package can be reinstalled from trusted media using the command:
$ sudo rpm -Uvh PACKAGENAME
OL07-00-010020 rpm_verify_hashes
V-221654 1388 medium The Oracle Linux operating system must display the Standard Mandatory DoD Notice and Consent Banner before granting local or remote access to the system via a graphical user logon. Display of a standardized and approved use notification before granting access to the operating system ensures privacy and security notification verbiage used is consistent with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and guidance.

For U.S. Government systems, system use notifications are required only for access via login interfaces with human users and are not required when such human interfaces do not exist.
To ensure a login warning banner is enabled, run the following: $ grep banner-message-enable /etc/dconf/db/local.d/* If properly configured, the output should be true. To ensure a login warning banner is locked and cannot be changed by a user, run the following: $ grep banner-message-enable /etc/dconf/db/local.d/locks/* If properly configured, the output should be /org/gnome/login-screen/banner-message-enable. Is it the case that it is not? In the default graphical environment, displaying a login warning banner in the GNOME Display Manager's login screen can be enabled on the login screen by setting banner-message-enable to true.

To enable, add or edit banner-message-enable to /etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/login-screen]
banner-message-enable=true
Once the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/login-screen/banner-message-enable
After the settings have been set, run dconf update. The banner text must also be set.
OL07-00-010030 dconf_gnome_banner_enabled
V-221655 48 medium The Oracle Linux operating system must display the approved Standard Mandatory DoD Notice and Consent Banner before granting local or remote access to the system via a graphical user logon. An appropriate warning message reinforces policy awareness during the logon process and facilitates possible legal action against attackers. To ensure the login warning banner text is properly set, run the following: $ grep banner-message-text /etc/dconf/db/local.d/* If properly configured, the proper banner text will appear. To ensure the login warning banner text is locked and cannot be changed by a user, run the following: $ grep banner-message-text /etc/dconf/db/local.d/locks/* If properly configured, the output should be /org/gnome/login-screen/banner-message-text. Is it the case that it does not? In the default graphical environment, configuring the login warning banner text in the GNOME Display Manager's login screen can be configured on the login screen by setting banner-message-text to 'APPROVED_BANNER' where APPROVED_BANNER is the approved banner for your environment.

To enable, add or edit banner-message-text to /etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/login-screen]
banner-message-text='APPROVED_BANNER'
Once the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/login-screen/banner-message-text
After the settings have been set, run dconf update. When entering a warning banner that spans several lines, remember to begin and end the string with ' and use \n for new lines.
OL07-00-010040 dconf_gnome_login_banner_text
V-221656 48 medium The Oracle Linux operating system must display the Standard Mandatory DoD Notice and Consent Banner before granting local or remote access to the system via a command line user logon. Display of a standardized and approved use notification before granting access to the operating system ensures privacy and security notification verbiage used is consistent with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and guidance.

System use notifications are required only for access via login interfaces with human users and are not required when such human interfaces do not exist.
To check if the system login banner is compliant, run the following command: $ cat /etc/issue Is it the case that it does not display the required banner? To configure the system login banner edit /etc/issue. Replace the default text with a message compliant with the local site policy or a legal disclaimer. The DoD required text is either:

You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only. By using this IS (which includes any device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access controls) to protect USG interests -- not for your personal benefit or privacy.
-Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details.


OR:

I've read & consent to terms in IS user agreem't.
OL07-00-010050 banner_etc_issue
V-221657 58 medium The Oracle Linux operating system must enable a user session lock until that user re-establishes access using established identification and authentication procedures. A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to logout because of the temporary nature of the absense. To check the status of the idle screen lock activation, run the following command: $ gsettings get org.gnome.desktop.screensaver lock-enabled If properly configured, the output should be true. To ensure that users cannot change how long until the the screensaver locks, run the following: $ grep lock-enabled /etc/dconf/db/local.d/locks/* If properly configured, the output for lock-enabled should be /org/gnome/desktop/screensaver/lock-enabled Is it the case that screensaver locking is not enabled and/or has not been set or configured correctly? To activate locking of the screensaver in the GNOME3 desktop when it is activated, add or set lock-enabled to true in /etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/desktop/screensaver]
lock-enabled=true
Once the settings have been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/desktop/screensaver/lock-enabled
After the settings have been set, run dconf update.
OL07-00-010060 dconf_gnome_screensaver_lock_enabled
V-221658 1948 medium The Oracle Linux operating system must uniquely identify and must authenticate users using multifactor authentication via a graphical user logon. Smart card login provides two-factor authentication stronger than that provided by a username and password combination. Smart cards leverage PKI (public key infrastructure) in order to provide and verify credentials. To ensure smart card authentication on the login screen is enabled, run the following command: $ grep enable-smartcard-authentication /etc/dconf/db/local.d/* The output should be true. To ensure that users cannot disable smart card authentication on the login screen, run the following: $ grep enable-smartcard-authentication /etc/dconf/db/local.d/locks/* If properly configured, the output should be /org/gnome/login-screen/enable-smartcard-authentication Is it the case that enable-smartcard-authentication has not been configured or is disabled? In the default graphical environment, smart card authentication can be enabled on the login screen by setting enable-smartcard-authentication to true.

To enable, add or edit enable-smartcard-authentication to /etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/login-screen]
enable-smartcard-authentication=true
Once the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/login-screen/enable-smartcard-authentication
After the settings have been set, run dconf update.
OL07-00-010061 dconf_gnome_enable_smartcard_auth
V-221659 57 medium The Oracle Linux operating system must prevent a user from overriding the screensaver lock-enabled setting for the graphical user interface. A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to logout because of the temporary nature of the absense. To ensure that users cannot change how long until the the screensaver locks, run the following: $ grep lock-enabled /etc/dconf/db/local.d/locks/* If properly configured, the output for lock-enabled should be /org/gnome/desktop/screensaver/lock-enabled Is it the case that screensaver locking is not locked? If not already configured, ensure that users cannot change GNOME3 screensaver lock settings by adding
/org/gnome/desktop/screensaver/lock-enabled
to /etc/dconf/db/local.d/locks/00-security-settings. For example:
/org/gnome/desktop/screensaver/lock-enabled
After the settings have been set, run dconf update.
OL07-00-010062 dconf_gnome_screensaver_lock_locked
V-221660 57 medium The Oracle Linux operating system must initiate a screensaver after a 15-minute period of inactivity for graphical user interfaces. A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not logout because of the temporary nature of the absence. Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity, GNOME3 can be configured to identify when a user's session has idled and take action to initiate a session lock. To check the current idle time-out value, run the following command: $ gsettings get org.gnome.desktop.session idle-delay If properly configured, the output should be 'uint32 '. To ensure that users cannot change the screensaver inactivity timeout setting, run the following: $ grep idle-delay /etc/dconf/db/local.d/locks/* If properly configured, the output should be /org/gnome/desktop/session/idle-delay Is it the case that idle-delay is not equal to or less than the expected value? The idle time-out value for inactivity in the GNOME3 desktop is configured via the idle-delay setting must be set under an appropriate configuration file(s) in the /etc/dconf/db/local.d directory and locked in /etc/dconf/db/local.d/locks directory to prevent user modification.

For example, to configure the system for a 15 minute delay, add the following to /etc/dconf/db/local.d/00-security-settings:
[org/gnome/desktop/session]
idle-delay=uint32 900
Once the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/desktop/session/idle-delay
After the settings have been set, run dconf update.
OL07-00-010070 dconf_gnome_screensaver_idle_delay
V-221661 57 medium The Oracle Linux operating system must prevent a user from overriding the screensaver lock-delay setting for the graphical user interface. A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not logout because of the temporary nature of the absence. Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity, GNOME desktops can be configured to identify when a user's session has idled and take action to initiate the session lock. As such, users should not be allowed to change session settings. To ensure that users cannot change session idle and lock settings, run the following: $ grep 'lock-delay' /etc/dconf/db/local.d/locks/* If properly configured, the output should return: /org/gnome/desktop/screensaver/lock-delay Is it the case that GNOME3 session settings are not locked or configured properly? If not already configured, ensure that users cannot change GNOME3 screensaver lock settings by adding /org/gnome/desktop/screensaver/lock-delay to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/desktop/screensaver/lock-delay
After the settings have been set, run dconf update.
OL07-00-010081 dconf_gnome_screensaver_user_locks
V-221662 57 medium The Oracle Linux operating system must prevent a user from overriding the session idle-delay setting for the graphical user interface. A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not logout because of the temporary nature of the absence. Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity, GNOME desktops can be configured to identify when a user's session has idled and take action to initiate the session lock. As such, users should not be allowed to change session settings. To ensure that users cannot change session idle and lock settings, run the following: $ grep 'idle-delay' /etc/dconf/db/local.d/locks/* If properly configured, the output should return: /org/gnome/desktop/session/idle-delay Is it the case that GNOME3 session settings are not locked or configured properly? If not already configured, ensure that users cannot change GNOME3 session idle settings by adding /org/gnome/desktop/session/idle-delay to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/desktop/session/idle-delay
After the settings have been set, run dconf update.
OL07-00-010082 dconf_gnome_session_idle_user_locks
V-221664 57 medium The Oracle Linux operating system must initiate a session lock for the screensaver after a period of inactivity for graphical user interfaces. A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not logout because of the temporary nature of the absence. Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity, GNOME desktops can be configured to identify when a user's session has idled and take action to initiate the session lock.

Enabling idle activation of the screensaver ensures the screensaver will be activated after the idle delay. Applications requiring continuous, real-time screen display (such as network management products) require the login session does not have administrator rights and the display station is located in a controlled-access area.
To check the screensaver mandatory use status, run the following command: $ gsettings get org.gnome.desktop.screensaver idle-activation-enabled If properly configured, the output should be true. To ensure that users cannot disable the screensaver idle inactivity setting, run the following: $ grep idle-activation-enabled /etc/dconf/db/local.d/locks/* If properly configured, the output should be /org/gnome/desktop/screensaver/idle-activation-enabled Is it the case that idle-activation-enabled is not enabled or configured? To activate the screensaver in the GNOME3 desktop after a period of inactivity, add or set idle-activation-enabled to true in /etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/desktop/screensaver]
idle-activation-enabled=true
Once the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/desktop/screensaver/idle-activation-enabled
After the settings have been set, run dconf update.
OL07-00-010100 dconf_gnome_screensaver_idle_activation_enabled
V-221665 57 medium The Oracle Linux operating system must prevent a user from overriding the screensaver idle-activation-enabled setting for the graphical user interface. A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to logout because of the temporary nature of the absense. To ensure that users cannot disable the screensaver idle inactivity setting, run the following: $ grep idle-activation-enabled /etc/dconf/db/local.d/locks/* If properly configured, the output should be /org/gnome/desktop/screensaver/idle-activation-enabled Is it the case that idle-activation-enabled is not locked? If not already configured, ensure that users cannot change GNOME3 screensaver lock settings by adding
/org/gnome/desktop/screensaver/idle-activation-enabled
to /etc/dconf/db/local.d/00-security-settings. For example:
/org/gnome/desktop/screensaver/idle-activation-enabled
After the settings have been set, run dconf update.
OL07-00-010101 dconf_gnome_screensaver_idle_activation_locked
V-221666 57 medium The Oracle Linux operating system must initiate a session lock for graphical user interfaces when the screensaver is activated. A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to logout because of the temporary nature of the absense. To check that the screen locks immediately when activated, run the following command: $ gsettings get org.gnome.desktop.screensaver lock-delay If properly configured, the output should be 'uint32 '. To ensure that users cannot change how long until the the screensaver locks, run the following: $ grep lock-delay /etc/dconf/db/local.d/locks/* If properly configured, the output for lock-delay should be /org/gnome/desktop/screensaver/lock-delay Is it the case that the screensaver lock delay is missing, or is set to a value greater than 5? To activate the locking delay of the screensaver in the GNOME3 desktop when the screensaver is activated, add or set lock-delay to uint32 in /etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/desktop/screensaver]
lock-delay=uint32 
Once the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/desktop/screensaver/lock-delay
After the settings have been set, run dconf update.
OL07-00-010110 dconf_gnome_screensaver_lock_delay
V-221667 192 medium The Oracle Linux operating system must be configured so that /etc/pam.d/passwd implements /etc/pam.d/system-auth when changing passwords. Including system-auth from the passwd module ensures that the user must pass through the PAM configuration for system authentication as found in /etc/pam.d/system-auth when changing passwords. To verify that PAM implements system-auth when changing passwords run the following command: # cat /etc/pam.d/passwd | grep -i substack | grep -i system-auth password substack system-auth Is it the case that /etc/pam.d/passwd does not implement /etc/pam.d/system-auth? Verify that pam is configured to use /etc/pam.d/system-auth when changing passwords. Look for the following line in /etc/pam.d/passwd:
password substack system-auth
OL07-00-010118 passwd_system-auth_substack
V-221668 192 medium The Oracle Linux operating system must be configured so that when passwords are changed or new passwords are established, pwquality must be used. Setting the password retry prompts that are permitted on a per-session basis to a low value requires some software, such as SSH, to re-connect. This can slow down and draw additional attention to some types of password-guessing attacks. Note that this is different from account lockout, which is provided by the pam_faillock module. To check how many retry attempts are permitted on a per-session basis, run the following command: $ grep pam_pwquality /etc/pam.d/system-auth The retry parameter will indicate how many attempts are permitted. The DoD required value is less than or equal to 3. This would appear as retry=3, or a lower value. Is it the case that it is not the required value? To configure the number of retry prompts that are permitted per-session: Edit the pam_pwquality.so statement in /etc/pam.d/system-auth to show retry=, or a lower value if site policy is more restrictive. The DoD requirement is a maximum of 3 prompts per session. OL07-00-010119 accounts_password_pam_retry
V-221669 192 medium The Oracle Linux operating system must be configured so that when passwords are changed or new passwords are established, the new password must contain at least one upper-case character. Use of a complex password helps to increase the time and resources reuiqred to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.
To check how many uppercase characters are required in a password, run the following command: $ grep ucredit /etc/security/pwquality.conf The ucredit parameter (as a negative number) will indicate how many uppercase characters are required. The DoD and FISMA require at least one uppercase character in a password. This would appear as ucredit = -1. Is it the case that ucredit is not found or not set less than or equal to the required value? The pam_pwquality module's ucredit= parameter controls requirements for usage of uppercase letters in a password. When set to a negative number, any password will be required to contain that many uppercase characters. When set to a positive number, pam_pwquality will grant +1 additional length credit for each uppercase character. Modify the ucredit setting in /etc/security/pwquality.conf to require the use of an uppercase character in passwords. OL07-00-010120 accounts_password_pam_ucredit
V-221670 193 medium The Oracle Linux operating system must be configured so that when passwords are changed or new passwords are established, the new password must contain at least one lower-case character. Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possble combinations that need to be tested before the password is compromised. Requiring a minimum number of lowercase characters makes password guessing attacks more difficult by ensuring a larger search space.
To check how many lowercase characters are required in a password, run the following command: $ grep lcredit /etc/security/pwquality.conf The lcredit parameter (as a negative number) will indicate how many special characters are required. The DoD and FISMA require at least one lowercase character in a password. This would appear as lcredit = -1. Is it the case that lcredit is not found or not less than or equal to the required value? The pam_pwquality module's lcredit parameter controls requirements for usage of lowercase letters in a password. When set to a negative number, any password will be required to contain that many lowercase characters. When set to a positive number, pam_pwquality will grant +1 additional length credit for each lowercase character. Modify the lcredit setting in /etc/security/pwquality.conf to require the use of a lowercase character in passwords. OL07-00-010130 accounts_password_pam_lcredit
V-221671 194 medium The Oracle Linux operating system must be configured so that when passwords are changed or new passwords are assigned, the new password must contain at least one numeric character. Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised. Requiring digits makes password guessing attacks more difficult by ensuring a larger search space.
To check how many digits are required in a password, run the following command: $ grep dcredit /etc/security/pwquality.conf The dcredit parameter (as a negative number) will indicate how many digits are required. The DoD requires at least one digit in a password. This would appear as dcredit = -1. Is it the case that dcredit is not found or not equal to or less than the required value? The pam_pwquality module's dcredit parameter controls requirements for usage of digits in a password. When set to a negative number, any password will be required to contain that many digits. When set to a positive number, pam_pwquality will grant +1 additional length credit for each digit. Modify the dcredit setting in /etc/security/pwquality.conf to require the use of a digit in passwords. OL07-00-010140 accounts_password_pam_dcredit
V-221672 1619 medium The Oracle Linux operating system must be configured so that when passwords are changed or new passwords are established, the new password must contain at least one special character. Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possble combinations that need to be tested before the password is compromised. Requiring a minimum number of special characters makes password guessing attacks more difficult by ensuring a larger search space.
To check how many special characters are required in a password, run the following command: $ grep ocredit /etc/security/pwquality.conf The ocredit parameter (as a negative number) will indicate how many special characters are required. The DoD and FISMA require at least one special character in a password. This would appear as ocredit = -1. Is it the case that ocredit is not found or not equal to or less than the required value? The pam_pwquality module's ocredit= parameter controls requirements for usage of special (or "other") characters in a password. When set to a negative number, any password will be required to contain that many special characters. When set to a positive number, pam_pwquality will grant +1 additional length credit for each special character. Modify the ocredit setting in /etc/security/pwquality.conf to equal to require use of a special character in passwords. OL07-00-010150 accounts_password_pam_ocredit
V-221673 195 medium The Oracle Linux operating system must be configured so that when passwords are changed a minimum of eight of the total number of characters must be changed. Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute–force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.

Requiring a minimum number of different characters during password changes ensures that newly changed passwords should not resemble previously compromised ones. Note that passwords which are changed on compromised systems will still be compromised, however.
To check how many characters must differ during a password change, run the following command: $ grep difok /etc/security/pwquality.conf The difok parameter will indicate how many characters must differ. Is it the case that difok is not found or not equal to or greater than the required value? The pam_pwquality module's difok parameter sets the number of characters in a password that must not be present in and old password during a password change.

Modify the difok setting in /etc/security/pwquality.conf to equal to require differing characters when changing passwords.
OL07-00-010160 accounts_password_pam_difok
V-221674 195 medium The Oracle Linux operating system must be configured so that when passwords are changed a minimum of four character classes must be changed. Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.

Requiring a minimum number of character categories makes password guessing attacks more difficult by ensuring a larger search space.
To check how many categories of characters must be used in password during a password change, run the following command: $ grep minclass /etc/security/pwquality.conf The minclass parameter will indicate how many character classes must be used. If the requirement was for the password to contain characters from three different categories, then this would appear as minclass = 3. Is it the case that minclass is not found or not set equal to or greater than the required value? The pam_pwquality module's minclass parameter controls requirements for usage of different character classes, or types, of character that must exist in a password before it is considered valid. For example, setting this value to three (3) requires that any password must have characters from at least three different categories in order to be approved. The default value is zero (0), meaning there are no required classes. There are four categories available:
* Upper-case characters
* Lower-case characters
* Digits
* Special characters (for example, punctuation)
Modify the minclass setting in /etc/security/pwquality.conf entry to require differing categories of characters when changing passwords.
OL07-00-010170 accounts_password_pam_minclass
V-221675 195 medium The Oracle Linux operating system must be configured so that when passwords are changed the number of repeating consecutive characters must not be more than three characters. Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.

Passwords with excessive repeating characters may be more vulnerable to password-guessing attacks.
To check the maximum value for consecutive repeating characters, run the following command: $ grep maxrepeat /etc/security/pwquality.conf Look for the value of the maxrepeat parameter. The DoD requirement is 3, which would appear as maxrepeat=3. Is it the case that maxrepeat is not found or not greater than or equal to the required value? The pam_pwquality module's maxrepeat parameter controls requirements for consecutive repeating characters. When set to a positive number, it will reject passwords which contain more than that number of consecutive characters. Modify the maxrepeat setting in /etc/security/pwquality.conf to equal to prevent a run of ( + 1) or more identical characters. OL07-00-010180 accounts_password_pam_maxrepeat
V-221676 195 medium The Oracle Linux operating system must be configured so that when passwords are changed the number of repeating characters of the same character class must not be more than four characters. Use of a complex password helps to increase the time and resources required to comrpomise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex a password, the greater the number of possible combinations that need to be tested before the password is compromised.
To check the value for maximum consecutive repeating characters, run the following command: $ grep maxclassrepeat /etc/security/pwquality.conf For DoD systems, the output should show maxclassrepeat=4 or less but greater than zero. Is it the case that that is not the case? The pam_pwquality module's maxclassrepeat parameter controls requirements for consecutive repeating characters from the same character class. When set to a positive number, it will reject passwords which contain more than that number of consecutive characters from the same character class. Modify the maxclassrepeat setting in /etc/security/pwquality.conf to equal to prevent a run of ( + 1) or more identical characters. OL07-00-010190 accounts_password_pam_maxclassrepeat
V-221677 196 medium The Oracle Linux operating system must be configured so that the PAM system service is configured to store only encrypted representations of passwords. Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm are no more protected than if they are kepy in plain text.

This setting ensures user and group account administration utilities are configured to store only encrypted representations of passwords. Additionally, the crypt_style configuration option ensures the use of a strong hashing algorithm that makes password cracking attacks more difficult.
Inspect the password section of /etc/pam.d/system-auth and ensure that the pam_unix.so module includes the argument sha512: $ grep sha512 /etc/pam.d/system-auth Is it the case that it does not? The PAM system service can be configured to only store encrypted representations of passwords. In /etc/pam.d/system-auth, the password section of the file controls which PAM modules execute during a password change. Set the pam_unix.so module in the password section to include the argument sha512, as shown below:
password    sufficient    pam_unix.so sha512 other arguments...

This will help ensure when local users change their passwords, hashes for the new passwords will be generated using the SHA-512 algorithm. This is the default.
OL07-00-010200 set_password_hashing_algorithm_systemauth
V-221678 196 medium The Oracle Linux operating system must be configured to use the shadow file to store only encrypted representations of passwords. Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm are no more protected than if they are kept in plain text.

Using a stronger hashing algorithm makes password cracking attacks more difficult.
Inspect /etc/login.defs and ensure the following line appears: ENCRYPT_METHOD SHA512 Is it the case that it does not? In /etc/login.defs, add or correct the following line to ensure the system will use SHA-512 as the hashing algorithm:
ENCRYPT_METHOD SHA512
OL07-00-010210 set_password_hashing_algorithm_logindefs
V-221680 196 medium The Oracle Linux operating system must be configured so that user and group account administration utilities are configured to store only encrypted representations of passwords. Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm are no more protected than if they are kepy in plain text.

This setting ensures user and group account administration utilities are configured to store only encrypted representations of passwords. Additionally, the crypt_style configuration option ensures the use of a strong hashing algorithm that makes password cracking attacks more difficult.
Inspect /etc/libuser.conf and ensure the following line appears in the [default] section: crypt_style = sha512 Is it the case that it does not? In /etc/libuser.conf, add or correct the following line in its [defaults] section to ensure the system will use the SHA-512 algorithm for password hashing:
crypt_style = sha512
OL07-00-010220 set_password_hashing_algorithm_libuserconf
V-221681 198 medium The Oracle Linux operating system must be configured so that passwords for new users are restricted to a 24 hours/1 day minimum lifetime. Enforcing a minimum password lifetime helps to prevent repeated password changes to defeat the password reuse or history enforcement requirement. If users are allowed to immediately and continually change their password, then the password could be repeatedly changed in a short period of time to defeat the organization's policy regarding password reuse.

