Yade Documentation

Vaclav Smilauer, Emanuele Catalano, Bruno Chareyre, Sergei
Dorofeenko, Jerome Duriez, Anton Gladky, Janek Kozicki, Chiara
Modenese, Luc Scholtés, Luc Sibille, Jan Stransky, Klaus Thoeni

Release 1.20.0, November 13, 2015

Authors

Vaclav Smilauer
Freelance consultant (http://woodem.eu)

Emanuele Catalano
Grenoble INP, UJF, CNRS, lab. 3SR

Bruno Chareyre
Grenoble INP, UJF, CNRS, lab. 3SR

Sergei Dorofeenko
IPCP RAS, Chernogolovka

Jerome Duriez
Grenoble INP, UJF, CNRS, lab. 3SR

Anton Gladky
TU Bergakademie Freiberg

Janek Kozicki
Gdansk University of Technology - lab. 3SR Grenoble University

Chiara Modenese
University of Oxford

Luc Scholtés
Grenoble INP, UJF, CNRS, lab. 3SR

Luc Sibille
University of Nantes, lab. GeM

Jan Stransky
CVUT Prague

Klaus Thoeni The University of Newcastle (Australia)

Citing this document

In order to let users cite Yade consistently in publications, we provide a list of bibliographic references
for the different parts of the documentation. This way of acknowledging Yade is also a way to make
developments and documentation of Yade more attractive for researchers, who are evaluated on the basis
of citations of their work by others. We therefore kindly ask users to cite Yade as accurately as possible
in their papers, as explained in http://yade-dem/doc/citing.html.

Contents

1 Introduction

1.1 Getting started Lo
1.2 Architecture overview L e e e e
2 Tutorial
2.1 Introduction L
2.2 Hands-on L e e
2.3 Datamining L e e
2.4 Towards geomechanics L e e e
2.5 Advanced & more
2.6 Exampleso e e
3 User’s manual
3.1 Scene construction e e e e
3.2 Controlling simulation L L
3.3 Postprocessing L e e e e e e
3.4 Python specialties and tricks oL oL oo
3.5 Extending Yade L e e
3.6 Troubleshooting e
4 Programmer’s manual
4.1 Build system e e
4.2 Development tools e e e e e e
4.3 Conventionso e e e e e
4.4 Support framework L L e e
4.5 Simulation framework
4.6 Runtime structure oL e
4.7 Python framework
4.8 Maintaining compatibility Lo L
4.9 Debian packaging instructions Lo e
5 Installation
5.1 Packages e
5.2 Source codeo e e e e e e e
5.3 Yubuntu e
6 Yade on GitHub
6.1 Fast checkout without GitHub account (read-only)
6.2 Using branches on GitHub (for frequent commits see git/trunk section below)
6.3 Working directly on git/trunk (recommended for frequent commits)
6.4 General guidelines for pushing to yade/trunk oo L.
7 DEM Background
7.1 Collision detection L L e e e
7.2 Creating interaction between particles oo oL
7.3 Strain evaluation L e
7.4 Stress evaluation (example) L

13
13
13
22
26
28
28

39
39
o7
70
7
7
78

81
81
82
83
87
107
113
114
116
117

119
119
120
124

125
125
125
127
127

129
129
133
134
137

7.5 Motion integration L L e e e
7.6 Periodic boundary conditions Lo Lo
7.7 Computational aspects L e e e e e e e
8 Class reference (yade.wrapper module)
8.1 Bodies e
8.2 Imteractions oL e e e
8.3 Global engines L e
8.4 Partial engines Lo
8.5 Bounding volume creation L e
8.6 Interaction Geometry creation L L
8.7 Imteraction Physics creation
8.8 Constitutive laws L e
8.9 Callbacks o e
8.10 Preprocessors. e e e
8.11 Rendering e e
8.12 Simulation data
8.13 Other classes e
9 Yade modules
9.1 yade.bodiesHandling module L L
9.2 yade.export module
9.3 yade.geom module
9.4 yadelinterpolation moduleo L Lo
9.5 yade.pack module
9.6 yade.plot module. e
9.7 yade.polyhedra_utils moduleo
9.8 yade.post2d moduleo
9.9 wyadegt module L e
9.10 yade.timing module L L e
9.11 yade.utils module
9.12 yade.ymport module L

10 Parallel hierarchical multiscale modeling of granular media by coupling FEM and

DEM with open-source codes Escript and YADE

10.1 Introduction e e e e e e e
10.2 Work on the YADE side. e
10.3 Work on the Escript side L e
10.4 Example tests L e e e e e e
10.5 Disclaim o e e e e e e e

11 Acknowledging Yade
11.1 Citing the Yade Project as a whole (the lazy citation method)
11.2 Citing chapters of Yade Documentation 0.

12 Publications on Yade
12.1 Citing Yade o o o e e
12.2 Journal articles L
12.3 Conference materials and book chapters o 0oL
12.4 Master and PhD theses e

13 References
14 Indices and tables
Bibliography

Python Module Index

485

489
489
489

491
491
491
491
491

493

495

497

513

Chapter 1

Introduction

1.1 Getting started

Before you start moving around in Yade, you should have some prior knowledge.

¢ Basics of command line in your Linux system are necessary for running yade. Look on the web for
tutorials.

o Python language; we recommend the official Python tutorial. Reading further documents on the
topis, such as Dive into Python will certainly not hurt either.

You are advised to try all commands described yourself. Don’t be afraid to experiment.

1.1.1 Starting yade

Yade is being run primarily from terminal; the name of command is yade. ! (In case you did not install
from package, you might need to give specific path to the command ?):

$ yade

Welcome to Yade

TCP python prompt on localhost:9001, auth cookie “sdksuy'

TCP info provider on localhost:21000

[["L clears screen, ~U kills line. F12 controller, F11 3d view, F10 both, F9 generator, F8 plot
Yade [1]:

These initial lines give you some information about
e some information for Remote control, which you are unlikely to need now;
o basic help for the command-line that just appeared (Yade [1]:).

Type quit (), exit () or simply press “D to quit Yade.

1 The executable name can carry a suffix, such as version number (yade-0.20), depending on compilation options.
Packaged versions on Debian systems always provide the plain yade alias, by default pointing to latest stable version (or
latest snapshot, if no stable version is installed). You can use update-alternatives to change this.

2 In general, Unix shell (command line) has environment variable PATH defined, which determines directories searched
for executable files if you give name of the file without path. Typically, $PATH contains /usr/bin/, /usr/local/bin, /bin
and others; you can inspect your PATH by typing echo $PATH in the shell (directories are separated by :).

If Yade executable is not in directory contained in PATH, you have to specify it by hand, i.e. by typing the path in front
of the filename, such as in /home/user/bin/yade and similar. You can also navigate to the directory itself (cd ~/bin/yade,
where ~ is replaced by your home directory automatically) and type ./yade then (the . is the current directory, so ./
specifies that the file is to be found in the current directory).

To save typing, you can add the directory where Yade is installed to your PATH, typically by editing ~/.profile (in
normal cases automatically executed when shell starts up) file adding line like export PATH=/home/user/bin:$PATH. You
can also define an alias by saying alias yade="/home/users/bin/yade" in that file.

Details depend on what shell you use (bash, zsh, tcsh, ..) and you will find more information in introductory material
on Linux/Unix.

1]

http://docs.python.org/tutorial
http://www.diveintopython.net/

Yade Documentation, Release 1.20.0

The command-line is ipython, python shell with enhanced interactive capabilities; it features persistent
history (remembers commands from your last sessions), searching and so on. See ipython’s documentation
for more details.

Typically, you will not type Yade commands by hand, but use scripts, python programs describing and
running your simulations. Let us take the most simple script that will just print “Hello world!”:

print "Hello world!"

Saving such script as hello.py, it can be given as argument to yade:

$ yade hello.py

Welcome to Yade

TCP python prompt on localhost:9001, auth cookie “askcsu'

TCP info provider on localhost:21000

Running script hello.py ## the script is being run
Hello world! ## output from the script

[["L clears screen, ~U kills line. F12 controller, F11 3d view, F10 both, F9 generator, F8 plot
Yade [1]:

Yade will run the script and then drop to the command-line again. ? If you want Yade to quit immediately
after running the script, use the -x switch:

$ yade -x script.py

There is more command-line options than just -x, run yade -h to see all of them.
Options:
--version show program’s version number and exit
-h, --help show this help message and exit

-j THREADS, --threads=THREADS Number of OpenMP threads
to run; defaults to 1. Equivalent to setting OMP_ -
NUM_THREADS environment variable.

--cores=CORES Set number of OpenMP threads (as —threads) and in
addition set affinity of threads to the cores given.

--update Update deprecated class names in given script(s) using
text search & replace. Changed files will be backed up
with ~ suffix. Exit when done without running any

simulation.

--nice=NICE Increase nice level (i.e. decrease priority) by given
number.

-X Exit when the script finishes

-n Run without graphical interface (equivalent to unset-

ting the DISPLAY environment variable)

--test Run regression test suite and exit; the exists status is 0
if all tests pass, 1 if a test fails and 2 for an unspecified
exception.

--check Run a series of wuser-defined check tests

as described in /build/buildd/yade- daily-
14-3021+4-27~lucid1/scripts/test /checks/README

--performance Starts a test to measure the productivity

--no-gdb Do not show backtrace when yade crashes (only effec-
tive with —debug).

3 Plain Python interpreter exits once it finishes running the script. The reason why Yade does the contrary is that most
of the time script only sets up simulation and lets it run; since computation typically runs in background thread, the script
is technically finished, but the computation is running.

2 Chapter 1. Introduction

1]

http://ipython.scipy.org

Yade Documentation, Release 1.20.0

1.1.2 Creating simulation

To create simulation, one can either use a specialized class of type FileGenerator to create full scene,
possibly receiving some parameters. Generators are written in c++ and their role is limited to well-
defined scenarios. For instance, to create triaxial test scene:

Yade [70]: TriaxialTest (number0fGrains=200).load()

Yade [71]: len(0.bodies)
OQut[71]: 206

Generators are regular yade objects that support attribute access.

It is also possible to construct the scene by a python script; this gives much more flexibility and speed of
development and is the recommended way to create simulation. Yade provides modules for streamlined
body construction, import of geometries from files and reuse of common code. Since this topic is more
involved, it is explained in the User’s manual.

1.1.3 Running simulation

As explained below, the loop consists in running defined sequence of engines. Step number can be queried
by 0.iter and advancing by one step is done by 0.step(). Every step advances virtual time by current
timestep, 0.dt:

Yade [72]: O.iter
Out[72]: 0O

Yade [73]: O.time
Out[73]: 0.0

Yade [74]: 0.dt=1le-4
Yade [75]: O.step()

Yade [76]: 0.iter
OQut[76]: 1

Yade [77]: 0.time
OQut[77]: 0.0001

Normal simulations, however, are run continuously. Starting/stopping the loop is done by 0.run() and
0.pause(); note that 0.run() returns control to Python and the simulation runs in background; if
you want to wait for it finish, use 0.wait(). Fixed number of steps can be run with 0.run(1000),
0.run(1000,True) will run and wait. To stop at absolute step number, 0.stopAtIter can be set and
0.run() called normally.

Yade [78]: 0.run()
Yade [79]: 0.pause()

Yade [80]: O.iter
Out[80]: 848

Yade [81]: 0.run(100000,True)

Yade [82]: 0.iter
Out[82]: 100848

Yade [83]: 0.stopAtIter=500000

Yade [84]: O.wait()

1.1. Getting started 3

Yade Documentation, Release 1.20.0

Yade [85]: O.iter
Out[85]: 100848

1.1.4 Saving and loading

Simulation can be saved at any point to a binary file (optionaly compressed if the filename has extensions
such as ”.gz” or ".bz2”). Saving to a XML file is also possible though resulting in larger files and slower
save/load, it is used when the filename contains “xml”. With some limitations, it is generally possible to
load the scene later and resume the simulation as if it were not interrupted. Note that since the saved
scene is a dump of Yade’s internal objects, it might not (probably will not) open with different Yade
version.

Yade [86]: 0O.save('/tmp/a.yade.bz2')
Yade [87]: 0.reload()

Yade [88]: 0.load('/tmp/another.yade.bz2')

The principal use of saving the simulation to XML is to use it as temporary in-memory storage for
checkpoints in simulation, e.g. for reloading the initial state and running again with different param-
eters (think tension/compression test, where each begins from the same virgin state). The functions
0.saveTmp() and 0.loadTmp() can be optionally given a slot name, under which they will be found in
memory:

Yade [89]: 0.saveTmp()
Yade [90]: 0.loadTmp()
Yade [91]: O.saveTmp('init') ## named memory slot

Yade [92]: 0.loadTmp('init')

Simulation can be reset to empty state by 0.reset().

It can be sometimes useful to run different simulation, while the original one is temporarily suspended,
e.g. when dynamically creating packing. 0.switchWorld() toggles between the primary and secondary
simulation.

1.1.5 Graphical interface

Yade can be optionally compiled with qt4-based graphical interface. It can be started by pressing F12
in the command-line, and also is started automatically when running a script.

4 Chapter 1. Introduction

Yade Documentation, Release 1.20.0

Yade = |[B][=

Simulation | Display Generate Python

Load Save Inspect
Primary view

real 00:02:20
virt 000s671m552p639n
iter #3243, 23.0/s

at O fixed

Simulation Inspection M=)

Engines Bodies | Interactions = Cell

0.000207077594613

:memory: #[56 7] e+ - . »56 & +
Body 0x466fd80 —
| 3] bound Aabb 0x4684670
N color 1.0 [10 [1.0
clumpld | -1
. flags =
1’ C : . 3 qroupMask | 1 ¥
' id | 56
material FrictMat “defaultMat”
densi 1000.0
New 3D Reference density | |
Y 2 frictionAngle |D.5 |

boe | b

id o
label | defaultMat |

poisson | 0.3 |
671m552u639n young |10000000.0 |

shape Sphere 0x46845e0
color (656201236 [882652506[303750713)
highlight
radius | 0.0316263982726 |2

The windows with buttons is called Controller (can be invoked by yade.qt.Controller() from
python):

1. The Simulation tab is mostly self-explanatory, and permits basic simulation control.

2. The Display tab has various rendering-related options, which apply to all opened views (they can
be zero or more, new one is opened by the New 3D button).

3. The Python tab has only a simple text entry area; it can be useful to enter python commands while
the command-line is blocked by running script, for instance.

3d views can be controlled using mouse and keyboard shortcuts; help is displayed if you press the h key
while in the 3d view. Note that having the 3d view open can slow down running simulation significantly,
it is meant only for quickly checking whether the simulation runs smoothly. Advanced post-processing
is described in dedicated section.

1.2 Architecture overview

In the following, a high-level overview of Yade architecture will be given. As many of the features are
directly represented in simulation scripts, which are written in Python, being familiar with this language
will help you follow the examples. For the rest, this knowledge is not strictly necessary and you can
ignore code examples.

1.2.1 Data and functions

To assure flexibility of software design, yade makes clear distinction of 2 families of classes: data com-
ponents and functional components. The former only store data without providing functionality, while
the latter define functions operating on the data. In programming, this is known as visitor pattern (as
functional components “visit” the data, without being bound to them explicitly).

1.2. Architecture overview 5

Yade Documentation, Release 1.20.0

Entire simulation, i.e. both data and functions, are stored in a single Scene object. It is accessible
through the Omega class in python (a singleton), which is by default stored in the 0 global variable:

Yade [93]: 0.bodies # some data components
Out [93]: <yade.wrapper.BodyContainer at O0x7fcb47ab40c8>

Yade [94]: len(0.bodies) # there are no bodies as of yet

Out[94]: O
Yade [95]: 0.engines # functional components, empty at the moment
Out [95]: []

Data components

Bodies

Yade simulation (class Scene, but hidden inside Omega in Python) is represented by Bodies, their
Interactions and resultant generalized forces (all stored internally in special containers).

Each Body comprises the following;:

Shape represents particle’s geometry (neutral with regards to its spatial orientation), such as Sphere,
Fuacet or inifinite Wall; it usually does not change during simulation.

Material stores characteristics pertaining to mechanical behavior, such as Young’s modulus or density,
which are independent on particle’s shape and dimensions; usually constant, might be shared
amongst multiple bodies.

State contains state variable variables, in particular spatial position and orientation, linear and angular
velocity, linear and angular accelerator; it is updated by the integrator at every step.

Derived classes can hold additional data, e.g. averaged damage.

Bound is used for approximate (“pass 1”7) contact detection; updated as necessary following body’s
motion. Currently, Aabb is used most often as Bound. Some bodies may have no Bound, in which
case they are exempt from contact detection.

(In addition to these 4 components, bodies have several more minor data associated, such as Body::id or
Body::mask:.)

All these four properties can be of different types, derived from their respective base types. Yade
frequently makes decisions about computation based on those types: Sphere + Sphere collision has to be
treated differently than Facet 4+ Sphere collision. Objects making those decisions are called Dispatchers
and are essential to understand Yade’s functioning; they are discussed below.

Explicitly assigning all 4 properties to each particle by hand would be not practical; there are utility
functions defined to create them with all necessary ingredients. For example, we can create sphere
particle using wutils.sphere:

Yade [96]: s=utils.sphere(center=[0,0,0],radius=1)

Yade [97]: s.shape, s.state, s.mat, s.bound
Out [97] :

(<Sphere instance at 0x966c6a0>,

<State instance at 0x807c5d0>,

<FrictMat instance at 0x9bdeb60>,

None)

Yade [98]: s.state.pos
Out[98]: Vector3(0,0,0)

Yade [99]: s.shape.radius
Out[99]: 1.0

6 Chapter 1. Introduction

Yade Documentation, Release 1.20.0

We see that a sphere with material of type FrictMat (default, unless you provide another Material) and
bounding volume of type Aabb (axis-aligned bounding box) was created. Its position is at origin and its
radius is 1.0. Finally, this object can be inserted into the simulation; and we can insert yet one sphere
as well.

Yade [100]: 0.bodies.append(s)
Out[100]: O

Yade [101]: 0.bodies.append(utils.sphere([0,0,2],.5))
Out[101]: 1

In each case, return value is Body.id of the body inserted.

Since till now the simulation was empty, its id is 0 for the first sphere and 1 for the second one. Saving the
id value is not necessary, unless you want access this particular body later; it is remembered internally
in Body itself. You can address bodies by their id:

Yade [102]: 0.bodies[1].state.pos
Out[102]: Vector3(0,0,2)

Yade [103]: 0.bodies[100]

IndexError Traceback (most recent call last)
/build/yade-peqlpu/yade-1.20.0/debian/tmp/usr/1ib/x86_64-1linux-gnu/yade/py/yade/__init__.pyc in
----> 1 0.bodies[100]

IndexError: Body id out of range.

module> ()

Adding the same body twice is, for reasons of the id uniqueness, not allowed:

Yade [104]: 0.bodies.append(s)

IndexError Traceback (most recent call last)
/build/yade-peqlpu/yade-1.20.0/debian/tmp/usr/1ib/x86_64-linux-gnu/yade/py/yade/__init__.pyc in S
---=> 1 0.bodies.append(s)

IndexError: Body already has id O set; appending such body (for the second time) is not allowed.

tmodule> ()

Bodies can be iterated over using standard python iteration syntax:

Yade [105]: for b in 0.bodies:
el print b.id,b.shape.radius

Interactions

Interactions are always between pair of bodies; usually, they are created by the collider based on spatial
proximity; they can, however, be created explicitly and exist independently of distance. Each interaction
has 2 components:

IGeom holding geometrical configuration of the two particles in collision; it is updated automatically
as the particles in question move and can be queried for various geometrical characteristics, such
as penetration distance or shear strain.

Based on combination of types of Shapes of the particles, there might be different storage require-
ments; for that reason, a number of derived classes exists, e.g. for representing geometry of contact
between Sphere+Sphere, Cylinder+Sphere etc. Note, however, that it is possible to represent many
type of contacts with the basic sphere-sphere geometry (for instance in Ig2 Wall Sphere Sc-
Geom).

1.2. Architecture overview 7

Yade Documentation, Release 1.20.0

IPhys representing non-geometrical features of the interaction; some are computed from Materials of
the particles in contact using some averaging algorithm (such as contact stiffness from Young’s

moduli of particles), others might be internal variables like damage.

Suppose now interactions have been already created. We can access them by the id pair:

Yade [106]: 0.interactions[0,1]
Out[106]: <Interaction instance at 0x72739e0>

Yade [107]: 0.interactions[1,0] # order of ids is not important
Out [107]: <Interaction instance at 0x72739e0>

Yade [108]: i=0.interactions[0,1]

Yade [109]: i.id1,i.id2
Out[109]: (0, 1)

Yade [110]: i.geom
Out[110]: <ScGeom instance at 0x9a95320>

Yade [111]: i.phys
Out[111]: <FrictPhys instance at O0xc25b8b0>

Yade [112]: O.interactions[100,10111]

IndexError Traceback (most recent call last)

/build/yade-peqlpu/yade-1.20.0/debian/tmp/usr/1ib/x86_64-1linux-gnu/yade/py/yade/__init__.pyc in

---—-> 1 0.interactions[100,10111]

IndexError: No such interaction

Generalized forces

Generalized forces include force, torque and forced displacement and rotation; they are stored only tem-
porarliy, during one computation step, and reset to zero afterwards. For reasons of parallel computation,

they work as accumulators, i.e. only can be added to, read and reset.

Yade [113]: 0.forces.f(0)
Out[113]: Vector3(0,0,0)

Yade [114]: 0.forces.addF(0,Vector3(1,2,3))

Yade [115]: 0.forces.f(0)
Out[115]: Vector3(1,2,3)

You will only rarely modify forces from Python; it is usually done in c++ code and relevant documen-

tation can be found in the Programmer’s manual.

Function components

In a typical DEM simulation, the following sequence is run repeatedly:
« reset forces on bodies from previous step
« approximate collision detection (pass 1)
« detect exact collisions of bodies, update interactions as necessary
« solve interactions, applying forces on bodies
 apply other external conditions (gravity, for instance).

o change position of bodies based on forces, by integrating motion equations.

8 Chapter 1.

Introduction

module> ()

Yade Documentation, Release 1.20.0

bodies

Shape reset forces update
incremént Material bounds collision
tipme by At State detection
Bound pass 1

miscillaneous engines

(recorders, ...) interactions

position update geometry
collision detection pass 2
Ve|0city update strain evaluation
physics
forces — acceleration properties of new interactions

constitttive law
other foreces compute forces from strains

forces —avity, se,)

(generalized)

Fig. 1.1: Typical simulation loop; each step begins at body-centered bit at 11 o’clock, continues with
interaction bit, force application bit, miscillanea and ends with time update.

