libstdc++
|
00001 // Set implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001-2018 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 3, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // Under Section 7 of GPL version 3, you are granted additional 00017 // permissions described in the GCC Runtime Library Exception, version 00018 // 3.1, as published by the Free Software Foundation. 00019 00020 // You should have received a copy of the GNU General Public License and 00021 // a copy of the GCC Runtime Library Exception along with this program; 00022 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00023 // <http://www.gnu.org/licenses/>. 00024 00025 /* 00026 * 00027 * Copyright (c) 1994 00028 * Hewlett-Packard Company 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Hewlett-Packard Company makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 * 00038 * 00039 * Copyright (c) 1996,1997 00040 * Silicon Graphics Computer Systems, Inc. 00041 * 00042 * Permission to use, copy, modify, distribute and sell this software 00043 * and its documentation for any purpose is hereby granted without fee, 00044 * provided that the above copyright notice appear in all copies and 00045 * that both that copyright notice and this permission notice appear 00046 * in supporting documentation. Silicon Graphics makes no 00047 * representations about the suitability of this software for any 00048 * purpose. It is provided "as is" without express or implied warranty. 00049 */ 00050 00051 /** @file bits/stl_set.h 00052 * This is an internal header file, included by other library headers. 00053 * Do not attempt to use it directly. @headername{set} 00054 */ 00055 00056 #ifndef _STL_SET_H 00057 #define _STL_SET_H 1 00058 00059 #include <bits/concept_check.h> 00060 #if __cplusplus >= 201103L 00061 #include <initializer_list> 00062 #endif 00063 00064 namespace std _GLIBCXX_VISIBILITY(default) 00065 { 00066 _GLIBCXX_BEGIN_NAMESPACE_VERSION 00067 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00068 00069 template<typename _Key, typename _Compare, typename _Alloc> 00070 class multiset; 00071 00072 /** 00073 * @brief A standard container made up of unique keys, which can be 00074 * retrieved in logarithmic time. 00075 * 00076 * @ingroup associative_containers 00077 * 00078 * @tparam _Key Type of key objects. 00079 * @tparam _Compare Comparison function object type, defaults to less<_Key>. 00080 * @tparam _Alloc Allocator type, defaults to allocator<_Key>. 00081 * 00082 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00083 * <a href="tables.html#66">reversible container</a>, and an 00084 * <a href="tables.html#69">associative container</a> (using unique keys). 00085 * 00086 * Sets support bidirectional iterators. 00087 * 00088 * The private tree data is declared exactly the same way for set and 00089 * multiset; the distinction is made entirely in how the tree functions are 00090 * called (*_unique versus *_equal, same as the standard). 00091 */ 00092 template<typename _Key, typename _Compare = std::less<_Key>, 00093 typename _Alloc = std::allocator<_Key> > 00094 class set 00095 { 00096 #ifdef _GLIBCXX_CONCEPT_CHECKS 00097 // concept requirements 00098 typedef typename _Alloc::value_type _Alloc_value_type; 00099 # if __cplusplus < 201103L 00100 __glibcxx_class_requires(_Key, _SGIAssignableConcept) 00101 # endif 00102 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00103 _BinaryFunctionConcept) 00104 __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept) 00105 #endif 00106 00107 #if __cplusplus >= 201103L 00108 static_assert(is_same<typename remove_cv<_Key>::type, _Key>::value, 00109 "std::set must have a non-const, non-volatile value_type"); 00110 # ifdef __STRICT_ANSI__ 00111 static_assert(is_same<typename _Alloc::value_type, _Key>::value, 00112 "std::set must have the same value_type as its allocator"); 00113 # endif 00114 #endif 00115 00116 public: 00117 // typedefs: 00118 //@{ 00119 /// Public typedefs. 00120 typedef _Key key_type; 00121 typedef _Key value_type; 00122 typedef _Compare key_compare; 00123 typedef _Compare value_compare; 00124 typedef _Alloc allocator_type; 00125 //@} 00126 00127 private: 00128 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template 00129 rebind<_Key>::other _Key_alloc_type; 00130 00131 typedef _Rb_tree<key_type, value_type, _Identity<value_type>, 00132 key_compare, _Key_alloc_type> _Rep_type; 00133 _Rep_type _M_t; // Red-black tree representing set. 00134 00135 typedef __gnu_cxx::__alloc_traits<_Key_alloc_type> _Alloc_traits; 00136 00137 public: 00138 //@{ 00139 /// Iterator-related typedefs. 