Setting the minimum password age protects against users cycling back to a favorite password after satisfying the password reuse requirement.
To check the minimum password age, run the command: $ grep PASS_MIN_DAYS /etc/login.defs Is it the case that it is not equal to or greater than the required value? To specify password minimum age for new accounts, edit the file /etc/login.defs and add or correct the following line:
PASS_MIN_DAYS 
A value of 1 day is considered sufficient for many environments. The DoD requirement is 1. The profile requirement is .
OL07-00-010230 accounts_minimum_age_login_defs
V-221682 198 medium The Oracle Linux operating system must be configured so that passwords are restricted to a 24 hours/1 day minimum lifetime. Enforcing a minimum password lifetime helps to prevent repeated password changes to defeat the password reuse or history enforcement requirement. If users are allowed to immediately and continually change their password, the password could be repeatedly changed in a short period of time to defeat the organization's policy regarding password reuse. Check whether the minimum time period between password changes for each user account is one day or greater by running the following command for each user: $ sudo chage -l USER | grep Minimum The output for each user should return something similary to the following: Minimum number of days between password change\t\t: 1 Is it the case that existing passwords are not configured correctly? Configure non-compliant accounts to enforce a 24 hours/1 day minimum password lifetime by running the following command:
$ sudo chage -m 1 USER
OL07-00-010240 accounts_password_set_min_life_existing
V-221683 199 medium The Oracle Linux operating system must be configured so that passwords for new users are restricted to a 60-day maximum lifetime. Any password, no matter how complex, can eventually be cracked. Therefore, passwords need to be changed periodically. If the operating system does not limit the lifetime of passwords and force users to change their passwords, there is the risk that the operating system passwords could be compromised.

Setting the password maximum age ensures users are required to periodically change their passwords. Requiring shorter password lifetimes increases the risk of users writing down the password in a convenient location subject to physical compromise.
To check the maximum password age, run the command: $ grep PASS_MAX_DAYS /etc/login.defs The DoD and FISMA requirement is 60. A value of 180 days is sufficient for many environments. Is it the case that PASS_MAX_DAYS is not set equal to or greater than the required value? To specify password maximum age for new accounts, edit the file /etc/login.defs and add or correct the following line:
PASS_MAX_DAYS 
A value of 180 days is sufficient for many environments. The DoD requirement is 60. The profile requirement is .
OL07-00-010250 accounts_maximum_age_login_defs
V-221684 199 medium The Oracle Linux operating system must be configured so that existing passwords are restricted to a 60-day maximum lifetime. Any password, no matter how complex, can eventually be cracked. Therefore, passwords need to be changed periodically. If the operating system does not limit the lifetime of passwords and force users to change their passwords, there is the risk that the operating system passwords could be compromised. Check whether the maximum time period for existing passwords is restricted to 60 days by running the following command for each user: $ sudo chage -l USER | grep Maximum The output for each user should return something similary to the following: Maximum number of days between password change\t\t: 60 Is it the case that existing passwords are not configured correctly? Configure non-compliant accounts to enforce a 60-day maximum password lifetime restriction by running the following command:
$ sudo chage -M 60 USER
OL07-00-010260 accounts_password_set_max_life_existing
V-221685 200 medium The Oracle Linux operating system must be configured so that passwords are prohibited from reuse for a minimum of five generations. Preventing re-use of previous passwords helps ensure that a compromised password is not re-used by a user. Check that the operating system prohibits the reuse of a password for a minimum of generations with the following command: # grep pam_pwhistory.so /etc/pam.d/system-auth password pam_pwhistory.so remember= use_authtok If the command does not return a result, or the returned line is commented out, has a second column value different from , does not contain "remember" value, or the value is less than , this is a finding. Is it the case that the value of remember is not set equal to or greater than <sub idref="var_password_pam_remember" />? Do not allow users to reuse recent passwords. This can be accomplished by using the remember option for the pam_pwhistory PAM modules.

In the file /etc/pam.d/system-auth, make sure the parameter remember is present, and that the value for the remember parameter is or greater. For example:
password  pam_pwhistory.so ...existing_options... remember= use_authtok
The DoD STIG requirement is 5 passwords.
OL07-00-010270 accounts_password_pam_pwhistory_remember_system_auth
V-221686 205 medium The Oracle Linux operating system must be configured so that passwords are a minimum of 15 characters in length. The shorter the password, the lower the number of possible combinations that need to be tested before the password is compromised.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks. Password length is one factor of several that helps to determine strength and how long it takes to crack a password. Use of more characters in a password helps to exponentially increase the time and/or resources required to compromose the password.
To check how many characters are required in a password, run the following command: $ grep minlen /etc/security/pwquality.conf Your output should contain minlen = Is it the case that minlen is not found, or not equal to or greater than the required value? The pam_pwquality module's minlen parameter controls requirements for minimum characters required in a password. Add minlen= after pam_pwquality to set minimum password length requirements. OL07-00-010280 accounts_password_pam_minlen
V-221687 366 high The Oracle Linux operating system must not allow accounts configured with blank or null passwords. If an account has an empty password, anyone could log in and run commands with the privileges of that account. Accounts with empty passwords should never be used in operational environments. To verify that null passwords cannot be used, run the following command: $ grep nullok /etc/pam.d/system-auth If this produces any output, it may be possible to log into accounts with empty passwords. Remove any instances of the nullok option to prevent logins with empty passwords. Is it the case that NULL passwords can be used? If an account is configured for password authentication but does not have an assigned password, it may be possible to log into the account without authentication. Remove any instances of the nullok in /etc/pam.d/system-auth to prevent logins with empty passwords. Note that this rule is not applicable for systems running within a container. Having user with empty password within a container is not considered a risk, because it should not be possible to directly login into a container anyway. OL07-00-010290 no_empty_passwords
V-251698 366 high The Oracle Linux operating system must not have accounts configured with blank or null passwords. If an account has an empty password, anyone could log in and run commands with the privileges of that account. Accounts with empty passwords should never be used in operational environments. To verify that null passwords cannot be used, run the following command: $ sudo awk -F: '!$2 {print $1}' /etc/shadow If this produces any output, it may be possible to log into accounts with empty passwords. Configure all accounts on the system to have a password or lock the account with the following commands: Perform a password reset: $ sudo passwd [username] Lock an account: $ sudo passwd -l [username] Is it the case that Blank or NULL passwords can be used? Check the "/etc/shadow" file for blank passwords with the following command:
$ sudo awk -F: '!$2 {print $1}' /etc/shadow
If the command returns any results, this is a finding. Configure all accounts on the system to have a password or lock the account with the following commands: Perform a password reset:
$ sudo passwd [username]
Lock an account:
$ sudo passwd -l [username]
OL07-00-010291 no_empty_passwords_etc_shadow
V-221688 766 high The Oracle Linux operating system must be configured so that the SSH daemon does not allow authentication using an empty password. Configuring this setting for the SSH daemon provides additional assurance that remote login via SSH will require a password, even in the event of misconfiguration elsewhere. To determine how the SSH daemon's PermitEmptyPasswords option is set, run the following command: $ sudo grep -i PermitEmptyPasswords /etc/ssh/sshd_config If no line, a commented line, or a line indicating the value no is returned, then the required value is set. Is it the case that the required value is not set? To explicitly disallow SSH login from accounts with empty passwords, add or correct the following line in /etc/ssh/sshd_config:
PermitEmptyPasswords no

Any accounts with empty passwords should be disabled immediately, and PAM configuration should prevent users from being able to assign themselves empty passwords.
OL07-00-010300 sshd_disable_empty_passwords
V-221689 795 medium The Oracle Linux operating system must disable account identifiers (individuals, groups, roles, and devices) if the password expires. Disabling inactive accounts ensures that accounts which may not have been responsibly removed are not available to attackers who may have compromised their credentials. To verify the INACTIVE setting, run the following command: $ grep "INACTIVE" /etc/default/useradd The output should indicate the INACTIVE configuration option is set to an appropriate integer as shown in the example below: $ grep "INACTIVE" /etc/default/useradd INACTIVE= Is it the case that the value of INACTIVE is greater than the expected value? To specify the number of days after a password expires (which signifies inactivity) until an account is permanently disabled, add or correct the following line in /etc/default/useradd:
INACTIVE=
If a password is currently on the verge of expiration, then day(s) remain(s) until the account is automatically disabled. However, if the password will not expire for another 60 days, then 60 days plus day(s) could elapse until the account would be automatically disabled. See the useradd man page for more information.
OL07-00-010310 account_disable_post_pw_expiration
V-221690 2238 medium The Oracle Linux operating system must be configured to lock accounts for a minimum of 15 minutes after three unsuccessful logon attempts within a 15-minute timeframe. Locking out user accounts after a number of incorrect attempts prevents direct password guessing attacks. Ensuring that an administrator is involved in unlocking locked accounts draws appropriate attention to such situations. To ensure the failed password attempt policy is configured correctly, run the following command: $ grep pam_faillock /etc/pam.d/system-auth The output should show unlock_time=<some-large-number> or 0 for never. Is it the case that unlock_time is less than the expected value? To configure the system to lock out accounts after a number of incorrect login attempts and require an administrator to unlock the account using pam_faillock.so, modify the content of both /etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:

  • add the following line immediately before the pam_unix.so statement in the AUTH section:
    auth required pam_faillock.so preauth silent deny= unlock_time= fail_interval=
  • add the following line immediately after the pam_unix.so statement in the AUTH section:
    auth [default=die] pam_faillock.so authfail deny= unlock_time= fail_interval=
  • add the following line immediately before the pam_unix.so statement in the ACCOUNT section:
    account required pam_faillock.so
If unlock_time is set to 0, manual intervention by an administrator is required to unlock a user.
OL07-00-010320 accounts_passwords_pam_faillock_unlock_time
V-221691 2238 medium The Oracle Linux operating system must lock the associated account after three unsuccessful root logon attempts are made within a 15-minute period. By limiting the number of failed logon attempts, the risk of unauthorized system access via user password guessing, otherwise known as brute-forcing, is reduced. Limits are imposed by locking the account. To ensure that even the root account is locked after a defined number of failed password attempts, run the following command: $ grep even_deny_root /etc/pam.d/system-auth The output should show even_deny_root. Is it the case that that is not the case? To configure the system to lock out the root account after a number of incorrect login attempts using pam_faillock.so, modify the content of both /etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:

  • Modify the following line in the AUTH section to add even_deny_root:
    auth required pam_faillock.so preauth silent even_deny_root deny= unlock_time= fail_interval=
  • Modify the following line in the AUTH section to add even_deny_root:
    auth [default=die] pam_faillock.so authfail even_deny_root deny= unlock_time= fail_interval=
OL07-00-010330 accounts_passwords_pam_faillock_deny_root
V-251699 366 medium The Oracle Linux operating system must specify the default "include" directory for the /etc/sudoers file. Some sudo configurtion options allow users to run programs without re-authenticating. Use of these configuration options makes it easier for one compromised accound to be used to compromise other accounts. To determine whether sudo command includes configuration files from the appropriate directory, run the following command: $ sudo grep -rP '^#include(dir)?' /etc/sudoers /etc/sudoers.d If only the line /etc/sudoers:#includedir /etc/sudoers.d is returned, then the drop-in include configuration is set correctly. Any other line returned is a finding. Is it the case that the /etc/sudoers doesn't include /etc/sudores.d or includes other directories?? Administrators can configure authorized sudo users via drop-in files, and it is possible to include other directories and configuration files from the file currently being parsed. Make sure that /etc/sudoers only includes drop-in configuration files from /etc/sudoers.d. The /etc/sudoers should contain only one #includedir directive pointing to /etc/sudoers.d, and no file in /etc/sudoers.d/ should include other files or directories. Note that the '#' character doesn't denote a comment in the configuration file. OL07-00-010339 sudoers_default_includedir
V-221692 2038 medium The Oracle Linux operating system must be configured so that users must provide a password for privilege escalation. Without re-authentication, users may access resources or perform tasks for which they do not have authorization.

When operating systems provide the capability to escalate a functional capability, it is critical that the user re-authenticate.
To determine if NOPASSWD has been configured for sudo, run the following command: $ sudo grep -ri nopasswd /etc/sudoers /etc/sudoers.d/ The command should return no output. Is it the case that nopasswd is enabled in sudo? The sudo NOPASSWD tag, when specified, allows a user to execute commands using sudo without having to authenticate. This should be disabled by making sure that the NOPASSWD tag does not exist in /etc/sudoers configuration file or any sudo configuration snippets in /etc/sudoers.d/. OL07-00-010340 sudo_remove_nopasswd
V-237627 366 medium The Oracle Linux operating system must restrict privilege elevation to authorized personnel. If the "sudoers" file is not configured correctly, any user defined on the system can initiate privileged actions on the target system. To determine if "sudoers" file, restricts sudo access, run the following commands: $ sudo grep -PR '^\s*ALL\s+ALL\=\(ALL\)\s+ALL\s*$' /etc/sudoers /etc/sudoers.d/* $ sudo grep -PR '^\s*ALL\s+ALL\=\(ALL\:ALL\)\s+ALL\s*$' /etc/sudoers /etc/sudoers.d/* Both commands should return no output. Is it the case that /etc/sudoers file does not restrict sudo access to authorized personnel? The sudo command allows a user to execute programs with elevated (administrator) privileges. It prompts the user for their password and confirms your request to execute a command by checking a file, called sudoers. Restrict privileged actions by removing the following entries from the sudoers file: ALL ALL=(ALL) ALL ALL ALL=(ALL:ALL) ALL OL07-00-010341 sudo_restrict_privilege_elevation_to_authorized
V-237628 2227 medium The Oracle Linux operating system must use the invoking user's password for privilege escalation when using "sudo". If the rootpw, targetpw, or runaspw flags are defined and not disabled, by default the operating system will prompt the invoking user for the "root" user password. Run the following command to Verify that the sudoers security policy is configured to use the invoking user's password for privilege escalation: sudo egrep -i '(!rootpw|!targetpw|!runaspw)' /etc/sudoers /etc/sudoers.d/* | grep -v '#' If no results are returned, this is a finding. If conflicting results are returned, this is a finding. If "Defaults !targetpw" is not defined, this is a finding. If "Defaults !rootpw" is not defined, this is a finding. If "Defaults !runaspw" is not defined, this is a finding. Is it the case that invoke user passwd when using sudo? The sudoers security policy requires that users authenticate themselves before they can use sudo. When sudoers requires authentication, it validates the invoking user's credentials. The expected output for:
sudo egrep -i '(!rootpw|!targetpw|!runaspw)' /etc/sudoers /etc/sudoers.d/* | grep -v '#'
 /etc/sudoers:Defaults !targetpw
      /etc/sudoers:Defaults !rootpw
      /etc/sudoers:Defaults !runaspw 
OL07-00-010342 sudoers_validate_passwd
V-237629 2038 medium The Oracle Linux operating system must require re-authentication when using the "sudo" command. Without re-authentication, users may access resources or perform tasks for which they do not have authorization.

When operating systems provide the capability to escalate a functional capability, it is critical that the user re-authenticate.
Verify the operating system requires re-authentication when using the "sudo" command to elevate privileges, run the following command: sudo grep -ri '^Defaults.*timestamp_timeout' /etc/sudoers /etc/sudoers.d The output should be: /etc/sudoers:Defaults timestamp_timeout=0 or "timestamp_timeout" is set to a positive number. If conflicting results are returned, this is a finding. Is it the case that timestamp_timeout is not set with the appropriate value for sudo? The sudo timestamp_timeout tag sets the amount of time sudo password prompt waits. The default timestamp_timeout value is 5 minutes. The timestamp_timeout should be configured by making sure that the timestamp_timeout tag exists in /etc/sudoers configuration file or any sudo configuration snippets in /etc/sudoers.d/. If the value is set to an integer less than 0, the user's time stamp will not expire and the user will not have to re-authenticate for privileged actions until the user's session is terminated. OL07-00-010343 sudo_require_reauthentication
V-251700 2038 medium The Oracle Linux operating system must not be configured to bypass password requirements for privilege escalation. Without re-authentication, users may access resources or perform tasks for which they do not have authorization. When operating systems provide the capability to escalate a functional capability, it is critical the user re-authenticate. Verify the operating system is not configured to bypass password requirements for privilege escalation. Check the configuration of the "/etc/pam.d/sudo" file with the following command: $ sudo grep pam_succeed_if /etc/pam.d/sudo Is it the case that system is configured to bypass password requirements for privilege escalation? Verify the operating system is not configured to bypass password requirements for privilege escalation. Check the configuration of the "/etc/pam.d/sudo" file with the following command:
$ sudo grep pam_succeed_if /etc/pam.d/sudo
If any occurrences of "pam_succeed_if" is returned from the command, this is a finding.
OL07-00-010344 disallow_bypass_password_sudo
V-228569 2038 medium The Oracle Linux operating system must be configured so users must re-authenticate for privilege escalation. Without re-authentication, users may access resources or perform tasks for which they do not have authorization.

When operating systems provide the capability to escalate a functional capability, it is critical that the user re-authenticate.
To determine if !authenticate has not been configured for sudo, run the following command: $ sudo grep -r \!authenticate /etc/sudoers /etc/sudoers.d/ The command should return no output. Is it the case that !authenticate is enabled in sudo? The sudo !authenticate option, when specified, allows a user to execute commands using sudo without having to authenticate. This should be disabled by making sure that the !authenticate option does not exist in /etc/sudoers configuration file or any sudo configuration snippets in /etc/sudoers.d/. OL07-00-010350 sudo_remove_no_authenticate
V-221693 366 medium The Oracle Linux operating system must be configured so that the delay between logon prompts following a failed console logon attempt is at least four seconds. Increasing the time between a failed authentication attempt and re-prompting to enter credentials helps to slow a single-threaded brute force attack. Verify the FAIL_DELAY setting is configured correctly in the /etc/login.defs file by running the following command: $ sudo grep -i "FAIL_DELAY" /etc/login.defs All output must show the value of FAIL_DELAY set as shown in the below: $ sudo grep -i "FAIL_DELAY" /etc/login.defs FAIL_DELAY Is it the case that the above command returns no output, or FAIL_DELAY is configured less than the expected value? To ensure the logon failure delay controlled by /etc/login.defs is set properly, add or correct the FAIL_DELAY setting in /etc/login.defs to read as follows:
FAIL_DELAY 
OL07-00-010430 accounts_logon_fail_delay
V-221694 366 high The Oracle Linux operating system must not allow an unattended or automatic logon to the system via a graphical user interface. Failure to restrict system access to authenticated users negatively impacts operating system security. To verify that automatic logins are disabled, run the following command: $ grep -Pzoi "^\[daemon]\\nautomaticlogin.*" /etc/gdm/custom.conf The output should show the following: [daemon] AutomaticLoginEnable=false Is it the case that GDM allows users to automatically login? The GNOME Display Manager (GDM) can allow users to automatically login without user interaction or credentials. User should always be required to authenticate themselves to the system that they are authorized to use. To disable user ability to automatically login to the system, set the AutomaticLoginEnable to false in the [daemon] section in /etc/gdm/custom.conf. For example:
[daemon]
AutomaticLoginEnable=false
OL07-00-010440 gnome_gdm_disable_automatic_login
V-221695 366 high The Oracle Linux operating system must not allow an unrestricted logon to the system. Failure to restrict system access to authenticated users negatively impacts operating system security. To verify that timed logins are disabled, run the following command: $ grep -Pzoi "^\[daemon]\\ntimedlogin.*" /etc/gdm/custom.conf The output should show the following: [daemon] TimedLoginEnable=false Is it the case that GDM allows a guest to login without credentials? The GNOME Display Manager (GDM) can allow users to login without credentials which can be useful for public kiosk scenarios. Allowing users to login without credentials or "guest" account access has inherent security risks and should be disabled. To do disable timed logins or guest account access, set the TimedLoginEnable to false in the [daemon] section in /etc/gdm/custom.conf. For example:
[daemon]
TimedLoginEnable=false
OL07-00-010450 gnome_gdm_disable_guest_login
V-221696 366 medium The Oracle Linux operating system must not allow users to override SSH environment variables. SSH environment options potentially allow users to bypass access restriction in some configurations. To ensure users are not able to send environment variables, run the following command: $ sudo grep PermitUserEnvironment /etc/ssh/sshd_config If properly configured, output should be: PermitUserEnvironment no Is it the case that PermitUserEnvironment is not disabled? To ensure users are not able to override environment variables of the SSH daemon, add or correct the following line in /etc/ssh/sshd_config:
PermitUserEnvironment no
OL07-00-010460 sshd_do_not_permit_user_env
V-221697 366 medium The Oracle Linux operating system must not allow a non-certificate trusted host SSH logon to the system. SSH trust relationships mean a compromise on one host can allow an attacker to move trivially to other hosts. To determine how the SSH daemon's HostbasedAuthentication option is set, run the following command: $ sudo grep -i HostbasedAuthentication /etc/ssh/sshd_config If no line, a commented line, or a line indicating the value no is returned, then the required value is set. Is it the case that the required value is not set? SSH's cryptographic host-based authentication is more secure than .rhosts authentication. However, it is not recommended that hosts unilaterally trust one another, even within an organization.

To disable host-based authentication, add or correct the following line in /etc/ssh/sshd_config:
HostbasedAuthentication no
OL07-00-010470 disable_host_auth
V-221699 213 medium The Oracle Linux operating system must require authentication upon booting into single-user and maintenance modes. This prevents attackers with physical access from trivially bypassing security on the machine and gaining root access. Such accesses are further prevented by configuring the bootloader password. To check if authentication is required for single-user mode, run the following command: $ grep sulogin /usr/lib/systemd/system/rescue.service The output should be similar to the following, and the line must begin with ExecStart and /sbin/sulogin. ExecStart=-/bin/sh -c "/sbin/sulogin; /usr/bin/systemctl --fail --no-block default" Is it the case that the output is different? Single-user mode is intended as a system recovery method, providing a single user root access to the system by providing a boot option at startup. By default, no authentication is performed if single-user mode is selected.

By default, single-user mode is protected by requiring a password and is set in /usr/lib/systemd/system/rescue.service.
OL07-00-010481 require_singleuser_auth
V-221700 213 high Oracle Linux operating systems version 7.2 or newer with a Basic Input/Output System (BIOS) must require authentication upon booting into single-user and maintenance modes. Password protection on the boot loader configuration ensures users with physical access cannot trivially alter important bootloader settings. These include which kernel to use, and whether to enter single-user mode. To verify the boot loader superuser password has been set, run the following command: sudo grep "superusers" /etc/grub2.cfg The output should show the following: password_pbkdf2 superusers-account ${GRUB2_PASSWORD} To verify the boot loader superuser account password has been set, and the password encrypted, run the following command: sudo cat /boot/grub2/user.cfg The output should be similar to: GRUB2_PASSWORD=grub.pbkdf2.sha512.10000.C4E08AC72FBFF7E837FD267BFAD7AEB3D42DDC 2C99F2A94DD5E2E75C2DC331B719FE55D9411745F82D1B6CFD9E927D61925F9BBDD1CFAA0080E0 916F7AB46E0D.1302284FCCC52CD73BA3671C6C12C26FF50BA873293B24EE2A96EE3B57963E6D7 0C83964B473EC8F93B07FE749AA6710269E904A9B08A6BBACB00A2D242AD828 Is it the case that it does not? The grub2 boot loader should have a superuser account and password protection enabled to protect boot-time settings.

Since plaintext passwords are a security risk, generate a hash for the password by running the following command:
$ grub2-setpassword
When prompted, enter the password that was selected.



Once the superuser password has been added, update the grub.cfg file by running:
grub2-mkconfig -o /boot/grub2/grub.cfg
OL07-00-010482 grub2_password
V-244555 213 medium Oracle Linux operating systems version 7.2 or newer booted with a BIOS must have a unique name for the grub superusers account when booting into single-user and maintenance modes. Having a non-default grub superuser username makes password-guessing attacks less effective. To verify the boot loader superuser account has been set, run the following command: sudo grep -A1 "superusers" /etc/grub2.cfg The output should show the following: set superusers="superusers-account" export superusers where superusers-account is the actual account name different from common names like root, admin, or administrator. Is it the case that it does not? The grub2 boot loader should have a superuser account and password protection enabled to protect boot-time settings.

To maximize the protection, select a password-protected superuser account with unique name, and modify the /etc/grub.d/01_users configuration file to reflect the account name change.

Do not to use common administrator account names like root, admin, or administrator for the grub2 superuser account.