Each of these actions is represented by an FEngine, functional element of simulation. The sequence of
engines is called simulation loop.

Engines

Simulation loop, shown at img. img-yade-iter-loop, can be described as follows in Python (details will
be explained later); each of the 0.engine items is instance of a type deriving from Engine:

0.engines=[

reset forces

ForceResetter(),

approxzimate collision detection, create interactions

InsertionSortCollider ([Bol_Sphere_Aabb() ,Bol_Facet_Aabb()]),

handle interactions

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom() ,Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],

),

apply other conditions

GravityEngine(gravity=(0,0,-9.81)),

update positions using Newton's equations

NewtonIntegrator ()

]

There are 3 fundamental types of Engines:

GlobalEngines operating on the whole simulation (e.g. GravityEngine looping over all bodies and
applying force based on their mass)

PartialEngine operating only on some pre-selected bodies (e.g. ForceEngine applying constant force
to some bodies)

Dispatchers do not perform any computation themselves; they merely call other functions, represented
by function objects, Functors. Each functor is specialized, able to handle certain object types, and
will be dispatched if such obejct is treated by the dispatcher.

1.2. Architecture overview 9

Yade Documentation, Release 1.20.0

Dispatchers and functors

For approximate collision detection (pass 1), we want to compute bounds for all bodies in the simula-
tion; suppose we want bound of type azis-aligned bounding box. Since the exact algorithm is different
depending on particular shape, we need to provide functors for handling all specific cases. The line:

InsertionSortCollider([Bol_Sphere_Aabb() ,Bol_Facet_Aabb()])

creates InsertionSortCollider (it internally uses BoundDispatcher, but that is a detail). It traverses all
bodies and will, based on shape type of each body, dispatch one of the functors to create/update bound
for that particular body. In the case shown, it has 2 functors, one handling spheres, another facets.

The name is composed from several parts: Bo (functor creating Bound), which accepts 1 type Sphere
and creates an Aabb (axis-aligned bounding box; it is derived from Bound). The Aabb objects are used
by InsertionSortCollider itself. All Bol functors derive from BoundFunctor.

The next part, reading

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom() ,Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],

),

hides 3 internal dispatchers within the InteractionLoop engine; they all operate on interactions and are,
for performance reasons, put together:

IGeomDispatcher uses the first set of functors (Ig2), which are dispatched based on combination
of 2 Shapes objects. Dispatched functor resolves exact collision configuration and creates IGeom
(whence Ig in the name) associated with the interaction, if there is collision. The functor might as
well fail on approximate interactions, indicating there is no real contact between the bodies, even
if they did overlap in the approximate collision detection.

1. The first functor, Ig2 Sphere_Sphere ScGeom, is called on interaction of 2 Spheres and
creates ScGeom instance, if appropriate.

2. The second functor, 192 Facet Sphere ScGeom, is called for interaction of Facet with Sphere
and might create (again) a ScGeom instance.

All Ig2 functors derive from IGeomFunctor (they are documented at the same place).

IPhysDispatcher dispatches to the second set of functors based on combination of 2 Materials; these
functors return return /Phys instance (the Ip prefix). In our case, there is only 1 functor used,
Ip2_ FrictMat_FrictMat _FrictPhys, which create FrictPhys from 2 FrictMat’s.

Ip2 functors are derived from [PhysFunctor.

LawDsispatcher dispatches to the third set of functors, based on combinations of /Geom and IPhys
(wherefore 2 in their name again) of each particular interaction, created by preceding functors.
The Law2 functors represent “constitutive law”; they resolve the interaction by computing forces
on the interacting bodies (repulsion, attraction, shear forces, ..) or otherwise update interaction
state variables.

Law2 functors all inherit from LawFunctor.

There is chain of types produced by earlier functors and accepted by later ones; the user is responsible
to satisfy type requirement (see img. img-dispatch-loop). An exception (with explanation) is raised in
the contrary case.

Note: When Yade starts, O.engines is filled with a reasonable default list, so that it is not strictly
necessary to redefine it when trying simple things. The default scene will handle spheres, boxes, and

facets with frictional properties correctly, and adjusts the timestep dynamically. You can find an example
in simple-scene-default-engines.py.

10 Chapter 1. Introduction

Yade Documentation, Release 1.20.0

Body .
Interaction

g Sphere+Sphere£=%1§§

© EROIS -

5 | Facet+Sphere — === 3 Dem3DofGeom :l

z
il

at_Frict

FrictPhys

2 FrictMat_Fr‘vctM

Interaction
Physics

FrictMat+FrictMat

Material

Fig. 1.2: Chain of functors producing and accepting certain types. In the case shown, the Ig2 functors
produce ScfGeom instances from all handled Shape combinations; the Ig2 functor produces FrictMat.
The constitutive law functor Law2 accepts the combination of types produced. Note that the types are

stated in the functor’s class names.

1.2. Architecture overview 11

Yade Documentation, Release 1.20.0

12 Chapter 1. Introduction

Chapter 2

Tutorial

This tutorial originated as handout for a course held at Technische Universitit Dresden / Fakultét
Bauingenieurwesen / Institut fiir Geotechnik in Jaunary 2011. The focus was to give quick and rather
practical introduction to people without prior modeling experience, but with knowledge of mechanics.
Some computer literacy was assumed, though basics are reviewed in the Hands-on section.

The course did not in reality follow this document, but was based on interactive writing and commenting
simple Examples, which were mostly suggested by participants; many thanks to them for their ideas and
suggestions.

A few minor bugs were discovered during the course. They were all fixed in rev. 2640 of Yade which is
therefore the minimum recommended version to run the examples (notably, 0.60 will not work).

2.1 Introduction

Slides Yade: past, present and future (updated version)

2.2 Hands-on

2.2.1 Shell basics

Directory tree

Directory tree is hierarchical way to organize files in operating systems. A typical (reduced) tree looks
like this:

/ Root

--boot System startup

--bin Low-level programs

--1lib Low-level libraries

--dev Hardware access

--sbin Administration programs

--proc System information

--var Files modified by system services
--root Root (administrator) home directory
--etc Configuration files

--media External drives

-—tmp Temporary files

--usr Everything for normal operation (usr = UNIX system resources)
| --bin User programs

| --sbin Administration programs

| --include Header files for c/c++

13

http://www.tu-dresden.de/
http://www.tu-dresden.de/biw/
http://www.tu-dresden.de/biw/
http://www.tu-dresden.de/biw/geotechnik/
http://beta.arcig.cz/~eudoxos/dresden2011/pres-3s.pdf

Yade Documentation, Release 1.20.0

| --1ib Libraries

| --local Locally installed software

| --doc Documentation

--home Contains the user's home directories
--user Home directory for user
--userl Home directory for userl

Note that there is a single root /; all other disks (such as USB sticks) attach to some point in the tree
(e.g. in /media).

Shell navigation

Shell is the UNIX command-line, interface for conversation with the machine. Don’t be afraid.

Moving around

The shell is always operated by some user, at some concrete machine; these two are constant. We can
move in the directory structure, and the current place where we are is current directory. By default, it
is the home directory which contains all files belonging to the respective user:

user@machine: ~$ # user operating at machine, in the directory ~ (= user's
user@machine:~$ 1s . # list contents of the current directory

user@machine:~$ 1s foo # list contents of directory foo, relative to the dcurren
user@machine:~$ 1ls /tmp # list contents of /tmp

user@machine:~$ cd foo # change directory to foo

user@machine:~/foo$ 1s ~ # list home directory (= 1ls /home/user)
user@machine:~/foo$ cd bar # change to bar (= cd ~/foo/bar)

user@machine:~/foo/bar$ cd ../../foo2 # go to the parent directory twice, then to foo2 (cd ~/fg
user@machine:~/f002$ cd # go to the home directory (= 1ls ~ = 1s /home/user)

user@machine:~$

Users typically have only permissions to write (i.e. modify files) only in their home directory (abbreviated
~, usually is /home/user) and /tmp, and permissions to read files in most other parts of the system:

user@machine:~$ 1ls /root # see what files the administrator has

1s:

cannot open directory /root: Permission denied

Keys

Useful keys on the command-line are:

<tab> show possible completions of what is being typed (use abundantly!)
“C (=Ctrl+C) | delete current line

“D exit the shell

T move up and down in the command history

C interrupt currently running program
~\ kill currently running program
Shift-PgUp scroll the screen up (show part output)
Shift-PgDown | scroll the screen down (show future output; works only on quantum computers)

Running programs

When a program is being run (without giving its full path), several directories are searched for program
of that name; those directories are given by $PATH:

user@machine:~$ echo $PATH # show the value of $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

user@machine:~$ which 1s # say what is the real path of 1s

14 Chapter 2. Tutorial

home director

1t directory ~

o/bar/../../fo

Yade Documentation, Release 1.20.0

The first part of the command-line is the program to be run (which), the remaining parts are arguments
(1s in this case). It is upt to the program which arguments it understands. Many programs can take
special arguments called options starting with - (followed by a single letter) or —- (followed by words);
one of the common options is ~h or ——help, which displays how to use the program (try 1s --help).

Full documentation for each program usually exists as manual page (or man page), which can be shown
using e.g. man 1s (q to exit)

Starting yade

If yade is installed on the machine, it can be (roughly speaking) run as any other program; without any
arguments, it runs in the “dialog mode”, where a command-line is presented:

user@machine:~$ yade

Welcome to Yade bzr2616

TCP python prompt on localhost:9002, auth cookie “adcusk'

XMLRPC info provider on http://localhost:21002

[["L clears screen, “U kills line. F12 controller, F11 3d view, F10 both, F9 generator, F8 plot
Yade [1]: #### hit "D to exit

Do you really want to exit ([yl/n)?

Yade: normal exit.

The command-line is in fact python, enriched with some yade-specific features. (Pure python interpreter
can be run with python or ipython commands).

Instead of typing commands on-by-one on the command line, they can be be written in a file (with the
.py extension) and given as argument to Yade:

user@machine:~$ yade simulation.py

For a complete help, see man yade

Exercises

Open the terminal, navigate to your home directory
Create a new empty file and save it in ~/first.py
Change directory to /tmp; delete the file ~/first.py
Run program xeyes

Look at the help of Yade.

Look at the manual page of Yade

N kD=

Run Yade, exit and run it again.

2.2.2 Python basics

We assume the reader is familar with Python tutorial and only briefly review some of the basic capabili-
ties. The following will run in pure-python interpreter (python or ipython), but also inside Yade, which
is a super-set of Python.

Numerical operations and modules:

Yade [171]: (1+3%4)**2 # usual rules for operator precedence, ** is exponentiation
OQut[171]: 169

Yade [172]: import math # gain access to "module” of functions

Yade [173]: math.sqrt(2) # use a function from that module
Out [173]: 1.4142135623730951

2.2. Hands-on 15

1]

http://docs.python.org/tutorial/index.html

Yade Documentation, Release 1.20.0

Yade [174]: import math as m # use the module under a different name

Yade [175]: m.cos(m.pi)
Out[1756]: -1.0
Yade [176]: from math import * # import everything so that it can be used without module name

Yade [177]: cos(pi)
OQut[177]: -1.0

Variables:

Yade [178]: a=1; b,c=2,3 # multiple commands separated with ;, multiple assignment

Yade [179]:
Out[179]: 6

atb+c

Sequences

Lists

Lists are variable-length sequences, which can be modified; they are written with braces [...], and their
elements are accessed with numerical indices:

Yade [180]: a=[1,2,3] # list of numbers

Yade [181]: al[0]
Out[181]: 1

first element has index 0

Yade [182]: al[-1]
Out[182]: 3

negative counts from the end

Yade [183]: al[3]

error

IndexError Traceback (most recent call last)
/build/yade-peqlpu/yade-1.20.0/debian/tmp/usr/1ib/x86_64-1linux-gnu/yade/py/yade/__init__.pyc in {
-—=> 1 a[3] # error

IndexError: list index out of range

Yade [184]: len(a)
Out[184]: 3

Yade [185]: a[1:]
Out[185]: [2, 3]

Yade [186]: a+=[4,5]

Yade [187]: a+=[6]; a.append(7) # extend with single value, both have the same effect

Yade [188]: 9 in a
Out[188]: False

number of elements

from second element to the end

extend the list

test presence of an element

tmodule> ()

Lists can be created in various ways:

Yade [189]: range(10)
Out([189]: [0, 1, 2, 3, 4, 5,

Yade [190]: range(10) [-1]
Out[190]: 9

6, 7, 8, 9]

List of squares of even number

smaller than 20, i.e. {a?Va €{0,---,19}|2||a} (note the similarity):

16

Chapter 2. Tutorial

Yade Documentation, Release 1.20.0

Yade [191]: [a**2 for a in range(20) if aj2==0]
Out[191]: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Tuples

Tuples are constant sequences:

Yade [192]: b=(1,2,3)

Yade [193]: b[0]

Out[193]: 1

Yade [194]: b[0]=4 # error

TypeError Traceback (most recent call last)
/build/yade-peqlpu/yade-1.20.0/debian/tmp/usr/1ib/x86_64-linux-gnu/yade/py/yade/__init__.pyc in {
--—=> 1 b[0]=4 # error

TypeError: 'tuple' object does not support item assignment

Dictionaries

Mapping from keys to values:

Yade [195]: czde={'jedna':'ein','dva':'zwei','tri':'drei'}
Yade [196]: de={1:'ein',2:'zwei',3:'drei'}; cz={1:'jedna',2:'dva',3:'tri'}

Yade [197]: czde['jedna'l ## access values
Out[197]: 'ein'

Yade [198]: de[1], cz[2]
Out[198]: ('ein', 'dva')

Functions, conditionals

Yade [199]: 4==5
Out[199]: False

Yade [200]: a=3.1

Yade [201]: if a<pi: b=0 # conditional statement
.....: else: b=1
File "<ipython-input-202-bebe87cdf86d>", line 1
else: b=1

SyntaxError: invalid syntax

Yade [203]: c=0 if a<l else 1 # conditional expression

Yade [204]: def square(x): return x**2 # define a new function
Yade [205]: square(2) # and call that function
Out [205]: 4

2.2. Hands-on 17

tmodule> ()

Yade Documentation, Release 1.20.0

Exercises

1. Read the following code and say what wil be the values of a and b:

a=range(5)
b=[(aa**2 if aa),2==0 else -aa**2) for aa in a]

2.2.3 Yade basics

Yade objects are constructed in the following manner (this process is also called “instantiation”, since we
create concrete instances of abstract classes: one individual sphere is an instance of the abstract Sphere,
like Socrates is an instance of “man”):

Yade [206]: Sphere # try also Sphere?
Out [206] : yade.wrapper.Sphere

Yade [207]: s=Sphere() # create a Sphere, without specifying any attributes

Yade [208]: s.radius # 'man’' is a special value meaning "not a number"” (i.e. not defined
Out[208]: nan

Yade [209]: s.radius=2 # set radius of an existing object

Yade [210]: s.radius
Out[210]: 2.0

Yade [211]: ss=Sphere(radius=3) # create Sphere, giving radius directly

Yade [212]: s.radius, ss.radius # also try typing s.<tab> to see defined attributes
Out[212]: (2.0, 3.0)

Particles

Particles are the “data” component of simulation; they are the objects that will undergo some processes,
though do not define those processes yet.

Singles

There is a number of pre-defined functions to create particles of certain type; in order to create a sphere,
one has to (see the source of utils.sphere for instance):

1. Create Body

2. Set Body.shape to be an instance of Sphere with some given radius

3. Set Body.material (last-defined material is used, otherwise a default material is created)
4

. Set position and orientation in Body.state, compute mass and moment of inertia based on Material
and Shape

In order to avoid such tasks, shorthand functions are defined in the wutils module; to mention a few of
them, they are wtils.sphere, utils.facet, utils.wall.

Yade [213]: s=utils.sphere((0,0,0),radius=1) # create sphere particle centered at (0,0,0) wit

Yade [214]: s.shape # s.shape describes the geometry of the particle
Out [214]: <Sphere instance at 0xc34d1b0>

Yade [215]: s.shape.radius # we already know the Sphere class
Out[215]: 1.0

h radius=1

18 Chapter 2. Tutorial

Yade Documentation, Release 1.20.0

Yade [216]: s.state.mass, s.state.inertia # inertia %s computed from density and geometry
Out [216] :

(4188.790204786391,

Vector3(1675.5160819145563,1675.5160819145563,1675.5160819145563))

Yade [217]: s.state.pos # position is the one we prescribed
Out[217]: Vector3(0,0,0)

Yade [218]: s2=utils.sphere((-2,0,0),radius=1,fixed=True) # explanation below

In the last example, the particle was fixed in space by the fixed=True parameter to utils.sphere; such a
particle will not move, creating a primitive boundary condition.

A particle object is not yet part of the simulation; in order to do so, a special function is called:

Yade [219]: 0.bodies.append(s) # adds particle s to the simulation; returns id of the
Out[219]: 13

particle(s) ad

Packs

There are functions to generate a specific arrangement of particles in the pack module; for instance, cloud
(random loose packing) of spheres can be generated with the pack.SpherePack class:

Yade [220]: from yade import pack
Yade [221]: sp=pack.SpherePack() # create an empty cloud; SpherePack contains

Yade [222]: sp.makeCloud((1,1,1),(2,2,2),rMean=.2) # put spheres with defined radius inside bow
Qut[222]: 7

Yade [223]: for c,r in sp: print c,r # print center and radius of all particles (5]
Vector3(1.2219816751982846,1.4774564889049684,1.702183181794531) 0.2
Vector3(1.2533542598163283,1.4634878812949061,1.2235255502383462) 0.2
Vector3(1.710942276763676,1.2946436610022967,1.3441716010162343) 0.2
Vector3(1.7471062693252286,1.566727786945857,1.717008906898097) 0.2
Vector3(1.7367925380699267,1.7126065941644895,1.2329088782266797) 0.2
Vector3(1.512846314919038,1.2044739112299625,1.7601823676938027) 0.2
Vector3(1.4247674225128883,1.748260554064308,1.4852064010549397) 0.2

Yade [224]: sp.toSimulation() # create particles and add them to the simula
Out[224]: [14, 15, 16, 17, 18, 19, 20]

only geometrica

given by corner

pherePack is a

tion

Boundaries

utils.facet (triangle Facet) and utils.wall (infinite axes-aligned plane Wall) geometries are typically used
to define boundaries. For instance, a “floor” for the simulation can be created like this:

Yade [225]: 0.bodies.append(utils.wall(-1,axis=2))
Out [225]: 21

There are other conveinence functions (like utils.facetBox for creating closed or open rectangular box, or
family of ymport functions)

Look inside

The simulation can be inspected in several ways. All data can be accessed from python directly:

2.2. Hands-on 19

Yade Documentation, Release 1.20.0

Yade [226]: len(0.bodies)
Out[226]: 22

Yade [227]: O0.bodies[1].shape.radius # radius of body #1 (will give error if not sphere, since
AttributeError Traceback (most recent call last)

/build/yade-peqlpu/yade-1.20.0/debian/tmp/usr/1ib/x86_64-1linux-gnu/yade/py/yade/__init__.pyc in S
----> 1 0.bodies[1] .shape.radius # radius of body #1 (will give error if not sphere, since only

AttributeError: 'NoneType' object has no attribute 'shape'

Yade [228]: 0.bodies[2].state.pos # position of body #2
Out[228]: Vector3(0,0,0)

only spheres h

module> ()

v

Besides that, Yade says this at startup (the line preceding the command-line):

[["L clears screen, ~U kills line. F12 controller, F11 3d view, F10 both, F9 generator, F8 plot

Controller Pressing F12 brings up a window for controlling the simulation. Although typically no
human intervention is done in large simulations (which run “headless”, without any graphical
interaction), it can be handy in small examples. There are basic information on the simulation
(will be used later).

8d view The 3d view can be opened with F11 (or by clicking on button in the Controller — see below).
There is a number of keyboard shortcuts to manipulate it (press h to get basic help), and it can
be moved, rotated and zoomed using mouse. Display-related settings can be set in the “Display”
tab of the controller (such as whether particles are drawn).

Inspector Inspector is opened by clicking on the appropriate button in the Controller. It shows (and
updated) internal data of the current simulation. In particular, one can have a look at engines,
particles (Bodies) and interactions (Interactions). Clicking at each of the attribute names links to
the appropriate section in the documentation.