00140 typedef typename _Alloc_traits::pointer pointer; 00141 typedef typename _Alloc_traits::const_pointer const_pointer; 00142 typedef typename _Alloc_traits::reference reference; 00143 typedef typename _Alloc_traits::const_reference const_reference; 00144 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00145 // DR 103. set::iterator is required to be modifiable, 00146 // but this allows modification of keys. 00147 typedef typename _Rep_type::const_iterator iterator; 00148 typedef typename _Rep_type::const_iterator const_iterator; 00149 typedef typename _Rep_type::const_reverse_iterator reverse_iterator; 00150 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00151 typedef typename _Rep_type::size_type size_type; 00152 typedef typename _Rep_type::difference_type difference_type; 00153 //@} 00154 00155 #if __cplusplus > 201402L 00156 using node_type = typename _Rep_type::node_type; 00157 using insert_return_type = typename _Rep_type::insert_return_type; 00158 #endif 00159 00160 // allocation/deallocation 00161 /** 00162 * @brief Default constructor creates no elements. 00163 */ 00164 #if __cplusplus < 201103L 00165 set() : _M_t() { } 00166 #else 00167 set() = default; 00168 #endif 00169 00170 /** 00171 * @brief Creates a %set with no elements. 00172 * @param __comp Comparator to use. 00173 * @param __a An allocator object. 00174 */ 00175 explicit 00176 set(const _Compare& __comp, 00177 const allocator_type& __a = allocator_type()) 00178 : _M_t(__comp, _Key_alloc_type(__a)) { } 00179 00180 /** 00181 * @brief Builds a %set from a range. 00182 * @param __first An input iterator. 00183 * @param __last An input iterator. 00184 * 00185 * Create a %set consisting of copies of the elements from 00186 * [__first,__last). This is linear in N if the range is 00187 * already sorted, and NlogN otherwise (where N is 00188 * distance(__first,__last)). 00189 */ 00190 template<typename _InputIterator> 00191 set(_InputIterator __first, _InputIterator __last) 00192 : _M_t() 00193 { _M_t._M_insert_unique(__first, __last); } 00194 00195 /** 00196 * @brief Builds a %set from a range. 00197 * @param __first An input iterator. 00198 * @param __last An input iterator. 00199 * @param __comp A comparison functor. 00200 * @param __a An allocator object. 00201 * 00202 * Create a %set consisting of copies of the elements from 00203 * [__first,__last). This is linear in N if the range is 00204 * already sorted, and NlogN otherwise (where N is 00205 * distance(__first,__last)). 00206 */ 00207 template<typename _InputIterator> 00208 set(_InputIterator __first, _InputIterator __last, 00209 const _Compare& __comp, 00210 const allocator_type& __a = allocator_type()) 00211 : _M_t(__comp, _Key_alloc_type(__a)) 00212 { _M_t._M_insert_unique(__first, __last); } 00213 00214 /** 00215 * @brief %Set copy constructor. 00216 * 00217 * Whether the allocator is copied depends on the allocator traits. 00218 */ 00219 #if __cplusplus < 201103L 00220 set(const set& __x) 00221 : _M_t(__x._M_t) { } 00222 #else 00223 set(const set&) = default; 00224 00225 /** 00226 * @brief %Set move constructor 00227 * 00228 * The newly-created %set contains the exact contents of the moved 00229 * instance. The moved instance is a valid, but unspecified, %set. 00230 */ 00231 set(set&&) = default; 00232 00233 /** 00234 * @brief Builds a %set from an initializer_list. 00235 * @param __l An initializer_list. 00236 * @param __comp A comparison functor. 00237 * @param __a An allocator object. 00238 * 00239 * Create a %set consisting of copies of the elements in the list. 00240 * This is linear in N if the list is already sorted, and NlogN 00241 * otherwise (where N is @a __l.size()). 00242 */ 00243 set(initializer_list<value_type> __l, 00244 const _Compare& __comp = _Compare(), 00245 const allocator_type& __a = allocator_type()) 00246 : _M_t(__comp, _Key_alloc_type(__a)) 00247 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00248 00249 /// Allocator-extended default constructor. 00250 explicit 00251 set(const allocator_type& __a) 00252 : _M_t(_Compare(), _Key_alloc_type(__a)) { } 00253 00254 /// Allocator-extended copy constructor. 00255 set(const set& __x, const allocator_type& __a) 00256 : _M_t(__x._M_t, _Key_alloc_type(__a)) { } 00257 00258 /// Allocator-extended move constructor. 