Change the superuser to a different username (The default is 'root').
$ sed -i 's/\(set superuser=\).*/\1"<unique user ID>"/g' /etc/grub.d/01_users


Once the superuser account has been added, update the grub.cfg file by running:
grub2-mkconfig -o /boot/grub2/grub.cfg
OL07-00-010483 grub2_admin_username
V-221702 213 high Oracle Linux operating systems version 7.2 or newer using Unified Extensible Firmware Interface (UEFI) must require authentication upon booting into single-user and maintenance modes. Password protection on the boot loader configuration ensures users with physical access cannot trivially alter important bootloader settings. These include which kernel to use, and whether to enter single-user mode. To verify the boot loader superuser password has been set, run the following command: sudo grep "password" /etc/grub2-efi.cfg The output should show the following: password_pbkdf2 superusers-account ${GRUB2_PASSWORD} To verify the boot loader superuser account password has been set, and the password encrypted, run the following command: sudo cat /boot/efi/EFI/redhat/user.cfg The output should be similar to: GRUB2_PASSWORD=grub.pbkdf2.sha512.10000.C4E08AC72FBFF7E837FD267BFAD7AEB3D42DDC 2C99F2A94DD5E2E75C2DC331B719FE55D9411745F82D1B6CFD9E927D61925F9BBDD1CFAA0080E0 916F7AB46E0D.1302284FCCC52CD73BA3671C6C12C26FF50BA873293B24EE2A96EE3B57963E6D7 0C83964B473EC8F93B07FE749AA6710269E904A9B08A6BBACB00A2D242AD828 Is it the case that it does not? The grub2 boot loader should have a superuser account and password protection enabled to protect boot-time settings.

Since plaintext passwords are a security risk, generate a hash for the password by running the following command:
$ grub2-setpassword
When prompted, enter the password that was selected.

Once the superuser password has been added, update the grub.cfg file by running:
grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg
OL07-00-010491 grub2_uefi_password
V-244556 213 medium Oracle Linux operating systems version 7.2 or newer booted with United Extensible Firmware Interface (UEFI) must have a unique name for the grub superusers account when booting into single-user mode and maintenance. Having a non-default grub superuser username makes password-guessing attacks less effective. To verify the boot loader superuser account has been set, run the following command: sudo grep -A1 "superusers" /etc/grub2-efi.cfg The output should show the following: set superusers="superusers-account" export superusers where superusers-account is the actual account name different from common names like root, admin, or administrator. Is it the case that it does not? The grub2 boot loader should have a superuser account and password protection enabled to protect boot-time settings.

To maximize the protection, select a password-protected superuser account with unique name, and modify the /etc/grub.d/01_users configuration file to reflect the account name change.

It is highly suggested not to use common administrator account names like root, admin, or administrator for the grub2 superuser account.

Change the superuser to a different username (The default is 'root').
$ sed -i 's/\(set superuser=\).*/\1"<unique user ID>"/g' /etc/grub.d/01_users


Once the superuser account has been added, update the grub.cfg file by running:
grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg
OL07-00-010492 grub2_uefi_admin_username
V-221703 770 medium The Oracle Linux operating system must uniquely identify and must authenticate organizational users (or processes acting on behalf of organizational users) using multifactor authentication. Smart card login provides two-factor authentication stronger than that provided by a username and password combination. Smart cards leverage PKI (public key infrastructure) in order to provide and verify credentials. Interview the SA to determine if all accounts not exempted by policy are using CAC authentication. For DoD systems, the following systems and accounts are exempt from using smart card (CAC) authentication: SIPRNET systemsStandalone systemsApplication accountsTemporary employee accounts, such as students or interns, who cannot easily receive a CAC or PIVOperational tactical locations that are not collocated with RAPIDS workstations to issue CAC or ALTTest systems, such as those with an Interim Approval to Test (IATT) and use a separate VPN, firewall, or security measure preventing access to network and system components from outside the protection boundary documented in the IATT. Is it the case that non-exempt accounts are not using CAC authentication? To enable smart card authentication, consult the documentation at: OL07-00-010500 smartcard_auth
V-221704 381 high The Oracle Linux operating system must not have the rsh-server package installed. The rsh-server service provides unencrypted remote access service which does not provide for the confidentiality and integrity of user passwords or the remote session and has very weak authentication. If a privileged user were to login using this service, the privileged user password could be compromised. The rsh-server package provides several obsolete and insecure network services. Removing it decreases the risk of those services' accidental (or intentional) activation. Run the following command to determine if the rsh-server package is installed: $ rpm -q rsh-server Is it the case that the package is installed? The rsh-server package can be removed with the following command:
$ sudo yum erase rsh-server
OL07-00-020000 package_rsh-server_removed
V-221705 381 high The Oracle Linux operating system must not have the ypserv package installed. The NIS service provides an unencrypted authentication service which does not provide for the confidentiality and integrity of user passwords or the remote session. Removing the ypserv package decreases the risk of the accidental (or intentional) activation of NIS or NIS+ services. Run the following command to determine if the ypserv package is installed: $ rpm -q ypserv Is it the case that the package is installed? The ypserv package can be removed with the following command:
$ sudo yum erase ypserv
OL07-00-020010 package_ypserv_removed
V-221706 1233 medium The Oracle Linux operating system must implement the Endpoint Security for Linux Threat Prevention tool. Virus scanning software can be used to detect if a system has been compromised by computer viruses, as well as to limit their spread to other systems. To verify that McAfee Endpoint Security for Linux is running, run the following command: $ sudo ps -ef | grep -i mfetpd Is it the case that virus scanning software is not running? Install McAfee Endpoint Security for Linux antivirus software which is provided for DoD systems and uses signatures to search for the presence of viruses on the filesystem. OL07-00-020019 agent_mfetpd_running
V-221707 2235 medium The Oracle Linux operating system must prevent non-privileged users from executing privileged functions to include disabling, circumventing, or altering implemented security safeguards/countermeasures. Preventing non-privileged users from executing privileged functions mitigates the risk that unauthorized individuals or processes may gain unnecessary access to information or privileges.

Privileged functions include, for example, establishing accounts, performing system integrity checks, or administering cryptographic key management activities. Non-privileged users are individuals who do not possess appropriate authorizations. Circumventing intrusion detection and prevention mechanisms or malicious code protection mechanisms are examples of privileged functions that require protection from non-privileged users.
To verify the operating system prevents non-privileged users from executing privileged functions to include disabling, circumventing, or altering implemented security safeguards/countermeasures, run the following command: $ sudo semanage login -l All administrators must be mapped to the sysadm_u or staff_u users with the appropriate domains (sysadm_t and staff_t). All authorized non-administrative users must be mapped to the user_u role or the appropriate domain (user_t). Is it the case that non-admin users are not confined correctly? Configure the operating system to prevent non-privileged users from executing privileged functions to include disabling, circumventing, or altering implemented security safeguards/countermeasures. All administrators must be mapped to the sysadm_u or staff_u users with the appropriate domains (sysadm_t and staff_t).
$ sudo semanage login -m -s sysadm_u USER
or
$ sudo semanage login -m -s staff_u USER


All authorized non-administrative users must be mapped to the user_u role or the appropriate domain (user_t).
$ sudo semanage login -m -s user_u USER
OL07-00-020020 selinux_user_login_roles
V-250309 2235 medium The Oracle Linux operating system must must confine SELinux users to roles that conform to least privilege. Preventing non-privileged users from executing privileged functions mitigates the risk that unauthorized individuals or processes may gain unnecessary access to information or privileges.

Privileged functions include, for example, establishing accounts, performing system integrity checks, or administering cryptographic key management activities. Non-privileged users are individuals who do not possess appropriate authorizations. Circumventing intrusion detection and prevention mechanisms or malicious code protection mechanisms are examples of privileged functions that require protection from non-privileged users.
Verify the operating system confines SELinux users to roles that conform to least privilege. Check the SELinux User list to SELinux Roles mapping by using the following command: sudo semanage user -l The output should look like this: SELinuxUser LabelingPrefix MLS/MCSLevel MLS/MCSRange SELinuxRoles guest_u user s0 s0 guest_r root user s0 s0-s0:c0.c1023 staff_r sysadm_r system_r unconfined_r staff_u user s0 s0-s0:c0.c1023 staff_r sysadm_r sysadm_u user s0 s0-s0:c0.c1023 sysadm_r system_u user s0 s0-s0:c0.c1023 system_r unconfined_r unconfined_u user s0 s0-s0:c0.c1023 system_r unconfined_r user_u user s0 s0 user_r xguest_u user s0 s0 xguest_r Is it the case that selinux users are not confined to least privilege? Configure the operating system to confine SELinux users to roles that conform to least privilege. Use the following command to map the "staff_u" SELinux user to the "staff_r" and "sysadm_r" roles:
$ sudo semanage user -m staff_u -R staff_r -R sysadm_r


Use the following command to map the "user_u" SELinux user to the "user_r" role:
$ sudo semanage -m user_u -R user_r
OL07-00-020021 selinux_confine_to_least_privilege
V-250310 2235 medium The Oracle Linux operating system must not allow privileged accounts to utilize SSH. Preventing non-privileged users from executing privileged functions mitigates the risk that unauthorized individuals or processes may gain unnecessary access to information or privileges. Privileged functions include, for example, establishing accounts, performing system integrity checks, or administering cryptographic key management activities. Non-privileged users are individuals who do not possess appropriate authorizations. Circumventing intrusion detection and prevention mechanisms or malicious code protection mechanisms are examples of privileged functions that require protection from non-privileged users. Run the following command to determine if the ssh_sysadm_login SELinux boolean is disabled: $ getsebool ssh_sysadm_login If properly configured, the output should show the following: ssh_sysadm_login --> off Is it the case that ssh_sysadm_login is not disabled? By default, the SELinux boolean ssh_sysadm_login is disabled. If this setting is enabled, it should be disabled. To disable the ssh_sysadm_login SELinux boolean, run the following command:
$ sudo setsebool -P ssh_sysadm_login off
OL07-00-020022 sebool_ssh_sysadm_login
V-250311 2235 medium The Oracle Linux operating system must elevate the SELinux context when an administrator calls the sudo command. Preventing non-privileged users from executing privileged functions mitigates the risk that unauthorized individuals or processes may gain unnecessary access to information or privileges.

Privileged functions include, for example, establishing accounts, performing system integrity checks, or administering cryptographic key management activities. Non-privileged users are individuals who do not possess appropriate authorizations. Circumventing intrusion detection and prevention mechanisms or malicious code protection mechanisms are examples of privileged functions that require protection from non-privileged users.
Verify the operating system elevates the SELinux context when an administrator calls the sudo command with the following command: This command must be ran as root: grep sysadm_r /etc/sudoers.d/* %wheel ALL=(ALL) TYPE=sysadm_t ROLE=sysadm_r ALL Is it the case that selinux context does not elevate when running sudo command? Configure the operating system to elevate the SELinux context when an administrator calls the sudo command. Edit a file in the /etc/sudoers.d directory with the following command:
sudo visudo -f /etc/sudoers.d/CUSTOM_FILE
Use the following example to build the CUSTOM_FILE in the /etc/sudoers.d directory to allow any administrator belonging to a designated sudoers admin group to elevate their SELinux context with the use of the sudo command:
%wheel ALL=(ALL) TYPE=sysadm_t ROLE=sysadm_r ALL
OL07-00-020023 selinux_context_elevation_for_sudo
V-251701 2696 medium The Oracle Linux operating system must use a file integrity tool to verify correct operation of all security functions. The AIDE package must be installed if it is to be available for integrity checking. Run the following command to determine if the aide package is installed: $ rpm -q aide Is it the case that the package is not installed? The aide package can be installed with the following command:
$ sudo yum install aide
OL07-00-020029 package_aide_installed
V-221708 2699 medium The Oracle Linux operating system must be configured so that a file integrity tool verifies the baseline operating system configuration at least weekly. By default, AIDE does not install itself for periodic execution. Periodically running AIDE is necessary to reveal unexpected changes in installed files.

Unauthorized changes to the baseline configuration could make the system vulnerable to various attacks or allow unauthorized access to the operating system. Changes to operating system configurations can have unintended side effects, some of which may be relevant to security.

Detecting such changes and providing an automated response can help avoid unintended, negative consequences that could ultimately affect the security state of the operating system. The operating system's Information Management Officer (IMO)/Information System Security Officer (ISSO) and System Administrators (SAs) must be notified via email and/or monitoring system trap when there is an unauthorized modification of a configuration item.
To determine that periodic AIDE execution has been scheduled, run the following command: $ grep aide /etc/crontab The output should return something similar to the following: 05 4 * * * root /usr/sbin/aide --check NOTE: The usage of special cron times, such as @daily or @weekly, is acceptable. Is it the case that there is no output? At a minimum, AIDE should be configured to run a weekly scan. To implement a daily execution of AIDE at 4:05am using cron, add the following line to /etc/crontab:
05 4 * * * root /usr/sbin/aide --check
To implement a weekly execution of AIDE at 4:05am using cron, add the following line to /etc/crontab:
05 4 * * 0 root /usr/sbin/aide --check
AIDE can be executed periodically through other means; this is merely one example. The usage of cron's special time codes, such as @daily and @weekly is acceptable.
OL07-00-020030 aide_periodic_cron_checking
V-221709 1744 medium The Oracle Linux operating system must be configured so that designated personnel are notified if baseline configurations are changed in an unauthorized manner. Unauthorized changes to the baseline configuration could make the system vulnerable to various attacks or allow unauthorized access to the operating system. Changes to operating system configurations can have unintended side effects, some of which may be relevant to security.

Detecting such changes and providing an automated response can help avoid unintended, negative consequences that could ultimately affect the security state of the operating system. The operating system's Information Management Officer (IMO)/Information System Security Officer (ISSO) and System Administrators (SAs) must be notified via email and/or monitoring system trap when there is an unauthorized modification of a configuration item.
To determine that periodic AIDE execution has been scheduled, run the following command: $ grep aide /etc/crontab The output should return something similar to the following: 05 4 * * * root /usr/sbin/aide --check | /bin/mail -s "$(hostname) - AIDE Integrity Check" root@localhost The email address that the notifications are sent to can be changed by overriding . Is it the case that AIDE has not been configured or has not been configured to notify personnel of scan details? AIDE should notify appropriate personnel of the details of a scan after the scan has been run. If AIDE has already been configured for periodic execution in /etc/crontab, append the following line to the existing AIDE line:
 | /bin/mail -s "$(hostname) - AIDE Integrity Check" root@localhost
Otherwise, add the following line to /etc/crontab:
05 4 * * * root /usr/sbin/aide --check | /bin/mail -s "$(hostname) - AIDE Integrity Check" root@localhost
AIDE can be executed periodically through other means; this is merely one example.
OL07-00-020040 aide_scan_notification
V-221710 1749 high The Oracle Linux operating system must prevent the installation of software, patches, service packs, device drivers, or operating system components from a repository without verification they have been digitally signed using a certificate that is issued by a Certificate Authority (CA) that is recognized and approved by the organization. Changes to any software components can have significant effects on the overall security of the operating system. This requirement ensures the software has not been tampered with and that it has been provided by a trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system components must be signed with a certificate recognized and approved by the organization.
Verifying the authenticity of the software prior to installation validates the integrity of the patch or upgrade received from a vendor. This ensures the software has not been tampered with and that it has been provided by a trusted vendor. Self-signed certificates are disallowed by this requirement. Certificates used to verify the software must be from an approved Certificate Authority (CA).
To determine whether yum is configured to use gpgcheck, inspect /etc/yum.conf and ensure the following appears in the [main] section: gpgcheck=1 A value of 1 indicates that gpgcheck is enabled. Absence of a gpgcheck line or a setting of 0 indicates that it is disabled. Is it the case that GPG checking is not enabled? The gpgcheck option controls whether RPM packages' signatures are always checked prior to installation. To configure yum to check package signatures before installing them, ensure the following line appears in /etc/yum.conf in the [main] section:
gpgcheck=1
OL07-00-020050 ensure_gpgcheck_globally_activated
V-221711 1749 high The Oracle Linux operating system must prevent the installation of software, patches, service packs, device drivers, or operating system components of local packages without verification they have been digitally signed using a certificate that is issued by a Certificate Authority (CA) that is recognized and approved by the organization. Changes to any software components can have significant effects to the overall security of the operating system. This requirement ensures the software has not been tampered and has been provided by a trusted vendor.

Accordingly, patches, service packs, device drivers, or operating system components must be signed with a certificate recognized and approved by the organization.
To verify that localpkg_gpgcheck is configured properly, run the following command: $ grep localpkg_gpgcheck /etc/yum.conf The output should return something similar to: localpkg_gpgcheck=1 Is it the case that gpgcheck is not enabled or configured correctly to verify local packages? yum should be configured to verify the signature(s) of local packages prior to installation. To configure yum to verify signatures of local packages, set the localpkg_gpgcheck to 1 in /etc/yum.conf. OL07-00-020060 ensure_gpgcheck_local_packages
V-221712 1958 medium The Oracle Linux operating system must be configured to disable USB mass storage. USB storage devices such as thumb drives can be used to introduce malicious software. If the system is configured to prevent the loading of the usb-storage kernel module, it will contain lines inside any file in /etc/modprobe.d or the deprecated/etc/modprobe.conf. These lines instruct the module loading system to run another program (such as /bin/true) upon a module install event. Run the following command to search for such lines in all files in /etc/modprobe.d and the deprecated /etc/modprobe.conf: $ grep -r usb-storage /etc/modprobe.conf /etc/modprobe.d Is it the case that no line is returned? To prevent USB storage devices from being used, configure the kernel module loading system to prevent automatic loading of the USB storage driver. To configure the system to prevent the usb-storage kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:
install usb-storage /bin/true
This will prevent the modprobe program from loading the usb-storage module, but will not prevent an administrator (or another program) from using the insmod program to load the module manually.
OL07-00-020100 kernel_module_usb-storage_disabled
V-221713 1958 medium The Oracle Linux operating system must be configured so that the Datagram Congestion Control Protocol (DCCP) kernel module is disabled unless required. Disabling DCCP protects the system against exploitation of any flaws in its implementation. If the system is configured to prevent the loading of the dccp kernel module, it will contain lines inside any file in /etc/modprobe.d or the deprecated/etc/modprobe.conf. These lines instruct the module loading system to run another program (such as /bin/true) upon a module install event. Run the following command to search for such lines in all files in /etc/modprobe.d and the deprecated /etc/modprobe.conf: $ grep -r dccp /etc/modprobe.conf /etc/modprobe.d Is it the case that no line is returned? The Datagram Congestion Control Protocol (DCCP) is a relatively new transport layer protocol, designed to support streaming media and telephony. To configure the system to prevent the dccp kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:
install dccp /bin/true
OL07-00-020101 kernel_module_dccp_disabled
V-221714 778 medium The Oracle Linux operating system must disable the file system automounter unless required. Disabling the automounter permits the administrator to statically control filesystem mounting through /etc/fstab.

Additionally, automatically mounting filesystems permits easy introduction of unknown devices, thereby facilitating malicious activity.
To check that the autofs service is disabled in system boot configuration, run the following command: $ systemctl is-enabled autofs Output should indicate the autofs service has either not been installed, or has been disabled at all runlevels, as shown in the example below: $ systemctl is-enabled autofs disabled Run the following command to verify autofs is not active (i.e. not running) through current runtime configuration: $ systemctl is-active autofs If the service is not running the command will return the following output: inactive The service will also be masked, to check that the autofs is masked, run the following command: $ systemctl show autofs | grep "LoadState\|UnitFileState" If the service is masked the command will return the following outputs: LoadState=masked UnitFileState=masked Is it the case that ? The autofs daemon mounts and unmounts filesystems, such as user home directories shared via NFS, on demand. In addition, autofs can be used to handle removable media, and the default configuration provides the cdrom device as /misc/cd. However, this method of providing access to removable media is not common, so autofs can almost always be disabled if NFS is not in use. Even if NFS is required, it may be possible to configure filesystem mounts statically by editing /etc/fstab rather than relying on the automounter.

The autofs service can be disabled with the following command:
$ sudo systemctl mask --now autofs.service
OL07-00-020110 service_autofs_disabled
V-228567 1958 medium The Oracle Linux operating system must disable the graphical user interface automounter unless required. Disabling automatic mount running in GNOME3 can prevent the introduction of malware via removable media. It will, however, also prevent desktop users from legitimate use of removable media. These settings can be verified by running the following: $ gsettings get org.gnome.desktop.media-handling autorun-never If properly configured, the output for autorun-nevershould be true. To ensure that users cannot enable autorun in GNOME3, run the following: $ grep 'autorun-never' /etc/dconf/db/local.d/locks/* If properly configured, the output for autorun-never should be /org/gnome/desktop/media-handling/autorun-never Is it the case that GNOME autorun is not disabled? The system's default desktop environment, GNOME3, will mount devices and removable media (such as DVDs, CDs and USB flash drives) whenever they are inserted into the system. To disable autorun-never within GNOME3, add or set autorun-never to true in /etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/desktop/media-handling]
autorun-never=true
Once the settings have been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/desktop/media-handling/autorun-never
After the settings have been set, run dconf update.
OL07-00-020111 dconf_gnome_disable_autorun
V-221715 2617 low The Oracle Linux operating system must remove all software components after updated versions have been installed. Previous versions of software components that are not removed from the information system after updates have been installed may be exploited by some adversaries. To verify that clean_requirements_on_remove is configured properly, run the following command: $ grep clean_requirements_on_remove /etc/yum.conf The output should return something similar to: clean_requirements_on_remove=1 Is it the case that 'clean_requirements_on_remove is not enabled or configured correctly'? yum should be configured to remove previous software components after new versions have been installed. To configure yum to remove the previous software components after updating, set the clean_requirements_on_remove to 1 in /etc/yum.conf. OL07-00-020200 clean_components_post_updating
V-221716 2696 medium The Oracle Linux operating system must enable SELinux. Setting the SELinux state to enforcing ensures SELinux is able to confine potentially compromised processes to the security policy, which is designed to prevent them from causing damage to the system or further elevating their privileges. Check the file /etc/selinux/config and ensure the following line appears: SELINUX= Is it the case that SELINUX is not set to enforcing? The SELinux state should be set to at system boot time. In the file /etc/selinux/config, add or correct the following line to configure the system to boot into enforcing mode:
SELINUX=
OL07-00-020210 selinux_state
V-228570 2696 medium The Oracle Linux operating system must enable the SELinux targeted policy. Setting the SELinux policy to targeted or a more specialized policy ensures the system will confine processes that are likely to be targeted for exploitation, such as network or system services.

Note: During the development or debugging of SELinux modules, it is common to temporarily place non-production systems in permissive mode. In such temporary cases, SELinux policies should be developed, and once work is completed, the system should be reconfigured to .
Check the file /etc/selinux/config and ensure the following line appears: SELINUXTYPE= Is it the case that it does not? The SELinux targeted policy is appropriate for general-purpose desktops and servers, as well as systems in many other roles. To configure the system to use this policy, add or correct the following line in /etc/selinux/config:
SELINUXTYPE=
Other policies, such as mls, provide additional security labeling and greater confinement but are not compatible with many general-purpose use cases.
OL07-00-020220 selinux_policytype
V-221717 366 high The Oracle Linux operating system must be configured so that the x86 Ctrl-Alt-Delete key sequence is disabled on the command line. A locally logged-in user who presses Ctrl-Alt-Del, when at the console, can reboot the system. If accidentally pressed, as could happen in the case of mixed OS environment, this can create the risk of short-term loss of availability of systems due to unintentional reboot. To ensure the system is configured to mask the Ctrl-Alt-Del sequence, Check that the ctrl-alt-del.target is masked and not active with the following command: sudo systemctl status ctrl-alt-del.target The output should indicate that the target is masked and not active. It might resemble following output: ctrl-alt-del.target Loaded: masked (/dev/null; bad) Active: inactive (dead) Is it the case that the system is configured to reboot when Ctrl-Alt-Del is pressed? By default, SystemD will reboot the system if the Ctrl-Alt-Del key sequence is pressed.