Exercises

1. What is this code going to do?

Yade [229]: 0.bodies.append([utils.sphere((2%i,0,0),1) for i in range(1,20)]1)
Out[229]: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]

2. Create a simple simulation with cloud of spheres enclosed in the box (0,0,0) and (1,1,1) with
mean radius .1. (hint: pack.SpherePack.makeCloud)

3. Enclose the cloud created above in box with corners (0,0,0) and (1,1,1); keep the top of the
box open. (hint: wutils.facetBox; type utils.facetBox? or utils.facetBox?? to get help on the
command line)

4. Open the 3D view, try zooming in/out; position axes so that z is upwards, y goes to the right and
x towards you.

Engines

Engines define processes undertaken by particles. As we know from the theoretical introduction, the
sequence of engines is called simulation loop. Let us define a simple interaction loop:

Yade [230]: O.engines=[# newlines and indentations are nmot important until th
e ForceResetter (),
e InsertionSortCollider ([Bol_Sphere_Aabb() ,Bol_Wall_Aabb()]),
el InteractionLoop(# dtto for the parenthesis here

ceeeel [Ig2_Sphere_Sphere_L3Geom() ,Ig2_Wall_Sphere_L3Geom()],
R [Ip2_FrictMat_FrictMat_FrictPhys()],
e [Law2_L3Geom_FrictPhys_ElPerfP1()]

P

20 Chapter 2. Tutorial

spheres have

1]

brace is clos

Yade Documentation, Release 1.20.0

Ceeeed),

et NewtonIntegrator (damping=.2,label="'newton') # define a name under which we can

Yade [231]: 0.engines

Out [231] :

[<ForceResetter instance at 0x26b8310>,
<InsertionSortCollider instance at 0x4d5cfd0>,
<InteractionLoop instance at 0x5b9c370>,
<NewtonIntegrator instance at 0x44a6520>]

Yade [232]: 0.engines[-1]==newton # is it the same object?
Out[232]: True

Yade [233]: newton.damping
Out[233]: 0.2

access this en

Instead of typing everything into the command-line, one can describe simulation in a file (script) and
then run yade with that file as an argument. We will therefore no longer show the command-line unless
necessary; instead, only the script part will be shown. Like this:

0.engines=[# newlines and indentations are not important until the brace is c
ForceResetter(),
InsertionSortCollider ([Bol_Sphere_Aabb(),Bol_Wall_Aabb()]),
InteractionLoop(# dtto for the parenthesis here

[Ig2_Sphere_Sphere_L3Geom_Inc(),Ig2_Wall_Sphere_L3Geom_Inc()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_L3Geom_FrictPhys_ElPerfP1()]

)’
GravityEngine(gravity=(0,0,-9.81)), # 9.81 is the gravity acceleration, and
NewtonIntegrator (damping=.2,label='newton') # define a name under which we can acce

]

osed

we say that
5s this engine

Besides engines being run, it is likewise important to define how often they will run. Some engines can
run only sometimes (we will see this later), while most of them will run always; the time between two
successive runs of engines is timestep (At). There is a mathematical limit on the timestep value, called
critical timestep, which is computed from properties of particles. Since there is a function for that, we
can just set timestep using utils. PWaveTimeStep:

0.dt=utils.PWaveTimeStep()

Each time when the simulation loop finishes, time 0.time is advanced by the timestep 0.dt:

Yade [234]: 0.dt=0.01

Yade [235]: O.time
Out[235]: 0.0

Yade [236]: 0.step()

Yade [237]: O.time
OQut[237]: 0.01

For experimenting with a single simulations, it is handy to save it to memory; this can be achieved, once
everything is defined, with:

2.2. Hands-on 21

Yade Documentation, Release 1.20.0

0.saveTmp()

Exercises

1. Define engines as in the above example, run the Inspector and click through the engines to see
their sequence.

2. Write a simple script which will
(a) define particles as in the previous exercise (cloud of spheres inside a box open from the top)
(b) define a simple simulation loop, as the one given above
(c) set At equal to the critical P-Wave At
(d) save the initial simulation state to memory

3. Run the previously-defined simulation multiple times, while changing the value of timestep (use
the button to reload the initial configuration).

(a) See what happens as you increase At above the P-Wave value.
(b) Try changing the gravity parameter, before running the simulation.
(¢) Try changing damping

4. Reload the simulation, open the 3d view, open the Inspector, select a particle in the 3d view (shift-
click). Then run the simulation and watch how forces on that particle change; pause the simulation
somewhere in the middle, look at interactions of this particle.

5. At which point can we say that the deposition is done, so that the simulation can be stopped?
See also:

The Bouncing sphere example shows a basic simulation.

2.3 Data mining

2.3.1 Read

Local data

All data of the simulation are accessible from python; when you open the Inspector, blue labels of various
data can be clicked — left button for getting to the documentation, middle click to copy the name of the
object (use Ctrl-V or middle-click to paste elsewhere). The interesting objects are among others (see
Omega for a full list):

1. O.engines
Engines are accessed by their index (position) in the simulation loop:
0.engines [0] # first engine
0.engines[-1] # last engine

Note: The index can change if O.engines is modified. Labeling introduced below is a better
solution for reliable access to a particular engine.

2. O.bodies

Bodies are identified by their id, which is guaranteed to not change during the whole simulation:

0.bodies[0] # first body
[b.shape.radius in 0.bodies if isinstance(b.shape,Sphere)] # list of radii of all spherifal bodies
sum([b.state.mass for b in 0.bodies]) # sum of masses of all bodies

22 Chapter 2. Tutorial

Yade Documentation, Release 1.20.0

Note: Uniqueness of Body.id is not guaranteed, since newly created bodies might recycle ids of
deleted ones.

3. O.force

Generalized forces (forces, torques) acting on each particle. They are (usually) reset at the begin-
ning of each step with ForceResetter, subsequently forces from individual interactions are accumu-
lated in InteractionLoop. To access the data, use:

0.forces.f(0) # force on #0
0.forces.t(1) # torque on #1

4. O.interactions

Interactions are identified by ids of the respective interacting particles (they are created and deleted
automatically during the simulation):

0.interactions[0,1] # interactions of #0 with #1
0.interactions[1,0] # the same object
0.bodies[0] .intrs # all interactions of body #0

Labels

Engines and functors can be labeled, which means that python variable of that name is automatically
created.

Yade [164]: 0.engines=[
el NewtonIntegrator (damping=.2,label='newton')

Yade [165]: newton.damping=.4

Yade [166]: 0.engines[0] .damping # 0.engines/[0] and newton are the same objects
Out[166]: 0.4

Exercises

1. Find meaning of this expression:

max([b.state.vel.norm() for b in 0.bodies])

2. Run the gravity deposition script, pause after a few seconds of simulation. Write expressions that
compute

(a) kinetic energy Y Fmlvi|?

(b) average mass (hint: use numpy.average)
(¢) maximum z-coordinate of all particles
)

(d) number of interactions of body #1

Global data

Useful measures of what happens in the simulation globally:

unbalanced force ratio of maximum contact force and maximum per-body force; measure of staticity,
computed with wutils.unbalancedForce.

porosity ratio of void volume and total volume; computed with utils.porosity.

coordination number average number of interactions per particle, utils.avgNumiInteractions

2.3. Data mining 23

http://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html

Yade Documentation, Release 1.20.0

stress tensor (periodic boundary conditions) averaged force in interactions, computed with
utils.normalShearStressTensor and utils.stressTensorOfPeriodicCell

fabric tensor distribution of contacts in space (not yet implemented); can be visualized with
utils.plotDirections

Energies

Evaluating energy data for all components in the simulation (such as gravity work, kinetic energy, plastic
dissipation, damping dissipation) can be enabled with

0.trackEnergy=True

Subsequently, energy values are accessible in the O.energy; it is a dictionary where its entries can be
retrived with keys () and their values with 0.energy [key].

2.3.2 Save

PyRunner

To save data that we just learned to access, we need to call Python from within the simulation loop.
PyRunner is created just for that; it inherits periodicy control from PeriodicEngine and takes the code
to run as text (must be quoted, i.e. inside '..."') attributed called command. For instance, adding this
to O.engines will print the current step number every second:

0.engines=0.engines+[PyRunner(command='print 0.iter',realPeriod=1)]

Writing complicated code inside command is awkward; in such case, we define a function that will be
called:

def myFunction():
""'Print step number, and pause the simulation is unbalanced force <s smaller than 0.05.["'
print O.iter
if utils.unbalancedForce()<0.05:
print 'Unbalanced force is smaller than 0.05, pausing.'
0.pause()
0.engines=[
...
PyRunner (command="'myFunction()',iterPeriod=100) # call myFunction every 100 steps

Exercises

1. Run the gravity deposition simulation, but change it such that:
(a) wutils.unbalancedForce is printed every 2 seconds.
(b) check every 1000 steps the value of unbalanced force
o if smaller than 0.2, set damping to 0.8 (hint: use labels)

e if smaller than 0.1, pause the simulation

Keeping history

Yade provides the plot module used for storing and plotting variables (plotting itself will be discussed
later). Periodic storing of data is done with PyRunner and the plot.addData function, for instance:

24 Chapter 2. Tutorial

Yade Documentation, Release 1.20.0

from yade import plot
0.engines=[# ...,
PyRunner (command='addPlotData() ' ,realPeriod=2) # call the addPlotData fupction every 2
]
def addPlotData():
this function adds current values to the history of data, under the names specified
plot.addData(i=0.iter,t=0.time,Ek=utils.kineticEnergy(),coordNum=utils.avgNumInteractions() ,unForce=uti

History is stored in plot.data, and can be accessed using the variable name, e.g. plot.datal['Ek'], and
saved to text file (for post-processing outside yade) with plot.save Tzt.

2.3.3 Plot

plot provides facilities for plotting history saved with plot.addData as 2d plots. Data to be plotted are
specified using dictionary plot.plots

plot.plots={'t':('coordNum', 'unForce',None, 'Ek')} ’

History of all values is given as the name used for plot.addData; keys of the dictionary are x-axis values,
and values are sequence of data on the y axis; the None separates data on the left and right axes (they
are scaled independently). The plot itself is created with

plot.plot() # on the command line, F8 can be used as shorthand ’

While the plot is open, it will be updated periodically, so that simulation evolution can be seen in
real-time.

Energy plots

Plotting all energy contributions would be difficult, since names of all energies might not be known in
advance. Fortunately, there is a way to handle that in Yade. It consists in two parts:

1. plot.addData is given all the energies that are currently defined:

plot.addData(i=0.iter,total=0.energy.total(),**0.energy)

The O.energy.total functions, which sums all energies together. The **0.energy is special python
syntax for converting dictionary (remember that O.energy is a dictionary) to named functions
arguments, so that the following two commands are identical:

function(a=3,b=34) # give arguments as arguments
function(**{'a':3,'b':34}) # create arguments from dictionary

2. Data to plot are specified using a function that gives names of data to plot, rather than providing
the data names directly:

plot.plots={'i':['total',0.energy.keys()]} ‘

where total is the name we gave to 0.energy.total() above, while 0.energy.keys () will always
return list of currently defined energies.

Exercises

1. Run the gravity deposition script, plotting unbalanced force and kinetic energy.

2. While the script is running, try changing the NewtonIntegrator.damping parameter (do it from both
Inspector and from the command-line). What influence does it have on the evolution of unbalanced
force and kinetic energy?

3. Think about and write down all energy sources (input); write down also all energy sinks (dissipa-
tion).

2.3. Data mining 25

Yade Documentation, Release 1.20.0

4. Simulate gravity deposition and plot all energies as they evolve during the simulation.
See also:

Most Examples use plotting facilities of Yade, some of them also track energy of the simulation.

2.4 Towards geomechanics

See also:

Examples Gravity deposition, Oedometric test, Periodic simple shear, Periodic triaxial test deal with
topics discussed here.

2.4.1 Parametric studies

Input parameters of the simulation (such as size distribution, damping, various contact parameters, ...)
influence the results, but frequently an analytical relationship is not known. To study such influence,
similar simulations differing only in a few parameters can be run and results compared. Yade can be run
in batch mode, where one simulation script is used in conjunction with parameter table, which specifies
parameter values for each run of the script. Batch simulation are run non-interactively, i.e. without user
intervention; the user must therefore start and stop the simulation explicitly.

Suppose we want to study the influence of damping on the evolution of kinetic energy. The script has to
be adapted at several places:

1. We have to make sure the script reads relevant parameters from the parameter table. This is done
using wutils.readParamsFromTable; the parameters which are read are created as variables in the
yade.params.table module:

utils.readParamsFromTable (damping=.2) # yade.params.table.damping variable will be crepted
from yade.params import table # typing table.damping is easier than yade.params.table.damping

Note that utils.readParamsFromTable takes default values of its parameters, which are used if the
script is not run in non-batch mode.

2. Parameters from the table are used at appropriate places:

NewtonIntegrator (damping=table.damping),

3. The simulation is run non-interactively; we must therefore specify at which point it should stop:

0.engines+=[PyRunner (iterPeriod=1000, command="'checkUnbalancedForce()')] # call our functfion defined bel

def checkUnbalancedForce():

if utils.unbalancedForce<0.05: # exit Yade <f unbalanced force drops below 0.05
utils.saveDataTxt(0.tags['d.id']+"'.data.bz2"') # save all data into a unique file before exiting
import sys
sys.exit (0) # exit the program

4. Finally, we must start the simulation at the very end of the script:

0.run() # run forever, until stopped by checkUnbalancedForce()
utils.waitIfBatch() # do not finish the script unttl the stmulation ends; does nothing in| non-batch mode

The parameter table is a simple text-file, where each line specifies a simulation to run:

comments start with # as in python

damping # first non-comment line is variable name
.2

.4

.6

Finally, the simulation is run using the special batch command:

26 Chapter 2. Tutorial

Yade Documentation, Release 1.20.0

user@machine:~$ yade-batch parameters.table simulation.py

Exercises

1. Run the gravity deposition script in batch mode, varying damping to take values of .2, .4, .6. See
the http://localhost:9080 overview page while the batch is running.

2.4.2 Boundary

Particles moving in infinite space usually need some constraints to make the simulation meaningful.

Supports

So far, supports (unmovable particles) were providing necessary boundary: in the gravity deposition
script, wtils.facetBoz is by internally composed of facets (triangulation elements), which is fixed in
space; facets are also used for arbitrary triangulated surfaces (see relevant sections of the User’s manual).
Another frequently used boundary is utils.wall (infinite axis-aligned plane).

Periodic

Periodic boundary is a “boundary” created by using periodic (rather than infinite) space. Such boundary
is activated by O.periodic=True , and the space configuration is decribed by O.cell . It is well suited for
studying bulk material behavior, as boundary effects are avoided, leading to smaller number of particles.
On the other hand, it might not be suitable for studying localization, as any cell-level effects (such as
shear bands) have to satisfy periodicity as well.

The periodic cell is described by its reference size of box aligned with global axes, and current transfor-
mation, which can capture stretch, shear and rotation. Deformation is prescribed via velocity gradient,
which updates the transformation before the next step. Homothetic deformation can smear wvelocity
gradient accross the cell, making the boundary dissolve in the whole cell.

Stress and strains can be controlled with PeriTriazController; it is possible to prescribe mixed
strain/stress goal state using PeriTriaxzController.stressMask.

The following creates periodic cloud of spheres and compresses to achieve ox=-10 kPa, oy=-10kPa and
€,=-0.1. Since stress is specified for y and z, stressMask is 0b011 (x—1, y—2, z—4, in decimal 1+2=3).

Yade [167]: sp=pack.SpherePack()

Yade [168]: sp.makeCloud((1,1,1),(2,2,2),rMean=.2,periodic=True)
Out[168]: 9

Yade [169]: sp.toSimulation() # implicitly sets O.periodic=True, and 0O.cell.refSize
Qut[169]: [4, 5, 6, 7, 8, 9, 10, 11, 12]

Yade [170]: O.engines+=[PeriTriaxController(goal=(-1le4,-1le4,-.1),stressMask=0b011,maxUnbalanced=

to the packing

2 ,doneHook="fu

When the simulation runs, PeriTriazController takes over the control and calls doneHook when goal is
reached. A full simulation with PeriTriaxController might look like the following;:

from yade import pack,plot

sp=pack.SpherePack()

rMean=.05

sp.makeCloud((0,0,0),(1,1,1) ,rMean=rMean,periodic=True)

sp.toSimulation()

0.engines=[
ForceResetter(),
InsertionSortCollider ([Bol_Sphere_Aabb()],verletDist=.05*rMean),
InteractionLoop([Ig2_Sphere_Sphere_L3Geom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_L3Geom|

|FrictPhys_ElPe:

2.4. Towards geomechanics 27

http://localhost:9080

Yade Documentation, Release 1.20.0

NewtonIntegrator (damping=.6),
PeriTriaxController(goal=(-1e6,-1e6,-.1),stressMask=0b011,maxUnbalanced=.2,doneHook="'goalReac}
PyRunner (iterPeriod=100, command="'addPlotData() ')
]
0.dt=.5*utils.PWaveTimeStep()
0.trackEnergy=True
def goalReached():
print 'Goal reached, strain',triax.strain,' stress',triax.stress
0.pause()
def addPlotData():
plot.addData(sx=triax.stress[0],sy=triax.stress[1],sz=triax.stress[2],ex=triax.strain[0],ey=tz
i=0.iter,unbalanced=utils.unbalancedForce(),
totalEnergy=0.energy.total(),**0.energy # plot all energies
)
plot.plots={'i':(('unbalanced','go'),None, 'kinetic'),' i':('ex','ey','ez"',None, ' 'sx"', 'sy',"'sz"),"]
plot.plot()
0.saveTmp()
0.run()

red() ',label="t

riax.strain[1],

| ':(0.energy.k

2.5 Advanced & more

2.5.1 Particle size distribution

See Periodic triazial test

2.5.2 Clumps

Clump; see Periodic triaxial test

2.5.3 Testing laws

LawTester, scripts/test /law-test.py

2.5.4 New law

2.5.5 Visualization

See the example 3d postprocessing
e VTKRecorder & Paraview
e gt.SnapshotEngine

2.6 Examples

2.6.1 Bouncing sphere

bastic stmulation showing sphere falling ball gravity,
bouncing against another sphere representing the support

DATA COMPONENTS
add 2 particles to the simulation

they the default material (utils.defaultMat)
0.bodies.append ([

28 Chapter 2. Tutorial

https://github.com/yade/trunk/blob/master/scripts/test/law-test.py
http://www.paraview.org

Yade Documentation, Release 1.20.0

fized: particle's position in space will not change (support)
sphere (center=(0,0,0) ,radius=.5,fixed=True),
this particles is free, subject to dynamics
sphere((0,0,2),.5)

D

FUNCTIONAL COMPONENTS

simulation loop —— see presentation for the explanation
0.engines=[
ForceResetter(),
InsertionSortCollider([Bol_Sphere_Aabb()]1),
InteractionLoop(
[Ig2_Sphere_Sphere_L3Geom()], # collision geometry

[Ip2_FrictMat_FrictMat_FrictPhys()], # collision "physics"
[Law2_L3Geom_FrictPhys_E1PerfP1()] # contact law -- apply forces
)’
Apply gravity force to particles. damping: numerical dissipation of energy.
NewtonIntegrator(gravity=(0,0,-9.81) ,damping=0.1)

set timestep to a fraction of the critical timestep

the fraction is very small, so that the simulation is not too fast
and the motion can be observed

0.dt=.5e-4*PWaveTimeStep()

save the simulation, so that it can be reloaded later, for experimentation
0.saveTmp()

2.6.2 Gravity deposition

gravity deposition in box, showing how to plot and save history of data,
and how to control the simulation while it is running by calling
python functions from within the simulation loop

import yade modules that we will use below
from yade import pack, plot

create rectangular box from facets
0.bodies.append(geom.facetBox((.5,.5,.5),(.5,.5,.5),wallMask=31))

create empty sphere packing
sphere packing is mot equivalent to particles inm simulation, it contains only the pure geometry
sp=pack.SpherePack ()

generate randomly spheres with untform radius distribution
sp.makeCloud((0,0,0),(1,1,1) ,rMean=.05,rRelFuzz=.5)

add the sphere pack to the simulation

sp.toSimulation()

0.engines=[

ForceResetter(),

InsertionSortCollider ([Bol_Sphere_Aabb() ,Bol_Facet_Aabb()]),

InteractionLoop(
handle sphere+sphere and facet+sphere collisions
[Ig2_Sphere_Sphere_L3Geom(),Ig2_Facet_Sphere_L3Geom()],
[Ip2_FrictMat_FrictMat_FrictPhys ()],
[Law2_L3Geom_FrictPhys_E1PerfP1()]

),

NewtonIntegrator(gravity=(0,0,-9.81) ,damping=0.4),

call the checkUnbalanced function (defined below) every 2 seconds

PyRunner (command='checkUnbalanced() ' ,realPeriod=2),

2.6. Examples 29

Yade Documentation, Release 1.20.0

call the addPlotData function every 200 steps
PyRunner (command="'addPlotData() ',iterPeriod=100)

o —

.dt=.5*PWaveTimeStep()

enable energy tracking; any simulation parts supporting it
can create and update arbitrary energy types, which can be
accessed as 0O.energyl['energyName'] subsequently
.trackEnergy=True

O ®* H% %

if the unbalanced forces goes below .05, the packing
is considered stabilized, therefore we stop collected
data history and stop
def checkUnbalanced():
if unbalancedForce()<.05:

0.pause()

plot.saveDataTxt ('bbb.txt.bz2")

plot.saveGnuplot ('bbb') 4s also possible

collect history of data which will be plotted

def addPlotData():
each ttem is given a mnames, by which tt can be the unsed in plot.plots
the **0.energy converts dictionary-like 0.energy to plot.addData arguments
plot.addData(i=0.iter,unbalanced=unbalancedForce(),**0.energy)

define how to plot data: 'i' (step number) on the z-azis, unbalanced force
on the left y-azis, all energies on the right y-azxis

(0.energy.keys is function which will be called to get all defined energties)
None separates left and right y-azis
plot.plots={'i':('unbalanced',None,0.energy.keys)}

show the plot on the screen, and update while the simulation runs
plot.plot()

0.saveTmp()

2.6.3 Oedometric test

3

gravity deposition, continuing with oedometric test after stabilization
shows also how to run parametric studies with yade-batch

H*

The components of the batch are:

1. table with parameters, one set of parameters per line (ccc.table)

2. readParamsFromTable which reads respective line from the parameter file
3. the simulation muse be run using yade-batch, not yade

$ yade-batch --job-threads=1 03-oedometric-test.table 03-oedometric-test.py

oW oW R R R R

load parameters from file +f run in batch

default values are used if not run from batch

readParamsFromTable (rMean=.05,rRelFuzz=.3,maxLoad=1e6,minLoad=1e4)

make rMean, TRelFuzz, mazxLoad accessible directly as variables later
from yade.params.table import *

create box with free top, and ceate loose packing inside the box
from yade import pack, plot
0.bodies.append(geom.facetBox((.5,.5,.5),(.5,.5,.5),wallMask=31))
sp=pack.SpherePack()

sp.makeCloud ((0,0,0),(1,1,1) ,rMean=rMean,rRelFuzz=rRelFuzz)
sp.toSimulation()

30 Chapter 2.

Tutorial

Yade Documentation, Release 1.20.0

0.engines=[

ForceResetter(),

sphere, facet, wall

InsertionSortCollider ([Bol_Sphere_Aabb() ,Bol_Facet_Aabb(),Bol_Wall_Aabb()]),

InteractionLoop(
the loading plate is a wall, we need to handle sphere+sphere, sphere+facet, sphere+wall
[Ig2_Sphere_Sphere_L3Geom() ,Ig2_Facet_Sphere_L3Geom() ,Ig2_Wall_Sphere_L3Geom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_L3Geom_FrictPhys_El1PerfP1()]

)’

NewtonIntegrator (gravity=(0,0,-9.81) ,damping=0.5),

the label creates an automatic variable referring to this engine

we use it below to change its attributes from the functions called

PyRunner (command='checkUnbalanced() ' ,realPeriod=2,label="'checker'),

o«

.dt=.5*PWaveTimeStep ()

the following checkUnbalanced, unloadPlate and stopUnloading functions are all called by the '
(the last engine) one after another; this sequence defines progression of different stages of
simulation, as each of the functions, when the condition is satisfied, updates 'checker' to ca
the next function when it is run from within the simulation next time