00259 set(set&& __x, const allocator_type& __a) 00260 noexcept(is_nothrow_copy_constructible<_Compare>::value 00261 && _Alloc_traits::_S_always_equal()) 00262 : _M_t(std::move(__x._M_t), _Key_alloc_type(__a)) { } 00263 00264 /// Allocator-extended initialier-list constructor. 00265 set(initializer_list<value_type> __l, const allocator_type& __a) 00266 : _M_t(_Compare(), _Key_alloc_type(__a)) 00267 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00268 00269 /// Allocator-extended range constructor. 00270 template<typename _InputIterator> 00271 set(_InputIterator __first, _InputIterator __last, 00272 const allocator_type& __a) 00273 : _M_t(_Compare(), _Key_alloc_type(__a)) 00274 { _M_t._M_insert_unique(__first, __last); } 00275 00276 /** 00277 * The dtor only erases the elements, and note that if the elements 00278 * themselves are pointers, the pointed-to memory is not touched in any 00279 * way. Managing the pointer is the user's responsibility. 00280 */ 00281 ~set() = default; 00282 #endif 00283 00284 /** 00285 * @brief %Set assignment operator. 00286 * 00287 * Whether the allocator is copied depends on the allocator traits. 00288 */ 00289 #if __cplusplus < 201103L 00290 set& 00291 operator=(const set& __x) 00292 { 00293 _M_t = __x._M_t; 00294 return *this; 00295 } 00296 #else 00297 set& 00298 operator=(const set&) = default; 00299 00300 /// Move assignment operator. 00301 set& 00302 operator=(set&&) = default; 00303 00304 /** 00305 * @brief %Set list assignment operator. 00306 * @param __l An initializer_list. 00307 * 00308 * This function fills a %set with copies of the elements in the 00309 * initializer list @a __l. 00310 * 00311 * Note that the assignment completely changes the %set and 00312 * that the resulting %set's size is the same as the number 00313 * of elements assigned. 00314 */ 00315 set& 00316 operator=(initializer_list<value_type> __l) 00317 { 00318 _M_t._M_assign_unique(__l.begin(), __l.end()); 00319 return *this; 00320 } 00321 #endif 00322 00323 // accessors: 00324 00325 /// Returns the comparison object with which the %set was constructed. 00326 key_compare 00327 key_comp() const 00328 { return _M_t.key_comp(); } 00329 /// Returns the comparison object with which the %set was constructed. 00330 value_compare 00331 value_comp() const 00332 { return _M_t.key_comp(); } 00333 /// Returns the allocator object with which the %set was constructed. 00334 allocator_type 00335 get_allocator() const _GLIBCXX_NOEXCEPT 00336 { return allocator_type(_M_t.get_allocator()); } 00337 00338 /** 00339 * Returns a read-only (constant) iterator that points to the first 00340 * element in the %set. Iteration is done in ascending order according 00341 * to the keys. 00342 */ 00343 iterator 00344 begin() const _GLIBCXX_NOEXCEPT 00345 { return _M_t.begin(); } 00346 00347 /** 00348 * Returns a read-only (constant) iterator that points one past the last 00349 * element in the %set. Iteration is done in ascending order according 00350 * to the keys. 00351 */ 00352 iterator 00353 end() const _GLIBCXX_NOEXCEPT 00354 { return _M_t.end(); } 00355 00356 /** 00357 * Returns a read-only (constant) iterator that points to the last 00358 * element in the %set. Iteration is done in descending order according 00359 * to the keys. 00360 */ 00361 reverse_iterator 00362 rbegin() const _GLIBCXX_NOEXCEPT 00363 { return _M_t.rbegin(); } 00364 00365 /** 00366 * Returns a read-only (constant) reverse iterator that points to the 00367 * last pair in the %set. Iteration is done in descending order 00368 * according to the keys. 00369 */ 00370 reverse_iterator 00371 rend() const _GLIBCXX_NOEXCEPT 00372 { return _M_t.rend(); } 00373 00374 #if __cplusplus >= 201103L 00375 /** 00376 * Returns a read-only (constant) iterator that points to the first 00377 * element in the %set. Iteration is done in ascending order according 00378 * to the keys. 00379 */ 00380 iterator 00381 cbegin() const noexcept 00382 { return _M_t.begin(); } 00383 00384 /** 00385 * Returns a read-only (constant) iterator that points one past the last 00386 * element in the %set. Iteration is done in ascending order according 00387 * to the keys. 00388 */ 00389 iterator 00390 cend() const noexcept 00391 { return _M_t.end(); } 00392 00393 /** 00394 * Returns a read-only (constant) iterator that points to the last 00395 * element in the %set. Iteration is done in descending order according 00396 * to the keys. 00397 */ 00398 reverse_iterator 00399 crbegin() const noexcept 00400 { return _M_t.rbegin(); } 00401 00402 /** 00403 * Returns a read-only (constant) reverse iterator that points to the 00404 * last pair in the %set. Iteration is done in descending order 00405 * according to the keys. 00406 */ 00407 reverse_iterator 00408 crend() const noexcept 00409 { return _M_t.rend(); } 00410 #endif 00411 00412 /// Returns true if the %set is empty. 