To configure the system to ignore the Ctrl-Alt-Del key sequence from the command line instead of rebooting the system, do either of the following:
ln -sf /dev/null /etc/systemd/system/ctrl-alt-del.target
or
systemctl mask ctrl-alt-del.target


Do not simply delete the /usr/lib/systemd/system/ctrl-alt-del.service file, as this file may be restored during future system updates.
OL07-00-020230 disable_ctrlaltdel_reboot
V-228565 366 high The Oracle Linux operating system must be configured so the x86 Ctrl-Alt-Delete key sequence is disabled in the Graphical User Interface. A locally logged-in user who presses Ctrl-Alt-Del, when at the console, can reboot the system. If accidentally pressed, as could happen in the case of mixed OS environment, this can create the risk of short-term loss of availability of systems due to unintentional reboot. To ensure the system is configured to ignore the Ctrl-Alt-Del sequence, run the following command: $ gsettings get org.gnome.settings-daemon.plugins.media-keys logout If properly configured, the output should be ''. To ensure that users cannot enable the Ctrl-Alt-Del sequence, run the following: $ grep logout /etc/dconf/db/local.d/locks/* If properly configured, the output should be /org/gnome/settings-daemon/plugins/media-keys/logout Is it the case that GNOME3 is configured to reboot when Ctrl-Alt-Del is pressed? By default, GNOME will reboot the system if the Ctrl-Alt-Del key sequence is pressed.

To configure the system to ignore the Ctrl-Alt-Del key sequence from the Graphical User Interface (GUI) instead of rebooting the system, add or set logout to '' in /etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/settings-daemon/plugins/media-keys]
logout=''
Once the settings have been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example:
/org/gnome/settings-daemon/plugins/media-keys/logout
After the settings have been set, run dconf update.
OL07-00-020231 dconf_gnome_disable_ctrlaltdel_reboot
V-221718 366 medium The Oracle Linux operating system must define default permissions for all authenticated users in such a way that the user can only read and modify their own files. The umask value influences the permissions assigned to files when they are created. A misconfigured umask value could result in files with excessive permissions that can be read and written to by unauthorized users. Verify the UMASK setting is configured correctly in the /etc/login.defs file by running the following command: # grep -i "UMASK" /etc/login.defs All output must show the value of umask set as shown in the below: # grep -i "UMASK" /etc/login.defs umask Is it the case that the above command returns no output, or if the umask is configured incorrectly? To ensure the default umask controlled by /etc/login.defs is set properly, add or correct the UMASK setting in /etc/login.defs to read as follows:
UMASK 
OL07-00-020240 accounts_umask_etc_login_defs
V-221719 366 high The Oracle Linux operating system must be a vendor supported release. An operating system is considered "supported" if the vendor continues to provide security patches for the product. With an unsupported release, it will not be possible to resolve any security issue discovered in the system software. To verify that the installed operating system is supported, run the following command: $ grep -i "oracle" /etc/oracle-release The output should contain something similar to: Oracle Linux 7 Is it the case that the installed operating system is not supported? The installed operating system must be maintained by a vendor. Oracle Linux is supported by Oracle Corporation. As the Oracle Linux vendor, Oracle Corporation is responsible for providing security patches. OL07-00-020250 installed_OS_is_vendor_supported
V-221720 366 medium The Oracle Linux operating system security patches and updates must be installed and up to date. Installing software updates is a fundamental mitigation against the exploitation of publicly-known vulnerabilities. If the most recent security patches and updates are not installed, unauthorized users may take advantage of weaknesses in the unpatched software. The lack of prompt attention to patching could result in a system compromise. If the system is joined to the ULN or a yum server, run the following command to install updates:
$ sudo yum update
If the system is not configured to use one of these sources, updates (in the form of RPM packages) can be manually downloaded from the ULN and installed using rpm.

NOTE: U.S. Defense systems are required to be patched within 30 days or sooner as local policy dictates.
OL07-00-020260 security_patches_up_to_date
V-221721 366 medium The Oracle Linux operating system must not have unnecessary accounts. Accounts providing no operational purpose provide additional opportunities for system compromise. Unnecessary accounts include user accounts for individuals not requiring access to the system and application accounts for applications not installed on the system. To verify that there are no unauthorized local user accounts, run the following command: $ less /etc/passwd Inspect the results, and if unauthorized local user accounts exist, remove them by running the following command: $ sudo userdel unauthorized_user Is it the case that there are unauthorized local user accounts on the system? Enterprise Application tends to use the server or virtual machine exclusively. Besides the default operating system user, there should be only authorized local users required by the installed softoware groups and applications that exist on the operating system. The authorized user list can be customized in the refine value variable var_accounts_authorized_local_users_regex. OVAL regular expression is used for the user list. Configure the system so all accounts on the system are assigned to an active system, application, or user account. Remove accounts that do not support approved system activities or that allow for a normal user to perform administrative-level actions. To remove unauthorized system accounts, use the following command:
$ sudo userdel unauthorized_user
OL07-00-020270 accounts_authorized_local_users
V-221722 764 low The Oracle Linux operating system must be configured so that all Group Identifiers (GIDs) referenced in the /etc/passwd file are defined in the /etc/group file. If a user is assigned the Group Identifier (GID) of a group not existing on the system, and a group with the Gruop Identifier (GID) is subsequently created, the user may have unintended rights to any files associated with the group. To ensure all GIDs referenced in /etc/passwd are defined in /etc/group, run the following command: $ sudo pwck -qr There should be no output. Is it the case that GIFs referenced in /etc/passwd are returned as not defined in /etc/group? Add a group to the system for each GID referenced without a corresponding group. OL07-00-020300 gid_passwd_group_same
V-221723 366 high The Oracle Linux operating system must be configured so that the root account must be the only account having unrestricted access to the system. An account has root authority if it has a UID of 0. Multiple accounts with a UID of 0 afford more opportunity for potential intruders to guess a password for a privileged account. Proper configuration of sudo is recommended to afford multiple system administrators access to root privileges in an accountable manner. To list all password file entries for accounts with UID 0, run the following command: $ awk -F: '($3 == \"0\") {print}' /etc/passwd This should print only one line, for the user root. If there is a finding, change the UID of the failing (non-root) user. If the account is associated with the system commands or applications the UID should be changed to one greater than 0 but less than 1000. Otherwise assign a UID of greater than 1000 that has not already been assigned. Is it the case that any account other than root has a UID of 0? If any account other than root has a UID of 0, this misconfiguration should be investigated and the accounts other than root should be removed or have their UID changed.
If the account is associated with system commands or applications the UID should be changed to one greater than "0" but less than "1000." Otherwise assign a UID greater than "1000" that has not already been assigned.
OL07-00-020310 accounts_no_uid_except_zero
V-221724 366 medium The Oracle Linux operating system must be configured so that all files and directories have a valid owner. Unowned files do not directly imply a security problem, but they are generally a sign that something is amiss. They may be caused by an intruder, by incorrect software installation or draft software removal, or by failure to remove all files belonging to a deleted account. The files should be repaired so they will not cause problems when accounts are created in the future, and the cause should be discovered and addressed. The following command will discover and print any files on local partitions which do not belong to a valid user. $ df --local -P | awk {'if (NR!=1) print $6'} | sudo xargs -I '{}' find '{}' -xdev -nouser Either remove all files and directories from the system that do not have a valid user, or assign a valid user to all unowned files and directories on the system with the chown command: $ sudo chown user file Is it the case that files exist that are not owned by a valid user? If any files are not owned by a user, then the cause of their lack of ownership should be investigated. Following this, the files should be deleted or assigned to an appropriate user. The following command will discover and print any files on local partitions which do not belong to a valid user:
$ df --local -P | awk {'if (NR!=1) print $6'} | sudo xargs -I '{}' find '{}' -xdev -nouser
To search all filesystems on a system including network mounted filesystems the following command can be run manually for each partition:
$ sudo find PARTITION -xdev -nouser
OL07-00-020320 no_files_unowned_by_user
V-221725 366 medium The Oracle Linux operating system must be configured so that all files and directories have a valid group owner. Unowned files do not directly imply a security problem, but they are generally a sign that something is amiss. They may be caused by an intruder, by incorrect software installation or draft software removal, or by failure to remove all files belonging to a deleted account. The files should be repaired so they will not cause problems when accounts are created in the future, and the cause should be discovered and addressed. The following command will discover and print any files on local partitions which do not belong to a valid group. $ df --local -P | awk '{if (NR!=1) print $6}' | sudo xargs -I '{}' find '{}' -xdev -nogroup Either remove all files and directories from the system that do not have a valid group, or assign a valid group with the chgrp command: $ sudo chgrp group file Is it the case that there is output? If any files are not owned by a group, then the cause of their lack of group-ownership should be investigated. Following this, the files should be deleted or assigned to an appropriate group. The following command will discover and print any files on local partitions which do not belong to a valid group:
$ df --local -P | awk '{if (NR!=1) print $6}' | sudo xargs -I '{}' find '{}' -xdev -nogroup
To search all filesystems on a system including network mounted filesystems the following command can be run manually for each partition:
$ sudo find PARTITION -xdev -nogroup
OL07-00-020330 file_permissions_ungroupowned
V-221727 366 medium The Oracle Linux operating system must be configured so that all local interactive user accounts, upon creation, are assigned a home directory. If local interactive users are not assigned a valid home directory, there is no place for the storage and control of files they should own. Check if the system is configured to create home directories for local interactive users with the following command: $ sudo grep create_home /etc/login.defs Is it the case that the value of CREATE_HOME is not set to yes, is missing, or the line is commented out? All local interactive user accounts, upon creation, should be assigned a home directory.

Configure the operating system to assign home directories to all new local interactive users by setting the CREATE_HOME parameter in /etc/login.defs to yes as follows:

CREATE_HOME yes
OL07-00-020610 accounts_have_homedir_login_defs
V-221728 366 medium The Oracle Linux operating system must be configured so that all local interactive users have a home directory assigned and defined in the /etc/passwd file. If a local interactive user has a home directory defined that does not exist, the user may be given access to the / directory as the current working directory upon logon. This could create a Denial of Service because the user would not be able to access their logon configuration files, and it may give them visibility to system files they normally would not be able to access. To verify the assigned home directory of all interactive users on the system exist, run the following command: $ sudo pwck -r The output should not return any interactive users. Is it the case that users home directory does not exist? Create home directories to all interactive users that currently do not have a home directory assigned. Use the following commands to create the user home directory assigned in /etc/passwd:
$ sudo mkdir /home/USER
OL07-00-020620 accounts_user_interactive_home_directory_exists
V-221729 366 medium The Oracle Linux operating system must be configured so that all local interactive user home directories have mode 0750 or less permissive. Excessive permissions on local interactive user home directories may allow unauthorized access to user files by other users. To verify the assigned home directory of all interactive user home directories have a mode of 0750 or less permissive, run the following command: $ sudo ls -l /home Inspect the output for any directories with incorrect permissions. Is it the case that they are more permissive? Change the mode of interactive users home directories to 0750. To change the mode of interactive users home directory, use the following command:
$ sudo chmod 0750 /home/USER
OL07-00-020630 file_permissions_home_directories
V-221730 366 medium The Oracle Linux operating system must be configured so that all local interactive user home directories are owned by their respective users. If a local interactive user does not own their home directory, unauthorized users could access or modify the user's files, and the users may not be able to access their own files. To verify the home directory ownership, run the following command: # ls -ld $(awk -F: '($3>=1000)&&($7 !~ /nologin/){print $6}' /etc/passwd) Is it the case that the user ownership is incorrect? Change the owner of interactive users home directories to that correct owner. To change the owner of a interactive users home directory, use the following command:
$ sudo chown USER /home/USER
This rule ensures every home directory related to an interactive user is owned by an interactive user. It also ensures that interactive users are owners of one and only one home directory.
OL07-00-020640 file_ownership_home_directories
V-221731 366 medium The Oracle Linux operating system must be configured so that all local interactive user home directories are group-owned by the home directory owners primary group. If the Group Identifier (GID) of a local interactive users home directory is not the same as the primary GID of the user, this would allow unauthorized access to the users files, and users that share the same group may not be able to access files that they legitimately should. To verify the assigned home directory of all interactive users is group- owned by that users primary GID, run the following command: # ls -ld $(awk -F: '($3>=1000)&&($7 !~ /nologin/){print $6}' /etc/passwd) Is it the case that the group ownership is incorrect? Change the group owner of interactive users home directory to the group found in /etc/passwd. To change the group owner of interactive users home directory, use the following command:
$ sudo chgrp USER_GROUP /home/USER
This rule ensures every home directory related to an interactive user is group-owned by an interactive user. It also ensures that interactive users are group-owners of one and only one home directory.
OL07-00-020650 file_groupownership_home_directories
V-221732 366 medium The Oracle Linux operating system must be configured so that all files and directories contained in local interactive user home directories have a valid owner. If local interactive users do not own the files in their directories, unauthorized users may be able to access them. Additionally, if files are not owned by the user, this could be an indication of system compromise. To verify all files and directories in a local interactive user's home directory have a valid owner, run the following command: $ sudo ls -lLR /home/USER Is it the case that the user ownership is incorrect? Either remove all files and directories from the system that do not have a valid user, or assign a valid user to all unowned files and directories. To assign a valid owner to a local interactive user's files and directories, use the following command:
$ sudo chown -R USER /home/USER
This rule ensures every file or directory under the home directory related to an interactive user is owned by an interactive user.
OL07-00-020660 accounts_users_home_files_ownership
V-221733 366 medium The Oracle Linux operating system must be configured so that all files and directories contained in local interactive user home directories are group-owned by a group of which the home directory owner is a member. If a local interactive users files are group-owned by a group of which the user is not a member, unintended users may be able to access them. To verify all files and directories in interactive user home directory are group-owned by a group the user is a member of, run the following command: $ sudo ls -lLR /home/USER Is it the case that the group ownership is incorrect? Change the group of a local interactive users files and directories to a group that the interactive user is a member of. To change the group owner of a local interactive users files and directories, use the following command:
$ sudo chgrp USER_GROUP /home/USER/FILE_DIR
This rule ensures every file or directory under the home directory related to an interactive user is group-owned by an interactive user.
OL07-00-020670 accounts_users_home_files_groupownership
V-221734 366 medium The Oracle Linux operating system must be configured so that all files and directories contained in local interactive user home directories have a mode of 0750 or less permissive. If a local interactive user files have excessive permissions, unintended users may be able to access or modify them. To verify all files and directories contained in interactive user home directory, excluding local initialization files, have a mode of 0750, run the following command: $ sudo ls -lLR /home/USER Is it the case that home directory files or folders have incorrect permissions? Set the mode on files and directories in the local interactive user home directory with the following command:
$ sudo chmod 0750 /home/USER/FILE_DIR
Files that begin with a "." are excluded from this requirement.
OL07-00-020680 accounts_users_home_files_permissions
V-221735 366 medium The Oracle Linux operating system must be configured so that all local initialization files for interactive users are owned by the home directory user or root. Local initialization files are used to configure the user's shell environment upon logon. Malicious modification of these files could compromise accounts upon logon. To verify all local initialization files for interactive users are owned by the primary user, run the following command: $ sudo ls -al /home/USER/.* The user initialization files should be owned by USER. Is it the case that they are not? Set the owner of the user initialization files for interactive users to the primary owner with the following command:
$ sudo chown USER /home/USER/.*
This rule ensures every initialization file related to an interactive user is owned by an interactive user.
OL07-00-020690 accounts_user_dot_user_ownership
V-221736 366 medium The Oracle Linux operating system must be configured so that all local initialization files for local interactive users are be group-owned by the users primary group or root. Local initialization files for interactive users are used to configure the user's shell environment upon logon. Malicious modification of these files could compromise accounts upon logon. To verify the local initialization files of all local interactive users are group- owned by the appropriate user, inspect the primary group of the respective users in /etc/passwd and verify all initialization files under the respective users home directory. Check the group owner of all local interactive users initialization files. Is it the case that they are not? Change the group owner of interactive users files to the group found in
/etc/passwd
for the user. To change the group owner of a local interactive user home directory, use the following command:
$ sudo chgrp USER_GROUP /home/USER/.INIT_FILE
This rule ensures every initialization file related to an interactive user is group-owned by an interactive user.
OL07-00-020700 accounts_user_dot_group_ownership
V-221737 366 medium The Oracle Linux operating system must be configured so that all local initialization files have mode 0740 or less permissive. Local initialization files are used to configure the user's shell environment upon logon. Malicious modification of these files could compromise accounts upon logon. To verify that all user initialization files have a mode of 0740 or less permissive, run the following command: $ sudo find /home -type f -name '\.*' \( -perm -0002 -o -perm -0020 \) There should be no output. Is it the case that they are not 0740 or more permissive? Set the mode of the user initialization files to 0740 with the following command:
$ sudo chmod 0740 /home/USER/.INIT_FILE
OL07-00-020710 file_permission_user_init_files
V-221738 366 medium The Oracle Linux operating system must be configured so that all local interactive user initialization files executable search paths contain only paths that resolve to the users home directory. The executable search path (typically the PATH environment variable) contains a list of directories for the shell to search to find executables. If this path includes the current working directory (other than the users home directory), executables in these directories may be executed instead of system commands. This variable is formatted as a colon-separated list of directories. If there is an empty entry, such as a leading or trailing colon or two consecutive colons, this is interpreted as the current working directory. If deviations from the default system search path for the local interactive user are required, they must be documented with the Information System Security Officer (ISSO). To verify that all interactive user initialization files executable search path statements do not contain statements that will reference a working directory other than the users home directory, run the following command: $ sudo grep -r PATH /home/ Inspect the output for any PATH is references directories outside the home directory. Is it the case that paths contain more than local home directories? Ensure that all interactive user initialization files executable search path statements do not contain statements that will reference a working directory other than the users home directory. OL07-00-020720 accounts_user_home_paths_only
V-221739 366 medium The Oracle Linux operating system must be configured so that local initialization files do not execute world-writable programs. If user start-up files execute world-writable programs, especially in unprotected directories, they could be maliciously modified to destroy user files or otherwise compromise the system at the user level. If the system is compromised at the user level, it is easier to elevate privileges to eventually compromise the system at the root and network level. To verify that local initialization files do not execute world-writable programs, execute the following command: $ sudo find /home -perm -002 -type f -name ".[^.]*" -exec ls -ld {} \; There should be no output. Is it the case that files are executing world-writable programs? Set the mode on files being executed by the user initialization files with the following command:
$ sudo chmod 0755 FILE
OL07-00-020730 accounts_user_dot_no_world_writable_programs
V-221740 366 medium The Oracle Linux operating system must be configured so that all system device files are correctly labeled to prevent unauthorized modification. If a device file carries the SELinux type device_t or unlabeled_t, then SELinux cannot properly restrict access to the device file. To check for incorrectly labeled device files, run following commands: $ sudo find /dev -context *:device_t:* \( -type c -o -type b \) -printf "%p %Z\n" $ sudo find /dev -context *:unlabeled_t:* \( -type c -o -type b \) -printf "%p %Z\n" It should produce no output in a well-configured system. Is it the case that there is output? Device files, which are used for communication with important system resources, should be labeled with proper SELinux types. If any device files carry the SELinux type device_t or unlabeled_t, report the bug so that policy can be corrected. Supply information about what the device is and what programs use it.