H*H OB R R

check whether the gravity depostition has already finished
1f so, add wall on the top of the packing and start the oedometric test
def checkUnbalanced():
at the wvery start, unbalanced force can be low as there is only few contacts, but it does n
if 0.iter<5000: return
the rest will be run only if unbalanced is < .1 (stabilized packing)
if unbalancedForce()>.1: return
add plate at the position on the top of the packing
the mazimum finds the z-coordinate of the top of the topmost particle

thecker'
the
l

vt mean the pac

0.bodies.append(wall (max([b.state.pos[2]+b.shape.radius for b in 0.bodies if isinstance(b.shape,Sphere)]),ax

global plate # without this line, the plate variable would only exist inside this func
plate=0.bodies[-1] # the last particles is the plate

Wall objects are "fized" by default, 7.e. not subject to forces

prescribing a velocity will therefore make it move at constant wvelocity (downwards)
plate.state.vel=(0,0,-.1)

start plotting the data now, it was not interesting before

0.engines=0.engines+[PyRunner (command='addPlotData()',iterPeriod=200)]

next time, do mot call this function anymore, but the next one (unloadPlate) instead
checker.command="'unloadPlate() '

def unloadPlate():
1f the force on plate exceeds maximum load, start unloading
if abs(0.forces.f (plate.id) [2])>maxLoad:
plate.state.vel*=-1
next time, do nmot call this function anymore, but the next one (stopUnloading) instead
checker.command="'stopUnloading() '

def stopUnloading():
if abs(0.forces.f (plate.id) [2])<minLoad:
0.tags can be used to retrieve unique tdentifiers of the simulation
if running in batch, subsequent simulation would overwrite each other's output files oth
d (or description) is simulation description (composed of parameter values)
while the 7d is composed of time and process number
plot.saveDataTxt(0.tags['d.id']+'.txt")
0.pause()

def addPlotData():
if not isinstance(0.bodies[-1].shape,Wall):
plot.addData(); return
Fz=0.forces.f(plate.id) [2]

tion

eTWLSe

2.6. Examples 31

Yade Documentation, Release 1.20.0

plot.addData(Fz=Fz,w=p1ate.state.pos[2]-plate.state.refPos[Q],unbalanced=unbalancedForce(),i=¢.iter)

bestdes unbalanced force evolution, also plot the displacement-force diagram
plot.plots={'i':('unbalanced',),'w':('Fz',)}
plot.plot()

0.run()

when running with yade-batch, the script must not finish until the simulation is done fully
this command will wait for that (has no influence in the non-batch mode)

waitIfBatch()

Batch table

rMean rRelFuzz maxLoad
.05 .1 1e6
.05 .2 leb6
.05 .3 1le6

2.6.4 Periodic simple shear

encoding: utf-8

script for pertiodic simple shear test, with periodic boundary
first compresses to attain some isotropic stress (checkStress),
then loads in shear (checkDistorsion)

the initial packing is either regular (hexzagonal), with empty bands along the boundary,
or periodic random cloud of spheres

material friction angle is initially set to zero, so that the resulting packing is dense
(sphere rearrangement is easier if there is no friction)

HOH RO R R W OW W W

setup the periodic boundary
0.periodic=True
0.cell.refSize=(2,2,2)

from yade import pack,plot

the "tf 0:" block will be never executed, therefore the "else:" block will be
to use cloud instead of regular packing, change to "if 1:" or something similar
if 0:
create cloud of spheres and insert them into the simulation
we give corners, mean rTadius, rTadius variation
sp=pack.SpherePack()
sp.makeCloud((0,0,0),(2,2,2) ,rMean=.1,rRelFuzz=.6,periodic=True)
insert the packing into the simulation
sp.toSimulation(color=(0,0,1)) # pure blue
else:
in this case, add dense packing
0.bodies.append(
pack.regularHexa(pack.inAlignedBox((0,0,0),(2,2,2)),radius=.1,gap=0,color=(0,0,1))
)

create "dense" packing by setting friction to zero initially
0.materials[0] .frictionAngle=0

simulation loop (will be run at every step)
0.engines=[

32 Chapter 2. Tutorial

Yade Documentation, Release 1.20.0

ForceResetter(),

InsertionSortCollider ([Bol_Sphere_Aabb()]),
InteractionLoop(

[Ig2_Sphere_Sphere_L3Geom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_L3Geom_FrictPhys_E1PerfP1()]

NewtonIntegrator (damping=.4),

run checkStress function (defined below) every second
the label 7s arbitrary, and is used later to refer to this engine

PyRunner (command='checkStress() ' ,realPeriod=1,label='checker'),

record data for plotting every 100 steps; addData function is defined below

PyRunner (command="'addData() ',iterPeriod=100)

set the integration timestep to be 1/2 of the "critical” timestep
0.dt=.5*PWaveTimeStep ()

prescribe isotropic normal deformation (constant strain rate)
of the periodic cell
0.cell.velGrad=Matrix3(-.1,0,0, 0,-.1,0, 0,0,-.1)

when to stop the isotropic compression (used inside checkStress)
limitMeanStress=-5e5

called every second by the PyRunner engine
def checkStress():

stress tensor as the sum of normal and shear contributions
Matriz3.Zero is the intial wvalue for sum(...)
stress=sum(normalShearStressTensors() ,Matrix3.Zero)

print 'mean stress',stress.trace()/3.

1f mean stress is below (bigger in absolute value) limitMeanStress, start shearing
if stress.trace()/3.<limitMeanStress:

apply constant-rate distorsion on the periodic cell

0.cell.velGrad=Matrix3(0,0,.1, 0,0,0, 0,0,0)

change the function called by the checker engine

(checkStress will not be called anymore)

checker. command="'checkDistorsion() '

block rotations of particles to increase tanPhi, if desired

disabled by default

if 0:

for b in 0.bodies:

block X,Y,Z rotations, translations are free
b.state.blockedDOFs="XYZ'
stop rotations if any, as blockedDOFs block accelerations really
b.state.angVel=(0,0,0)

set friction angle back to mon-zero wvalue

tangensOfFrictiondngle is computed by the Ip2_* functor from material

for future contacts change material (there is only one material for all particles)

0.materials[0] .frictionAngle=.5 # radians
for existing contacts, set contact friction directly
for i in O.interactions: i.phys.tangensOfFrictionAngle=tan(.5)

called from the 'checker' engine periodically, during the shear phase
def checkDistorsion():

1f the distorsion wvalue is >.3, extit; otherwise do nothing
if abs(0.cell.trsf[0,2])>.5:

save data from addData(...) before exziting into file

use O.tags['id'] to distinguish individual Tuns of the same simulation
plot.saveDataTxt(0.tags['id']+'.txt")

exit the program

#import sys

#sys.exit (0) # no error (0)

2.6.

Examples

33

Yade Documentation, Release 1.20.0

0.pause()

called periodically to store data history
def addData():
get the stress temsor (as 3z3 matriz)
stress=sum(normalShearStressTensors() ,Matrix3.Zero)
give nmnames to walues we are interested in and save them
plot.addData(exz=0.cell.trsf[0,2],szz=stress[2,2],sxz=stress[0,2],tanPhi=stress[0,2]/stress[2
color particles based on rotation amount
for b in 0.bodies:
rot() gives rotation vector between reference and current position
b.shape.color=scalarOnColorScale(b.state.rot() .norm(),0,pi/2.)

define what to plot (3 plots in total)

exz(i), [left y azis, separate by None:] szz(i), szz(i)

szz(exz), szz(exz)

tanPhi (i)

note the space in '% 7' entry
plot.plots={'i':('exz',None, 'szz','sxz'), 'exz':('szz','sxz'),'i ':('tanPhi',)}

]]

so that it does mot overwrite the
better show rotation of particles
Gl1_Sphere.stripes=True

open the plot on the screen
plot.plot()

0.saveTmp()

2.6.5 3d postprocessing

demonstrate 3d postprocessing with yade
1. gt.SnapshotEngine saves tmages of the 3d view as it appears on the screen periodically

2. VTKRecorder saves data in files which can be opened with Paraview

#
#
#
makeVideo is then used to make real movie from those images
#
see the User's manual for an intro to Paraview

3

generate loose packing

from yade import pack, qt

sp=pack.SpherePack()

sp.makeCloud((0,0,0),(2,2,2) ,rMean=.1,rRelFuzz=.6,periodic=True)
add to scene, make it periodic

sp.toSimulation()

0.engines=[
ForceResetter(),
InsertionSortCollider ([Bol_Sphere_Aabb()]),
InteractionLoop(
[Ig2_Sphere_Sphere_L3Geom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_L3Geom_FrictPhys_E1PerfP1()]
),
NewtonIntegrator (damping=.4),
save data for Paraview
VTKRecorder (fileName='3d-vtk-',recorders=['all'],iterPeriod=1000),
save data from Yade's own 3d view
qt.SnapshotEngine (fileBase='3d-',iterPeriod=200,label="snapshot'),
this engine will be called after 20000 steps, only once
PyRunner (command='finish()',iterPeriod=20000)
]
0.dt=.5*PWaveTimeStep ()

34 Chapter 2. Tutorial

2],i=0.iter)

Yade Documentation, Release 1.20.0

prescribe constant-strain deformation of the cell
0.cell.velGrad=Matrix3(-.1,0,0, 0,-.1,0, 0,0,-.1)

we must open the view explicitly (limitation of the qt.SnapshotEngine)
qt.View()

this function is called when the simulation is finished

def finish():
snapshot is label of qt.SnapshotEngine
the 'snapshots' attribute contains list of all saved files
makeVideo (snapshot . snapshots, '3d.mpeg' ,fps=10,bps=10000)
0.pause()

set parameters of the renderer, to show network chains rather than particles

these settings are accessible from the Controller window, on the second tab ("Display"”) as wel
rr=yade.qt.Renderer ()

rr.shape=False

rr.intrPhys=True

2.6.6 Periodic triaxial test

*

encoding: utf-8
periodic triaztal test simulation
The initial packing is either

1. random cloud with uniform distribution, or
2. cloud with specified granulometry (radii and percentages), or
3. cloud of clumps, i.e. 7Tigid aggregates of several particles

The triazial consists of 2 stages:

isotropic compaction, until sigmalso is reached in all directions;
this stage is ended by calling compactionFinished()

2. constant-strain deformation along the z-axis, while maintaining
constant stress (sigmalso) laterally; this stage is ended by calling
triazFinished()

Controlling of strain and stresses is performed via PeriTriazController,
of which parameters determine type of control and also stability
condition (mazUnbalanced) so that the packing is considered stabilized
and the stage is done.

oW R ORH R R R W W oW oW WO R R W OW oW OWWR
~

sigmalso=-1eb

#import matplotlid
#matplotlib.use('4gg')

generate loose packing
from yade import pack, qt, plot

0.periodic=True
sp=pack . SpherePack ()
if 0:
uniform distribution
sp.makeCloud((0,0,0),(2,2,2) ,rMean=.1,rRelFuzz=.3,periodic=True)
else:
create packing from clumps
configuration of one clump

2.6. Examples 35

Yade Documentation, Release 1.20.0

cl=pack.SpherePack([((0,0,0),.03333),((.03,0,0),.017),((0,.03,0),.017)]1)
make cloud using the configuration cl (there could c2, c3, ...; selection between them woul
sp .makeClumpCloud((0,0,0),(2,2,2), [c1],periodic=True,num=500)

setup periodic boundary, insert the packing
sp.toSimulation()

0.engines=[
ForceResetter(),
InsertionSortCollider([Bol_Sphere_Aabb()]),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]
),
PeriTriaxController(label="'triax',
specify target values and whether they are strains or stresses
goal=(sigmalso,sigmalso,sigmalso),stressMask=7,
type of serwvo-control
dynCell=True,maxStrainRate=(10,10,10),
wait unttl the unbalanced force goes below this wvalue
maxUnbalanced=.1,relStressTol=1e-3,
call this function when goal ts reached and the packing is stable
doneHook="'compactionFinished ()’
),
NewtonIntegrator (damping=.2),
PyRunner (command="'addPlotData() ',iterPeriod=100),
]
0.dt=.5*%PWaveTimeStep()

def addPlotData():
plot.addData(unbalanced=unbalancedForce(),i=0.iter,
sxx=triax.stress[0],syy=triax.stress[1],szz=triax.stress[2],
exx=triax.strain[0],eyy=triax.strain[1],ezz=triax.strain[2],
save all available energy data
Etot=0.energy.total(),**0.energy

enable energy tracking in the code
0.trackEnergy=True

define what to plot

plot.plots={'i':('unbalanced',),'i ':('sxx','syy','szz'),' i':('exx','eyy', ' 'ezz"),
energy plot
" i ':(0.energy.keys,None, 'Etot'),

}

show the plot

plot.plot()

def compactionFinished():
set the current cell configuration to be the reference one
0.cell.trsf=Matrix3.Identity
change control type: keep constant confinement in z,y, 20/ compression in z
triax.goal=(sigmalso,sigmalso,-.2)
triax.stressMask=3
allow faster deformation along =,y to better maintain stresses
triax.maxStrainRate=(1.,1.,.1)
next time, call triazFinished instead of compactionFinished
triax.doneHook="'triaxFinished ()"
do not wait for stabilization before calling triazFinished
triax.maxUnbalanced=10

def triaxFinished():

i be random)

36 Chapter 2. Tutorial

Yade Documentation, Release 1.20.0

print 'Finished'
0.pause()

2.6. Examples 37

Yade Documentation, Release 1.20.0

38 Chapter 2. Tutorial

Chapter 3

User’s manual

3.1 Scene construction

3.1.1 Adding particles

The BodyContainer holds Body objects in the simulation; it is accessible as 0.bodies.

Creating Body objects

Body objects are only rarely constructed by hand by their components (Shape, Bound, State, Material);
instead, convenience functions sphere, facet and wall are used to create them. Using these functions also
ensures better future compatibility, if internals of Body change in some way. These functions receive
geometry of the particle and several other characteristics. See their documentation for details. If the
same Material is used for several (or many) bodies, it can be shared by adding it in 0.materials, as
explained below.

Defining materials

The 0.materials object (instance of Omega.materials) holds defined shared materials for bodies. It
only supports addition, and will typically hold only a few instance (though there is no limit).

label given to each material is optional, but can be passed to sphere and other functions for constructing
body. The value returned by 0.materials.append is an id of the material, which can be also passed to
sphere — it is a little bit faster than using label, though not noticeable for small number of particles and
perhaps less convenient.

If no Material is specified when calling sphere, the last defined material is used; that is a convenient
default. If no material is defined yet (hence there is no last material), a default material will be created:
FrictMat(density=2e3,young=30e9,poisson=.3,frictionAngle=.5236). This should not happen for serious
simulations, but is handy in simple scripts, where exact material properties are more or less irrelevant.

Yade [238]: len(0.materials)
Out[238]: O

Yade [239]: idConcrete=0.materials.append(FrictMat (young=30e9,poisson=.2,frictionAngle=.6,label=]

Yade [240]: O.materials[idConcrete]
Out [240] : <FrictMat instance at 0x3f9d320>

uses the last defined material
Yade [241]: 0.bodies.append(sphere(center=(0,0,0),radius=1))
Out[241]: O

39

concrete"))

Yade Documentation, Release 1.20.0

matertal given by id
Yade [242]: 0.bodies.append(sphere((0,0,2),1,material=idConcrete))
OQut[242]: 1

material given by label
Yade [243]: 0.bodies.append(sphere((0,2,0),1,material="concrete"))
Out[243]: 2

Yade [244]: idSteel=0.materials.append(FrictMat (young=210e9,poisson=.25,frictionAngle=.8,label="5

Yade [245]: len(0.materials)
Out[245]: 2

implicitly uses "steel"” material, as it is the last one now
Yade [246]: 0.bodies.append(facet([(1,0,0),(0,1,0),(-1,-1,0)1))
Out[246]: 3

Adding multiple particles

As shown above, bodies are added one by one or several at the same time using the append method:

Yade [247]: 0.bodies.append(sphere((0,10,0),1))
Out[247]: O

Yade [248]: 0.bodies.append(sphere((0,0,2),1))
Out[248]: 1

this is the same, but in one function call
Yade [249]: 0.bodies.append([

.....: sphere((0,0,0),1),

ceeest sphere((0,0,2),1)

ot D

Out[249]: [2, 3]

Many functions introduced in next sections return list of bodies which can be readily added to the
simulation, including

e packing generators, such as pack.randomDensePack, pack.reqularHexa

o surface function pack.gtsSurface2Facets

e import functions ymport.gmsh, ymport.stl, ..

As those functions use sphere and facet internally, they accept additional argument passed to those
function. In particular, material for each body is selected following the rules above (last one if not
specified, by label, by index, etc.).

Clumping particles together

In some cases, you might want to create rigid aggregate of individual particles (i.e. particles will retain
their mutual position during simulation). This we call a clump. A clump is internally represented by a
special body, referenced by clumpld of its members (see also isClump, isClumpMember and isStandalone).
Like every body a clump has a position, which is the (mass) balance point between all members. A
clump body itself has no interactions with other bodies. Interactions between clumps is represented by
interactions between clump members. There are no interactions between clump members of the same
clump.

YADE supports different ways of creating clumps:

o Create clumps and spheres (clump members) directly with one command:

40 Chapter 3. User’s manual

teel"))

Yade Documentation, Release 1.20.0

The function appendClumped() is designed for this task. For instance, we might add 2 spheres tied
together:

Yade [250]: 0.bodies.appendClumped([
et sphere([0,0,0],1),
R sphere([0,0,2],1)

Out[250]: (2, [0, 11)

Yade [251]: len(0.bodies)
Out[251]: 3

Yade [252]: 0.bodies[1].isClumpMember, 0.bodies[2].clumpId
Out[252]: (True, 2)

Yade [253]: 0.bodies[2].isClump, 0.bodies[2].clumpId
Out[253]: (True, 2)

-> appendClumped() returns a tuple of ids (clumpId, [memberIdl,memberId2,...])
e Use existing spheres and clump them together:

For this case the function clump() can be used. One way to do this is to create a list of bodies, that
should be clumped before using the clump() command:

Yade [254]: bodyList = []

Yade [255]: for ii in range(0,5):
ceea bodyList.append(0.bodies.append(sphere([ii,0,1],.5)))#create a "chain” of 5 spheres

Yade [256]: print bodyList
o, 1, 2, 3, 4]

Yade [257]: idClump=0.bodies.clump(bodyList)

-> clump() returns clumpId

o Another option is to replace standalone spheres from a given packing (see SpherePack and make-
Cloud) by clumps using clump templates.

This is done by a function called replace ByClumps(). This function takes a list of clump Templates() and
a list of amounts and replaces spheres by clumps. The volume of a new clump will be the same as the
volume of the sphere, that was replaced (clump volume/mass/inertia is accounting for overlaps assuming
that there are only pair overlaps).

-> replace ByClumps() returns a list of tuples: [(clumpIdl, [memberIdl,memberId2,...]), (clumpId2, [memberIdl,memt

It is also possible to add bodies to a clump and release bodies from a clump. Also you can erase the
clump (clump members will get standalone spheres).

Additionally YADE supports to achieve the roundness of a clump or roundness coefficient of a packing.
Parts of the packing can be excluded from roundness measurement via exclude list.

Yade [258]: bodyList = []

Yade [259]: for ii in range(1,5):
R bodyList.append(0.bodies.append(sphere([ii,ii,ii],.5)))

Yade [260]: 0.bodies.clump(bodyList)
Out[260]: 4

Yade [261]: RC=0.bodies.getRoundness()

3.1. Scene construction 41

Yade Documentation, Release 1.20.0

Yade [262]: print RC
0.256191414232

-> getRoundness() returns roundness coefficient RC of a packing or a part of the packing

Note: Have a look at examples/clumps/ folder. There you will find some examples, that show usage
of different functions for clumps.

3.1.2 Sphere packings

Representing a solid of an arbitrary shape by arrangement of spheres presents the problem of sphere
packing, i.e. spatial arrangement of sphere such that given solid is approximately filled with them. For
the purposes of DEM simulation, there can be several requirements.

1. Distribution of spheres’ radii. Arbitrary volume can be filled completely with spheres provided
there are no restrictions on their radius; in such case, number of spheres can be infinite and their
radii approach zero. Since both number of particles and minimum sphere radius (via critical
timestep) determine computation cost, radius distribution has to be given mandatorily. The most
typical distribution is uniform: mean-+dispersion; if dispersion is zero, all spheres will have the
same radius.

2. Smooth boundary. Some algorithms treat boundaries in such way that spheres are aligned on them,
making them smoother as surface.

3. Packing density, or the ratio of spheres volume and solid size. It is closely related to radius
distribution.
4. Coordination number, (average) number of contacts per sphere.

5. Isotropy (related to regularity/irregularity); packings with preferred directions are usually not
desirable, unless the modeled solid also has such preference.

6. Permissible Spheres’ overlap; some algorithms might create packing where spheres slightly overlap;
since overlap usually causes forces in DEM, overlap-free packings are sometimes called “stress-free .

Volume representation

There are 2 methods for representing exact volume of the solid in question in Yade: boundary repre-
sentation and constructive solid geometry. Despite their fundamental differences, they are abstracted in
Yade in the Predicate class. Predicate provides the following functionality:

1. defines axis-aligned bounding box for the associated solid (optionally defines oriented bounding
box);

2. can decide whether given point is inside or outside the solid; most predicates can also (exactly or
approximately) tell whether the point is inside and satisfies some given padding distance from the
represented solid boundary (so that sphere of that volume doesn’t stick out of the solid).

Constructive Solid Geometry (CSG)

CSG approach describes volume by geometric primitives or primitive solids (sphere, cylinder, box, cone,
..) and boolean operations on them. Primitives defined in Yade include inCylinder, inSphere, inEllipsoid,
inHyperboloid, notInNotch.

For instance, hyperboloid (dogbone) specimen for tension-compression test can be constructed in this
way (shown at img. img-hyperboloid):

from yade import pack

construct the predicate first
pred=pack.inHyperboloid(centerBottom=(0,0,-.1),centerTop=(0,0,.1) ,radius=.05,skirt=.03)

42 Chapter 3. User’s manual

https://github.com/yade/trunk/blob/master/examples/clumps/

Yade Documentation, Release 1.20.0

alternatively: pack.inHyperboloid((0,0,-.1),(0,0,.1),.05,.03)

pack the predicate with spheres (will be explained later)
spheres=pack.randomDensePack(pred, spheresInCell=2000,radius=3.5e-3)

add spheres to simulation
0.bodies.append (spheres)

Fig. 3.1: Specimen constructed with the pack.inHyperboloid predicate, packed with
pack.randomDensePack.