00413 bool 00414 empty() const _GLIBCXX_NOEXCEPT 00415 { return _M_t.empty(); } 00416 00417 /// Returns the size of the %set. 00418 size_type 00419 size() const _GLIBCXX_NOEXCEPT 00420 { return _M_t.size(); } 00421 00422 /// Returns the maximum size of the %set. 00423 size_type 00424 max_size() const _GLIBCXX_NOEXCEPT 00425 { return _M_t.max_size(); } 00426 00427 /** 00428 * @brief Swaps data with another %set. 00429 * @param __x A %set of the same element and allocator types. 00430 * 00431 * This exchanges the elements between two sets in constant 00432 * time. (It is only swapping a pointer, an integer, and an 00433 * instance of the @c Compare type (which itself is often 00434 * stateless and empty), so it should be quite fast.) Note 00435 * that the global std::swap() function is specialized such 00436 * that std::swap(s1,s2) will feed to this function. 00437 * 00438 * Whether the allocators are swapped depends on the allocator traits. 00439 */ 00440 void 00441 swap(set& __x) 00442 _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value) 00443 { _M_t.swap(__x._M_t); } 00444 00445 // insert/erase 00446 #if __cplusplus >= 201103L 00447 /** 00448 * @brief Attempts to build and insert an element into the %set. 00449 * @param __args Arguments used to generate an element. 00450 * @return A pair, of which the first element is an iterator that points 00451 * to the possibly inserted element, and the second is a bool 00452 * that is true if the element was actually inserted. 00453 * 00454 * This function attempts to build and insert an element into the %set. 00455 * A %set relies on unique keys and thus an element is only inserted if 00456 * it is not already present in the %set. 00457 * 00458 * Insertion requires logarithmic time. 00459 */ 00460 template<typename... _Args> 00461 std::pair<iterator, bool> 00462 emplace(_Args&&... __args) 00463 { return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); } 00464 00465 /** 00466 * @brief Attempts to insert an element into the %set. 00467 * @param __pos An iterator that serves as a hint as to where the 00468 * element should be inserted. 00469 * @param __args Arguments used to generate the element to be 00470 * inserted. 00471 * @return An iterator that points to the element with key equivalent to 00472 * the one generated from @a __args (may or may not be the 00473 * element itself). 00474 * 00475 * This function is not concerned about whether the insertion took place, 00476 * and thus does not return a boolean like the single-argument emplace() 00477 * does. Note that the first parameter is only a hint and can 00478 * potentially improve the performance of the insertion process. A bad 00479 * hint would cause no gains in efficiency. 00480 * 00481 * For more on @a hinting, see: 00482 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 00483 * 00484 * Insertion requires logarithmic time (if the hint is not taken). 00485 */ 00486 template<typename... _Args> 00487 iterator 00488 emplace_hint(const_iterator __pos, _Args&&... __args) 00489 { 00490 return _M_t._M_emplace_hint_unique(__pos, 00491 std::forward<_Args>(__args)...); 00492 } 00493 #endif 00494 00495 /** 00496 * @brief Attempts to insert an element into the %set. 00497 * @param __x Element to be inserted. 00498 * @return A pair, of which the first element is an iterator that points 00499 * to the possibly inserted element, and the second is a bool 00500 * that is true if the element was actually inserted. 00501 * 00502 * This function attempts to insert an element into the %set. A %set 00503 * relies on unique keys and thus an element is only inserted if it is 00504 * not already present in the %set. 00505 * 00506 * Insertion requires logarithmic time. 00507 */ 00508 std::pair<iterator, bool> 00509 insert(const value_type& __x) 00510 { 00511 std::pair<typename _Rep_type::iterator, bool> __p = 00512 _M_t._M_insert_unique(__x); 00513 return std::pair<iterator, bool>(__p.first, __p.second); 00514 } 00515 00516 #if __cplusplus >= 201103L 00517 std::pair<iterator, bool> 00518 insert(value_type&& __x) 00519 { 00520 std::pair<typename _Rep_type::iterator, bool> __p = 00521 _M_t._M_insert_unique(std::move(__x)); 00522 return std::pair<iterator, bool>(__p.first, __p.second); 00523 } 00524 #endif 00525 00526 /** 00527 * @brief Attempts to insert an element into the %set. 00528 * @param __position An iterator that serves as a hint as to where the 00529 * element should be inserted. 