To check for incorrectly labeled device files, run following commands:
$ sudo find /dev -context *:device_t:* \( -type c -o -type b \) -printf "%p %Z\n"
$ sudo find /dev -context *:unlabeled_t:* \( -type c -o -type b \) -printf "%p %Z\n"
It should produce no output in a well-configured system.
OL07-00-020900 selinux_all_devicefiles_labeled
V-221741 366 medium The Oracle Linux operating system must be configured so that file systems containing user home directories are mounted to prevent files with the setuid and setgid bit set from being executed. The presence of SUID and SGID executables should be tightly controlled. Users should not be able to execute SUID or SGID binaries from user home directory partitions. To verify the nosuid option is configured for the /home mount point, run the following command: $ mount | grep '\s/home\s' The output should show the corresponding mount point along with the nosuid setting in parentheses. Is it the case that the is not present in the output line, or there is no output line at all? The nosuid mount option can be used to prevent execution of setuid programs in /home. The SUID and SGID permissions should not be required in these user data directories. Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of /home. OL07-00-021000 mount_option_home_nosuid
V-221742 366 medium The Oracle Linux operating system must prevent files with the setuid and setgid bit set from being executed on file systems that are used with removable media. The presence of SUID and SGID executables should be tightly controlled. Allowing users to introduce SUID or SGID binaries from partitions mounted off of removable media would allow them to introduce their own highly-privileged programs. The nosuid mount option prevents set-user-identifier (SUID) and set-group-identifier (SGID) permissions from taking effect. These permissions allow users to execute binaries with the same permissions as the owner and group of the file respectively. Users should not be allowed to introduce SUID and SGID files into the system via partitions mounted from removeable media. Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of any removable media partitions. OL07-00-021010 mount_option_nosuid_removable_partitions
V-221743 366 medium The Oracle Linux operating system must prevent files with the setuid and setgid bit set from being executed on file systems that are being imported via Network File System (NFS). NFS mounts should not present suid binaries to users. Only vendor-supplied suid executables should be installed to their default location on the local filesystem. To verify the nosuid option is configured for all NFS mounts, run the following command: $ mount | grep nfs All NFS mounts should show the nosuid setting in parentheses. This is not applicable if NFS is not implemented. Is it the case that the setting does not show? Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of any NFS mounts. OL07-00-021020 mount_option_nosuid_remote_filesystems
V-221744 366 medium The Oracle Linux operating system must prevent binary files from being executed on file systems that are being imported via Network File System (NFS). The noexec mount option causes the system not to execute binary files. This option must be used for mounting any file system not containing approved binary files as they may be incompatible. Executing files from untrusted file systems increases the opportunity for unprivileged users to attain unauthorized administrative access. To verify the noexec option is configured for all NFS mounts, run the following command: $ mount | grep nfs All NFS mounts should show the noexec setting in parentheses. This is not applicable if NFS is not implemented. Is it the case that the setting does not show? Add the noexec option to the fourth column of /etc/fstab for the line which controls mounting of any NFS mounts. OL07-00-021021 mount_option_noexec_remote_filesystems
V-221747 1764 low The Oracle Linux operating system must mount /dev/shm with secure options. The presence of SUID and SGID executables should be tightly controlled. Users should not be able to execute SUID or SGID binaries from temporary storage partitions. To verify the nosuid option is configured for the /dev/shm mount point, run the following command: $ mount | grep '\s/dev/shm\s' The output should show the corresponding mount point along with the nosuid setting in parentheses. Is it the case that the is not present in the output line, or there is no output line at all? The nosuid mount option can be used to prevent execution of setuid programs in /dev/shm. The SUID and SGID permissions should not be required in these world-writable directories. Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of /dev/shm. OL07-00-021024 mount_option_dev_shm_nosuid
V-221748 366 medium The Oracle Linux operating system must be configured so that all world-writable directories are group-owned by root, sys, bin, or an application group. Allowing a user account to group own a world-writable directory is undesirable because it allows the owner of that directory to remove or replace any files that may be placed in the directory by other users. The following command will discover and print world-writable directories that are not group owned by a system account, given the assumption that only system accounts have a gid lower than 1000. Run it once for each local partition PART: $ sudo find PART -xdev -type d -perm -0002 -gid +999 -print Is it the case that there is output? All directories in local partitions which are world-writable should be group owned by root or another system account. If any world-writable directories are not group owned by a system account, this should be investigated. Following this, the files should be deleted or assigned to an appropriate group. OL07-00-021030 dir_perms_world_writable_system_owned_group
V-228566 366 medium The Oracle Linux operating system must be configured so that all world-writable directories are owned by root, sys, bin, or an application user. Allowing a user account to own a world-writable directory is undesirable because it allows the owner of that directory to remove or replace any files that may be placed in the directory by other users. The following command will discover and print world-writable directories that are not owned by a system account, given the assumption that only system accounts have a uid lower than 500. Run it once for each local partition PART: $ sudo find PART -xdev -type d -perm -0002 -uid +499 -print Is it the case that there is output? All directories in local partitions which are world-writable should be owned by root or another system account. If any world-writable directories are not owned by a system account, this should be investigated. Following this, the files should be deleted or assigned to an appropriate owner. OL07-00-021031 dir_perms_world_writable_system_owned
V-221749 366 medium The Oracle Linux operating system must set the umask value to 077 for all local interactive user accounts. The umask controls the default access mode assigned to newly created files. A umask of 077 limits new files to mode 700 or less permissive. Although umask can be represented as a four-digit number, the first digit representing special access modes is typically ignored or required to be 0. This requirement applies to the globally configured system defaults and the local interactive user defaults for each account on the system. Verify the UMASK setting is not configured for interactive users, run the following command: $ sudo grep -ri "UMASK" /home There should be no output. Is it the case that the above command returns no output, or if the umask is configured incorrectly? Remove the UMASK environment variable from all interactive users initialization files. OL07-00-021040 accounts_umask_interactive_users
V-221750 366 medium The Oracle Linux operating system must have cron logging implemented. Cron logging can be used to trace the successful or unsuccessful execution of cron jobs. It can also be used to spot intrusions into the use of the cron facility by unauthorized and malicious users. To verify that cron is logging to rsyslog, run the following command: grep -rni "cron\.\*" /etc/rsyslog.* The output should return some similar to: cron.* /var/log/cron Is it the case that cron is not logging to rsyslog? Cron logging must be implemented to spot intrusions or trace cron job status. If cron is not logging to rsyslog, it can be implemented by adding the following to the RULES section of /etc/rsyslog.conf:
cron.*                                                  /var/log/cron
OL07-00-021100 rsyslog_cron_logging
V-221751 366 medium The Oracle Linux operating system must be configured so that the cron.allow file, if it exists, is owned by root. If the owner of the cron.allow file is not set to root, the possibility exists for an unauthorized user to view or edit sensitive information. To check the ownership of /etc/cron.allow, run the command: $ ls -lL /etc/cron.allow If properly configured, the output should indicate the following owner: root Is it the case that /etc/cron.allow has owner root? If /etc/cron.allow exists, it must be owned by root. To properly set the owner of /etc/cron.allow, run the command:
$ sudo chown root /etc/cron.allow 
OL07-00-021110 file_owner_cron_allow
V-221752 366 medium The Oracle Linux operating system must be configured so that the cron.allow file, if it exists, is group-owned by root. If the owner of the cron.allow file is not set to root, the possibility exists for an unauthorized user to view or edit sensitive information. To check the group ownership of /etc/cron.allow, run the command: $ ls -lL /etc/cron.allow If properly configured, the output should indicate the following group-owner: root Is it the case that /etc/cron.allow has group owner root? If /etc/cron.allow exists, it must be group-owned by root. To properly set the group owner of /etc/cron.allow, run the command:
$ sudo chgrp root /etc/cron.allow
OL07-00-021120 file_groupowner_cron_allow
V-221753 366 medium The Oracle Linux operating system must disable Kernel core dumps unless needed. Kernel core dumps may contain the full contents of system memory at the time of the crash. Kernel core dumps consume a considerable amount of disk space and may result in denial of service by exhausting the available space on the target file system partition. Unless the system is used for kernel development or testing, there is little need to run the kdump service. To check that the kdump service is disabled in system boot configuration, run the following command: $ systemctl is-enabled kdump Output should indicate the kdump service has either not been installed, or has been disabled at all runlevels, as shown in the example below: $ systemctl is-enabled kdump disabled Run the following command to verify kdump is not active (i.e. not running) through current runtime configuration: $ systemctl is-active kdump If the service is not running the command will return the following output: inactive The service will also be masked, to check that the kdump is masked, run the following command: $ systemctl show kdump | grep "LoadState\|UnitFileState" If the service is masked the command will return the following outputs: LoadState=masked UnitFileState=masked Is it the case that ? The kdump service provides a kernel crash dump analyzer. It uses the kexec system call to boot a secondary kernel ("capture" kernel) following a system crash, which can load information from the crashed kernel for analysis. The kdump service can be disabled with the following command:
$ sudo systemctl mask --now kdump.service
OL07-00-021300 service_kdump_disabled
V-221754 366 low The Oracle Linux operating system must be configured so that a separate file system is used for user home directories (such as /home or an equivalent). Ensuring that /home is mounted on its own partition enables the setting of more restrictive mount options, and also helps ensure that users cannot trivially fill partitions used for log or audit data storage. Run the following command to determine if /home is on its own partition or logical volume: $ mount | grep "on /home" If /home has its own partition or volume group, a line will be returned. Is it the case that no line is returned? If user home directories will be stored locally, create a separate partition for /home at installation time (or migrate it later using LVM). If /home will be mounted from another system such as an NFS server, then creating a separate partition is not necessary at installation time, and the mountpoint can instead be configured later. OL07-00-021310 partition_for_home
V-221755 366 low The Oracle Linux operating system must use a separate file system for /var. Ensuring that /var is mounted on its own partition enables the setting of more restrictive mount options. This helps protect system services such as daemons or other programs which use it. It is not uncommon for the /var directory to contain world-writable directories installed by other software packages. Run the following command to determine if /var is on its own partition or logical volume: $ mount | grep "on /var" If /var has its own partition or volume group, a line will be returned. Is it the case that no line is returned? The /var directory is used by daemons and other system services to store frequently-changing data. Ensure that /var has its own partition or logical volume at installation time, or migrate it using LVM. OL07-00-021320 partition_for_var
V-221756 1849 low The Oracle Linux operating system must use a separate file system for the system audit data path large enough to hold at least one week of audit data. Placing /var/log/audit in its own partition enables better separation between audit files and other files, and helps ensure that auditing cannot be halted due to the partition running out of space. Run the following command to determine if /var/log/audit is on its own partition or logical volume: $ mount | grep "on /var/log/audit" If /var/log/audit has its own partition or volume group, a line will be returned. Is it the case that no line is returned? Audit logs are stored in the /var/log/audit directory. Ensure that it has its own partition or logical volume at installation time, or migrate it later using LVM. Make absolutely certain that it is large enough to store all audit logs that will be created by the auditing daemon. OL07-00-021330 partition_for_var_log_audit
V-221757 366 low The Oracle Linux operating system must use a separate file system for /tmp (or equivalent). The /tmp partition is used as temporary storage by many programs. Placing /tmp in its own partition enables the setting of more restrictive mount options, which can help protect programs which use it. Run the following command to determine if /tmp is on its own partition or logical volume: $ mount | grep "on /tmp" If /tmp has its own partition or volume group, a line will be returned. Is it the case that no line is returned? The /tmp directory is a world-writable directory used for temporary file storage. Ensure it has its own partition or logical volume at installation time, or migrate it using LVM. OL07-00-021340 partition_for_tmp
V-221758 2476 high The Oracle Linux operating system must implement NIST FIPS-validated cryptography for the following: to provision digital signatures, to generate cryptographic hashes, and to protect data requiring data-at-rest protections in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards. Use of weak or untested encryption algorithms undermines the purposes of utilizing encryption to protect data. The operating system must implement cryptographic modules adhering to the higher standards approved by the federal government since this provides assurance they have been tested and validated. To verify that FIPS is enabled properly in grub, run the following command: $ grep fips /etc/default/grub The output should contain fips=1 Is it the case that FIPS is not configured or enabled in grub? To ensure FIPS mode is enabled, install package dracut-fips, and rebuild initramfs by running the following commands:
$ sudo yum install dracut-fips
dracut -f
After the dracut command has been run, add the argument fips=1 to the default GRUB 2 command line for the Linux operating system in /etc/default/grub, in the manner below:
GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=VolGroup/LogVol06 rd.lvm.lv=VolGroup/lv_swap rhgb quiet rd.shell=0 fips=1"
Finally, rebuild the grub.cfg file by using the
grub2-mkconfig -o
command as follows:
  • On BIOS-based machines, issue the following command as root:
    ~]# grub2-mkconfig -o /boot/grub2/grub.cfg
  • On UEFI-based machines, issue the following command as root:
    ~]# grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg
OL07-00-021350 grub2_enable_fips_mode
V-221759 366 low The Oracle Linux operating system must be configured so that the file integrity tool is configured to verify Access Control Lists (ACLs). ACLs can provide permissions beyond those permitted through the file mode and must be verified by the file integrity tools. To determine that AIDE is verifying ACLs, run the following command: $ grep acl /etc/aide.conf Verify that the acl option is added to the correct ruleset. Is it the case that the acl option is missing or not added to the correct ruleset? By default, the acl option is added to the FIPSR ruleset in AIDE. If using a custom ruleset or the acl option is missing, add acl to the appropriate ruleset. For example, add acl to the following line in /etc/aide.conf:
FIPSR = p+i+n+u+g+s+m+c+acl+selinux+xattrs+sha256
AIDE rules can be configured in multiple ways; this is merely one example that is already configured by default. The remediation provided with this rule adds acl to all rule sets available in /etc/aide.conf
OL07-00-021600 aide_verify_acls
V-221760 366 low The Oracle Linux operating system must be configured so that the file integrity tool is configured to verify extended attributes. Extended attributes in file systems are used to contain arbitrary data and file metadata with security implications. To determine that AIDE is verifying extended file attributes, run the following command: $ grep xattrs /etc/aide.conf Verify that the xattrs option is added to the correct ruleset. Is it the case that the xattrs option is missing or not added to the correct ruleset? By default, the xattrs option is added to the FIPSR ruleset in AIDE. If using a custom ruleset or the xattrs option is missing, add xattrs to the appropriate ruleset. For example, add xattrs to the following line in /etc/aide.conf:
FIPSR = p+i+n+u+g+s+m+c+acl+selinux+xattrs+sha256
AIDE rules can be configured in multiple ways; this is merely one example that is already configured by default. The remediation provided with this rule adds xattrs to all rule sets available in /etc/aide.conf
OL07-00-021610 aide_verify_ext_attributes
V-221761 366 medium The Oracle Linux operating system must use a file integrity tool that is configured to use FIPS 140-2 approved cryptographic hashes for validating file contents and directories. File integrity tools use cryptographic hashes for verifying file contents and directories have not been altered. These hashes must be FIPS 140-2 approved cryptographic hashes. To determine that AIDE is configured for FIPS 140-2 file hashing, run the following command: $ grep sha512 /etc/aide.conf Verify that the sha512 option is added to the correct ruleset. Is it the case that the sha512 option is missing or not added to the correct ruleset? By default, the sha512 option is added to the NORMAL ruleset in AIDE. If using a custom ruleset or the sha512 option is missing, add sha512 to the appropriate ruleset. For example, add sha512 to the following line in /etc/aide.conf:
NORMAL = FIPSR+sha512
AIDE rules can be configured in multiple ways; this is merely one example that is already configured by default.
OL07-00-021620 aide_use_fips_hashes
V-221762 1813 medium The Oracle Linux operating system must not allow removable media to be used as the boot loader unless approved. Malicious users with removable boot media can gain access to a system configured to use removable media as the boot loader. To verify the system is not configured to use a boot loader on removable media, run the following command: $ sudo grep "set root='hd0" /boot/efi/EFI/redhat/grub.cfg The output should return something similar to: set root='hd0,msdos1' usb0, cd, fd0, etc. are some examples of removeable media which should not exist in the line: set root='hd0,msdos1' Is it the case that it is not? The system must not allow removable media to be used as the boot loader. Remove alternate methods of booting the system from removable media. usb0, cd, fd0, etc. are some examples of removeable media which should not exist in the line:
set root='hd0,msdos1'
OL07-00-021700 uefi_no_removeable_media
V-221763 381 high The Oracle Linux operating system must not have the telnet-server package installed. It is detrimental for operating systems to provide, or install by default, functionality exceeding requirements or mission objectives. These unnecessary capabilities are often overlooked and therefore may remain unsecure. They increase the risk to the platform by providing additional attack vectors.
The telnet service provides an unencrypted remote access service which does not provide for the confidentiality and integrity of user passwords or the remote session. If a privileged user were to login using this service, the privileged user password could be compromised.
Removing the telnet-server package decreases the risk of the telnet service's accidental (or intentional) activation.
Run the following command to determine if the telnet-server package is installed: $ rpm -q telnet-server Is it the case that the package is installed? The telnet-server package can be removed with the following command:
$ sudo yum erase telnet-server
OL07-00-021710 package_telnet-server_removed
V-221764 1814 medium The Oracle Linux operating system must be configured so that auditing is configured to produce records containing information to establish what type of events occurred, where the events occurred, the source of the events, and the outcome of the events. These audit records must also identify individual identities of group account users. Without establishing what type of events occurred, it would be difficult to establish, correlate, and investigate the events leading up to an outage or attack. Ensuring the auditd service is active ensures audit records generated by the kernel are appropriately recorded.

Additionally, a properly configured audit subsystem ensures that actions of individual system users can be uniquely traced to those users so they can be held accountable for their actions.
Run the following command to determine the current status of the auditd service: $ systemctl is-active auditd If the service is running, it should return the following: active Is it the case that ? The auditd service is an essential userspace component of the Linux Auditing System, as it is responsible for writing audit records to disk. The auditd service can be enabled with the following command:
$ sudo systemctl enable auditd.service
OL07-00-030000 service_auditd_enabled
V-221765 139 medium The Oracle Linux operating system must shut down upon audit processing failure, unless availability is an overriding concern. If availability is a concern, the system must alert the designated staff (System Administrator [SA] and Information System Security Officer [ISSO] at a minimum) in the event of an audit processing failure. It is critical for the appropriate personnel to be aware if a system is at risk of failing to process audit logs as required. Without this notification, the security personnel may be unaware of an impending failure of the audit capability, and system operation may be adversely affected.