Boundary representation (BREP)

Representing a solid by its boundary is much more flexible than CSG volumes, but is mostly only ap-
proximate. Yade interfaces to GNU Triangulated Surface Library (GTS) to import surfaces readable by
GTS, but also to construct them explicitly from within simulation scripts. This makes possible para-
metric construction of rather complicated shapes; there are functions to create set of 3d polylines from
2d polyline (pack.revolutionSurfaceMeridians), to triangulate surface between such set of 3d polylines
(pack.sweptPolylines2gtsSurface).

For example, we can construct a simple funnel (examples/funnel.py, shown at img-funnel):

from numpy import linspace
from yade import pack

angles for points on circles
thetas=linspace(0,2+*pi,num=16,endpoint=True)

creates list of polylines in 3d from list of 2d projections

turned from O to T

meridians=pack.revolutionSurfaceMeridians (
[[(3+rad*sin(th),10*rad+rad*cos(th)) for th in thetas] for rad in linspace(l,2,num=10)],
linspace(0,pi,num=10)

create surface
surf=pack.sweptPolylines2gtsSurface (
meridians+
+[[Vector3(5*sin(-th) ,-10+5*cos(-th),30) for th in thetasl]] # add funnel top

add to simulation
0.bodies.append(pack.gtsSurface2Facets (surf))

3.1. Scene construction 43

http://gts.sourceforge.net
https://github.com/yade/trunk/blob/master/examples/funnel.py

Yade Documentation, Release 1.20.0

Fig. 3.2: Triangulated funnel, constructed with the examples/funnel.py script.

GTS surface objects can be used for 2 things:

1. pack.gtsSurface2Facets function can create the triangulated surface (from Fucet particles) in the
simulation itself, as shown in the funnel example. (Triangulated surface can also be imported
directly from a STL file using ymport.stl.)

2. pack.inGtsSurface predicate can be created, using the surface as boundary representation of the
enclosed volume.

The examples/gts-horse/gts-horse.py (img. img-horse) shows both possibilities; first, a GTS surface is
imported:

import gts
surf=gts.read(open('horse.coarse.gts'))

That surface object is used as predicate for packing:

pred=pack.inGtsSurface (surf)
0.bodies.append(pack.regularHexa(pred,radius=radius,gap=radius/4.))

and then, after being translated, as base for triangulated surface in the simulation itself:

surf.translate(0,0,-(aabb[1] [2]-aabb[0] [2]))
0.bodies.append(pack.gtsSurface2Facets (surf,wire=True))

Boolean operations on predicates

Boolean operations on pair of predicates (noted A and B) are defined:
o intersection A & B (conjunction): point must be in both predicates involved.
o union A | B (disjunction): point must be in the first or in the second predicate.

o difference A = B (conjunction with second predicate negated): the point must be in the first
predicate and not in the second one.

o symmetric difference A
predicates.

B (exclusive disjunction): point must be in exactly one of the two

Composed predicates also properly define their bounding box. For example, we can take box and remove
cylinder from inside, using the A - B operation (img. img-predicate-difference):

pred=pack.inAlignedBox((-2,-2,-2),(2,2,2))-pack.inCylinder((0,-2,0),(0,2,0),1)
spheres=pack.randomDensePack (pred, spheresInCell=2000,radius=.1,rRelFuzz=.4)

44 Chapter 3. User’s manual

https://github.com/yade/trunk/blob/master/examples/funnel.py
https://github.com/yade/trunk/blob/master/examples/gts-horse/gts-horse.py

Yade Documentation, Release 1.20.0

Fig. 3.3: Imported GTS surface (horse) used as packing predicate (top) and surface constructed from
facets (bottom). See http://www.youtube.com/watch?v=PZVrullUX1A for movie of this simulation.

Fig. 3.4: Box with cylinder removed from inside, using difference of these two predicates.

3.1. Scene construction 45

http://www.youtube.com/watch?v=PZVruIlUX1A

Yade Documentation, Release 1.20.0

Packing algorithms
Algorithms presented below operate on geometric spheres, defined by their center and radius. With a
few exception documented below, the procedure is as follows:

1. Sphere positions and radii are computed (some functions use volume predicate for this, some do
not)

2. sphere is called for each position and radius computed; it receives extra keyword arguments of the
packing function (i.e. arguments that the packing function doesn’t specify in its definition; they
are noted **kw). Each sphere call creates actual Body objects with Sphere shape. List of Body
objects is returned.

3. List returned from the packing function can be added to simulation using 0.bodies.append.

Taking the example of pierced box:

pred=pack.inAlignedBox((-2,-2,-2),(2,2,2))-pack.inCylinder((0,-2,0),(0,2,0),1)
spheres=pack.randomDensePack (pred, spheresInCell=2000,radius=.1,rRelFuzz=.4,wire=True,color=(0,0,1) ,material=1)

Keyword arguments wire, color and material are not declared in pack.randomDensePack, therefore
will be passed to sphere, where they are also documented. spheres is now list of Body objects, which
we add to the simulation:

0.bodies.append (spheres)

Packing algorithms described below produce dense packings. If one needs loose packing, pack.SpherePack
class provides functions for generating loose packing, via its pack.SpherePack.makeCloud method. It is
used internally for generating initial configuration in dynamic algorithms. For instance:

from yade import pack
sp=pack.SpherePack()
sp.makeCloud (minCorner=(0,0,0) ,maxCorner=(3,3,3) ,rMean=.2,rRelFuzz=.5)

will fill given box with spheres, until no more spheres can be placed. The object can be used to add
spheres to simulation:

’for c,r in sp: 0.bodies.append(sphere(c,r)) ‘

or, in a more pythonic way, with one single 0.bodies.append call:

‘O.bodies.append([sphere(c,r) for c,r in spl) ’

Geometric

Geometric algorithms compute packing without performing dynamic simulation; among their advantages
are

e speed;
o spheres touch exactly, there are no overlaps (what some people call “stress-free” packing);
their chief disadvantage is that radius distribution cannot be prescribed exactly, save in specific cases

(regular packings); sphere radii are given by the algorithm, which already makes the system determined.
If exact radius distribution is important for your problem, consider dynamic algorithms instead.

Regular Yade defines packing generators for spheres with constant radii, which can be used with
volume predicates as described above. They are dense orthogonal packing (pack.reqularOrtho) and dense
hexagonal packing (pack.reqularHeza). The latter creates so-called “hexagonal close packing”, which
achieves maximum density (http://en.wikipedia.org/wiki/Close-packing of spheres).

Clear disadvantage of regular packings is that they have very strong directional preferences, which might
not be an issue in some cases.

46 Chapter 3. User’s manual

http://docs.python.org/glossary.html#term-keyword-argument
http://en.wikipedia.org/wiki/Close-packing_of_spheres

Yade Documentation, Release 1.20.0

Irregular Random geometric algorithms do not integrate at all with volume predicates described
above; rather, they take their own boundary/volume definition, which is used during sphere positioning.
On the other hand, this makes it possible for them to respect boundary in the sense of making spheres
touch it at appropriate places, rather than leaving empty space in-between.

GenGeo is library (python module) for packing generation developed with ESyS-Particle. It creates
packing by random insertion of spheres with given radius range. Inserted spheres touch each other
exactly and, more importantly, they also touch the boundary, if in its neighbourhood. Boundary
is represented as special object of the GenGeo library (Sphere, cylinder, box, convex polyhedron,
...). Therefore, GenGeo cannot be used with volume represented by yade predicates as explained
above.

Packings generated by this module can be imported directly via ymport.gengeo, or from saved file via
ymport.gengeoFile. There is an example script examples/test/genCylLSM.py. Full documentation
for GenGeo can be found at ESyS documentation website.

To our knowledge, the GenGeo library is not currently packaged. It can be downloaded from
current subversion repository

svn checkout https://svn.esscc.uq.edu.au/svn/esys3/1lsm/contrib/LSMGenGeo

then following instruction in the INSTALL file.
Dynamic

The most versatile algorithm for random dense packing is provided by pack.randomDensePack. Initial
loose packing of non-overlapping spheres is generated by randomly placing them in cuboid volume,
with radii given by requested (currently only uniform) radius distribution. When no more spheres can
be inserted, the packing is compressed and then uncompressed (see py/pack/pack.py for exact values
of these “stresses”) by running a DEM simulation; Omega.switchScene is used to not affect existing
simulation). Finally, resulting packing is clipped using provided predicate, as explained above.

By its nature, this method might take relatively long; and there are 2 provisions to make the computation
time shorter:

o If number of spheres using the spheresInCell parameter is specified, only smaller specimen with
periodic boundary is created and then repeated as to fill the predicate. This can provide high-
quality packing with low regularity, depending on the spheresInCell parameter (value of several
thousands is recommended).

e Providing memoizeDb parameter will make pack.randomDensePack first look into provided file
(SQLite database) for packings with similar parameters. On success, the packing is simply read
from database and returned. If there is no similar pre-existent packing, normal procedure is run,
and the result is saved in the database before being returned, so that subsequent calls with same
parameters will return quickly.

If you need to obtain full periodic packing (rather than packing clipped by predicate), you can use
pack.randomPeriPack.

In case of specific needs, you can create packing yourself, “by hand”. For instance, packing boundary
can be constructed from facets, letting randomly positioned spheres in space fall down under gravity.

3.1.3 Triangulated surfaces

Yade integrates with the the GNU Triangulated Surface library, exposed in python via GTS module. GTS
provides variety of functions for surface manipulation (coarsening, tesselation, simplification, import),
to be found in its documentation.

GTS surfaces are geometrical objects, which can be inserted into simulation as set of particles whose
Body.shape is of type Facet — single triangulation elements. pack.gtsSurface2Facets can be used to convert
GTS surface triangulation into list of bodies ready to be inserted into simulation via 0.bodies.append.

3.1. Scene construction 47

http://www.launchpad.net/esys-particle
https://github.com/yade/trunk/blob/master/examples/test/genCylLSM.py
http://esys.esscc.uq.edu.au/docs.html
https://github.com/yade/trunk/blob/master/py/pack/pack.py
http://gts.sourceforge.net

Yade Documentation, Release 1.20.0

Facet particles are created by default as non-Body.dynamic (they have zero inertial mass). That means
that they are fixed in space and will not move if subject to forces. You can however

o prescribe arbitrary movement to facets using a PartialEngine (such as TranslationEngine or Rota-
tionEngine);

e assign explicitly mass and inertia to that particle;

o make that particle part of a clump and assign mass and inertia of the clump itself (described
below).

Note: Facets can only (currently) interact with spheres, not with other facets, even if they are dynamic.
Collision of 2 facets will not create interaction, therefore no forces on facets.

Import

Yade currently offers 3 formats for importing triangulated surfaces from external files, in the ymport
module:

ymport.gts text file in native GTS format.

ymport.stl STereoLitography format, in either text or binary form; exported from Blender, but from
many CAD systems as well.

ymport.gmsh. text file in native format for GMSH, popular open-source meshing program.

If you need to manipulate surfaces before creating list of facets, you can study the py/ymport.py file
where the import functions are defined. They are rather simple in most cases.

Parametric construction

The GTS module provides convenient way of creating surface by vertices, edges and triangles.

Frequently, though, the surface can be conveniently described as surface between polylines in space. For
instance, cylinder is surface between two polygons (closed polylines). The pack.sweptPolylines2gtsSurface
offers the functionality of connecting several polylines with triangulation.

Note: The implementation of pack.sweptPolylines2gtsSurface is rather simplistic: all polylines must be
of the same length, and they are connected with triangles between points following their indices within
each polyline (not by distance). On the other hand, points can be co-incident, if the threshold parameter
is positive: degenerate triangles with vertices closer that threshold are automatically eliminated.

Manipulating lists efficiently (in terms of code length) requires being familiar with list comprehensions
in python.

Another examples can be found in examples/mill.py (fully parametrized) or examples/funnel.py (with
hardcoded numbers).

3.1.4 Creating interactions

In typical cases, interactions are created during simulations as particles collide. This is done by a Collider
detecting approximate contact between particles and then an IGeomFunctor detecting exact collision.

Some material models (such as the concrete model) rely on initial interaction network which is denser
than geometrical contact of spheres: sphere’s radii as “enlarged” by a dimensionless factor called inter-
action radius (or interaction ratio) to create this initial network. This is done typically in this way (see
examples/concrete /uniax.py for an example):

1. Approximate collision detection is adjusted so that approximate contacts are detected also be-
tween particles within the interaction radius. This consists in setting value of Bol Sphere -
Aabb.aabbEnlargeFactor to the interaction radius value.

48 Chapter 3. User’s manual

http://www.blender.org
http://www.geuz.org/gmsh/
https://github.com/yade/trunk/blob/master/py/ymport.py
http://docs.python.org/tutorial/datastructures.html#list-comprehensions
https://github.com/yade/trunk/blob/master/examples/mill.py
https://github.com/yade/trunk/blob/master/examples/funnel.py
https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 1.20.0

2. The geometry functor (Ig2) would normally say that “there is no contact” if given 2 spheres that
are not in contact. Therefore, the same value as for Bol Sphere Aabb.aabbFEnlargeFactor must
be given to it (Ig2 Sphere Sphere ScGeom.interactionDetectionFactor).

Note that only Sphere + Sphere interactions are supported; there is no parameter analogous to
distFactor in Ig2 Facet Sphere_ScGeom. This is on purpose, since the interaction radius is mean-
ingful in bulk material represented by sphere packing, whereas facets usually represent boundary
conditions which should be exempt from this dense interaction network.

3. Run one single step of the simulation so that the initial network is created.
4. Reset interaction radius in both Bol and Ig2 functors to their default value again.

5. Continue the simulation; interactions that are already established will not be deleted (the Law2
functor in usepermitting).

In code, such scenario might look similar to this one (labeling is explained in Labeling things):

intRadius=1.5

0.engines=[
ForceResetter(),
InsertionSortCollider ([
enlarge here
Bol_Sphere_Aabb(aabbEnlargeFactor=intRadius,label='bols"'),
Bol_Facet_Aabb(),

D,
InteractionLoop(
[
enlarge here
Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius,label='ig2ss'),
Ig2_Facet_Sphere_ScGeom(),
1,

[Ip2_CpmMat_CpmMat_CpmPhys()],
[Law2_ScGeom_CpmPhys_Cpm(epsSoft=0)], # deactivated
))
NewtonIntegrator (damping=damping,label='damper'),

run one single step
0.step()

reset interaction radius to the default wvalue
bols.aabbEnlargeFactor=1.0
ig2ss.interactionDetectionFactor=1.0

now continue simulation
0.run()

Individual interactions on demand

It is possible to create an interaction between a pair of particles independently of collision detection using
createInteraction. This function looks for and uses matching Ig2 and Ip2 functors. Interaction will be
created regardless of distance between given particles (by passing a special parameter to the Ig2 functor
to force creation of the interaction even without any geometrical contact). Appropriate constitutive law
should be used to avoid deletion of the interaction at the next simulation step.

Yade [263]: O.materials.append(FrictMat (young=3e10,poisson=.2,density=1000))
Out [263]: O

Yade [264]: 0.bodies.append([
R sphere([0,0,0],1),
R sphere([0,0,1000],1)

3.1. Scene construction 49

Yade Documentation, Release 1.20.0

Out[264]: [0, 1]

only add InteractionLoop, nmo other engines are needed now
Yade [265]: 0.engines=[

e InteractionLoop(

R [Ig2_Sphere_Sphere_ScGeom(),],

..... : [Ip2_FrictMat_FrictMat_FrictPhys()],

e [1 # not needed now

Yade [266]: i=createInteraction(0,1)

created by functors in InteractionLoop
Yade [267]: i.geom, i.phys
Out [267]: (<ScGeom instance at 0x69074d0>, <FrictPhys instance at Oxcce5e50>)

This method will be rather slow if many interaction are to be created (the functor lookup will be repeated
for each of them). In such case, ask on yade-dev@lists.launchpad.net to have the createlnteraction
function accept list of pairs id’s as well.

3.1.5 Base engines
A typical DEM simulation in Yade does at least the following at each step (see Function components for
details):

1. Reset forces from previous step

2. Detect new collisions

3. Handle interactions

4. Apply forces and update positions of particles

Each of these points corresponds to one or several engines:

0.engines=[
ForceResetter(), # reset forces
InsertionSortCollider([...]), # approximate collision detection
InteractionLoop([...],[...],[...]) # handle interactions
NewtonIntegrator () # apply forces and update positions

]

The order of engines is important. In majority of cases, you will put any additional engine after Inter-
actionLoop:

« if it apply force, it should come before NewtonIntegrator, otherwise the force will never be effective.

o if it makes use of bodies’ positions, it should also come before NewtonlIntegrator, otherwise, posi-
tions at the next step will be used (this might not be critical in many cases, such as output for
visualization with VTKRecorder).

The O.engines sequence must be always assigned at once (the reason is in the fact that although engines
themselves are passed by reference, the sequence is copied from c++ to Python or from Python to c++).
This includes modifying an existing 0.engines; therefore

‘O.engines.append(SomeEngine()) # wrong

will not work;

’O.engines=0.engines+[SomeEngine()] # ok

must be used instead. For inserting an engine after position #2 (for example), use python slice notation:

50 Chapter 3. User’s manual

mailto:yade-dev@lists.launchpad.net

Yade Documentation, Release 1.20.0

0.engines=0.engines[:2]+[SomeEngine()]+0.engines[2:]

Note: When Yade starts, O.engines is filled with a reasonable default list, so that it is not strictly
necessary to redefine it when trying simple things. The default scene will handle spheres, boxes, and

facets with frictional properties correctly, and adjusts the timestep dynamically. You can find an example
in simple-scene-default-engines.py.

Functors choice

In the above example, we omited functors, only writing ellipses . .. instead. As explained in Dispatchers
and functors, there are 4 kinds of functors and associated dispatchers. User can choose which ones to
use, though the choice must be consistent.

Bol functors

Bol functors must be chosen depending on the collider in use; they are given directly to the collider
(which internally uses BoundDispatcher).

At this moment (September 2010), the most common choice is InsertionSortCollider, which uses Aabb;
functors creating Aabb must be used in that case. Depending on particle shapes in your simulation,
choose appropriate functors:

0.engines=[...,
InsertionSortCollider([Bol_Sphere_Aabb() ,Bol_Facet_Aabb()]),

]

Using more functors than necessary (such as Bol Facel Aabb if there are no facets in the simulation)
has no performance penalty. On the other hand, missing functors for existing shapes will cause those
bodies to not collider with other bodies (they will freely interpenetrate).

There are other colliders as well, though their usage is only experimental:

o SpatialQuickSortCollider is correctness-reference collider operating on Aabb; it is significantly
slower than InsertionSortCollider.

e PersistentTriangulationCollider only works on spheres; it does not use a BoundDispatcher, as it
operates on spheres directly.

e FlatGridCollider is proof-of-concept grid-based collider, which computes grid positions internally
(no BoundDispatcher either)

Ig2 functors

Ig2 functor choice (all of the derive from IGeomFunctor) depends on

1. shape combinations that should collide; for instance:

InteractionLoop([Ig2_Sphere_Sphere_ScGeom()],[]1,[1)

will handle collisions for Sphere + Sphere, but not for Facet + Sphere — if that is desired, an
additional functor must be used:

InteractionLoop ([
Ig2_Sphere_Sphere_ScGeom(),
Ig2_Facet_Sphere_ScGeom()

1,0,

Again, missing combination will cause given shape combinations to freely interpenetrate one an-
other.

3.1. Scene construction 51

Yade Documentation, Release 1.20.0

2. IGeom type accepted by the Law2 functor (below); it is the first part of functor’s name after Law2
(for instance, Law2 ScGeom_CpmPhys Cpm accepts ScGeom).

Ip2 functors

Ip2 functors (deriving from IPhysFunctor) must be chosen depending on

1. Material combinations within the simulation. In most cases, Ip2 functors handle 2 instances of the
same Material class (such as Ip2_FrictMat_FrictMat_FrictPhys for 2 bodies with FrictMat)

2. IPhys accepted by the constitutive law (Law2 functor), which is the second part of the Law2 functor’s
name (e.g. Law2 ScGeom FrictPhys CundallStrack accepts FrictPhys)

Note: Unlike with Bol and Ig2 functors, unhandled combination of Materials is an error condition
signaled by an exception.

Law2 functor(s)

Law2 functor was the ultimate criterion for the choice of Ig2 and Ip2 functors; there are no restrictions
on its choice in itself, as it only applies forces without creating new objects.

In most simulations, only one Law2 functor will be in use; it is possible, though, to have several of them,
dispatched based on combination of /Geom and IPhys produced previously by Ig2 and Ip2 functors
respectively (in turn based on combination of Shapes and Materials).

Note: As in the case of Ip2 functors, receiving a combination of /Geom and IPhys which is not handled
by any Law2 functor is an error.

Warning: Many Law2 exist in Yade, and new ones can appear at any time. In some cases different
functors are only different implementations of the same contact law (e.g. Law2 ScGeom_ FrictPhys -
CundallStrack and Law2 L3Geom _ FrictPhys FElPerfPl). Also, sometimes, the peculiarity of one
functor may be reproduced as a special case of a more general one. Therefore, for a given constitutive
behavior, the user may have the choice between different functors. It is strongly recommended to
favor the most used and most validated implementation when facing such choice. A list of available
functors classified from mature to unmaintained is updated here to guide this choice.

Examples

Let us give several example of the chain of created and accepted types.

Basic DEM model

Suppose we want to use the Law2 ScGeom_ FrictPhys CundallStrack constitutive law. We see that

1. the Ig2 functors must create ScGeom. If we have for instance spheres and bozes in the simulation,
we will need functors accepting Sphere + Sphere and Box + Sphere combinations. We don’t want
interactions between boxes themselves (as a matter of fact, there is no such functor anyway). That
gives us Ig2 Sphere Sphere_ScGeom and Ig2 Box_Sphere ScGeom.

2. the Ip2 functors should create FrictPhys. Looking at InteractionPhysicsFunctors, there is only
Ip2 FrictMat_FrictMat_FrictPhys. That obliges us to use FrictMat for particles.