00530 * @param __x Element to be inserted. 00531 * @return An iterator that points to the element with key of 00532 * @a __x (may or may not be the element passed in). 00533 * 00534 * This function is not concerned about whether the insertion took place, 00535 * and thus does not return a boolean like the single-argument insert() 00536 * does. Note that the first parameter is only a hint and can 00537 * potentially improve the performance of the insertion process. A bad 00538 * hint would cause no gains in efficiency. 00539 * 00540 * For more on @a hinting, see: 00541 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 00542 * 00543 * Insertion requires logarithmic time (if the hint is not taken). 00544 */ 00545 iterator 00546 insert(const_iterator __position, const value_type& __x) 00547 { return _M_t._M_insert_unique_(__position, __x); } 00548 00549 #if __cplusplus >= 201103L 00550 iterator 00551 insert(const_iterator __position, value_type&& __x) 00552 { return _M_t._M_insert_unique_(__position, std::move(__x)); } 00553 #endif 00554 00555 /** 00556 * @brief A template function that attempts to insert a range 00557 * of elements. 00558 * @param __first Iterator pointing to the start of the range to be 00559 * inserted. 00560 * @param __last Iterator pointing to the end of the range. 00561 * 00562 * Complexity similar to that of the range constructor. 00563 */ 00564 template<typename _InputIterator> 00565 void 00566 insert(_InputIterator __first, _InputIterator __last) 00567 { _M_t._M_insert_unique(__first, __last); } 00568 00569 #if __cplusplus >= 201103L 00570 /** 00571 * @brief Attempts to insert a list of elements into the %set. 00572 * @param __l A std::initializer_list<value_type> of elements 00573 * to be inserted. 00574 * 00575 * Complexity similar to that of the range constructor. 00576 */ 00577 void 00578 insert(initializer_list<value_type> __l) 00579 { this->insert(__l.begin(), __l.end()); } 00580 #endif 00581 00582 #if __cplusplus > 201402L 00583 /// Extract a node. 00584 node_type 00585 extract(const_iterator __pos) 00586 { 00587 __glibcxx_assert(__pos != end()); 00588 return _M_t.extract(__pos); 00589 } 00590 00591 /// Extract a node. 00592 node_type 00593 extract(const key_type& __x) 00594 { return _M_t.extract(__x); } 00595 00596 /// Re-insert an extracted node. 00597 insert_return_type 00598 insert(node_type&& __nh) 00599 { return _M_t._M_reinsert_node_unique(std::move(__nh)); } 00600 00601 /// Re-insert an extracted node. 00602 iterator 00603 insert(const_iterator __hint, node_type&& __nh) 00604 { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); } 00605 00606 template<typename, typename> 00607 friend class std::_Rb_tree_merge_helper; 00608 00609 template<typename _Compare1> 00610 void 00611 merge(set<_Key, _Compare1, _Alloc>& __source) 00612 { 00613 using _Merge_helper = _Rb_tree_merge_helper<set, _Compare1>; 00614 _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source)); 00615 } 00616 00617 template<typename _Compare1> 00618 void 00619 merge(set<_Key, _Compare1, _Alloc>&& __source) 00620 { merge(__source); } 00621 00622 template<typename _Compare1> 00623 void 00624 merge(multiset<_Key, _Compare1, _Alloc>& __source) 00625 { 00626 using _Merge_helper = _Rb_tree_merge_helper<set, _Compare1>; 00627 _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source)); 00628 } 00629 00630 template<typename _Compare1> 00631 void 00632 merge(multiset<_Key, _Compare1, _Alloc>&& __source) 00633 { merge(__source); } 00634 #endif // C++17 00635 00636 #if __cplusplus >= 201103L 00637 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00638 // DR 130. Associative erase should return an iterator. 00639 /** 00640 * @brief Erases an element from a %set. 00641 * @param __position An iterator pointing to the element to be erased. 00642 * @return An iterator pointing to the element immediately following 00643 * @a __position prior to the element being erased. If no such 00644 * element exists, end() is returned. 00645 * 00646 * This function erases an element, pointed to by the given iterator, 00647 * from a %set. Note that this function only erases the element, and 00648 * that if the element is itself a pointer, the pointed-to memory is not 00649 * touched in any way. Managing the pointer is the user's 00650 * responsibility. 