Audit processing failures include software/hardware errors, failures in the audit capturing mechanisms, and audit storage capacity being reached or exceeded.
To verify that the system will shutdown when auditd fails, run the following command: $ sudo grep "\-f 2" /etc/audit/audit.rules The output should contain: -f 2 Is it the case that the system is not configured to shutdown on auditd failures? If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-f 2
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to the top of the /etc/audit/audit.rules file:
-f 2
OL07-00-030010 audit_rules_system_shutdown
V-221767 1851 medium The Oracle Linux operating system must be configured to off-load audit logs onto a different system or storage media from the system being audited. Information stored in one location is vulnerable to accidental or incidental deletion or alteration. Off-loading is a common process in information systems with limited audit storage capacity. To verify the au-remote plugin is configured to always off-load audit logs using the audisp-remote daemon, run the following command: # cat /etc/audisp/au-remote.conf The output should return something similar to active = yes direction = out path = /sbin/audisp-remote type = always format = string Is it the case that au-remote is not configured to send logs to a remote system using audisp-remote daemon? Configure the au-remote plugin to off-load audit records onto a different system or storage media from the system being audited. Edit /etc/audisp/plugins.d/au-remote.conf add or update the following values:
active = yes
direction = out
path = /sbin/audisp-remote
type = always
format = string
OL07-00-030201 auditd_audispd_configure_au-remote
V-221768 1851 medium The Oracle Linux operating system must take appropriate action when the remote logging buffer is full. The audit system should have an action setup in the event the internal event queue becomes full so that no data is lost. Verify the audit system is configured to take an appropriate action when the internal event queue is full: $ sudo grep -i overflow_action /etc/audisp/audispd.conf The output should contain be like overflow_action = syslog If the value of the "overflow_action" option is not set to syslog, single, halt or the line is commented out, ask the System Administrator to indicate how the audit logs are off-loaded to a different system or media. Is it the case that auditd overflow action is not setup correctly? The audit system should have an action setup in the event the internal event queue becomes full. To setup an overflow action edit /etc/audisp/audispd.conf. Set overflow_action to one of the following values: syslog, single, halt. OL07-00-030210 auditd_overflow_action
V-221769 1851 medium The Oracle Linux operating system must label all off-loaded audit logs before sending them to the central log server. If option name_format is left at its default value of none, audit events from different computers may be hard to distinguish. To verify that Audit Daemon is configured to record the hostname in audit events, run the following command: $ sudo grep name_format /etc/audit/auditd.conf The output should return the following: name_format = hostname Is it the case that name_format isn't set to hostname? To configure Audit daemon to use value returned by gethostname syscall as computer node name in the audit events, set name_format to hostname in /etc/audit/auditd.conf. OL07-00-030211 auditd_name_format
V-221770 1851 medium The Oracle Linux operating system must off-load audit records onto a different system or media from the system being audited. Information stored in one location is vulnerable to accidental or incidental deletion or alteration.Off-loading is a common process in information systems with limited audit storage capacity. To verify the audispd plugin off-loads audit records onto a different system or media from the system being audited, run the following command: $ sudo grep -i remote_server /etc/audisp/audisp-remote.conf The output should return something similar to remote_server = Is it the case that audispd is not sending logs to a remote system? Configure the audispd plugin to off-load audit records onto a different system or media from the system being audited. Set the remote_server option in
/etc/audisp/audisp-remote.conf
with an IP address or hostname of the system that the audispd plugin should send audit records to. For example
remote_server = 
OL07-00-030300 auditd_audispd_configure_remote_server
V-221771 1851 medium The Oracle Linux operating system must encrypt the transfer of audit records off-loaded onto a different system or media from the system being audited. Information stored in one location is vulnerable to accidental or incidental deletion or alteration. Off-loading is a common process in information systems with limited audit storage capacity. To verify the audispd plugin encrypts audit records off-loaded onto a different system or media from the system being audited, run the following command: $ sudo grep -i enable_krb5 /etc/audisp/audisp-remote.conf The output should return the following: enable_krb5 = yes Is it the case that audispd is not encrypting audit records when sent over the network? Configure the operating system to encrypt the transfer of off-loaded audit records onto a different system or media from the system being audited. Uncomment the enable_krb5 option in
/etc/audisp/audisp-remote.conf
, and set it with the following line:
enable_krb5 = yes
OL07-00-030310 auditd_audispd_encrypt_sent_records
V-221772 1851 medium The Oracle Linux operating system must be configured so that the audit system takes appropriate action when the audit storage volume is full. Taking appropriate action in case of a filled audit storage volume will minimize the possibility of losing audit records. Inspect /etc/audisp/audisp-remote.conf and locate the following line to determine if the system is configured to either send to syslog, switch to single user mode, or halt when the disk is full: grep -i disk_full_action /etc/audisp/audisp-remote.conf The output should return something similar to: disk_full_action = single Acceptable values also include syslog and halt. Is it the case that the system is not configured to switch to single user mode for corrective action? Configure the action the operating system takes if the disk the audit records are written to becomes full. Edit the file /etc/audisp/audisp-remote.conf. Add or modify the following line, substituting ACTION appropriately:
disk_full_action = ACTION
Set this value to single to cause the system to switch to single user mode for corrective action. Acceptable values also include syslog and halt. For certain systems, the need for availability outweighs the need to log all actions, and a different setting should be determined.
OL07-00-030320 auditd_audispd_disk_full_action
V-221773 1851 medium The Oracle Linux operating system must be configured so that the audit system takes appropriate action when there is an error sending audit records to a remote system. Taking appropriate action when there is an error sending audit records to a remote system will minimize the possibility of losing audit records. Inspect /etc/audisp/audisp-remote.conf and locate the following line to determine if the system is configured to perform a correct action according to the policy: grep -i network_failure_action /etc/audisp/audisp-remote.conf The output should return: network_failure_action = Is it the case that the system is not configured to switch to single user mode for corrective action? Configure the action the operating system takes if there is an error sending audit records to a remote system. Edit the file /etc/audisp/audisp-remote.conf. Add or modify the following line, substituting ACTION appropriately:
network_failure_action = ACTION
Set this value to single to cause the system to switch to single user mode for corrective action. Acceptable values also include syslog and halt. For certain systems, the need for availability outweighs the need to log all actions, and a different setting should be determined. This profile configures the action to be .
OL07-00-030321 auditd_audispd_network_failure_action
V-221774 1855 medium The Oracle Linux operating system must initiate an action to notify the System Administrator (SA) and Information System Security Officer (ISSO), at a minimum, when allocated audit record storage volume reaches 75 percent of the repository maximum audit record storage capacity. Notifying administrators of an impending disk space problem may allow them to take corrective action prior to any disruption. Inspect /etc/audit/auditd.conf and locate the following line to determine if the system is configured correctly: space_left PERCENTAGE% Is it the case that the system is not configured with a specific percentage to notify administrators of an issue? The auditd service can be configured to take an action when disk space is running low but prior to running out of space completely. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting PERCENTAGE appropriately:
space_left = PERCENTAGE%
Set this value to at least 25 to cause the system to notify the user of an issue.
OL07-00-030330 auditd_data_retention_space_left_percentage
V-221775 1855 medium The Oracle Linux operating system must immediately notify the System Administrator (SA) and Information System Security Officer (ISSO) (at a minimum) via email when the threshold for the repository maximum audit record storage capacity is reached. Notifying administrators of an impending disk space problem may allow them to take corrective action prior to any disruption. Inspect /etc/audit/auditd.conf and locate the following line to determine if the system is configured to email the administrator when disk space is starting to run low: $ sudo grep space_left_action /etc/audit/auditd.conf space_left_action Acceptable values are email, suspend, single, and halt. Is it the case that the system is not configured to send an email to the system administrator when disk space is starting to run low? The auditd service can be configured to take an action when disk space starts to run low. Edit the file /etc/audit/auditd.conf. Modify the following line, substituting ACTION appropriately:
space_left_action = ACTION
Possible values for ACTION are described in the auditd.conf man page. These include:
  • syslog
  • email
  • exec
  • suspend
  • single
  • halt
Set this to email (instead of the default, which is suspend) as it is more likely to get prompt attention. Acceptable values also include suspend, single, and halt.
OL07-00-030340 auditd_data_retention_space_left_action
V-221776 1855 medium The Oracle Linux operating system must immediately notify the System Administrator (SA) and Information System Security Officer (ISSO) (at a minimum) when the threshold for the repository maximum audit record storage capacity is reached. Email sent to the root account is typically aliased to the administrators of the system, who can take appropriate action. Inspect /etc/audit/auditd.conf and locate the following line to determine if the system is configured to send email to an account when it needs to notify an administrator: action_mail_acct = Is it the case that auditd is not configured to send emails per identified actions? The auditd service can be configured to send email to a designated account in certain situations. Add or correct the following line in /etc/audit/auditd.conf to ensure that administrators are notified via email for those situations:
action_mail_acct = 
OL07-00-030350 auditd_data_retention_action_mail_acct
V-221777 2234 medium The Oracle Linux operating system must audit all executions of privileged functions. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised information system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider threats and the advanced persistent threat. Add or update the following rules in "/etc/audit/rules.d/audit.rules": -a always,exit -F arch=b32 -S execve -C uid!=euid -F euid=0 -k setuid -a always,exit -F arch=b64 -S execve -C uid!=euid -F euid=0 -k setuid -a always,exit -F arch=b32 -S execve -C gid!=egid -F egid=0 -k setgid -a always,exit -F arch=b64 -S execve -C gid!=egid -F egid=0 -k setgid The audit daemon must be restarted for the changes to take effect. # sudo systemctl restart auditd.service Is it the case that it is not the case? Verify the system generates an audit record when privileged functions are executed.
# grep -iw execve /etc/audit/audit.rules
-a always,exit -F arch=b32 -S execve -C uid!=euid -F euid=0 -k setuid
-a always,exit -F arch=b64 -S execve -C uid!=euid -F euid=0 -k setuid
-a always,exit -F arch=b32 -S execve -C gid!=egid -F egid=0 -k setgid
-a always,exit -F arch=b64 -S execve -C gid!=egid -F egid=0 -k setgid
If both the "b32" and "b64" audit rules for "SUID" files are not defined, this is a finding. If both the "b32" and "b64" audit rules for "SGID" files are not defined, this is a finding.
OL07-00-030360 audit_rules_suid_privilege_function
V-221778 172 medium The Oracle Linux operating system must audit all uses of the chown, fchown, fchownat, and lchown syscalls. The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. To determine if the system is configured to audit calls to the lchown system call, run the following command: preserve$ sudo grep "lchown" /etc/audit/audit.* If the system is configured to audit this activity, it will return a line. Is it the case that no line is returned? At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
OL07-00-030370 audit_rules_dac_modification_lchown
V-221782 172 medium The Oracle Linux operating system must audit all uses of the chmod, fchmod, and fchmodat syscalls. The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. To determine if the system is configured to audit calls to the fchmodat system call, run the following command: preserve$ sudo grep "fchmodat" /etc/audit/audit.* If the system is configured to audit this activity, it will return a line. Is it the case that no line is returned? At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
OL07-00-030410 audit_rules_dac_modification_fchmodat
V-221785 172 medium The Oracle Linux operating system must audit all uses of the setxattr, fsetxattr, lsetxattr, removexattr, fremovexattr, and lremovexattr syscalls. The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. To determine if the system is configured to audit calls to the setxattr system call, run the following command: preserve$ sudo grep "setxattr" /etc/audit/audit.* If the system is configured to audit this activity, it will return a line. Is it the case that no line is returned? At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
OL07-00-030440 audit_rules_dac_modification_setxattr
V-221792 2884 medium The Oracle Linux operating system must audit all uses of the creat, open, openat, open_by_handle_at, truncate, and ftruncate syscalls. Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise. To determine if the system is configured to audit calls to the truncate system call, run the following command: preserve$ sudo grep "truncate" /etc/audit/audit.* If the system is configured to audit this activity, it will return a line. Is it the case that no line is returned? At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
OL07-00-030510 audit_rules_unsuccessful_file_modification_truncate
V-221797 2884 medium The Oracle Linux operating system must audit all uses of the semanage command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that execution of the command is being audited, run the following command: $ sudo grep "path=/usr/sbin/semanage" /etc/audit/audit.rules /etc/audit/rules.d/* The output should return something similar to: -a always,exit -F path=/usr/sbin/semanage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged Is it the case that ? At a minimum, the audit system should collect any execution attempt of the semanage command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/semanage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/semanage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030560 audit_rules_execution_semanage
V-221798 2884 medium The Oracle Linux operating system must audit all uses of the setsebool command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that execution of the command is being audited, run the following command: $ sudo grep "path=/usr/sbin/setsebool" /etc/audit/audit.rules /etc/audit/rules.d/* The output should return something similar to: -a always,exit -F path=/usr/sbin/setsebool -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged Is it the case that ? At a minimum, the audit system should collect any execution attempt of the setsebool command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/setsebool -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/setsebool -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030570 audit_rules_execution_setsebool
V-221799 2884 medium The Oracle Linux operating system must audit all uses of the chcon command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that execution of the command is being audited, run the following command: $ sudo grep "path=/usr/bin/chcon" /etc/audit/audit.rules /etc/audit/rules.d/* The output should return something similar to: -a always,exit -F path=/usr/bin/chcon -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged Is it the case that ? At a minimum, the audit system should collect any execution attempt of the chcon command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/chcon -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/bin/chcon -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030580 audit_rules_execution_chcon
V-221800 2884 medium The Oracle Linux operating system must audit all uses of the setfiles command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that execution of the command is being audited, run the following command: $ sudo grep "path=/usr/sbin/setfiles" /etc/audit/audit.rules /etc/audit/rules.d/* The output should return something similar to: -a always,exit -F path=/usr/sbin/setfiles -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged Is it the case that ? At a minimum, the audit system should collect any execution attempt of the setfiles command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/setfiles -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/setfiles -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030590 audit_rules_execution_setfiles
V-221801 2884 medium The Oracle Linux operating system must generate audit records for all unsuccessful account access events. Manual editing of these files may indicate nefarious activity, such as an attacker attempting to remove evidence of an intrusion. To verify that auditing is configured for system administrator actions, run the following command: $ sudo auditctl -l | grep "watch=/var/run/faillock\|-w /var/run/faillock" Is it the case that there is not output? The audit system already collects login information for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d in order to watch for attempted manual edits of files involved in storing logon events:
-w /var/run/faillock -p wa -k logins
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file in order to watch for unattempted manual edits of files involved in storing logon events:
-w /var/run/faillock -p wa -k logins
OL07-00-030610 audit_rules_login_events_faillock
V-221802 2884 medium The Oracle Linux operating system must generate audit records for all successful account access events. Manual editing of these files may indicate nefarious activity, such as an attacker attempting to remove evidence of an intrusion. To verify that auditing is configured for system administrator actions, run the following command: $ sudo auditctl -l | grep "watch=/var/log/lastlog\|-w /var/log/lastlog" Is it the case that there is not output? The audit system already collects login information for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d in order to watch for attempted manual edits of files involved in storing logon events:
-w /var/log/lastlog -p wa -k logins
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file in order to watch for unattempted manual edits of files involved in storing logon events:
-w /var/log/lastlog -p wa -k logins
OL07-00-030620 audit_rules_login_events_lastlog
V-221803 135 medium The Oracle Linux operating system must audit all uses of the passwd command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep passwd /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030630 audit_rules_privileged_commands_passwd
V-221804 135 medium The Oracle Linux operating system must audit all uses of the unix_chkpwd command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep unix_chkpwd /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/unix_chkpwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/unix_chkpwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030640 audit_rules_privileged_commands_unix_chkpwd
V-221805 135 medium The Oracle Linux operating system must audit all uses of the gpasswd command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep gpasswd /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/gpasswd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/gpasswd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030650 audit_rules_privileged_commands_gpasswd
V-221806 135 medium The Oracle Linux operating system must audit all uses of the chage command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep chage /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/chage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/chage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030660 audit_rules_privileged_commands_chage
V-221807 135 medium The Oracle Linux operating system must audit all uses of the userhelper command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep userhelper /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/userhelper -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/userhelper -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030670 audit_rules_privileged_commands_userhelper
V-221808 172 medium The Oracle Linux operating system must audit all uses of the su command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep su /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/su -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/su -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030680 audit_rules_privileged_commands_su
V-221809 172 medium The Oracle Linux operating system must audit all uses of the sudo command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep sudo /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030690 audit_rules_privileged_commands_sudo
V-221810 172 medium The Oracle Linux operating system must audit all uses of the sudoers file and all files in the /etc/sudoers.d/ directory. The actions taken by system administrators should be audited to keep a record of what was executed on the system, as well as, for accountability purposes. To verify that auditing is configured for system administrator actions, run the following command: $ sudo auditctl -l | grep "watch=/etc/sudoers\|watch=/etc/sudoers.d\|-w /etc/sudoers\|-w /etc/sudoers.d" Is it the case that there is not output? At a minimum, the audit system should collect administrator actions for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions
OL07-00-030700 audit_rules_sysadmin_actions
V-221811 172 medium The Oracle Linux operating system must audit all uses of the newgrp command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep newgrp /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/newgrp -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/newgrp -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030710 audit_rules_privileged_commands_newgrp
V-221812 130 medium The Oracle Linux operating system must audit all uses of the chsh command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep chsh /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/chsh -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/chsh -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030720 audit_rules_privileged_commands_chsh
V-221813 2884 medium The Oracle Linux operating system must audit all uses of the mount command and syscall. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep mount /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/mount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/mount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030740 audit_rules_privileged_commands_mount
V-221814 135 medium The Oracle Linux operating system must audit all uses of the umount command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep umount /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/umount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/umount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030750 audit_rules_privileged_commands_umount
V-221815 135 medium The Oracle Linux operating system must audit all uses of the postdrop command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep postdrop /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/postdrop -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/postdrop -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030760 audit_rules_privileged_commands_postdrop
V-221816 135 medium The Oracle Linux operating system must audit all uses of the postqueue command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep postqueue /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/postqueue -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/postqueue -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030770 audit_rules_privileged_commands_postqueue
V-221817 135 medium The Oracle Linux operating system must audit all uses of the ssh-keysign command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep ssh-keysign /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/libexec/openssh/ssh-keysign -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/libexec/openssh/ssh-keysign -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030780 audit_rules_privileged_commands_ssh_keysign
V-221818 135 medium The Oracle Linux operating system must audit all uses of the crontab command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep crontab /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/crontab -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/crontab -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030800 audit_rules_privileged_commands_crontab
V-221819 172 medium The Oracle Linux operating system must audit all uses of the pam_timestamp_check command. Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
To verify that auditing of privileged command use is configured, run the following command: $ sudo grep pam_timestamp_check /etc/audit/audit.rules /etc/audit/rules.d/* It should return a relevant line in the audit rules. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/pam_timestamp_check
-F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/pam_timestamp_check
-F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
OL07-00-030810 audit_rules_privileged_commands_pam_timestamp_check
V-221820 medium The Oracle Linux operating system must audit all uses of the create_module syscall. OL07-00-030819 Missing Rule
V-221821 172 medium The Oracle Linux operating system must audit all uses of the init_module and finit_module syscalls. The addition of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel. To determine if the system is configured to audit calls to the init_module system call, run the following command: preserve$ sudo grep "init_module" /etc/audit/audit.* If the system is configured to audit this activity, it will return a line. Is it the case that no line is returned? To capture kernel module loading events, use following line, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S init_module -F auid>=1000 -F auid!=unset -F key=modules
Place to add the line depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the line to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the line to file /etc/audit/audit.rules.
OL07-00-030820 audit_rules_kernel_module_loading_init
V-221823 172 medium The Oracle Linux operating system must audit all uses of the delete_module syscall. The removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel. To determine if the system is configured to audit calls to the delete_module system call, run the following command: preserve$ sudo grep "delete_module" /etc/audit/audit.* If the system is configured to audit this activity, it will return a line. Is it the case that no line is returned? To capture kernel module unloading events, use following line, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S delete_module -F auid>=1000 -F auid!=unset -F key=modules
Place to add the line depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the line to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the line to file /etc/audit/audit.rules.
OL07-00-030830 audit_rules_kernel_module_loading_delete
V-221824 172 medium The Oracle Linux operating system must audit all uses of the kmod command. Without generating audit records that are specific to the security and mission needs of the organization, it would be difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one. Audit records can be generated from various components within the information system (e.g., module or policy filter). To verify that auditing of privileged command use is configured, run the following command: # sudo grep kmod /etc/audit/audit.rules -w /usr/bin/kmod -p x -k modules If the system is configured to audit the execution of the module management program "kmod", the command will return a line. If the command does not return a line, or the line is commented out, this is a finding. Is it the case that it is not the case? At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:
-w /usr/bin/kmod -p x -k modules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-w /usr/bin/kmod -p x -k modules
OL07-00-030840 audit_rules_privileged_commands_kmod
V-221825 2130 medium The Oracle Linux operating system must generate audit records for all account creations, modifications, disabling, and termination events that affect /etc/passwd. In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. To determine if the system is configured to audit account changes, run the following command: auditctl -l | egrep '(/etc/passwd)' If the system is configured to watch for account changes, lines should be returned for each file specified (and with perm=wa for each). Is it the case that the system is not configured to audit account changes? If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/passwd -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/passwd -p wa -k audit_rules_usergroup_modification
OL07-00-030870 audit_rules_usergroup_modification_passwd
V-221826 18 medium The Oracle Linux operating system must generate audit records for all account creations, modifications, disabling, and termination events that affect /etc/group. In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. To determine if the system is configured to audit account changes, run the following command: auditctl -l | egrep '(/etc/group)' If the system is configured to watch for account changes, lines should be returned for each file specified (and with perm=wa for each). Is it the case that the system is not configured to audit account changes? If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/group -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/group -p wa -k audit_rules_usergroup_modification
OL07-00-030871 audit_rules_usergroup_modification_group
V-221827 18 medium The Oracle Linux operating system must generate audit records for all account creations, modifications, disabling, and termination events that affect /etc/gshadow. In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. To determine if the system is configured to audit account changes, run the following command: auditctl -l | egrep '(/etc/gshadow)' If the system is configured to watch for account changes, lines should be returned for each file specified (and with perm=wa for each). Is it the case that the system is not configured to audit account changes? If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/gshadow -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
OL07-00-030872 audit_rules_usergroup_modification_gshadow
V-221828 18 medium The Oracle Linux operating system must generate audit records for all account creations, modifications, disabling, and termination events that affect /etc/shadow. In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. To determine if the system is configured to audit account changes, run the following command: auditctl -l | egrep '(/etc/shadow)' If the system is configured to watch for account changes, lines should be returned for each file specified (and with perm=wa for each). Is it the case that the system is not configured to audit account changes? If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/shadow -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/shadow -p wa -k audit_rules_usergroup_modification
OL07-00-030873 audit_rules_usergroup_modification_shadow
V-221829 18 medium The Oracle Linux operating system must generate audit records for all account creations, modifications, disabling, and termination events that affect /etc/security/opasswd. In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. To determine if the system is configured to audit account changes, run the following command: auditctl -l | egrep '(/etc/security/opasswd)' If the system is configured to watch for account changes, lines should be returned for each file specified (and with perm=wa for each). Is it the case that the system is not configured to audit account changes? If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification
OL07-00-030874 audit_rules_usergroup_modification_opasswd
V-221833 2884 medium The Oracle Linux operating system must audit all uses of the unlink, unlinkat, rename, renameat, and rmdir syscalls. Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence. To determine if the system is configured to audit calls to the unlinkat system call, run the following command: preserve$ sudo grep "unlinkat" /etc/audit/audit.* If the system is configured to audit this activity, it will return a line. Is it the case that no line is returned? At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S unlinkat -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S unlinkat -F auid>=1000 -F auid!=unset -F key=delete
OL07-00-030910 audit_rules_file_deletion_events_unlinkat
V-221835 366 medium The Oracle Linux operating system must send rsyslog output to a log aggregation server. A log server (loghost) receives syslog messages from one or more systems. This data can be used as an additional log source in the event a system is compromised and its local logs are suspect. Forwarding log messages to a remote loghost also provides system administrators with a centralized place to view the status of multiple hosts within the enterprise. To ensure logs are sent to a remote host, examine the file /etc/rsyslog.conf. If using UDP, a line similar to the following should be present: *.* @ If using TCP, a line similar to the following should be present: *.* @@ If using RELP, a line similar to the following should be present: *.* :omrelp: Is it the case that none of these are present? To configure rsyslog to send logs to a remote log server, open /etc/rsyslog.conf and read and understand the last section of the file, which describes the multiple directives necessary to activate remote logging. Along with these other directives, the system can be configured to forward its logs to a particular log server by adding or correcting one of the following lines, substituting appropriately. The choice of protocol depends on the environment of the system; although TCP and RELP provide more reliable message delivery, they may not be supported in all environments.
To use UDP for log message delivery:
*.* @

To use TCP for log message delivery:
*.* @@

To use RELP for log message delivery:
*.* :omrelp:

There must be a resolvable DNS CNAME or Alias record set to "" for logs to be sent correctly to the centralized logging utility.
OL07-00-031000 rsyslog_remote_loghost
V-221836 366 medium The Oracle Linux operating system must be configured so that the rsyslog daemon does not accept log messages from other servers unless the server is being used for log aggregation. Any process which receives messages from the network incurs some risk of receiving malicious messages. This risk can be eliminated for rsyslog by configuring it not to listen on the network. Display the contents of the configuration file: cat /etc/rsyslog.conf Make sure that the following lines are not present in the output: $ModLoad imtcp $InputTCPServerRun port $ModLoad imudp $UDPServerRun port $ModLoad imrelp $InputRELPServerRun port Is it the case that rsyslog accepts remote messages? The rsyslog daemon should not accept remote messages unless the system acts as a log server. To ensure that it is not listening on the network, ensure the following lines are not found in /etc/rsyslog.conf:
$ModLoad imtcp
$InputTCPServerRun port
$ModLoad imudp
$UDPServerRun port
$ModLoad imrelp
$InputRELPServerRun port
OL07-00-031010 rsyslog_nolisten
V-221837 366 high The Oracle Linux operating system must use a virus scan program. Virus scanning software can be used to detect if a system has been compromised by computer viruses, as well as to limit their spread to other systems. Verify an anti-virus solution is installed on the system. The anti-virus solution may be bundled with an approved host-based security solution. Is it the case that there is no anti-virus solution installed on the system? Virus scanning software can be used to protect a system from penetration from computer viruses and to limit their spread through intermediate systems. The virus scanning software should be configured to perform scans dynamically on accessed files. If this capability is not available, the system must be configured to scan, at a minimum, all altered files on the system on a daily basis. If the system processes inbound SMTP mail, the virus scanner must be configured to scan all received mail. OL07-00-032000 install_antivirus
V-221838 54 low The Oracle Linux operating system must limit the number of concurrent sessions to 10 for all accounts and/or account types. Limiting simultaneous user logins can insulate the system from denial of service problems caused by excessive logins. Automated login processes operating improperly or maliciously may result in an exceptional number of simultaneous login sessions. Run the following command to ensure the maxlogins value is configured for all users on the system: # grep "maxlogins" /etc/security/limits.conf You should receive output similar to the following: *\t\thard\tmaxlogins\t Is it the case that maxlogins is not equal to or less than the expected value? Limiting the number of allowed users and sessions per user can limit risks related to Denial of Service attacks. This addresses concurrent sessions for a single account and does not address concurrent sessions by a single user via multiple accounts. To set the number of concurrent sessions per user add the following line in /etc/security/limits.conf or a file under /etc/security/limits.d/:
* hard maxlogins 
OL07-00-040000 accounts_max_concurrent_login_sessions
V-221839 2314 medium The Oracle Linux operating system must be configured to prohibit or restrict the use of functions, ports, protocols, and/or services, as defined in the Ports, Protocols, and Services Management Component Local Service Assessment (PPSM CLSA) and vulnerability assessments. In order to prevent unauthorized connection of devices, unauthorized transfer of information, or unauthorized tunneling (i.e., embedding of data types within data types), organizations must disable or restrict unused or unnecessary physical and logical ports/protocols on information systems.

Operating systems are capable of providing a wide variety of functions and services. Some of the functions and services provided by default may not be necessary to support essential organizational operations. Additionally, it is sometimes convenient to provide multiple services from a single component (e.g., VPN and IPS); however, doing so increases risk over limiting the services provided by any one component.

To support the requirements and principles of least functionality, the operating system must support the organizational requirements, providing only essential capabilities and limiting the use of ports, protocols, and/or services to only those required, authorized, and approved to conduct official business or to address authorized quality of life issues.
Inspect the list of enabled firewall ports and verify they are configured correctly by running the following command: $ sudo firewall-cmd --list-all Is it the case that the default rules are not configured? Configure the firewalld ports to allow approved services to have access to the system. To configure firewalld to open ports, run the following command:
$ sudo firewall-cmd --permanent --add-port=port_number/tcp
or
$ sudo firewall-cmd --permanent --add-port=service_name
Run the command list above for each of the ports listed below: To configure firewalld to allow access, run the following command(s): firewall-cmd --permanent --add-service=ssh
OL07-00-040100 configure_firewalld_ports
V-221840 3123 medium The Oracle Linux 7 operating system must implement DoD-approved encryption to protect the confidentiality of SSH connections. Unapproved mechanisms that are used for authentication to the cryptographic module are not verified and therefore cannot be relied upon to provide confidentiality or integrity, and system data may be compromised.
Operating systems utilizing encryption are required to use FIPS-compliant mechanisms for authenticating to cryptographic modules.
FIPS 140-2 is the current standard for validating that mechanisms used to access cryptographic modules utilize authentication that meets industry and government requirements. For government systems, this allows Security Levels 1, 2, 3, or 4 for use on Oracle Linux 7.
Only FIPS ciphers should be used. To verify that only FIPS-approved ciphers are in use, run the following command: $ sudo grep Ciphers /etc/ssh/sshd_config The output should contain only following ciphers (or a subset) in the exact order: aes256-ctr,aes192-ctr,aes128-ctr Is it the case that FIPS ciphers are not configured or the enabled ciphers are not FIPS-approved? Limit the ciphers to those algorithms which are FIPS-approved. The following line in /etc/ssh/sshd_config demonstrates use of FIPS-approved ciphers:
Ciphers aes256-ctr,aes192-ctr,aes128-ctr
This rule ensures that there are configured ciphers mentioned above (or their subset), keeping the given order of algorithms.
OL07-00-040110 sshd_use_approved_ciphers_ordered_stig
V-221841 1133 medium The Oracle Linux operating system must be configured so that all network connections associated with a communication session are terminated at the end of the session or after 15 minutes of inactivity from the user at a command prompt, except to fulfill documented and validated mission requirements. Terminating an idle session within a short time period reduces the window of opportunity for unauthorized personnel to take control of a management session enabled on the console or console port that has been left unattended. Run the following command to ensure the TMOUT value is configured for all users on the system: $ sudo grep TMOUT /etc/profile /etc/profile.d/*.sh The output should return the following: TMOUT= Is it the case that value of TMOUT is not less than or equal to expected setting? Setting the TMOUT option in /etc/profile ensures that all user sessions will terminate based on inactivity. The TMOUT setting in a file loaded by /etc/profile, e.g. /etc/profile.d/tmout.sh should read as follows:
TMOUT=
OL07-00-040160 accounts_tmout
V-221842 48 medium The Oracle Linux operating system must display the Standard Mandatory DoD Notice and Consent Banner immediately prior to, or as part of, remote access logon prompts. The warning message reinforces policy awareness during the logon process and facilitates possible legal action against attackers. Alternatively, systems whose ownership should not be obvious should ensure usage of a banner that does not provide easy attribution. To determine how the SSH daemon's Banner option is set, run the following command: $ sudo grep -i Banner /etc/ssh/sshd_config If a line indicating /etc/issue is returned, then the required value is set. Is it the case that the required value is not set? To enable the warning banner and ensure it is consistent across the system, add or correct the following line in /etc/ssh/sshd_config:
Banner /etc/issue
Another section contains information on how to create an appropriate system-wide warning banner.
OL07-00-040170 sshd_enable_warning_banner
V-221843 1453 medium The Oracle Linux operating system must implement cryptography to protect the integrity of Lightweight Directory Access Protocol (LDAP) authentication communications. Without cryptographic integrity protections, information can be altered by unauthorized users without detection. The ssl directive specifies whether to use TLS or not. If not specified it will default to no. It should be set to start_tls rather than doing LDAP over SSL. If the system is not using TLS, set the ldap_id_use_start_tls option in /etc/sssd/sssd.conf to true. Is it the case that the 'ldap_id_use_start_tls' option is not set to 'true'? The LDAP client should be configured to implement TLS for the integrity of all remote LDAP authentication sessions. If the id_provider is set to ldap or ipa in /etc/sssd/sssd.conf or any of the /etc/sssd/sssd.conf.d configuration files, ldap_id_use_start_tls must be set to true.

To check if LDAP is configured to use TLS when id_provider is set to ldap or ipa, use the following command:
$ sudo grep -i ldap_id_use_start_tls /etc/sssd/sssd.conf
OL07-00-040180 sssd_ldap_start_tls
V-221844 1453 medium The Oracle Linux operating system must implement cryptography to protect the integrity of Lightweight Directory Access Protocol (LDAP) communications. Without a valid certificate presented to the LDAP client backend, the identity of a server can be forged compromising LDAP remote access sessions. To verify the LDAP client backend demands a valid certificate from the server in remote LDAP access sessions, run the following command: $ sudo grep ldap_tls_reqcert /etc/sssd/sssd.conf The output should return the following: ldap_tls_reqcert = demand Is it the case that the TLS reqcert is not set to demand? Configure SSSD to demand a valid certificate from the server to protect the integrity of LDAP remote access sessions by setting the
ldap_tls_reqcert
option in
/etc/sssd/sssd.conf
to demand.
OL07-00-040190 sssd_ldap_configure_tls_reqcert
V-221845 1453 medium The Oracle Linux operating system must implement cryptography to protect the integrity of Lightweight Directory Access Protocol (LDAP) communications. Without cryptographic integrity protections, information can be altered by unauthorized users without detection.