The result will be therefore:

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom() ,Ig2_Box_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],

52 Chapter 3. User’s manual

https://yade-dem.org/wiki/ConstitutiveLaws

Yade Documentation, Release 1.20.0

[Law2_ScGeom_FrictPhys_CundallStrack()]

Concrete model

In this case, our goal is to use the Law2 ScGeom__ CpmPhys Cpm constitutive law.

e We use spheres and facets in the simulation, which selects Ig2 functors accepting those types and

producing ScGeom: Ig2 Sphere Sphere ScGeom and 192 Facet Sphere ScGeom.

e We have to use Material which can be used for creating CpmPhys. We find that CpmPhys is

only created by Ip2 CpmMat CpmMat CpmPhys, which determines the choice of CpmMat for
all particles.

Therefore, we will use:

InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom() ,Ig2_Facet_Sphere_ScGeom()],
[Ip2_CpmMat_CpmMat_CpmPhys ()],
[Law2_ScGeom_CpmPhys_Cpm ()]

3.1.6 Imposing conditions

In most simulations, it is not desired that all particles float freely in space. There are several ways of
imposing boundary conditions that block movement of all or some particles with regard to global space.

Motion constraints

e Body.dynamic determines whether a body will be accelerated by NewtonlIntegrator; it is mandatory

to make it false for bodies with zero mass, where applying non-zero force would result in infinite
displacement.

Fucets are case in the point: facet makes them non-dynamic by default, as they have zero volume
and zero mass (this can be changed, by passing dynamic=True to facet or setting Body.dynamic;
setting State.mass to a non-zero value must be done as well). The same is true for wall.

Making sphere non-dynamic is achieved simply by:

b = sphere([x,y,z],radius,dynamic=False)
b.dynamic=True #revert the previous

State.blockedDOFs permits selective blocking of any of 6 degrees of freedom in global space. For
instance, a sphere can be made to move only in the xy plane by saying:

Yade [268]: 0.bodies.append(sphere((0,0,0),1))
Out[268]: 0

Yade [269]: 0.bodies[0].state.blockedDOFs="'zXY'

In contrast to Body.dynamic, blockedDOFs will only block forces (and acceleration)
in selected directions. Actually, b.dynamic=False is mnearly only a shorthand for
b.state.blockedDOFs=='xyzXYZ' . A subtle difference is that the former does reset the velocity
components automaticaly, while the latest does not. If you prescribed linear or angular velocity,
they will be applied regardless of blockedDOFs. 1t also implies that if the velocity is not zero when
degrees of freedom are blocked via blockedDOFs assignements, the body will keep moving at the
velocity it has at the time of blocking. The differences are shown below:

Yade [270]: bl = sphere([0,0,0],1,dynamic=True)

Yade [271]: bl.state.blockedDOFs

3.1.

Scene construction 53

Yade Documentation, Release 1.20.0

Qut[271]: "'
Yade [272]: bl.state.vel = Vector3(1,0,0) #we want it to mowe. ..
Yade [273]: bl.dynamic = False #... at a constant velocity

Yade [274]: print bl.state.blockedDOFs, bl.state.vel
xyzXYZ Vector3(0,0,0)

Yade [275]: # oops, wvelocity has been reset when setting dynamic=False
Yade [276]: bl.state.vel = (1,0,0) # we can still assign it now

Yade [277]: print bl.state.blockedDOFs, bl.state.vel
xyzXYZ Vector3(1,0,0)

Yade [278]: b2 = sphere([0,0,0],1,dynamic=True) #another try
Yade [279]: b2.state.vel = (1,0,0)
Yade [280]: b2.state.blockedDOFs = "xyzXYZ" #this time we assign blockedDOFs directly, velopity is unchang

Yade [281]: print b2.state.blockedDOFs, b2.state.vel
xyzXYZ Vector3(1,0,0)

It might be desirable to constrain motion of some particles constructed from a generated sphere packing,
following some condition, such as being at the bottom of a specimen; this can be done by looping over
all bodies with a conditional:

for b in 0.bodies:
block all particles with z coord below .5:
if b.state.pos[2]<.5: b.dynamic=False

Arbitrary spatial predicates introduced above can be expoited here as well:

from yade import pack

pred=pack.inAlignedBox (lowerCorner,upperCorner)

for b in 0.bodies:
if b.shape.name!=Sphere: continue # skip non-spheres
ask the predicate if we are inside
if pred(b.state.pos,b.shape.radius): b.dynamic=False

Imposing motion and forces

Imposed velocity

If a degree of freedom is blocked and a velocity is assigned along that direction (translational or rotational
velocity), then the body will move at constant velocity. This is the simpler and recommended method
to impose the motion of a body. This, for instance, will result in a constant velocity along x (it can still
be freely accelerated along y and z):

0.bodies.append(sphere((0,0,0),1))
0.bodies[0] .state.blockedDOFs="'x"
0.bodies[0] .state.vel=(10,0,0)

Conversely, modifying the position directly is likely to break Yade’s algorithms, especially those related
to collision detection and contact laws, as they are based on bodies velocities. Therefore, unless you
really know what you are doing, don’t do that for imposing a motion:

0.bodies.append(sphere((0,0,0),1))
0.bodies[0] .state.blockedDOFs="'x"
0.bodies[0] .state.pos=10*0.dt #REALLY BAD! Don't assign position

54 Chapter 3. User’s manual

Yade Documentation, Release 1.20.0

Imposed force

Applying a force or a torque on a body is done via functions of the ForceContainer. It is as simple as
this:

0.forces.addF(0,(1,0,0)) #applies for one step

By default, the force applies for one time step only, and is resetted at the beginning of each step. For this
reason, imposing a force at the begining of one step will have no effect at all, since it will be immediatly
resetted. The only way is to place a PyRunner inside the simulation loop.

Applying the force permanently is possible with an optional argument (in this case it does not matter if
the command comes at the begining of the time step):

0.forces.addF(0,(1,0,0) ,permanent=True) #applies permanently

The force will persist across iterations, until it is overwritten by another call to
0.forces.addF(id,f,True) or erased by O0.forces.reset(resetAll=True). The permanent
force on a body can be checked with 0.forces.permF(id).

Boundary controllers

Engines deriving from BoundaryController impose boundary conditions during simulation, either di-
rectly, or by influencing several bodies. You are referred to their individual documentation for details,
though you might find interesting in particular

e UniaxialStrainer for applying strain along one axis at constant rate; useful for plotting strain-stress
diagrams for uniaxial loading case. See examples/concrete/uniax.py for an example.

o TriaxialStressController which applies prescribed stress/strain along 3 perpendicular axes on
cuboid-shaped packing using 6 walls (Box objects) (ThreeD TriaxzialEngine is generalized such that
it allows independent value of stress along each axis)

e PeriTriaxController for applying stress/strain along 3 axes independently, for simulations using
periodic boundary conditions (Cell)

Field appliers

Engines deriving from FieldApplier acting on all particles. The one most used is GravityEngine applying
uniform acceleration field (GravityEngine is deprecated, use NewtonlIntegrator.gravity instead!).

Partial engines

Engines deriving from PartialEngine define the ids attribute determining bodies which will be affected.
Several of them warrant explicit mention here:

e TranslationEngine and RotationEngine for applying constant speed linear and rotational motion
on subscribers.

o ForceEngine and TorqueEngine applying given values of force/torque on subscribed bodies at every
step.

e StepDisplacer for applying generalized displacement delta at every timestep; designed for precise
control of motion when testing constitutive laws on 2 particles.

The real value of partial engines is if you need to prescribe complex types of force or displacement
fields. For moving a body at constant velocity or for imposing a single force, the methods explained
in Imposing motion and forces are much simpler. There are several interpolating engines (Interpolat-
ingDirectedForce Engine for applying force with varying magnitude, InterpolatingHelizEngine for applying
spiral displacement with varying angular velocity and possibly others); writing a new interpolating engine
is rather simple using examples of those that already exist.

3.1. Scene construction 55

https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 1.20.0

3.1.7 Convenience features
Labeling things

Engines and functors can define that label attribute. Whenever the 0.engines sequence is modified,
python variables of those names are created /update; since it happens in the __builtins__ namespaces,
these names are immediately accessible from anywhere. This was used in Creating interactions to change
interaction radius in multiple functors at once.

Warning: Make sure you do not use label that will overwrite (or shadow) an object that you already
use under that variable name. Take care not to use syntactically wrong names, such as “er*452” or
“my engine”; only variable names permissible in Python can be used.

Simulation tags
Omega.tags is a dictionary (it behaves like a dictionary, although the implementation in c++ is different)
mapping keys to labels. Contrary to regular python dictionaries that you could create,

o 0.tags is saved and loaded with simulation;

o 0.tags has some values pre-initialized.

After Yade startup, 0.tags contains the following:

Yade [282]: dict(0.tags) # convert to real dictionary
Out[282]:
{'author': 'root~(root@lgw0O1-51)',

'd.id': '20151113T141202p14343"',

'id': '20151113T141202p14343"',

'id.d': '20151113T141202p14343"',

'isoTime': '20151113T141202'}

author Real name, username and machine as obtained from your system at simulation creation

id Unique identifier of this Yade instance (or of the instance which created a loaded simulation). It is
composed of date, time and process number. Useful if you run simulations in parallel and want
to avoid overwriting each other’s outputs; embed 0.tags['id'] in output filenames (either as
directory name, or as part of the file’s name itself) to avoid it. This is explained in Separating
oulput files from jobs in detail.

isoTime Time when simulation was created (with second resolution).

d.id, id.d Simulation description and id joined by period (and vice-versa). Description is used in batch
jobs; in non-batch jobs, these tags are identical to id.

You can add your own tags by simply assigning value, with the restriction that the left-hand side object
must be a string and must not contain =.

Yade [283]: O.tags['anythingThat I 1ik3']='whatever'

Yade [284]: 0.tags['anythingThat I 1ik3']
Out [284]: 'whatever'

Saving python variables

Python variable lifetime is limited; in particular, if you save simulation, variables will be lost after
reloading. Yade provides limited support for data persistence for this reason (internally, it uses special
values of 0.tags). The functions in question are saveVars and load Vars.

saveVars takes dictionary (variable names and their values) and a mark (identification string for the
variable set); it saves the dictionary inside the simulation. These variables can be re-created (after the
simulation was loaded from a XML file, for instance) in the yade.params.mark namespace by calling
loadVars with the same identification mark:

56 Chapter 3. User’s manual

Yade Documentation, Release 1.20.0

Yade [285]: a=45; b=pi/3
Yade [286]: saveVars('ab',a=a,b=b)

save simulation (we could save to disk just as well)
Yade [286]: 0.saveTmp()

Yade [288]: 0.loadTmp()
Yade [289]: loadVars('ab')

Yade [290]: yade.params.ab.a
Out [290]: 45

tmport like this
Yade [291]: from yade.params import ab

Yade [292]: ab.a, ab.b
Out [292]: (45, 1.0471975511965976)

also possible
Yade [293]: from yade.params import *

Yade [294]: ab.a, ab.b
Out[294]: (45, 1.0471975511965976)

Enumeration of variables can be tedious if they are many; creating local scope (which is a function
definition in Python, for instance) can help:

def setGeomVars():
radius=a*4
thickness=22
p_t=4/3*pi
dim=Vector3(1.23,2.2,3)
#
define as much as you want here
it all appears in locals() (and nothing else does)
#
saveVars('geom',loadNow=True,**locals())

setGeomVars ()
from yade.params.geom import *
use the wvariables now

Note: Only types that can be pickled can be passed to saveVars.

3.2 Controlling simulation

3.2.1 Tracking variables

Running python code

A special engine PyRunner can be used to periodically call python code, specified via the command
parameter. Periodicity can be controlled by specifying computation time (realPeriod), virutal time
(virtPeriod) or iteration number (iterPeriod).

For instance, to print kinetic energy (using kineticEnergy) every 5 seconds, the following engine will be
put to 0.engines:

3.2. Controlling simulation 57

http://docs.python.org/library/pickle.html

Yade Documentation, Release 1.20.0

PyRunner (command="print 'kinetic energy',kineticEnergy()",realPeriod=5)

For running more complex commands, it is convenient to define an external function and only call it
from within the engine. Since the command is run in the script’s namespace, functions defined within
scripts can be called. Let us print information on interaction between bodies 0 and 1 periodically:

def intrInfo(idil,id2):

try:
i=0.interactions[id1,id2]
assuming i1t is a CpmPhys instance
print id1,id2,i.phys.sigmalN

except:

in case the interaction doesn't exist (yet?)
print "No interaction between",idl,id2
0.engines=[...,
PyRunner (command="intrInfo(0,1)",realPeriod=5)

]

More useful examples will be given below.

The plot module provides simple interface and storage for tracking various data. Although originally
conceived for plotting only, it is widely used for tracking variables in general.

The data are in plot.data dictionary, which maps variable names to list of their values; the plot.addData
function is used to add them.

Yade [295]: from yade import plot

Yade [296]: plot.data

Out [296] :

{'eps': [0.0001, 0.001, nan],
'force': [nan, nan, 1000.0],
'sigma': [12, nan, nan]}

Yade [297]: plot.addData(sigma=12,eps=1le-4)

not adding sigma will add a NalN automatically
this assures all variables have the same number of records
Yade [298]: plot.addData(eps=1e-3)

adds NalNs to already existing sigma and eps columns
Yade [299]: plot.addData(force=1e3)

Yade [300]: plot.data

Out [300] :

{'eps': [0.0001, 0.001, nan, 0.0001, 0.001, nan],
'force': [nan, nan, 1000.0, nan, nan, 1000.0],
'sigma': [12, nan, nan, 12, nan, nan]}

retrieve only one column
Yade [301]: plot.datal'eps']
Out [301]: [0.0001, 0.001, nan, 0.0001, 0.001, nan]

get mazimum eps
Yade [302]: max(plot.datal'eps'])
Out[302]: 0.001

New record is added to all columns at every time plot.addData is called; this assures that lines in different
columns always match. The special value nan or NaN (Not a Number) is inserted to mark the record
invalid.

Note: It is not possible to have two columns with the same name, since data are stored as a dictionary.

58 Chapter 3. User’s manual

http://en.wikipedia.org/wiki/NaN

Yade Documentation, Release 1.20.0

To record data periodically, use PyRunner. This will record the z coordinate and velocity of body #1,
iteration number and simulation time (every 20 iterations):

0.engines=0.engines+[PyRunner (command='myAddData() ', iterPeriod=20)]

from yade import plot
def myAddData():
b=0.bodies[1]
plot.addData(zl=b.state.pos[2], vli=b.state.vel.norm(), i=0.iter, t=0.time)

Note: Arbitrary string can be used as column label for plot.data. If it cannot be used as keyword name
for plot.addData (since it is a python keyword (for), or has spaces inside (my funny column), you can

pass dictionary to plot.addData instead:

plot.addData(z=b.state.pos[2],**{'my funny column':b.state.vel.norm()})

An exception are columns having leading of trailing whitespaces. They are handled specially in plot.plots
and should not be used (see below).

Labels can be conveniently used to access engines in the myAddData function:

0.engines=[...,
UniaxialStrainer(...,label='strainer')

]

def myAddData():
plot.addData(sigma=strainer.avgStress,eps=strainer.strain)

In that case, naturally, the labeled object must define attributes which are used (UniazialStrainer.strain
and UniazialStrainer.avgStress in this case).

Plotting variables

Above, we explained how to track variables by storing them using plot.addData. These data can be
readily used for plotting. Yade provides a simple, quick to use, plotting in the plot module. Naturally,
since direct access to underlying data is possible via plot.data, these data can be processed in any way.

The plot.plots dictionary is a simple specification of plots. Keys are x-axis variable, and values are
tuple of y-axis variables, given as strings that were used for plot.addData; each entry in the dictionary
represents a separate figure:

plot.plots={

et # plot t(i)

"t ('z1','v1') # z1(t) and vi(t)
}

Actual plot using data in plot.data and plot specification of plot.plots can be triggered by invoking the
plot.plot function.

Live updates of plots

Yade features live-updates of figures during calculations. It is controlled by following settings:

e plot.live - By setting yade.plot.live=True you can watch the plot being updated while the cal-
culations run. Set to False otherwise.

e plot.livelnterval - This is the interval in seconds between the plot updates.

e plot.autozoom - When set to True the plot will be automatically rezoomed.

3.2. Controlling simulation 59

Yade Documentation, Release 1.20.0

Controlling line properties

In this subsection let us use a basic complete script like examples/simple-scene/simple-scene-plot.py,

which we will later modify to make the plots prettier. Line of interest from that file is, and generates a
picture presented below:

plot.plots={'i':('t'),'t':('z_sph',None, ('v_sph','go-'),'z_sph_half')}

2.0)) T 3.0
: : e—e Vv sph
: : — z_sph_half
19 25
18 T S] 20 _
: ©
_CI
<
5 : : o3
Ei 1.7 8--\---&8- - &/ \---FBR - b R ETETPEPEPEPPRP 1.5 WI
N 3 3 N
<
o
. m|
! : >
16 - .. lo
15+8 - \@S d0.5
1'6.0 0.5 1.0 1.5 2.8'0
Fig. 3.5: Figure generated by examples/simple-scene/simple-scene-plot.py.
The line plots take an optional second string argument composed of a line color (eg. 'r', 'g' or

'b'), a line style (eg. '-', '-='" or ':') and a line marker ('o', 's' or 'd'). A red dotted line
with circle markers is created with ‘ro:’ argument. For a listing of all options please have a look at
http://matplotlib.sourceforge.net/api/pyplot_ api.html#matplotlib.pyplot.plot

For example using following plot.plots() command, will produce a following graph:

’plot.plots={'i':((‘t','xr:‘),),‘t':(('z_sph','r:'),None,(‘v_sph',‘g——'),(‘z_sph_half','b—.'))} ‘

And this one will produce a following graph:

’plot.plots={'i':((‘t','xr:‘),),‘t':(('z_sph','Hr:‘),None,('v_sph','+g--'),(‘z_sph_ha1f',‘*b-.‘))*

Note: You can learn more in matplotlib tutorial http://matplotlib.sourceforge.net /users/pyplot_ tuto-
rial.html and documentation http://matplotlib.sourceforge.net /users/pyplot_ tutorial.html#controlling-
line-properties

Note: Please note that there is an extra , in 'i': (('t','xr:"'),), otherwise the 'xr:' wouldn’t be
recognized as a line style parameter, but would be treated as an extra data to plot.

60 Chapter 3. User’s manual

https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html#controlling-line-properties
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html#controlling-line-properties

Yade Documentation, Release 1.20.0

3.0
v_sph
z_sph_half
... 25
I I P LT 20
=
©
cI
<
< o
% R Y T"™T™ 1.5 ml
NI N
<
[oX
lnl
>
............... L PP PP PP PPPPPRRRRE 1_0
" “\, 05
i 1 |I\ A
Foaly oy 4
vl g
I

2.8°

Fig. 3.6: Figure generated by changing parameters to plot.plots as above.

3.2. Controlling simulation 61

Yade

Documentation, Release 1.20.0

z_sph

j T 3.0
: + —+ v_sph
* -+ 7 sph_half
.. 25
... 2_0%
: ©
: <
z g
. : o
..... s ml
: : N
: : c
. [oX
| 9,
>

=

it TARTNTARN

:,.nﬂ_ “ e
ooy of
iy
o
(6]

18.0 05 |

Fig. 3.7: Figure generated by changing parameters to plot.plots as above.

62

Chapter 3. User’s manual

Yade Documentation, Release 1.20.0

Controlling text labels

It is possible to use TeX syntax in plot labels. For example using following two lines in examples/simple-
scene/simple-scene-plot.py, will produce a following picture:

plot.plots={'i': (('t','xr:"'),),'t': (('z_sph','r:'),None,('v_sph','g--"'),('z_sph_half','b-."))}

plot.labels={'z_sph':'z_{sph}' , 'v_sph':'v_{sph}' , 'z_sph_half':'$z_{sph}/2$'}
2.0 , , , 3.0
1.9 2.5
1.8 2.0
™~
s
1.7 1.5
& L R
&
=
1.6 1.0
1.5 -40.5

14 80

Fig. 3.8: Figure generated by examples/simple-scene/simple-scene-plot.py, with TeX labels.

Greek letters are simply a 'α', 'β' etc. in those labels. To change the font style a
following command could be used:

yade.plot.matplotlib.rc('mathtext', fontset='stixsans')

But this is not part of yade, but a part of matplotlib, and if you want something more complex you really
should have a look at matplotlib users manual http://matplotlib.sourceforge.net/users/index.html

Multiple figures

Since plot.plots is a dictionary, multiple entries with the same key (x-axis variable) would not be possible,
since they overwrite each other:

Yade [303]: plot.plots={
ireCety),
itz 'vlt)

3.2. Controlling simulation 63

https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
http://matplotlib.sourceforge.net/users/index.html

Yade Documentation, Release 1.20.0

Yade [304]: plot.plots
Out[304]: {'i': ('z1', 'vi')}

You can, however, distinguish them by prepending/appending space to the x-axis variable, which will be
removed automatically when looking for the variable in plot.data — both x-axes will use the i column:

Yade [305]: plot.plots={
cet it (C't,),

e i ':('z1','vl') # note the space in

! !

1

Yade [306]: plot.plots
Out[306]: {'i': ('t',), 'i ': ('z1', 'vi')}

Split y1 y2 axes

To avoid big range differences on the y axis, it is possible to have left and right y axes separate (like
axes x1y2 in gnuplot). This is achieved by inserting None to the plot specifier; variables coming before
will be plot normally (on the left y-axis), while those after will appear on the right:

plot.plots={'i':('z1',None,'vi')}

Exporting

Plots can be exported to external files for later post-processing via that plot.save Gnuplot function. Note
that all data you added via plot.addData is saved - even data that you don’t plot live during simulation.
By editing the generated .gnuplot file you can plot any of the added Data afterwards.

o Data file is saved (compressed using bzip2) separately from the gnuplot file, so any other programs
can be used to process them. In particular, the numpy.genfromtxt (documented here) can be
useful to import those data back to python; the decompression happens automatically.

e The gnuplot file can be run through gnuplot to produce the figure; see plot.save Gnuplot documen-
tation for details.

3.2.2 Stop conditions

For simulations with pre-determined number of steps, number of steps can be prescribed:
absolute iteration number O.stopAtIter=35466 O.run() O.wait()

or

number of tterations to run from now
0.run(35466,True) # wait=True

causes the simulation to run 35466 iterations, then stopping.