00651 */ 00652 _GLIBCXX_ABI_TAG_CXX11 00653 iterator 00654 erase(const_iterator __position) 00655 { return _M_t.erase(__position); } 00656 #else 00657 /** 00658 * @brief Erases an element from a %set. 00659 * @param position An iterator pointing to the element to be erased. 00660 * 00661 * This function erases an element, pointed to by the given iterator, 00662 * from a %set. Note that this function only erases the element, and 00663 * that if the element is itself a pointer, the pointed-to memory is not 00664 * touched in any way. Managing the pointer is the user's 00665 * responsibility. 00666 */ 00667 void 00668 erase(iterator __position) 00669 { _M_t.erase(__position); } 00670 #endif 00671 00672 /** 00673 * @brief Erases elements according to the provided key. 00674 * @param __x Key of element to be erased. 00675 * @return The number of elements erased. 00676 * 00677 * This function erases all the elements located by the given key from 00678 * a %set. 00679 * Note that this function only erases the element, and that if 00680 * the element is itself a pointer, the pointed-to memory is not touched 00681 * in any way. Managing the pointer is the user's responsibility. 00682 */ 00683 size_type 00684 erase(const key_type& __x) 00685 { return _M_t.erase(__x); } 00686 00687 #if __cplusplus >= 201103L 00688 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00689 // DR 130. Associative erase should return an iterator. 00690 /** 00691 * @brief Erases a [__first,__last) range of elements from a %set. 00692 * @param __first Iterator pointing to the start of the range to be 00693 * erased. 00694 00695 * @param __last Iterator pointing to the end of the range to 00696 * be erased. 00697 * @return The iterator @a __last. 00698 * 00699 * This function erases a sequence of elements from a %set. 00700 * Note that this function only erases the element, and that if 00701 * the element is itself a pointer, the pointed-to memory is not touched 00702 * in any way. Managing the pointer is the user's responsibility. 00703 */ 00704 _GLIBCXX_ABI_TAG_CXX11 00705 iterator 00706 erase(const_iterator __first, const_iterator __last) 00707 { return _M_t.erase(__first, __last); } 00708 #else 00709 /** 00710 * @brief Erases a [first,last) range of elements from a %set. 00711 * @param __first Iterator pointing to the start of the range to be 00712 * erased. 00713 * @param __last Iterator pointing to the end of the range to 00714 * be erased. 00715 * 00716 * This function erases a sequence of elements from a %set. 00717 * Note that this function only erases the element, and that if 00718 * the element is itself a pointer, the pointed-to memory is not touched 00719 * in any way. Managing the pointer is the user's responsibility. 00720 */ 00721 void 00722 erase(iterator __first, iterator __last) 00723 { _M_t.erase(__first, __last); } 00724 #endif 00725 00726 /** 00727 * Erases all elements in a %set. Note that this function only erases 00728 * the elements, and that if the elements themselves are pointers, the 00729 * pointed-to memory is not touched in any way. Managing the pointer is 00730 * the user's responsibility. 00731 */ 00732 void 00733 clear() _GLIBCXX_NOEXCEPT 00734 { _M_t.clear(); } 00735 00736 // set operations: 00737 00738 //@{ 00739 /** 00740 * @brief Finds the number of elements. 00741 * @param __x Element to located. 00742 * @return Number of elements with specified key. 00743 * 00744 * This function only makes sense for multisets; for set the result will 00745 * either be 0 (not present) or 1 (present). 00746 */ 00747 size_type 00748 count(const key_type& __x) const 00749 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 00750 00751 #if __cplusplus > 201103L 00752 template<typename _Kt> 00753 auto 00754 count(const _Kt& __x) const 00755 -> decltype(_M_t._M_count_tr(__x)) 00756 { return _M_t._M_count_tr(__x); } 00757 #endif 00758 //@} 00759 00760 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00761 // 214. set::find() missing const overload 00762 //@{ 00763 /** 00764 * @brief Tries to locate an element in a %set. 00765 * @param __x Element to be located. 00766 * @return Iterator pointing to sought-after element, or end() if not 00767 * found. 00768 * 00769 * This function takes a key and tries to locate the element with which 00770 * the key matches. If successful the function returns an iterator 00771 * pointing to the sought after element. If unsuccessful it returns the 00772 * past-the-end ( @c end() ) iterator. 