Cryptographic mechanisms used for protecting the integrity of information include, for example, signed hash functions using asymmetric cryptography enabling distribution of the public key to verify the hash information while maintaining the confidentiality of the key used to generate the hash.
To verify the operating system implements cryptography to protect the integrity of remote ldap access sessions, run the following command: $ sudo grep ldap_tls_cacertdir /etc/sssd/sssd.conf The output should return the following with a correctly configured CA cert path: ldap_tls_cacertdir /path/to/tls/cacert Is it the case that the TLS CA cert is not configured? Configure SSSD to implement cryptography to protect the integrity of LDAP remote access sessions. By setting the
ldap_tls_cacertdir
option in
/etc/sssd/sssd.conf
to point to the path for the X.509 certificates used for peer authentication.
ldap_tls_cacertdir /path/to/tls/cacert
OL07-00-040200 sssd_ldap_configure_tls_ca_dir
V-221846 2824 medium The Oracle Linux operating system must implement virtual address space randomization. Address space layout randomization (ASLR) makes it more difficult for an attacker to predict the location of attack code they have introduced into a process's address space during an attempt at exploitation. Additionally, ASLR makes it more difficult for an attacker to know the location of existing code in order to re-purpose it using return oriented programming (ROP) techniques. The runtime status of the kernel.randomize_va_space kernel parameter can be queried by running the following command: $ sysctl kernel.randomize_va_space The output of the command should indicate a value of 2. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*kernel.randomize_va_space\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than kernel.randomize_va_space = 2 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains kernel.randomize_va_space = 2, and that one assignment is returned when $ grep -r kernel.randomize_va_space /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the kernel.randomize_va_space kernel parameter, run the following command:
$ sudo sysctl -w kernel.randomize_va_space=2
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.randomize_va_space = 2
OL07-00-040201 sysctl_kernel_randomize_va_space
V-221847 2422 medium The Oracle Linux operating system must be configured so that all networked systems have SSH installed. Without protection of the transmitted information, confidentiality, and integrity may be compromised because unprotected communications can be intercepted and either read or altered. Run the following command to determine if the openssh-server package is installed: $ rpm -q openssh-server Is it the case that the package is not installed? The openssh-server package should be installed. The openssh-server package can be installed with the following command:
$ sudo yum install openssh-server
OL07-00-040300 package_openssh-server_installed
V-221848 2418 medium The Oracle Linux operating system must be configured so that all networked systems use SSH for confidentiality and integrity of transmitted and received information as well as information during preparation for transmission. Without protection of the transmitted information, confidentiality, and integrity may be compromised because unprotected communications can be intercepted and either read or altered.

This checklist item applies to both internal and external networks and all types of information system components from which information can be transmitted (e.g., servers, mobile devices, notebook computers, printers, copiers, scanners, etc). Communication paths outside the physical protection of a controlled boundary are exposed to the possibility of interception and modification.
Run the following command to determine the current status of the sshd service: $ systemctl is-active sshd If the service is running, it should return the following: active Is it the case that ? The SSH server service, sshd, is commonly needed. The sshd service can be enabled with the following command:
$ sudo systemctl enable sshd.service
OL07-00-040310 service_sshd_enabled
V-221849 2361 medium The Oracle Linux operating system must be configured so that all network connections associated with SSH traffic are terminated at the end of the session or after 10 minutes of inactivity, except to fulfill documented and validated mission requirements. Terminating an idle ssh session within a short time period reduces the window of opportunity for unauthorized personnel to take control of a management session enabled on the console or console port that has been let unattended. Run the following command to see what the timeout interval is: $ sudo grep ClientAliveInterval /etc/ssh/sshd_config If properly configured, the output should be: ClientAliveInterval Is it the case that it is commented out or not configured properly? SSH allows administrators to set an idle timeout interval. After this interval has passed, the idle user will be automatically logged out.

To set an idle timeout interval, edit the following line in /etc/ssh/sshd_config as follows:
ClientAliveInterval 


The timeout interval is given in seconds. For example, have a timeout of 10 minutes, set interval to 600.

If a shorter timeout has already been set for the login shell, that value will preempt any SSH setting made in /etc/ssh/sshd_config. Keep in mind that some processes may stop SSH from correctly detecting that the user is idle.
OL07-00-040320 sshd_set_idle_timeout
V-221850 366 medium The Oracle Linux operating system must be configured so that the SSH daemon does not allow authentication using RSA rhosts authentication. Configuring this setting for the SSH daemon provides additional assurance that remote login via SSH will require a password, even in the event of misconfiguration elsewhere. To check which SSH protocol version is allowed, check version of openssh-server with following command: $ rpm -qi openssh-server | grep Version Versions equal to or higher than 7.4 have deprecated the RhostsRSAAuthentication option. If version is lower than 7.4, run the following command to check configuration: To determine how the SSH daemon's RhostsRSAAuthentication option is set, run the following command: $ sudo grep -i RhostsRSAAuthentication /etc/ssh/sshd_config If no line, a commented line, or a line indicating the value no is returned, then the required value is set. Is it the case that the required value is not set? SSH can allow authentication through the obsolete rsh command through the use of the authenticating user's SSH keys. This should be disabled.

To ensure this behavior is disabled, add or correct the following line in /etc/ssh/sshd_config:
RhostsRSAAuthentication no
OL07-00-040330 sshd_disable_rhosts_rsa
V-221851 1133 medium The Oracle Linux operating system must be configured so that all network connections associated with SSH traffic terminate after a period of inactivity. This ensures a user login will be terminated as soon as the ClientAliveInterval is reached. To ensure ClientAliveInterval is set correctly, run the following command: $ sudo grep ClientAliveCountMax /etc/ssh/sshd_config If properly configured, the output should be: ClientAliveCountMax 0 In this case, the SSH idle timeout occurs precisely when the ClientAliveInterval is set. Is it the case that it is commented out or not configured properly? The SSH server sends at most ClientAliveCountMax messages during a SSH session and waits for a response from the SSH client. The option ClientAliveInterval configures timeout after each ClientAliveCountMax message. If the SSH server does not receive a response from the client, then the connection is considered idle and terminated. To ensure the SSH idle timeout occurs precisely when the ClientAliveInterval is set, set the ClientAliveCountMax to value of 0. OL07-00-040340 sshd_set_keepalive_0
V-221852 366 medium The Oracle Linux operating system must be configured so that the SSH daemon does not allow authentication using rhosts authentication. SSH trust relationships mean a compromise on one host can allow an attacker to move trivially to other hosts. To determine how the SSH daemon's IgnoreRhosts option is set, run the following command: $ sudo grep -i IgnoreRhosts /etc/ssh/sshd_config If no line, a commented line, or a line indicating the value yes is returned, then the required value is set. Is it the case that the required value is not set? SSH can emulate the behavior of the obsolete rsh command in allowing users to enable insecure access to their accounts via .rhosts files.

To ensure this behavior is disabled, add or correct the following line in /etc/ssh/sshd_config:
IgnoreRhosts yes
OL07-00-040350 sshd_disable_rhosts
V-221853 366 medium The Oracle Linux operating system must display the date and time of the last successful account logon upon an SSH logon. Providing users feedback on when account accesses last occurred facilitates user recognition and reporting of unauthorized account use. To check if PrintLastLog is enabled or set correctly, run the following command: $ sudo grep PrintLastLog /etc/ssh/sshd_config If configured properly, output should be yes Is it the case that it is commented out or is not enabled? When enabled, SSH will display the date and time of the last successful account logon. To enable LastLog in SSH, add or correct the following line in the /etc/ssh/sshd_config file:
PrintLastLog yes
OL07-00-040360 sshd_print_last_log
V-221854 366 medium The Oracle Linux operating system must not permit direct logons to the root account using remote access via SSH. Even though the communications channel may be encrypted, an additional layer of security is gained by extending the policy of not logging directly on as root. In addition, logging in with a user-specific account provides individual accountability of actions performed on the system and also helps to minimize direct attack attempts on root's password. To determine how the SSH daemon's PermitRootLogin option is set, run the following command: $ sudo grep -i PermitRootLogin /etc/ssh/sshd_config If a line indicating no is returned, then the required value is set. Is it the case that the required value is not set? The root user should never be allowed to login to a system directly over a network. To disable root login via SSH, add or correct the following line in /etc/ssh/sshd_config:
PermitRootLogin no
OL07-00-040370 sshd_disable_root_login
V-221855 366 medium The Oracle Linux operating system must be configured so that the SSH daemon does not allow authentication using known hosts authentication. Configuring this setting for the SSH daemon provides additional assurance that remote login via SSH will require a password, even in the event of misconfiguration elsewhere. To determine how the SSH daemon's IgnoreUserKnownHosts option is set, run the following command: $ sudo grep -i IgnoreUserKnownHosts /etc/ssh/sshd_config If a line indicating yes is returned, then the required value is set. Is it the case that the required value is not set? SSH can allow system users to connect to systems if a cache of the remote systems public keys is available. This should be disabled.

To ensure this behavior is disabled, add or correct the following line in /etc/ssh/sshd_config:
IgnoreUserKnownHosts yes
OL07-00-040380 sshd_disable_user_known_hosts
V-221856 197 high The Oracle Linux operating system must be configured so that the SSH daemon is configured to only use the SSHv2 protocol. SSH protocol version 1 is an insecure implementation of the SSH protocol and has many well-known vulnerability exploits. Exploits of the SSH daemon could provide immediate root access to the system. To check which SSH protocol version is allowed, check version of openssh-server with following command: $ rpm -qi openssh-server | grep Version Versions equal to or higher than 7.4 only allow Protocol 2. If version is lower than 7.4, run the following command to check configuration: $ sudo grep Protocol /etc/ssh/sshd_config If configured properly, output should be Protocol 2 Is it the case that it is commented out or is not set correctly to Protocol 2? Only SSH protocol version 2 connections should be permitted. The default setting in /etc/ssh/sshd_config is correct, and can be verified by ensuring that the following line appears:
Protocol 2
OL07-00-040390 sshd_allow_only_protocol2
V-221857 1453 medium The Oracle Linux operating system must be configured so that the SSH daemon is configured to only use Message Authentication Codes (MACs) employing FIPS 140-2 approved cryptographic hash algorithms. DoD Information Systems are required to use FIPS-approved cryptographic hash functions. The only SSHv2 hash algorithms meeting this requirement is SHA2. Only FIPS-approved MACs should be used. To verify that only FIPS-approved MACs are in use, run the following command: $ sudo grep -i macs /etc/ssh/sshd_config The output should contain only following MACs (or a subset) in the exact order: MACs Is it the case that MACs option is commented out or not using FIPS-approved hash algorithms? Limit the MACs to those hash algorithms which are FIPS-approved. The following line in /etc/ssh/sshd_config demonstrates use of FIPS-approved MACs:
MACs hmac-sha2-512,hmac-sha2-256
This rule ensures that there are configured MACs mentioned above (or their subset), keeping the given order of algorithms.
OL07-00-040400 sshd_use_approved_macs_ordered_stig
V-221858 366 medium The Oracle Linux operating system must be configured so that the SSH public host key files have mode 0644 or less permissive. If a public host key file is modified by an unauthorized user, the SSH service may be compromised. To check the permissions of /etc/ssh/*.pub, run the command: $ ls -l /etc/ssh/*.pub If properly configured, the output should indicate the following permissions: -rw-r--r-- Is it the case that /etc/ssh/*.pub has unix mode -rw-r--r--? To properly set the permissions of /etc/ssh/*.pub, run the command:
$ sudo chmod 0644 /etc/ssh/*.pub
OL07-00-040410 file_permissions_sshd_pub_key
V-221859 366 medium The Oracle Linux operating system must be configured so the SSH private host key files have mode 0600 or less permissive. If an unauthorized user obtains the private SSH host key file, the host could be impersonated. To check the permissions of /etc/ssh/*_key, run the command: $ ls -l /etc/ssh/*_key If properly configured, the output should indicate the following permissions: -rw------- Is it the case that /etc/ssh/*_key has unix mode -rw-------? To properly set the permissions of /etc/ssh/*_key, run the command:
$ sudo chmod 0600 /etc/ssh/*_key
OL07-00-040420 file_permissions_sshd_private_key
V-221860 1813 medium The Oracle Linux operating system must be configured so that the SSH daemon does not permit Generic Security Service Application Program Interface (GSSAPI) authentication unless needed. GSSAPI authentication is used to provide additional authentication mechanisms to applications. Allowing GSSAPI authentication through SSH exposes the system's GSSAPI to remote hosts, increasing the attack surface of the system. To check if GSSAPIAuthentication is disabled or set correctly, run the following command: $ sudo grep GSSAPIAuthentication /etc/ssh/sshd_config If configured properly, output should be no Is it the case that it is commented out or is not disabled? Unless needed, SSH should not permit extraneous or unnecessary authentication mechanisms like GSSAPI. To disable GSSAPI authentication, add or correct the following line in the /etc/ssh/sshd_config file:
GSSAPIAuthentication no
OL07-00-040430 sshd_disable_gssapi_auth
V-221861 1813 medium The Oracle Linux operating system must be configured so that the SSH daemon does not permit Kerberos authentication unless needed. Kerberos authentication for SSH is often implemented using GSSAPI. If Kerberos is enabled through SSH, the SSH daemon provides a means of access to the system's Kerberos implementation. Vulnerabilities in the system's Kerberos implementations may be subject to exploitation. To check if KerberosAuthentication is disabled or set correctly, run the following command: $ sudo grep KerberosAuthentication /etc/ssh/sshd_config If configured properly, output should be no Is it the case that it is commented out or is not disabled? Unless needed, SSH should not permit extraneous or unnecessary authentication mechanisms like Kerberos. To disable Kerberos authentication, add or correct the following line in the /etc/ssh/sshd_config file:
KerberosAuthentication no
OL07-00-040440 sshd_disable_kerb_auth
V-221862 366 medium The Oracle Linux operating system must be configured so that the SSH daemon performs strict mode checking of home directory configuration files. If other users have access to modify user-specific SSH configuration files, they may be able to log into the system as another user. To check if StrictModes is enabled or set correctly, run the following command: $ sudo grep StrictModes /etc/ssh/sshd_config If configured properly, output should be yes Is it the case that it is commented out or is not enabled? SSHs StrictModes option checks file and ownership permissions in the user's home directory .ssh folder before accepting login. If world- writable permissions are found, logon is rejected. To enable StrictModes in SSH, add or correct the following line in the /etc/ssh/sshd_config file:
StrictModes yes
OL07-00-040450 sshd_enable_strictmodes
V-221863 366 medium The Oracle Linux operating system must be configured so that the SSH daemon uses privilege separation. SSH daemon privilege separation causes the SSH process to drop root privileges when not needed which would decrease the impact of software vulnerabilities in the unprivileged section. To check if UsePrivilegeSeparation is enabled or set correctly, run the following command: $ sudo grep UsePrivilegeSeparation /etc/ssh/sshd_config If configured properly, output should be . Is it the case that it is commented out or is not enabled? When enabled, SSH will create an unprivileged child process that has the privilege of the authenticated user. To enable privilege separation in SSH, add or correct the following line in the /etc/ssh/sshd_config file:
UsePrivilegeSeparation 
OL07-00-040460 sshd_use_priv_separation
V-221864 366 medium The Oracle Linux operating system must be configured so that the SSH daemon does not allow compression or only allows compression after successful authentication. If compression is allowed in an SSH connection prior to authentication, vulnerabilities in the compression software could result in compromise of the system from an unauthenticated connection, potentially with root privileges. To check if compression is enabled or set correctly, run the following command: $ sudo grep Compression /etc/ssh/sshd_config If configured properly, output should be no or delayed. Is it the case that it is commented out, or is not set to no or delayed? Compression is useful for slow network connections over long distances but can cause performance issues on local LANs. If use of compression is required, it should be enabled only after a user has authenticated; otherwise, it should be disabled. To disable compression or delay compression until after a user has successfully authenticated, add or correct the following line in the /etc/ssh/sshd_config file:
Compression 
OL07-00-040470 sshd_disable_compression
V-221866 2046 medium The Oracle Linux operating system must, for networked systems, synchronize clocks with a server that is synchronized to one of the redundant United States Naval Observatory (USNO) time servers, a time server designated for the appropriate DoD network (NIPRNet/SIPRNet), and/or the Global Positioning System (GPS). Inaccurate time stamps make it more difficult to correlate events and can lead to an inaccurate analysis. Determining the correct time a particular event occurred on a system is critical when conducting forensic analysis and investigating system events. Sources outside the configured acceptable allowance (drift) may be inaccurate. To verify that maxpoll has been set properly, perform the following: $ sudo grep maxpoll /etc/ntp.conf /etc/chrony.conf The output should return maxpoll . Is it the case that it does not exist or maxpoll has not been set to the expected value? The maxpoll should be configured to in /etc/ntp.conf or /etc/chrony.conf to continuously poll time servers. To configure maxpoll in /etc/ntp.conf or /etc/chrony.conf add the following:
maxpoll 
OL07-00-040500 chronyd_or_ntpd_set_maxpoll
V-221867 2385 medium The Oracle Linux operating system must protect against or limit the effects of Denial of Service (DoS) attacks by validating the operating system is implementing rate-limiting measures on impacted network interfaces. Denial of Service (DoS) is a condition when a resource is not available for legitimate users. When this occurs, the organization either cannot accomplish its mission or must operate at degraded capacity.

This can help mitigate simple “ack loop” DoS attacks, wherein a buggy or malicious middlebox or man-in-the-middle can rewrite TCP header fields in manner that causes each endpoint to think that the other is sending invalid TCP segments, thus causing each side to send an unterminating stream of duplicate acknowledgments for invalid segments.
To verify that the operating system protects against or limits the effects of DoS attacks by ensuring implementation of rate-limiting measures on impacted network interfaces, run the following command: # grep 'net.ipv4.tcp_invalid_ratelimit' /etc/sysctl.conf /etc/sysctl.d/* The command should output the following line: /etc/sysctl.conf:net.ipv4.tcp_invalid_ratelimit = The file where the line has been found can differ, but it must be either /etc/sysctl.conf or a file located under the /etc/sysctl.d/ directory. Is it the case that rate limiting of duplicate TCP acknowledgments is not configured? Make sure that the system is configured to limit the maximal rate for sending duplicate acknowledgments in response to incoming TCP packets that are for an existing connection but that are invalid due to any of these reasons: (a) out-of-window sequence number, (b) out-of-window acknowledgment number, or (c) PAWS (Protection Against Wrapped Sequence numbers) check failure This measure protects against or limits effects of DoS attacks against the system. Set the system to implement rate-limiting measures by adding the following line to /etc/sysctl.conf or a configuration file in the /etc/sysctl.d/ directory (or modify the line to have the required value):
net.ipv4.tcp_invalid_ratelimit = 
Issue the following command to make the changes take effect:
# sysctl --system
OL07-00-040510 sysctl_net_ipv4_tcp_invalid_ratelimit
V-221868 366 medium The Oracle Linux operating system must enable an application firewall, if available. Access control methods provide the ability to enhance system security posture by restricting services and known good IP addresses and address ranges. This prevents connections from unknown hosts and protocols. Run the following command to determine the current status of the firewalld service: $ systemctl is-active firewalld If the service is running, it should return the following: active Is it the case that ? The firewalld service can be enabled with the following command:
$ sudo systemctl enable firewalld.service
OL07-00-040520 service_firewalld_enabled
V-221869 366 low The Oracle Linux operating system must display the date and time of the last successful account logon upon logon. Users need to be aware of activity that occurs regarding their account. Providing users with information regarding the number of unsuccessful attempts that were made to login to their account allows the user to determine if any unauthorized activity has occurred and gives them an opportunity to notify administrators. To ensure that last logon/access notification is configured correctly, run the following command: $ grep pam_lastlog.so /etc/pam.d/postlogin The output should show output showfailed and must not contain silent. Is it the case that that is not the case? To configure the system to notify users of last logon/access using pam_lastlog, add or correct the pam_lastlog settings in /etc/pam.d/postlogin to read as follows:
session     required pam_lastlog.so showfailed
And make sure that the silent option is not set.
OL07-00-040530 display_login_attempts
V-221870 366 high The Oracle Linux operating system must not contain .shosts files. The .shosts files are used to configure host-based authentication for individual users or the system via SSH. Host-based authentication is not sufficient for preventing unauthorized access to the system, as it does not require interactive identification and authentication of a connection request, or for the use of two-factor authentication. To verify that there are no .shosts files on the system, run the following command: $ sudo find / -name '.shosts' No output should be returned. Is it the case that these files exist? The ~/.shosts (in each user's home directory) files list remote hosts and users that are trusted by the local system. To remove these files, run the following command to delete them from any location:
$ sudo find / -name '.shosts' -type f -delete
OL07-00-040540 no_user_host_based_files
V-221871 366 high The Oracle Linux operating system must not contain shosts.equiv files. The shosts.equiv files are used to configure host-based authentication for the system via SSH. Host-based authentication is not sufficient for preventing unauthorized access to the system, as it does not require interactive identification and authentication of a connection request, or for the use of two-factor authentication. To verify that there are no shosts.equiv files on the system, run the following command: $ find / -name shosts.equiv No output should be returned. Is it the case that these files exist? The shosts.equiv file list remote hosts and users that are trusted by the local system. To remove these files, run the following command to delete them from any location:
$ sudo rm /[path]/[to]/[file]/shosts.equiv
OL07-00-040550 no_host_based_files
V-221872 366 low For Oracle Linux operating systems using DNS resolution, at least two name servers must be configured. To provide availability for name resolution services, multiple redundant name servers are mandated. A failure in name resolution could lead to the failure of security functions requiring name resolution, which may include time synchronization, centralized authentication, and remote system logging. To verify that DNS servers have been configured properly, perform the following: $ sudo grep nameserver /etc/resolv.conf The output should return more than one nameserver entry. Is it the case that it does not exist or is not properly configured or less than 2 'nameserver' entries exist? Determine whether the system is using local or DNS name resolution with the following command:
# grep hosts /etc/nsswitch.conf
hosts: files dns
If the DNS entry is missing from the host's line in the "/etc/nsswitch.conf" file, the "/etc/resolv.conf" file must be empty.
If the DNS entry is found on the host's line of the "/etc/nsswitch.conf" file verify that multiple Domain Name System (DNS) Servers are configured in /etc/resolv.conf. This provides redundant name resolution services in the event that a domain server crashes. To configure the system to contain as least 2 DNS servers, add a corresponding nameserver ip_address entry in /etc/resolv.conf for each DNS server where ip_address is the IP address of a valid DNS server. For example:
search example.com
nameserver 192.168.0.1
nameserver 192.168.0.2
Verify the "/etc/resolv.conf" file is immutable with the following command:
# sudo lsattr /etc/resolv.conf
----i----------- /etc/resolv.conf
If the file is mutable and has not been documented with the Information System Security Officer (ISSO), this is a finding.
OL07-00-040600 network_configure_name_resolution
V-221873 366 medium The Oracle Linux operating system must not forward Internet Protocol version 4 (IPv4) source-routed packets. Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures. This requirement applies only to the forwarding of source-routerd traffic, such as when IPv4 forwarding is enabled and the system is functioning as a router.

Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required.
The runtime status of the net.ipv4.conf.all.accept_source_route kernel parameter can be queried by running the following command: $ sysctl net.ipv4.conf.all.accept_source_route The output of the command should indicate a value of 0. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv4.conf.all.accept_source_route\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv4.conf.all.accept_source_route = 0 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv4.conf.all.accept_source_route = 0, and that one assignment is returned when $ grep -r net.ipv4.conf.all.accept_source_route /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the net.ipv4.conf.all.accept_source_route kernel parameter, run the following command:
$ sudo sysctl -w net.ipv4.conf.all.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.accept_source_route = 0
OL07-00-040610 sysctl_net_ipv4_conf_all_accept_source_route
V-221874 366 medium The Oracle Linux operating system must use a reverse-path filter for IPv4 network traffic when possible on all interfaces. Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks. The runtime status of the net.ipv4.conf.all.rp_filter kernel parameter can be queried by running the following command: $ sysctl net.ipv4.conf.all.rp_filter The output of the command should indicate a value of 1. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv4.conf.all.rp_filter\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv4.conf.all.rp_filter = 1 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv4.conf.all.rp_filter = 1, and that one assignment is returned when $ grep -r net.ipv4.conf.all.rp_filter /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the net.ipv4.conf.all.rp_filter kernel parameter, run the following command:
$ sudo sysctl -w net.ipv4.conf.all.rp_filter=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.rp_filter = 1
OL07-00-040611 sysctl_net_ipv4_conf_all_rp_filter
V-221875 366 medium The Oracle Linux operating system must use a reverse-path filter for IPv4 network traffic when possible by default. Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks. The runtime status of the net.ipv4.conf.default.rp_filter kernel parameter can be queried by running the following command: $ sysctl net.ipv4.conf.default.rp_filter The output of the command should indicate a value of 1. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv4.conf.default.rp_filter\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv4.conf.default.rp_filter = 1 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv4.conf.default.rp_filter = 1, and that one assignment is returned when $ grep -r net.ipv4.conf.default.rp_filter /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the net.ipv4.conf.default.rp_filter kernel parameter, run the following command:
$ sudo sysctl -w net.ipv4.conf.default.rp_filter=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.rp_filter = 1
OL07-00-040612 sysctl_net_ipv4_conf_default_rp_filter
V-221876 366 medium The Oracle Linux operating system must not forward Internet Protocol version 4 (IPv4) source-routed packets by default. Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures.
Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required, such as when IPv4 forwarding is enabled and the system is legitimately functioning as a router.
The runtime status of the net.ipv4.conf.default.accept_source_route kernel parameter can be queried by running the following command: $ sysctl net.ipv4.conf.default.accept_source_route The output of the command should indicate a value of 0. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv4.conf.default.accept_source_route\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv4.conf.default.accept_source_route = 0 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv4.conf.default.accept_source_route = 0, and that one assignment is returned when $ grep -r net.ipv4.conf.default.accept_source_route /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the net.ipv4.conf.default.accept_source_route kernel parameter, run the following command:
$ sudo sysctl -w net.ipv4.conf.default.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.accept_source_route = 0
OL07-00-040620 sysctl_net_ipv4_conf_default_accept_source_route
V-221877 366 medium The Oracle Linux operating system must not respond to Internet Protocol version 4 (IPv4) Internet Control Message Protocol (ICMP) echoes sent to a broadcast address. Responding to broadcast (ICMP) echoes facilitates network mapping and provides a vector for amplification attacks.
Ignoring ICMP echo requests (pings) sent to broadcast or multicast addresses makes the system slightly more difficult to enumerate on the network.
The runtime status of the net.ipv4.icmp_echo_ignore_broadcasts kernel parameter can be queried by running the following command: $ sysctl net.ipv4.icmp_echo_ignore_broadcasts The output of the command should indicate a value of 1. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv4.icmp_echo_ignore_broadcasts\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv4.icmp_echo_ignore_broadcasts = 1 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv4.icmp_echo_ignore_broadcasts = 1, and that one assignment is returned when $ grep -r net.ipv4.icmp_echo_ignore_broadcasts /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the net.ipv4.icmp_echo_ignore_broadcasts kernel parameter, run the following command:
$ sudo sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.icmp_echo_ignore_broadcasts = 1
OL07-00-040630 sysctl_net_ipv4_icmp_echo_ignore_broadcasts
V-221878 366 medium The Oracle Linux operating system must prevent Internet Protocol version 4 (IPv4) Internet Control Message Protocol (ICMP) redirect messages from being accepted. ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages modify the host's route table and are unauthenticated. An illicit ICMP redirect message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless absolutely required.
The runtime status of the net.ipv4.conf.default.accept_redirects kernel parameter can be queried by running the following command: $ sysctl net.ipv4.conf.default.accept_redirects The output of the command should indicate a value of 0. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv4.conf.default.accept_redirects\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv4.conf.default.accept_redirects = 0 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv4.conf.default.accept_redirects = 0, and that one assignment is returned when $ grep -r net.ipv4.conf.default.accept_redirects /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the net.ipv4.conf.default.accept_redirects kernel parameter, run the following command:
$ sudo sysctl -w net.ipv4.conf.default.accept_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.accept_redirects = 0
OL07-00-040640 sysctl_net_ipv4_conf_default_accept_redirects
V-221879 366 medium The Oracle Linux operating system must ignore Internet Protocol version 4 (IPv4) Internet Control Message Protocol (ICMP) redirect messages. ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages modify the host's route table and are unauthenticated. An illicit ICMP redirect message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless absolutely required."
The runtime status of the net.ipv4.conf.all.accept_redirects kernel parameter can be queried by running the following command: $ sysctl net.ipv4.conf.all.accept_redirects The output of the command should indicate a value of 0. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv4.conf.all.accept_redirects\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv4.conf.all.accept_redirects = 0 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv4.conf.all.accept_redirects = 0, and that one assignment is returned when $ grep -r net.ipv4.conf.all.accept_redirects /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the net.ipv4.conf.all.accept_redirects kernel parameter, run the following command:
$ sudo sysctl -w net.ipv4.conf.all.accept_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.accept_redirects = 0
OL07-00-040641 sysctl_net_ipv4_conf_all_accept_redirects
V-221880 366 medium The Oracle Linux operating system must not allow interfaces to perform Internet Protocol version 4 (IPv4) Internet Control Message Protocol (ICMP) redirects by default. ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages contain information from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers.
The runtime status of the net.ipv4.conf.default.send_redirects kernel parameter can be queried by running the following command: $ sysctl net.ipv4.conf.default.send_redirects The output of the command should indicate a value of 0. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv4.conf.default.send_redirects\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv4.conf.default.send_redirects = 0 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv4.conf.default.send_redirects = 0, and that one assignment is returned when $ grep -r net.ipv4.conf.default.send_redirects /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the net.ipv4.conf.default.send_redirects kernel parameter, run the following command:
$ sudo sysctl -w net.ipv4.conf.default.send_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.send_redirects = 0
OL07-00-040650 sysctl_net_ipv4_conf_default_send_redirects
V-221881 366 medium The Oracle Linux operating system must not send Internet Protocol version 4 (IPv4) Internet Control Message Protocol (ICMP) redirects. ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages contain information from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers.
The runtime status of the net.ipv4.conf.all.send_redirects kernel parameter can be queried by running the following command: $ sysctl net.ipv4.conf.all.send_redirects The output of the command should indicate a value of 0. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv4.conf.all.send_redirects\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv4.conf.all.send_redirects = 0 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv4.conf.all.send_redirects = 0, and that one assignment is returned when $ grep -r net.ipv4.conf.all.send_redirects /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the net.ipv4.conf.all.send_redirects kernel parameter, run the following command:
$ sudo sysctl -w net.ipv4.conf.all.send_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.send_redirects = 0
OL07-00-040660 sysctl_net_ipv4_conf_all_send_redirects
V-221882 366 medium Network interfaces configured on The Oracle Linux operating system must not be in promiscuous mode. Network interfaces in promiscuous mode allow for the capture of all network traffic visible to the system. If unauthorized individuals can access these applications, it may allow them to collect information such as logon IDs, passwords, and key exchanges between systems.

If the system is being used to perform a network troubleshooting function, the use of these tools must be documented with the Information Systems Security Manager (ISSM) and restricted to only authorized personnel.
To verify that Promiscuous mode of an interface is disabled, run the following command: $ ip link | grep PROMISC The output returned should not return any network device containing PROMISC. Is it the case that any network device is in promiscuous mode? The system should not be acting as a network sniffer, which can capture all traffic on the network to which it is connected. Run the following to determine if any interface is running in promiscuous mode:
$ ip link | grep PROMISC
Promiscuous mode of an interface can be disabled with the following command:
$ sudo ip link set dev device_name multicast off promisc off
OL07-00-040670 network_sniffer_disabled
V-221883 366 medium The Oracle Linux operating system must be configured to prevent unrestricted mail relaying. If unrestricted mail relaying is permitted, unauthorized senders could use this host as a mail relay for the purpose of sending spam or other unauthorized activity. To verify the system is configured to prevent unrestricted mail relaying, run the following command: $ sudo postconf -n smtpd_client_restrictions The output should return: smtpd_client_restrictions = permit_mynetworks,reject Is it the case that it is not? Modify the
/etc/postfix/main.cf
file to restrict client connections to the local network with the following command:
$ sudo postconf -e 'smtpd_client_restrictions = permit_mynetworks,reject'
OL07-00-040680 postfix_prevent_unrestricted_relay
V-221884 366 high The Oracle Linux operating system must not have a File Transfer Protocol (FTP) server package installed unless needed. Removing the vsftpd package decreases the risk of its accidental activation. Run the following command to determine if the vsftpd package is installed: $ rpm -q vsftpd Is it the case that the package is installed? The vsftpd package can be removed with the following command:
 $ sudo yum erase vsftpd
OL07-00-040690 package_vsftpd_removed
V-221885 366 high The Oracle Linux operating system must not have the Trivial File Transfer Protocol (TFTP) server package installed if not required for operational support. Removing the tftp-server package decreases the risk of the accidental (or intentional) activation of tftp services.

If TFTP is required for operational support (such as transmission of router configurations), its use must be documented with the Information Systems Securty Manager (ISSM), restricted to only authorized personnel, and have access control rules established.
Run the following command to determine if the tftp-server package is installed: $ rpm -q tftp-server Is it the case that the package is installed? The tftp-server package can be removed with the following command:
 $ sudo yum erase tftp-server
OL07-00-040700 package_tftp-server_removed
V-221886 366 medium The Oracle Linux operating system must be configured so that remote X connections are disabled, unless to fulfill documented and validated mission requirements. Disable X11 forwarding unless there is an operational requirement to use X11 applications directly. There is a small risk that the remote X11 servers of users who are logged in via SSH with X11 forwarding could be compromised by other users on the X11 server. Note that even if X11 forwarding is disabled, users can always install their own forwarders. To determine how the SSH daemon's X11Forwarding option is set, run the following command: $ sudo grep -i X11Forwarding /etc/ssh/sshd_config If no line, a commented line, or a line indicating the value no is returned, then the required value is set. Is it the case that the required value is not set? The X11Forwarding parameter provides the ability to tunnel X11 traffic through the connection to enable remote graphic connections. SSH has the capability to encrypt remote X11 connections when SSH's X11Forwarding option is enabled.

To disable X11 Forwarding, add or correct the following line in /etc/ssh/sshd_config:
X11Forwarding no
OL07-00-040710 sshd_disable_x11_forwarding
V-233306 366 medium The Oracle Linux operating system SSH daemon must prevent remote hosts from connecting to the proxy display. When X11 forwarding is enabled, there may be additional exposure to the server and client displays if the sshd proxy display is configured to listen on the wildcard address. By default, sshd binds the forwarding server to the loopback address and sets the hostname part of the DISPLAY environment variable to localhost. This prevents remote hosts from connecting to the proxy display. To determine how the SSH daemon's X11UseLocalhost option is set, run the following command: $ sudo grep -i X11UseLocalhost /etc/ssh/sshd_config If no line, a commented line, or a line indicating the value yes is returned, then the required value is set. Is it the case that the display proxy is listening on wildcard address? The SSH daemon should prevent remote hosts from connecting to the proxy display. Make sure that the option X11UseLocalhost is set to yes within the SSH server configuration file. OL07-00-040711 sshd_x11_use_localhost
V-221887 366 medium The Oracle Linux operating system must be configured so that if the Trivial File Transfer Protocol (TFTP) server is required, the TFTP daemon is configured to operate in secure mode. Using the -s option causes the TFTP service to only serve files from the given directory. Serving files from an intentionally-specified directory reduces the risk of sharing files which should remain private. If TFTP is not installed, this is not applicable. To determine if TFTP is installed, run the following command: $ rpm -qa | grep tftp Verify tftp is configured by with the -s option by running the following command: grep "server_args" /etc/xinetd.d/tftp The output should indicate the server_args variable is configured with the -s flag, matching the example below: $ grep "server_args" /etc/xinetd.d/tftp server_args = -s Is it the case that this flag is missing? If running the tftp service is necessary, it should be configured to change its root directory at startup. To do so, ensure /etc/xinetd.d/tftp includes -s as a command line argument, as shown in the following example:
server_args = -s 
OL07-00-040720 tftpd_uses_secure_mode
V-221888 366 medium The Oracle Linux operating system must not have a graphical display manager installed unless approved. Unnecessary service packages must not be installed to decrease the attack surface of the system. X windows has a long history of security vulnerabilities and should not be installed unless approved and documented. To ensure the X Windows package group is removed, run the following command: $ rpm -qi xorg-x11-server-Xorg xorg-x11-server-common xorg-x11-server-utils For each package mentioned above you should receive following line: package <package> is not installed Is it the case that xorg related packages are not removed and run level is not correctly configured? By removing the following packages, the system no longer has X Windows installed. xorg-x11-server-Xorg xorg-x11-server-common xorg-x11-server-utils If X Windows is not installed then the system cannot boot into graphical user mode. This prevents the system from being accidentally or maliciously booted into a graphical.target mode. To do so, run the following command:
sudo yum remove xorg-x11-server-Xorg xorg-x11-server-common xorg-x11-server-utils
Additionally, setting the system's default target to multi-user.target will prevent automatic startup of the X server. To do so, run:
$ systemctl set-default multi-user.target
You should see the following output:
Removed symlink /etc/systemd/system/default.target.
Created symlink from /etc/systemd/system/default.target to /usr/lib/systemd/system/multi-user.target.
OL07-00-040730 xwindows_remove_packages
V-221889 366 medium The Oracle Linux operating system must not be performing packet forwarding unless the system is a router. Routing protocol daemons are typically used on routers to exchange network topology information with other routers. If this capability is used when not required, system network information may be unnecessarily transmitted across the network. The runtime status of the net.ipv4.ip_forward kernel parameter can be queried by running the following command: $ sysctl net.ipv4.ip_forward The output of the command should indicate a value of 0. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv4.ip_forward\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv4.ip_forward = 0 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv4.ip_forward = 0, and that one assignment is returned when $ grep -r net.ipv4.ip_forward /etc/sysctl.conf /etc/sysctl.d is executed. The ability to forward packets is only appropriate for routers. Is it the case that ? To set the runtime status of the net.ipv4.ip_forward kernel parameter, run the following command:
$ sudo sysctl -w net.ipv4.ip_forward=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.ip_forward = 0
OL07-00-040740 sysctl_net_ipv4_ip_forward
V-221890 366 medium The Oracle Linux operating system must be configured so that the Network File System (NFS) is configured to use RPCSEC_GSS. When an NFS server is configured to use AUTH_SYS a selected userid and groupid are used to handle requests from the remote user. The userid and groupid could mistakenly or maliciously be set incorrectly. The AUTH_GSS method of authentication uses certificates on the server and client systems to more securely authenticate the remote mount request. To verify the sec option is configured for all NFS mounts, run the following command: $ mount | grep "sec=" All NFS mounts should show the sec=krb5:krb5i:krb5p setting in parentheses. This is not applicable if NFS is not implemented. Is it the case that the setting is not configured, has the 'sys' option added, or does not have all Kerberos options added? Add the sec=krb5:krb5i:krb5p option to the fourth column of /etc/fstab for the line which controls mounting of any NFS mounts. OL07-00-040750 mount_option_krb_sec_remote_filesystems
V-221891 366 high SNMP community strings on the Oracle Linux operating system must be changed from the default. Whether active or not, default simple network management protocol (SNMP) community strings must be changed to maintain security. If the service is running with the default authenticators, then anyone can gather data about the system and the network and use the information to potentially compromise the integrity of the system and network(s). To ensure the default password is not set, run the following command: $ sudo grep -v "^#" /etc/snmp/snmpd.conf| grep -E 'public|private' There should be no output. Is it the case that the default SNMP passwords public and private have not been changed or removed? Edit /etc/snmp/snmpd.conf, remove or change the default community strings of public and private. This profile configures new read-only community string to and read-write community string to . Once the default community strings have been changed, restart the SNMP service:
$ sudo service snmpd restart
OL07-00-040800 snmpd_not_default_password
V-221892 366 medium The Oracle Linux operating system access control program must be configured to grant or deny system access to specific hosts and services. If the systems access control program is not configured with appropriate rules for allowing and denying access to system network resources, services may be accessible to unauthorized hosts. Verify the system's access control program is configured to grant or deny system access to specific hosts Is it the case that the system access control program is not configured? To verify the system's access control program is configured to grant or deny system access to specific hosts check to see if "firewalld" is active with the following command:
# systemctl status firewalld
firewalld.service - firewalld - dynamic firewall daemon
Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled)
Active: active (running) since Sun 2014-04-20 14:06:46 BST; 30s ago
If "firewalld" is active, check to see if it is configured to grant or deny access to specific hosts or services with the following commands:
# firewall-cmd --get-default-zone
public

# firewall-cmd --list-all --zone=public
public (active)
target: default
icmp-block-inversion: no
interfaces: eth0
sources:
services: mdns ssh
ports:
protocols:
masquerade: no
forward-ports:
icmp-blocks:
If "firewalld" is not active, determine whether "tcpwrappers" is being used by checking whether the "hosts.allow" and "hosts.deny" files are empty with the following commands:
# ls -al /etc/hosts.allow
rw-r----- 1 root root 9 Aug 2 23:13 /etc/hosts.allow

# ls -al /etc/hosts.deny
-rw-r----- 1 root root 9 Apr 9 2007 /etc/hosts.deny
If "firewalld" and "tcpwrappers" are not installed, configured, and active, ask the SA if another access control program (such as iptables) is installed and active. Ask the SA to show that the running configuration grants or denies access to specific hosts or services. If "firewalld" is active and is not configured to grant access to specific hosts or "tcpwrappers" is not configured to grant or deny access to specific hosts, this is a finding.
OL07-00-040810 network_implement_access_control
V-221893 366 medium The Oracle Linux operating system must not have unauthorized IP tunnels configured. IP tunneling mechanisms can be used to bypass network filtering. To check for configured IPsec connections (conn), perform the following: grep -rni conn /etc/ipsec.conf /etc/ipsec.d/ Verify any returned results for organizational approval. Is it the case that the IPSec tunnels are not approved? Libreswan provides an implementation of IPsec and IKE, which permits the creation of secure tunnels over untrusted networks. As such, IPsec can be used to circumvent certain network requirements such as filtering. Verify that if any IPsec connection (conn) configured in /etc/ipsec.conf and /etc/ipsec.d exists is an approved organizational connection. OL07-00-040820 libreswan_approved_tunnels
V-221894 366 medium The Oracle Linux operating system must not forward IPv6 source-routed packets. Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures. This requirement applies only to the forwarding of source-routerd traffic, such as when IPv6 forwarding is enabled and the system is functioning as a router.

Accepting source-routed packets in the IPv6 protocol has few legitimate uses. It should be disabled unless it is absolutely required.
The runtime status of the net.ipv6.conf.all.accept_source_route kernel parameter can be queried by running the following command: $ sysctl net.ipv6.conf.all.accept_source_route The output of the command should indicate a value of 0. The preferable way how to assure the runtime compliance is to have correct persistent configuration, and rebooting the system. The persistent kernel parameter configuration is performed by specifying the appropriate assignment in any file located in the /etc/sysctl.d directory. Verify that there is not any existing incorrect configuration by executing the following command: $ grep -r '^\s*net.ipv6.conf.all.accept_source_route\s*=' /etc/sysctl.conf /etc/sysctl.d If any assignments other than net.ipv6.conf.all.accept_source_route = 0 are found, or the correct assignment is duplicated, remove those offending lines from respective files, and make sure that exactly one file in /etc/sysctl.d contains net.ipv6.conf.all.accept_source_route = 0, and that one assignment is returned when $ grep -r net.ipv6.conf.all.accept_source_route /etc/sysctl.conf /etc/sysctl.d is executed. Is it the case that the correct value is not returned? To set the runtime status of the net.ipv6.conf.all.accept_source_route kernel parameter, run the following command:
$ sudo sysctl -w net.ipv6.conf.all.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv6.conf.all.accept_source_route = 0
OL07-00-040830 sysctl_net_ipv6_conf_all_accept_source_route
V-221895 1954 medium The Oracle Linux operating system must have the required packages for multifactor authentication installed. Using an authentication device, such as a CAC or token that is separate from the information system, ensures that even if the information system is compromised, that compromise will not affect credentials stored on the authentication device.

Multifactor solutions that require devices separate from information systems gaining access include, for example, hardware tokens providing time-based or challenge-response authenticators and smart cards such as the U.S. Government Personal Identity Verification card and the DoD Common Access Card.
'Run the following command to determine if the pam_pkcs11 package is installed: $ rpm -q pam_pkcs11' Is it the case that smartcard software is not installed? Configure the operating system to implement multifactor authentication by installing the required package with the following command: The pam_pkcs11 package can be installed with the following command:
$ sudo yum install pam_pkcs11
OL07-00-041001 install_smartcard_packages
V-221896 1954 medium The Oracle Linux operating system must implement multifactor authentication for access to privileged accounts via pluggable authentication modules (PAM). Using an authentication device, such as a CAC or token that is separate from the information system, ensures that even if the information system is compromised, that compromise will not affect credentials stored on the authentication device. To verify that SSSD is configured for PAM services, run the following command: $ sudo grep services /etc/sssd/sssd.conf If configured properly, output should be similar to services = pam Is it the case that it does not exist or 'pam' is not added to the 'services' option under the 'sssd' section? SSSD should be configured to run SSSD pam services. To configure SSSD to known SSH hosts, add pam to services under the [sssd] section in /etc/sssd/sssd.conf. For example:
[sssd]
services = sudo, autofs, pam
OL07-00-041002 sssd_enable_pam_services
V-221897 1954 medium The Oracle Linux operating system must implement certificate status checking for PKI authentication. Using an authentication device, such as a CAC or token that is separate from the information system, ensures that even if the information system is compromised, that compromise will not affect credentials stored on the authentication device.

Multifactor solutions that require devices separate from information systems gaining access include, for example, hardware tokens providing time-based or challenge-response authenticators and smart cards such as the U.S. Government Personal Identity Verification card and the DoD Common Access Card.
To verify the operating system implements certificate status checking for PKI authentication, run the following command: $ sudo grep -i cert_policy /etc/pam_pkcs11/pam_pkcs11.conf The output should return multiple lines similiar to the following: cert_policy = ca, ocsp_on, signature; cert_policy = ca, ocsp_on, signature; cert_policy = ca, ocsp_on, signature; Is it the case that ocsp_on is not configured? Configure the operating system to do certificate status checking for PKI authentication. Modify all of the cert_policy lines in /etc/pam_pkcs11/pam_pkcs11.conf to include ocsp_on like so:
cert_policy = ca, ocsp_on, signature;
OL07-00-041003 smartcard_configure_cert_checking
V-221898 2421 medium The Oracle Linux operating system must be configured so that all wireless network adapters are disabled. The use of wireless networking can introduce many different attack vectors into the organization's network. Common attack vectors such as malicious association and ad hoc networks will allow an attacker to spoof a wireless access point (AP), allowing validated systems to connect to the malicious AP and enabling the attacker to monitor and record network traffic. These malicious APs can also serve to create a man-in-the-middle attack or be used to create a denial of service to valid network resources. Verify that there are no wireless interfaces configured on the system with the following command: $ sudo nmcli device The output should contain the following: wifi disconnected Is it the case that it is not? Deactivating wireless network interfaces should prevent normal usage of the wireless capability.

Configure the system to disable all wireless network interfaces with the following command:
$ sudo nmcli radio wifi off
OL07-00-041010 wireless_disable_interfaces
V-221899 1314 medium The Oracle Linux operating system must protect audit information from unauthorized read, modification, or deletion. If users can write to audit logs, audit trails can be modified or destroyed. Run the following command to check the mode of the system audit logs: $ sudo ls -l /var/log/audit Audit logs must be mode 0640 or less permissive. Is it the case that any are more permissive? If log_group in /etc/audit/auditd.conf is set to a group other than the root group account, change the mode of the audit log files with the following command:
$ sudo chmod 0640 audit_file

Otherwise, change the mode of the audit log files with the following command:
$ sudo chmod 0600 audit_file
OL07-00-910055 file_permissions_var_log_audit