Frequently, decisions have to be made based on evolution of the simulation itself, which is not yet known.
In such case, a function checking some specific condition is called periodically; if the condition is satisfied,
0.pause or other functions can be called to stop the stimulation. See documentation for Omega.run,
Omega.pause, Omega.step, Omega.stopAtlter for details.

For simulations that seek static equilibrium, the unbalancedForce can provide a useful metrics (see its
documentation for details); for a desired value of 1e-2 or less, for instance, we can use:

def checkUnbalanced():
if unbalancedForce<le-2: 0.pause()

0.engines=0.engines+[PyRunner (command="checkUnbalanced()",iterPeriod=100)]

64 Chapter 3. User’s manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html

Yade Documentation, Release 1.20.0

this would work as well, without the function defined apart:
PyRunner (command="1if unablancedForce<le-2: 0.pause()",iterPeriod=100)

0.run(); 0.wait()
will continue after O.pause() will have been called

Arbitrary functions can be periodically checked, and they can also use history of variables tracked via
plot.addData. For example, this is a simplified version of damage control in examples/concrete /uniax.py;
it stops when current stress is lower than half of the peak stress:

0.engines=[...,
UniaxialStrainer=(...,label='strainer'),
PyRunner (command="'myAddData() ' ,iterPeriod=100),
PyRunner (command='stopIfDamaged () ',iterPeriod=100)

def myAddData():
plot.addData(t=0.time,eps=strainer.strain,sigma=strainer.stress)

def stopIfDamaged():
currSig=plot.datal['sigma'] [-1] # last sigma value
maxSig=max(plot.datal['sigma']) # maximum sigma value
print something in any case, so that we know what is happening
print plot.datal'eps'][-1],currSig
if currSig<.b*maxSig:
print "Damaged, stopping"
print 'gnuplot',plot.saveGnuplot(O.tags['id'])
import sys
sys.exit (0)

0.run(); 0.wait()
this place is never reached, since we call sys.exit(0) directly

Checkpoints

Occasionally, it is useful to revert to simulation at some past point and continue from it with different
parameters. For instance, tension/compression test will use the same initial state but load it in 2 different
directions. Two functions, Omega.save Tmp and Omega.loadTmp are provided for this purpose; memory
is used as storage medium, which means that saving is faster, and also that the simulation will disappear
when Yade finishes.

0.saveTmp()

do something

0.saveTmp('foo')

0.loadTmp() # loads the first state
0.1loadTmp('foo') # loads the second state

3.2. Controlling simulation 65

https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 1.20.0

Warning: 0.loadTmp cannot be called from inside an engine, since before loading a simulation, the
old one must finish the current iteration; it would lead to deadlock, since 0.loadTmp would wait for
the current iteration to finish, while the current iteration would be blocked on 0.loadTmp.

A special trick must be used: a separate function to be run after the current iteration is defined and
is invoked from an independent thread launched only for that purpose:

0.engines=[...,PyRunner ('myFunc()',iterPeriod=345)]

def myFunc():
if someCondition:
import thread
the () are arguments passed to the function
thread.start_new_thread(afterIterFunc, ())
def afterIterFunc():
0.pause(); 0.wait() # wait till the iteration really finishes
0.loadTmp()

0.saveTmp ()
0.run()

3.2.3 Remote control

Yade can be controlled remotely over network. At yade startup, the following lines appear, among other
messages:

TCP python prompt on localhost:9000, auth cookie “dcekyu'
TCP info provider on localhost:21000

They inform about 2 ports on which connection of 2 different kind is accepted.

Python prompt

TCP python prompt is telnet server with authenticated connection, providing full python command-line.
It listens on port 9000, or higher if already occupied (by another yade instance, for example).

Using the authentication cookie, connection can be made using telnet:

$ telnet localhost 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '7]'.
Enter auth cookie: dcekyu

(connected from 127.0.0.1:40372)
>>>

The python pseudo-prompt >>> lets you write commands to manipulate simulation in variety of ways as
usual. Two things to notice:

1. The new python interpreter (>>>) lives in a namespace separate from Yade [1]: command-line.
For your convenience, from yade import * is run in the new python instance first, but local and
global variables are not accessible (only builtins are).

2. The (fake) >>> interpreter does not have rich interactive feature of IPython, which handles the
usual command-line Yade [1]:; therefore, you will have no command history, ? help and so on.

66 Chapter 3. User’s manual

Yade Documentation, Release 1.20.0

Note: By giving access to python interpreter, full control of the system (including reading user’s files)
is possible. For this reason, connection are only allowed from localhost, not over network remotely.

Of course you can log into the system via SSH over network to get remote access.

Warning: Authentication cookie is trivial to crack via bruteforce attack. Although the listener
stalls for 5 seconds after every failed login attempt (and disconnects), the cookie could be guessed by
trial-and-error during very long simulations on a shared computer.

Info provider

TCP Info provider listens at port 21000 (or higher) and returns some basic information about current
simulation upon connection; the connection terminates immediately afterwards. The information is
python dictionary represented as string (serialized) using standard pickle module.

This functionality is used by the batch system (described below) to be informed about individual sim-
ulation progress and estimated times. If you want to access this information yourself, you can study
core/main/yade-batch.in for details.

3.2.4 Batch queuing and execution (yade-batch)

Yade features light-weight system for running one simulation with different parameters; it handles as-
signment of parameter values to python variables in simulation script, scheduling jobs based on number
of available and required cores and more. The whole batch consists of 2 files:

simulation script regular Yade script, which calls readParamsFromTable to obtain parameters from
parameter table. In order to make the script runnable outside the batch, readParamsFromTable
takes default values of parameters, which might be overridden from the parameter table.

readParamsFrom Table knows which parameter file and which line to read by inspecting the PARAM_-
TABLE environment variable, set by the batch system.

parameter table simple text file, each line representing one parameter set. This file is read by read-
ParamsFromTable (using TableParamReader class), called from simulation script, as explained
above. For better reading of the text file you can make use of tabulators, these will be ignored by
readParamsFromTable. Parameters are not restricted to numerical values. You can also make use
of strings by “quoting” them (* ‘ may also be used instead of ” 7). This can be useful for nominal
parameters.

The batch can be run as

yade-batch parameters.table simulation.py

and it will intelligently run one simulation for each parameter table line. A minimal example is found in
examples/test/batch/params.table and examples/test/batch/sim.py, another example follows.

Example

Suppose we want to study influence of parameters density and initialVelocity on position of a sphere
falling on fixed box. We create parameter table like this:

description density initialVelocity # first non-empty line are column headings
reference 2400 10

hi_v = 20 # = to use value from previous line
lo_v = 5
comments are allowed
hi_rho 5000 10

blank lines as well:

3.2. Controlling simulation 67

http://docs.python.org/library/pickle.html
https://github.com/yade/trunk/blob/master/core/main/yade-batch.in
https://github.com/yade/trunk/blob/master/examples/test/batch/params.table
https://github.com/yade/trunk/blob/master/examples/test/batch/sim.py

Yade Documentation, Release 1.20.0

hi_rho_v = 20
hi_rhO_lo_v 5

Each line give one combination of these 2 parameters and assigns (which is optional) a description of
this simulation.

In the simulation file, we read parameters from table, at the beginning of the script; each parameter has
default value, which is used if not specified in the parameters file:

readParamsFromTable (

gravity=-9.81,

density=2400,

initialVelocity=20,

noTableOk=True # use default wvalues if mot rTun in batch
)
from yade.params.table import *
print gravity, density, initialVelocity

after the call to readParamsFromTable, corresponding python variables are created in the
yade.params.table module and can be readily used in the script, e.g.

GravityEngine(gravity=(0,0,gravity))

Let us see what happens when running the batch:

$ yade-batch batch.table batch.py

Will run ~/usr/local/bin/yade-trunk' on “batch.py' with nice value 10, output redirected to “bat
Will use table “batch.table', with available lines 2, 3, 4, 5, 6, 7.

Will use lines 2 (reference), 3 (hi_v), 4 (lo_v), 5 (hi_rho), 6 (hi_rho_v), 7 (hi_rhO_lo_v).
Master process pid 7030

th.@.log', 4 jo

These lines inform us about general batch information: nice level, log file names, how many cores will be
used (4); table name, and line numbers that contain parameters; finally, which lines will be used; master
PID is useful for killing (stopping) the whole batch with the kill command.

Job summary:

#0 (reference/4): PARAM_TABLE=batch.table:2 DISPLAY= /usr/local/bin/yade-trunk --threads=4 -tnice=10 -x bat
#1 (hi_v/4): PARAM_TABLE=batch.table:3 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --nice$10 -x batch.py
#2 (lo_v/4): PARAM_TABLE=batch.table:4 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --nice$10 -x batch.py
#3 (hi_rho/4): PARAM_TABLE=batch.table:5 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --ni¢e=10 -x batch.
#4 (hi_rho_v/4): PARAM_TABLE=batch.table:6 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --nice=10 -x batc

#5 (hi_rhO_lo_v/4): PARAM_TABLE=batch.table:7 DISPLAY= /usr/local/bin/yade-trunk --threads=4

--nice=10 -x b

displays all jobs with command-lines that will be run for each of them. At this moment, the batch starts
to be run.

#0 (reference/4) started on Tue Apr 13 13:59:32 2010

#0 (reference/4) done (exzit status 0), duration 00:00:01, log batch.reference.log
#1 (hi_v/4) started on Tue Apr 13 13:59:34 2010

#1 (hi_v/4) domne (exit status 0), duration 00:00:01, log batch.hi_v.log

#2 (lo_v/4) started on Tue Apr 13 13:59:35 2010

#2 (lo_v/4) done (exit status 0), duration 00:00:01, log batch.lo_v.log

#3 (hi_rho/4) started on Tue Apr 13 13:59:37 2010

#3 (hi_rho/4) done (exit status 0), duration 00:00:01, log batch.hi_rho.log

#4 (hi_rho_v/4) started on Tue Apr 13 13:59:38 2010

#4 (hi_rho_v/4) done (exit status 0), duration 00:00:01, log batch.hi_rho_v.log
#5 (hi_rh0_lo_v/4) started on Tue Apr 13 13:59:40 2010

#5 (hi_rh0_lo_v/4) done (ezit status 0), duration 00:00:01, log batch.hi_rh0_lo_v.log

information about job status changes is being printed, until:

A1l jobs finished, total time 00:00:08
Log files:
batch.reference.log batch.hi_v.log batch.lo_v.log batch.hi_rho.log batch.hi_rho_v.log batch.hi_rk

10_lo_v.log

Bye.

68 Chapter 3. User’s manual

http://en.wikipedia.org/wiki/Nice_%28Unix%29
http://en.wikipedia.org/wiki/Process_identifier

Yade Documentation, Release 1.20.0

Separating output files from jobs

As one might output data to external files during simulation (using classes such as VTKRecorder), it is
important to name files in such way that they are not overwritten by next (or concurrent) job in the same
batch. A special tag 0.tags['id'] is provided for such purposes: it is comprised of date, time and PID,
which makes it always unique (e.g. 20100413T144723p7625); additional advantage is that alphabetical
order of the id tag is also chronological. To add the used parameter set or the description of the job, if
set, you could add O.tags['params’] to the filename.

For smaller simulations, prepending all output file names with 0.tags['id'] can be sufficient:

saveGnuplot(0.tags['id'])

For larger simulations, it is advisable to create separate directory of that name first, putting all files
inside afterwards:

os.mkdir(0.tags['id'])
0.engines=[

..
VTKRecorder (fileName=0.tags['id']+'/'+'vtk'),
.

]

..

0.saveGnuplot(0.tags['id']+'/'+'graphl')

Controlling parallel computation

Default total number of available cores is determined from /proc/cpuinfo (provided by Linux kernel);
in addition, if OMP_NUM_THREADS environment variable is set, minimum of these two is taken. The
-j/--jobs option can be used to override this number.

By default, each job uses all available cores for itself, which causes jobs to be effectively run in parallel.
Number of cores per job can be globally changed via the --job-threads option.

Table column named !0OMP_NUM_THREADS (! prepended to column generally means to assign environment
variable, rather than python variable) controls number of threads for each job separately, if it exists.

If number of cores for a job exceeds total number of cores, warning is issued and only the total number
of cores is used instead.

Merging gnuplot from individual jobs

Frequently, it is desirable to obtain single figure for all jobs in the batch, for comparison purposes.
Somewhat heiristic way for this functionality is provided by the batch system. yade-batch must be run
with the --gnuplot option, specifying some file name that will be used for the merged figure:

yade-trunk --gnuplot merged.gnuplot batch.table batch.py

Data are collected in usual way during the simulation (using plot.addData) and saved to gnuplot file via
plot.saveGnuplot (it creates 2 files: gnuplot command file and compressed data file). The batch system
scans, once the job is finished, log file for line of the form gnuplot [something]. Therefore, in order to
print this magic line we put:

’print 'gnuplot',plot.saveGnuplot(0.tags['id'])

and the end of the script (even after waitIfBatch()) , which prints:

’gnuplot 20100413T144723p7625.gnuplot

to the output (redirected to log file).
This file itself contains single graph:

3.2. Controlling simulation 69

Yade Documentation, Release 1.20.0

10

| z_sph(y_sph) ——

% IS AN N NS SN SO T i
Y rrr -
7 e .
0 000000000 000000 40 RS ST S -

- :

Q' B

(%)) !

NI :
T e i S S -
4 m,€ ,,, _
B e N -
> A N 1
1 | | I | | | | | |

0 2 4 6 8 10 12 14 16 18 20
y_sph

Fig. 3.9: Figure from single job in the batch.

At the end, the batch system knows about all gnuplot files and tries to merge them together, by assembling
the merged.gnuplot file.

HTTP overview

While job is running, the batch system presents progress via simple HT'TP server running at port 9080,
which can be acessed from regular web browser by requesting the http://localhost:9080 URL. This
page can be accessed remotely over network as well.

3.3 Postprocessing

3.3.1 3d rendering & videos

There are multiple ways to produce a video of simulation:

1. Capture screen output (the 3d rendering window) during the simulation — there are tools available
for that (such as Istanbul or RecordMyDesktop, which are also packaged for most Linux distribu-
tions). The output is “what you see is what you get”, with all the advantages and disadvantages.

2. Periodic frame snapshot using SnapshotEngine (see examples/bulldozer/bulldozer.py for a full ex-
ample):

0.engines=[

#. ..

SnapshotEngine (iterPeriod=100,fileBase="'/tmp/bulldozer-"',viewNo=0,label="'snapshooter")
]

70 Chapter 3. User’s manual

http://live.gnome.org/Istanbul
http://recordmydesktop.sourceforge.net/about.php
https://github.com/yade/trunk/blob/master/examples/bulldozer/bulldozer.py

Yade Documentation, Release 1.20.0

10 = T T T T T
\ : : : reference: z_sph(y_sph) ——
. ‘ : : hi_v: z_sph(y_sph)
9_”‘, ,,,,,,, T lo_v: z_sph(y_sph) -------- h
‘ \] i ; hi_rho: z_sph(y_sph)
LN ‘ ‘ hi_rho_v: z_sph(y_sph)
L\ ; ; hi_rh0_lo_v: z_sph(y_sph)
8| \\ e
71 - .
A\
A\
Y
- 6 5'\\"" .
%l | \\
N ;
5F : '\\' : T
\
\
\'\
4 A .
\
\
\
3+ - \‘\' B
\
| i
2 - - LA -
1 I 1 1 1 1
0 10 20 30 40 50 60

y_sph

Fig. 3.10: Merged figure from all jobs in the batch. Note that labels are prepended by job description
to make lines distinguishable.

3.3. Postprocessing 71

Yade Documentation, Release 1.20.0

Running for 00:10:19, since Tue Apr 13 16:17:11 2010.

Pid 9873

4 slots available, 4 used, 0 free.

Jobs

4 total, 2 running, 1 done

| id || status || info ||s|ots|| command
96.33% done
step 9180/9530 PARAM_TABLE=iParams.table:2 DISPLAY=
_geomType=B 00:10:19 ||avg 14.9596/sec||2 Jusr/locallbin/yade-trunk --threads=2 --nice=10 -x
10267 bodies indent.py > indent._geomType=B.log 2> &1
65506 intrs
PARAM_TABLE=iParams.table:3 DISPLAY=
_geomType=smallA (no info) 2 Jusr/local/bin/yade-trunk --threads=2 --nice=10 -x
indent.py > indent._geomType=smallA.log 2> &1
6.95% done
step 694/9985 PARAM_TABLE=iParams.table:4 DISPLAY=
_geomType=smallB(|00:00:24 ||avg 35.8212/sec||2 Jusr/locallbin/yade-trunk --threads=2 --nice=10 -x
9021 bodies indent.py > indent._geomType=smallB.log 2> &1
58352 intrs
PARAM_TABLE=iParams.table:5 DISPLAY=
_geomType=smallC (no info) 2 Jusr/locallbin/yade-trunk --threads=2 --nice=10 -x
indent.py > indent._geomType=smallC.log 2> &1

Fig. 3.11: Summary page available at port 9080 as batch is processed (updates every 5 seconds auto-
matically). Possible job statuses are pending, running, done, failed.

72

Chapter 3. User’s manual

Yade Documentation, Release 1.20.0

which will save numbered files like /tmp/bulldozer-0000.png. These files can be processed ex-
ternally (with mencoder and similar tools) or directly with the makeVideo:

makeVideo (frameSpec,out,renameNotOverwrite=True,fps=24,kbps=6000,bps=None)

The video is encoded using the default mencoder codec (mpeg4).

3. Specialized post-processing tools, notably Paraview. This is described in more detail in the follow-
ing section.

Paraview

Saving data during the simulation

Paraview is based on the Visualization Toolkit, which defines formats for saving various types of data.
One of them (with the .vtu extension) can be written by a special engine VTKRecorder. It is added to
the simulation loop:

0.engines=[
...
VTKRecorder (iterPeriod=100,recorders=['spheres', 'facets', 'colors'],fileName='/tmp/pl-")

o iterPeriod determines how often to save simulation data (besides iterPeriod, you can also use
virtPeriod or realPeriod). If the period is too high (and data are saved only few times), the video
will have few frames.

e fileName is the prefix for files being saved. In this case, output files will be named
/tmp/pl-spheres.0.vtu and /tmp/pl-facets.0.vtu, where the number is the number of it-
eration; many files are created, putting them in a separate directory is advisable.

o recorders determines what data to save

exporter. VT K Ezporter plays a similar role, with the difference that it is more flexible. It will save any
user defined variable associated to the bodies.

Loading data into Paraview

All sets of files (spheres, facets, ..) must be opened one-by-one in Paraview. The open dialogue
automatically collapses numbered files in one, making it easy to select all of them:

Look in: fempy - © Q

Home Filename

7}
orbit-vaclav
pulse-cCpZoyohzIBC
ssh-nqGvMpl467
virtual-vaclav.eZXPXx
afterO.periodic=False.png
pl-facets...viu

pl-spheres...vtu
periodic-interactions.png

File name: pl-facets...vtu | OK t

Files of type: ParaView Files (*.d3plot *.k *_Isdyna *.pvd *.vtp *.vtu - Cancel

Click on the “Apply” button in the “Object inspector” sub-window to make loaded objects visible. You
can see tree of displayed objects in the “Pipeline browser”:

3.3. Postprocessing 73

http://www.mplayerhq.hu
http://www.paraview.org
http://www.vtk.org

Yade Documentation, Release 1.20.0

File Edit View Sources Filters Animat

B 2 &7 @ solid Color -
EOUOUUR® O =«
Pipeline Browser J

[builtin:

F 7 |~- pl-facets.*
' "§ pl-spheres.*

Object Inspector

Properties Display Information
@ () Reset 3% Delete 2

| X Cell/Point Array Status

® o radi
® o color

74 Chapter 3. User’s manual

Yade Documentation, Release 1.20.0

Rendering spherical particles. Glyphs Spheres will only appear as points. To make them look

as spheres, you have to add “glyph” to the pl-spheres.* item in the pipeline using the icon.
Then set (in the Object inspector)

e “Glyph type” to Sphere
e “Radius” to 1

o “Scale mode” to Scalar (Scalar is set above to be the radii value saved in the file, therefore spheres
with radius 1 will be scaled by their true radius)

e “Set scale factor” to I

« optionally uncheck “Mask points” and “Random mode” (they make some particles not to be ren-
dered for performance reasons, controlled by the “Maximum Number of Points”)

After clicking “Apply”, spheres will appear. They will be rendered over the original white points, which
you can disable by clicking on the eye icon next to pl-spheres.* in the Pipeline browser.

Rendering spherical particles. PointSprite Another opportunity to display spheres is an using
PointSprite plugin. This technique requires much less RAM in comparison to Glyphs.

e “Tools -> Manage Plugins”

e “PointSprite_ Plugin -> Load selected -> Close”

e Load VTU-files

e “Representation -> Point Sprite”

o “Point Sprite -> Scale By -> radii”

o “Edit Radius Transfer Function -> Proportional -> Multiplier = 1.0 -> Close”

Facet transparency If you want to make facet objects transparent, select pl-facets.* in the Pipeline
browser, then go to the Object inspector on the Display tab. Under “Style”, you can set the “Opacity”
value to something smaller than 1.

Animation You can move between frames (snapshots that were saved) via the “Animation” menu.
After setting the view angle, zoom etc to your satisfaction, the animation can be saved with File/Save
animation.

3.3.2 Micro-stress and micro-strain

It is sometimes useful to visualize a DEM simulation through equivalent strain fields or stress fields. This
is possible with Tesselation Wrapper. This class handles the triangulation of spheres in a scene, build
tesselation on request, and give access to computed quantities: volume, porosity and local deformation for
each sphere. The definition of microstrain and microstress is at the scale of particle-centered subdomains
shown below, as explained in [Catalano201ja] .

Micro-strain

Below is an output of the defToVik function visualized with paraview (in this case Yade’s Tessela-
tionWrapper was used to process experimental data obtained on sand by Edward Ando at Grenoble
University, 3SR lab.). The output is visualized with paraview, as explained in the previous section.
Similar results can be generated from simulations:

3.3. Postprocessing 75

Yade Documentation, Release 1.20.0

tt=TriaxialTest ()
tt.generate("test.yade")
0.load("test.yade")
0.run(100,True)
TW=TesselationWrapper ()

TW.triangulate() #compute regular Delaunay triangulation, don’t comnstruct tesselation

TW. computeVolumes () #will silently tesselate the packing, then compute volume of each Voronot
TW.volume (10) #get volume associated to sphere of id 10

TW.setState(0) #store current positions internaly for later use as the "0" state
0.run(100,True) #make particles move a little (let's hope they will!)