00773 */ 00774 iterator 00775 find(const key_type& __x) 00776 { return _M_t.find(__x); } 00777 00778 const_iterator 00779 find(const key_type& __x) const 00780 { return _M_t.find(__x); } 00781 00782 #if __cplusplus > 201103L 00783 template<typename _Kt> 00784 auto 00785 find(const _Kt& __x) 00786 -> decltype(iterator{_M_t._M_find_tr(__x)}) 00787 { return iterator{_M_t._M_find_tr(__x)}; } 00788 00789 template<typename _Kt> 00790 auto 00791 find(const _Kt& __x) const 00792 -> decltype(const_iterator{_M_t._M_find_tr(__x)}) 00793 { return const_iterator{_M_t._M_find_tr(__x)}; } 00794 #endif 00795 //@} 00796 00797 //@{ 00798 /** 00799 * @brief Finds the beginning of a subsequence matching given key. 00800 * @param __x Key to be located. 00801 * @return Iterator pointing to first element equal to or greater 00802 * than key, or end(). 00803 * 00804 * This function returns the first element of a subsequence of elements 00805 * that matches the given key. If unsuccessful it returns an iterator 00806 * pointing to the first element that has a greater value than given key 00807 * or end() if no such element exists. 00808 */ 00809 iterator 00810 lower_bound(const key_type& __x) 00811 { return _M_t.lower_bound(__x); } 00812 00813 const_iterator 00814 lower_bound(const key_type& __x) const 00815 { return _M_t.lower_bound(__x); } 00816 00817 #if __cplusplus > 201103L 00818 template<typename _Kt> 00819 auto 00820 lower_bound(const _Kt& __x) 00821 -> decltype(iterator(_M_t._M_lower_bound_tr(__x))) 00822 { return iterator(_M_t._M_lower_bound_tr(__x)); } 00823 00824 template<typename _Kt> 00825 auto 00826 lower_bound(const _Kt& __x) const 00827 -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x))) 00828 { return const_iterator(_M_t._M_lower_bound_tr(__x)); } 00829 #endif 00830 //@} 00831 00832 //@{ 00833 /** 00834 * @brief Finds the end of a subsequence matching given key. 00835 * @param __x Key to be located. 00836 * @return Iterator pointing to the first element 00837 * greater than key, or end(). 00838 */ 00839 iterator 00840 upper_bound(const key_type& __x) 00841 { return _M_t.upper_bound(__x); } 00842 00843 const_iterator 00844 upper_bound(const key_type& __x) const 00845 { return _M_t.upper_bound(__x); } 00846 00847 #if __cplusplus > 201103L 00848 template<typename _Kt> 00849 auto 00850 upper_bound(const _Kt& __x) 00851 -> decltype(iterator(_M_t._M_upper_bound_tr(__x))) 00852 { return iterator(_M_t._M_upper_bound_tr(__x)); } 00853 00854 template<typename _Kt> 00855 auto 00856 upper_bound(const _Kt& __x) const 00857 -> decltype(iterator(_M_t._M_upper_bound_tr(__x))) 00858 { return const_iterator(_M_t._M_upper_bound_tr(__x)); } 00859 #endif 00860 //@} 00861 00862 //@{ 00863 /** 00864 * @brief Finds a subsequence matching given key. 00865 * @param __x Key to be located. 00866 * @return Pair of iterators that possibly points to the subsequence 00867 * matching given key. 00868 * 00869 * This function is equivalent to 00870 * @code 00871 * std::make_pair(c.lower_bound(val), 00872 * c.upper_bound(val)) 00873 * @endcode 00874 * (but is faster than making the calls separately). 00875 * 00876 * This function probably only makes sense for multisets. 00877 */ 00878 std::pair<iterator, iterator> 00879 equal_range(const key_type& __x) 00880 { return _M_t.equal_range(__x); } 00881 00882 std::pair<const_iterator, const_iterator> 00883 equal_range(const key_type& __x) const 00884 { return _M_t.equal_range(__x); } 00885 00886 #if __cplusplus > 201103L 00887 template<typename _Kt> 00888 auto 00889 equal_range(const _Kt& __x) 00890 -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x))) 00891 { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); } 00892 00893 template<typename _Kt> 00894 auto 00895 equal_range(const _Kt& __x) const 00896 -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x))) 00897 { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); } 00898 #endif 00899 //@} 00900 00901 template<typename _K1, typename _C1, typename _A1> 00902 friend bool 00903 operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); 00904 00905 template<typename _K1, typename _C1, typename _A1> 00906 friend bool 00907 operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); 00908 }; 00909 00910 #if __cpp_deduction_guides >= 201606 00911 00912 template<typename _InputIterator, 00913 typename _Compare = 00914 less<typename iterator_traits<_InputIterator>::value_type>, 00915 typename _Allocator = 00916 allocator<typename iterator_traits<_InputIterator>::value_type>, 00917 typename = _RequireInputIter<_InputIterator>, 00918 typename = _RequireAllocator<_Allocator>> 00919 set(_InputIterator, _InputIterator, 00920 _Compare = _Compare(), _Allocator = _Allocator()) 00921 -> set<typename iterator_traits<_InputIterator>::value_type, 00922 _Compare, _Allocator>; 00923 00924 template<typename _Key, typename _Compare = less<_Key>, 00925 typename _Allocator = allocator<_Key>, 00926 typename = _RequireAllocator<_Allocator>> 00927 set(initializer_list<_Key>, 00928 _Compare = _Compare(), _Allocator = _Allocator()) 00929 -> set<_Key, _Compare, _Allocator>; 00930 00931 template<typename _InputIterator, typename _Allocator, 00932 typename = _RequireInputIter<_InputIterator>, 00933 typename = _RequireAllocator<_Allocator>> 00934 set(_InputIterator, _InputIterator, _Allocator) 00935 -> set<typename iterator_traits<_InputIterator>::value_type, 00936 less<typename iterator_traits<_InputIterator>::value_type>, 00937 _Allocator>; 00938 00939 template<typename _Key, typename _Allocator, 00940 typename = _RequireAllocator<_Allocator>> 00941 set(initializer_list<_Key>, _Allocator) 00942 -> set<_Key, less<_Key>, _Allocator>; 00943 00944 #endif 00945 00946 /** 00947 * @brief Set equality comparison. 00948 * @param __x A %set. 00949 * @param __y A %set of the same type as @a x. 00950 * @return True iff the size and elements of the sets are equal. 00951 * 00952 * This is an equivalence relation. It is linear in the size of the sets. 00953 * Sets are considered equivalent if their sizes are equal, and if 00954 * corresponding elements compare equal. 00955 */ 00956 template<typename _Key, typename _Compare, typename _Alloc> 00957 inline bool 00958 operator==(const set<_Key, _Compare, _Alloc>& __x, 00959 const set<_Key, _Compare, _Alloc>& __y) 00960 { return __x._M_t == __y._M_t; } 00961 00962 /** 00963 * @brief Set ordering relation. 00964 * @param __x A %set. 00965 * @param __y A %set of the same type as @a x. 00966 * @return True iff @a __x is lexicographically less than @a __y. 00967 * 00968 * This is a total ordering relation. It is linear in the size of the 00969 * sets. The elements must be comparable with @c <. 00970 * 00971 * See std::lexicographical_compare() for how the determination is made. 00972 */ 00973 template<typename _Key, typename _Compare, typename _Alloc> 00974 inline bool 00975 operator<(const set<_Key, _Compare, _Alloc>& __x, 00976 const set<_Key, _Compare, _Alloc>& __y) 00977 { return __x._M_t < __y._M_t; } 00978 00979 /// Returns !(x == y). 00980 template<typename _Key, typename _Compare, typename _Alloc> 00981 inline bool 00982 operator!=(const set<_Key, _Compare, _Alloc>& __x, 00983 const set<_Key, _Compare, _Alloc>& __y) 00984 { return !(__x == __y); } 00985 00986 /// Returns y < x. 00987 template<typename _Key, typename _Compare, typename _Alloc> 00988 inline bool 00989 operator>(const set<_Key, _Compare, _Alloc>& __x, 00990 const set<_Key, _Compare, _Alloc>& __y) 00991 { return __y < __x; } 00992 00993 /// Returns !(y < x) 00994 template<typename _Key, typename _Compare, typename _Alloc> 00995 inline bool 00996 operator<=(const set<_Key, _Compare, _Alloc>& __x, 00997 const set<_Key, _Compare, _Alloc>& __y) 00998 { return !(__y < __x); } 00999 01000 /// Returns !(x < y) 01001 template<typename _Key, typename _Compare, typename _Alloc> 01002 inline bool 01003 operator>=(const set<_Key, _Compare, _Alloc>& __x, 01004 const set<_Key, _Compare, _Alloc>& __y) 01005 { return !(__x < __y); } 01006 01007 /// See std::set::swap(). 01008 template<typename _Key, typename _Compare, typename _Alloc> 01009 inline void 01010 swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y) 01011 _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y))) 01012 { __x.swap(__y); } 01013 01014 _GLIBCXX_END_NAMESPACE_CONTAINER 01015 01016 #if __cplusplus > 201402L 01017 // Allow std::set access to internals of compatible sets. 01018 template<typename _Val, typename _Cmp1, typename _Alloc, typename _Cmp2> 01019 struct 01020 _Rb_tree_merge_helper<_GLIBCXX_STD_C::set<_Val, _Cmp1, _Alloc>, _Cmp2> 01021 { 01022 private: 01023 friend class _GLIBCXX_STD_C::set<_Val, _Cmp1, _Alloc>; 01024 01025 static auto& 01026 _S_get_tree(_GLIBCXX_STD_C::set<_Val, _Cmp2, _Alloc>& __set) 01027 { return __set._M_t; } 01028 01029 static auto& 01030 _S_get_tree(_GLIBCXX_STD_C::multiset<_Val, _Cmp2, _Alloc>& __set) 01031 { return __set._M_t; } 01032 }; 01033 #endif // C++17 01034 01035 _GLIBCXX_END_NAMESPACE_VERSION 01036 } //namespace std 01037 #endif /* _STL_SET_H */