TW.setState (1) #store current positions internaly in the "1" (deformed) state

#Now we can define strain by comparing states O and 1, and average them at the particles scale
TW.defToVtk("strain.vtk")

Micro-stress

Stress fields can be generated by combining the volume returned by TesselationWrapper to per-particle
stress given by bodyStressTensors. Since the stress o from bodyStressTensor implies a division by the
volume V4, of the solid particle, one has to re-normalize it in order to obtain the micro-stress as defined
in /Catalano2014a] (equation 39 therein), i.e. o~ = o® x V¥/VE where V¥ is the volume assigned to
particle k in the tesselation. For instance:

#"b" being a body

TW=TesselationWrapper ()

TW. computeVolumes ()

s=bodyStressTensors ()

stress = s[b.id]#**4.*pi/3.*b.shape.radius**3/TW.volume(b.id)

As any other value, the stress can be exported to a vtk file for display in Paraview using ex-
port. VI'KExporter.

76 Chapter 3. User’s manual

cell

Yade Documentation, Release 1.20.0

Strain_davia
0.4785%97

A

b

0.000247

3.4 Python specialties and tricks

3.4.1 Importing Yade in other Python applications

Yade can be imported in other Python applications. To do so, you need somehow to make yade executable
.py extended. The easiest way is to create a symbolic link, i.e. (suppose your Yade executable file is
called “yade-trunk” and you want make it “yadeimport.py”):

$ cd /path/where/you/want/yadeimport
$ 1n -s /path/to/yade/executable/yade-trunk yadeimport.py

Then you need to make your yadeimport.py findable by Python. You can export PYTHONPATH
environment variable, or simply use sys.path directly in Python script:

import sys
sys.path.append('/path/where/you/want/yadeimport')
from yadeimport import *

print Matrix3(1,2,3, 4,5,6, 7,8,9)
print 0O.bodies
any other Yade code

3.5 Extending Yade

e new particle shape

e new constitutive law

3.4. Python specialties and tricks 77

Yade Documentation, Release 1.20.0

3.6 Troubleshooting

3.6.1 Crashes

It is possible that you encounter crash of Yade, i.e. Yade terminates with error message such as

‘Segmentation fault (core dumped)

without further explanation. Frequent causes of such conditions are
e program error in Yade itself;
o fatal condition in your particular simulation (such as impossible dispatch);
e problem with graphics card driver.

Try to reproduce the error (run the same script) with debug-enabled version of Yade. Debugger will
be automatically launched at crash, showing backtrace of the code (in this case, we triggered crash by
hand):

Yade [1]: import os,signal

Yade [2]: os.kill(os.getpid(),signal.SIGSEGV)

SIGSEGV/SIGABRT handler called; gdb batch file is ~/tmp/yade-YwtfRY/tmp-0'
GNU gdb (GDB) 7.1-ubuntu

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

[Thread debugging using libthread_db enabled]

[New Thread 0x7£0fb1268710 (LWP 16471)]

[New Thread 0x7£0fb29£2710 (LWP 16470)]

[New Thread Ox7£0fb31£3710 (LWP 16469)]

What looks as cryptic message is valuable information for developers to locate source of the bug. In
particular, there is (usually) line <signal handler called>; lines below it are source of the bug (at
least very likely so):

Thread 1 (Thread 0x7f0fcee53700 (LWP 16465)):
#0 0x00007f0fcd8f4f7d in __libc_waitpid (pid=16497, stat_loc=<value optimized out>, options=0) at ../sysdeps/u
#1 0x00007£0fcd88c7e9 in do_system (line=<value optimized out>) at ../sysdeps/posix/system.c:149
#2 0x00007f0£cd88cb20 in __libc_system (line=<value optimized out>) at ../sysdeps/posix/system.¢:190
#3 0x00007f0fcdOb4b23 in crashHandler (sig=11) at core/main/pyboot.cpp:45
#4 <signal handler called>

#5 0x00007f0fcd87ed57 in kill () at ../sysdeps/unix/syscall-template.S:82
#6 0x000000000051336d in posix_kill (self=<value optimized out>, args=<value optimized out>) at|../Modules/pos
#7 0x00000000004a7cbe in call_function (f=Frame 0x1c54620, for file <ipython console>, line 1, in <module> (),
#8 PyEval_EvalFrameEx (f=Frame 0x1c54620, for file <ipython console>, line 1, in <module> (), throwflag=<value

If you think this might be error in Yade, file a bug report as explained below. Do not forget to attach full
yade output from terminal, including startup messages and debugger output — select with right mouse
button, with middle button paste the bugreport to a file and attach it. Attach your simulation script as
well.

3.6.2 Reporting bugs

Bugs are general name for defects (functionality shortcomings, misdocumentation, crashes) or feature
requests. They are tracked at http://bugs.launchpad.net/yade.

78 Chapter 3. User’s manual

http://bugs.launchpad.net/yade

Yade Documentation, Release 1.20.0

When reporting a new bug, be as specific as possible; state version of yade you use, system version and
so on, as explained in the above section on crashes.

3.6.3 Getting help
Mailing lists

Yade has two mailing-lists. Both are hosted at http://www.launchpad.net and before posting, you must
register to Launchpad and subscribe to the list by adding yourself to “team” of the same name running
the list.

yade-users@lists.launchpad.net is general help list for Yade users. Add yourself to yade-users team
so that you can post messages. List archive is available.

yade-dev@lists.launchpad.net is for discussions about Yade development; you must be member of
vade-dev team to post. This list is archived as well.

Read How To Ask Questions The Smart Way before posting. Do not forget to state what version of
yade you use (shown when you start yade), what operating system (such as Ubuntu 10.04), and if you
have done any local modifications to source code.

Questions and answers

Launchpad provides interface for giving questions at https://answers.launchpad.net/yade/ which you
can use instead of mailing lists; at the moment, it functionality somewhat overlaps with yade-users, but
has the advantage of tracking whether a particular question has already been answered.

Wiki

http://www.yade-dem.org/wiki/

Private and/or paid support

You might contact developers by their private mail (rather than by mailing list) if you do not want to
disclose details on the mailing list. This is also a suitable method for proposing financial reward for
implementation of a substantial feature that is not yet in Yade — typically, though, we will request this
feature to be part of the public codebase once completed, so that the rest of the community can benefit
from it as well.

3.6. Troubleshooting 79

http://www.launchpad.net
mailto:yade-users@lists.launchpad.net
https://launchpad.net/~yade-users
http://www.mail-archive.com/yade-users@lists.launchpad.net/
mailto:yade-dev@lists.launchpad.net
https://launchpad.net/~yade-dev
http://www.mail-archive.com/yade-dev@lists.launchpad.net/
http://catb.org/~esr/faqs/smart-questions.html
https://answers.launchpad.net/yade/
http://www.yade-dem.org/wiki/

Yade Documentation, Release 1.20.0

80 Chapter 3. User’s manual

Chapter 4

Programmer’s manual

4.1 Build system

Yade uses cmake the cross-platform, open-source build system for managing the build process. It takes
care of configuration, compilation and installation. CMake is used to control the software compilation
process using simple platform and compiler independent configuration files. CMake generates native
makefiles and workspaces that can be used in the compiler environment of your choice.

4.1.1 Building

Yade source tree has the following structure (omiting, doc, examples and scripts which don’t participate
in the build process); we shall call each top-level component module:

core/ ## core simulation building blocks
extra/ ## miscillanea
gui/ ## user interfaces
qt4/ ## graphical user interface based on qt3 and OpenGL
py/ ## python console interface (phased out)
lib/ ## support libraries, not specific to simulations
pkg/ ## simulation-specific files
common/ ## generally useful classes
dem/ ## classes for Discrete Element Method
py/ ## python modules

Header installation

To allow flexibility in source layout, CMAKE will copy (symlink) all headers into flattened structure
within the build directory. First 2 components of the original directory are joind by dash, deeper levels
are discarded (in case of core and extra, only 1 level is used). The following table makes gives a few
examples:

Original header location Included as
core/Scene.hpp <core/Scene.hpp>
lib/base/Logging.hpp <lib-base/Logging.hpp>

lib/serialization/Serializable.hpp | <lib-serialization/Serializable.hpp>
pkg/dem/DataClass/SpherePack.hpp <pkg-dem/SpherePack.hpp>
gui/qt3/QtGUI.hpp <gui-qt3/QtGUI.hpp>

It is advised to use #include<module/Class.hpp> style of inclusion rather than #include"Class.hpp
even if you are in the same directory.

81

http://www.cmake.org/

Yade Documentation, Release 1.20.0

Automatic compilation

In the pkg/ directory, situation is different. In order to maximally ease addition of modules to yade, all
* . cpp files are automatically scanned by CMAKE and considered for compilation. Each file may contain
multiple lines that declare features that are necessary for this file to be compiled:

YADE_REQUIRE_FEATURE(vtk) ;
YADE_REQUIRE_FEATURE (gts) ;

This file will be compiled only if both VTK and GTS features are enabled. Depending on current feature
set, only selection of plugins will be compiled.

It is possible to disable compilation of a file by requiring any non-existent feature, such as:

YADE_REQUIRE_FEATURE(temporarily disabled 345uiysdijkn);

The YADE_REQUIRE_FEATURE macro expands to nothing during actual compilation.

Linking

The order in which modules might depend on each other is given as follows:

mod- resulting shared library dependencies
ule
lib libyade-support.so can depend on external libraries, may not depend on any
other part of Yade.
core libcore.so yade-support; may depend on external libraries.
pkg libplugins.so core, yade-support
gui 1ibQtGUI. so, lib, core, pkg
1ibPythonUI.so
Py (many files) 1ib, core, pkg, external

4.2 Development tools

4.2.1 Integrated Development Environment and other tools

A frequently used IDE is Kdevelop. We recommend using this software for navigating in the sources,
compiling and debugging. Other useful tools for debugging and profiling are Valgrind and KCachegrind.
A series of wiki pages is dedicated to these tools in the development section of the wiki.

4.2.2 Hosting and versioning

The Yade project is kindly hosted at launchpad, which is used for source code, bug tracking, planning,
package downloads and more.

The versioning software used is GIT, for which a short tutorial can be found in Yade on GitHub. GIT
is a distributed revision control system. It is available packaged for all major linux distributions.

The source code is hosted on GitHub , which is periodically imported to Launchpad for building PPA-
packages. The repository can be http-browsed.

4.2.3 Build robot

A build robot hosted at 3SR lab. is tracking souce code changes. Each time a change in the source code
is commited to the main development branch via GIT, the “buildbot” downloads and compiles the new
version, and start a series of tests.

82 Chapter 4. Programmer’s manual

https://yade-dem.org/wiki/Yade#Development
https://launchpad.net/yade/
http://git-scm.com/
https://github.com/yade/
https://github.com/yade/trunk
http://www.3s-r.hmg.inpg.fr/3sr/?lang=en

Yade Documentation, Release 1.20.0

If a compilation error has been introduced, it will be notified to the yade-dev mailing list and to the
commiter, thus helping to fix problems quickly. If the compilation is successfull, the buildbot starts
unit regression tests and “check tests” (see below) and report the results. If all tests are passed, a new
version of the documentation is generated and uploaded to the website in html and pdf formats. As a
consequence, those two links always point to the documentation (the one you are reading now) of the last
successfull build, and the delay between commits and documentation updates are very short (minutes).
The buildbot activity and logs can be browsed online.

4.2.4 Regression tests

Yade contains two types of regression tests, some are unit tests while others are testing more complex
simulations. Altough both types can be considered regression tests, the usage is that we name the first
simply “regression tests”, while the latest are called “check tests”. Both series of tests can be ran at yade
startup by passing the options “test” or “check”

yade —-test
yade --check

Unit regression tests

Unit regression tests are testing the output of individual functors and engines in well defined conditions.
They are defined in the folder py/tests/. The purpose of unit testing is to make sure that the behaviour
of the most important classes remains correct during code development. Since they test classes one by
one, unit tests can’t detect problems coming from the interaction between different engines in a typical
simulation. That is why check tests have been introduced.

Check tests

Check tests perform comparisons of simulation results between different versions of yade, as discussed
here. They differ with regression tests in the sense that they simulate more complex situations and
combinations of different engines, and usually don’t have a mathematical proof (though there is no
restriction on the latest). They compare the values obtained in version N with values obtained in a
previous version or any other “expected” results. The reference values must be hardcoded in the script
itself or in data files provided with the script. Check tests are based on regular yade scripts, so that users
can easily commit their own scripts to trunk in order to get some automatized testing after commits
from other developers.

Since the check tests history will be mostly based on standard output generated by “yade —check”, a
meaningfull checkTest should include some “print” command telling if something went wrong. If the
script itself fails for some reason and can’t generate an output, the log will contain “scriptName failure”.
If the script defines differences on obtained and awaited data, it should print some useful information
about the problem and increase the value of global variable resultStatus. After this occurs, the automatic
test will stop the execution with error message.

An example check test can be found in checkTestTriax.py. It shows results comparison, output, and
how to define the path to data files using “checksPath”. Users are encouraged to add their own scripts
into the scripts/test/checks/ folder. Discussion of some specific checktests design in users question is
welcome. Note that re-compiling is required before that added scripts can be launched by “yade —check”
(or direct changes have to be performed in “lib” subfolders). A check test should never need more than
a few seconds to run. If your typical script needs more, try and reduce the number of element or the
number of steps.

4.3 Conventions

The following rules that should be respected; documentation is treated separately.

e general

4.3. Conventions 83

https://www.yade-dem.org/doc/
https://yade-dem.org/doc/Yade.pdf
https://yade-dem.org/buildbot/
https://github.com/yade/trunk/blob/master/py/tests/
http://www.mail-archive.com/yade-dev@lists.launchpad.net/msg05784.html

Yade Documentation, Release 1.20.0

C++ source files have .hpp and .cpp extensions (for headers and implementation, respec-
tively).

— All header files should have the #pragma once multiple-inclusion guard.

Try to avoid using namespace .. in header files.

— Use tabs for indentation. While this is merely visual in c++, it has semantic meaning in
python; inadverently mixing tabs and spaces can result in syntax errors.

o capitalization style

— Types should be always capitalized. Use CamelCase for composed names (GlobalEngine).
Underscores should be used only in special cases, such as functor names.

— Class data members and methods must not be capitalized, composed names should use use
lowercased camelCase (glutSlices). The same applies for functions in python modules.

— Preprocessor macros are uppercase, separated by underscores; those that are used outside the
core take (with exceptions) the form YADE_*, such as YADE CLASS BASE_DOC_* macro
family.

e programming style
— Be defensive, if it has no significant performance impact. Use assertions abundantly: they

don’t affect performance (in the optimized build) and make spotting error conditions much
easier.

— Use YADE_CAST and YADE_PTR_CAST where you want type-check during debug builds, but fast
casting in optimized build.

— Initialize all class variables in the default constructor. This avoids bugs that may manifest
randomly and are difficult to fix. Initializing with NaN’s will help you find otherwise unitialized
variable. (This is taken care of by YADE CLASS BASE DOC _* macro family macros for
user classes)

4.3.1 Class naming

Although for historial reasons the naming scheme is not completely consistent, these rules should be
obeyed especially when adding a new class.

GlobalEngines and PartialEngines GlobalEngines should be named in a way suggesting that it is
a performer of certain action (like ForceResetter, InsertionSortCollider, Recorder); if this is not
appropriate, append the Engine to the characteristics (GravityEngine). PartialEngines have no
special naming convention different from GlobalEngines.

Dispatchers Names of all dispatchers end in Dispatcher. The name is composed of type it creates or,
in case it doesn’t create any objects, its main characteristics. Currently, the following dispatchers

! are defined:

dispatcher arity dispatch created functor type functor
types type prefix

BoundDis- 1 Shape Bound BoundFunc- | Bol

patcher tor

IGeomDis- 2 2 x Shape IGeom IGeomFunc- | Ig2

patcher (symetric) tor

IPhysDis- 2 2 X IPhys IPhysFunc- Ip2

patcher (symetric) Material tor

LawDispatcher | 2 IGeom (none) LawFunctor | Law2

(asymetric) | IPhys

Respective abstract functors for each dispatchers are BoundFunctor, IGeomFunctor, IPhys-
Functor and LawFunctor.

Functors Functor name is composed of 3 parts, separated by underscore.

1 Not considering OpenGL dispatchers, which might be replaced by regular virtual functions in the future.

84 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

1. prefix, composed of abbreviated functor type and arity (see table above)
2. Types entering the dispatcher logic (1 for unary and 2 for binary functors)

3. Return type for functors that create instances, simple characteristics for functors that don’t
create instances.

To give a few examples:
e Bol Sphere Aabbis a BoundFunctor which is called for Sphere, creating an instance of Aabb.

o 192 Fucet Sphere ScGeom is binary functor called for Fucet and Sphere, creating and instace
of ScGeom.

o Law2_ScGeom_ CpmPhys Cpm is binary functor (LawFunctor) called for types ScGeom
(Geom) and CpmPhys.

4.3.2 Documentation

Documenting code properly is one of the most important aspects of sustained development.
Read it again.

Most code in research software like Yade is not only used, but also read, by developers or even by regular
users. Therefore, when adding new class, always mention the following in the documentation:

e purpose

o details of the functionality, unless obvious (algorithms, internal logic)

o limitations (by design, by implementation), bugs

« bibliographical reference, if using non-trivial published algorithms (see below)

« references to other related classes

e hyperlinks to bugs, blueprints, wiki or mailing list about this particular feature.
As much as it is meaningful, you should also

e update any other documentation affected

e provide a simple python script demonstrating the new functionality in scripts/test.

Sphinx documentation

Most c++ classes are wrapped in Python, which provides good introspection and interactive documen-
tation (try writing Material? in the ipython prompt; or help(CpmState)).

Syntax of documentation is ReST (reStructuredText, see reStructuredText Primer). It is the same for
c++ and python code.

e Documentation of c++ classes exposed to python is given as 3rd argument to YADE CLASS -
BASE_DOC _* macro family introduced below.

o Python classes/functions are documented using regular python docstrings. Besides explaining
functionality, meaning and types of all arguments should also be documented. Short pieces of code
might be very helpful. See the utils module for an example.

In addition to standard ReST syntax, yade provides several shorthand macros:

:yref: creates hyperlink to referenced term, for instance:

:yref: CpmMat "~

becomes CpmMat; link name and target can be different:

:yref: Material used in the CPM model<CpmMat>"

yielding Material used in the CPM model.

4.3. Conventions 85

http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/rest.html

Yade Documentation, Release 1.20.0

:ysrc: creates hyperlink to file within the source tree (to its latest version in the repository), for instance
core/Cell.hpp. Just like with :yref:, alternate text can be used with

:ysrc: Link text<target/file>"

like this.

|ycomp| is used in attribute description for those that should not be provided by the used, but are
auto-computed instead; |ycomp| expands to (auto-computed).

|yupdate| marks attributes that are periodically update, being subset of the previous. |yupdatel|
expands to (auto-updated).

$...$ delimits inline math expressions; they will be replaced by:

’ :math: ...~

and rendered via LaTeX. To write a single dollar sign, escape it with backslash \$.

Displayed mathematics (standalone equations) can be inserted as explained in Math support in
Sphinx.

Bibliographical references

As in any scientific documentation, references to publications are very important. To cite an article,
add it to BibTeX file in doc/references.bib, using the BibTeX format. Please adhere to the following
conventions:

1. Keep entries in the form Author2008 (Author is the first author), Author2008b etc if multiple
articles from one author;

2. Try to fill mandatory fields for given type of citation;

3. Do not use \'{i} funny escapes for accents, since they will not work with the HTML output; put
everything in straight utf-8.

In your docstring, the Author2008 article can be cited by [Author2008] _; for example:

According to [Allen1989]_, the integration scheme ..

will be rendered as

According to [Allen1989], the integration scheme ...

Separate class/function documentation

Some c++ might have long or content-rich documentation, which is rather inconvenient to type in the
c++ source itself as string literals. Yade provides a way to write documentation separately in py/ -
extraDocs.py file: it is executed after loading c++ plugins and can set __doc__ attribute of any object
directly, overwriting docstring from c++. In such (exceptional) cases:

1. Provide at least a brief description of the class in the c4++ code nevertheless, for people only reading
the code.

”

2. Add notice saying “This class is documented in detail in the py/ extraDocs.py file

3. Add documentation to py/ etraDocs.py in this way:

module.YourClass.__doc__='""
This is the docstring for YourClass.

Class, methods and functions can be documented this way.

. note:: It can use any syntax features you like.

86 Chapter 4. Programmer’s manual

https://github.com/yade/trunk/blob/master/core/Cell.hpp
https://github.com/yade/trunk/blob/master/core/Cell.hpp
http://sphinx.pocoo.org/ext/math.html
http://sphinx.pocoo.org/ext/math.html
https://github.com/yade/trunk/blob/master/doc/references.bib
http://en.wikipedia.org/wiki/Bibtex#Entry_Types
https://github.com/yade/trunk/blob/master/py/_extraDocs.py
https://github.com/yade/trunk/blob/master/py/_extraDocs.py
https://github.com/yade/trunk/blob/master/py/_extraDocs.py
https://github.com/yade/trunk/blob/master/py/_etraDocs.py

Yade Documentation, Release 1.20.0

Note: Boost::python embeds function signatures in the docstring (before the one provided by the user).
Therefore, before creating separate documentation of your function, have a look at its __doc__ attribute

and copy the first line (and the blank lie afterwards) in the separate docstring. The first line is then
used to create the function signature (arguments and return value).

Internal c++ documentation

doxygen was used for automatic generation of c++ code. Since user-visible classes are defined with
sphinx now, it is not meaningful to use doxygen to generate overall documentation. However, take
care to document well internal parts of code using regular comments, including public and private data
members.

4.4 Support framework

Besides the framework provided by the c++ standard library (including STL), boost and other depen-
dencies, yade provides its own specific services.

4.4.1 Pointers

Shared pointers

Yade makes extensive use of shared pointers shared_ptr. ? Although it probably has some performance
impacts, it greatly simplifies memory management, ownership management of c++ objects in python
and so forth. To obtain raw pointer from a shared_ptr, use its get () method; raw pointers should be
used in case the object will be used only for short time (during a function call, for instance) and not
stored anywhere.

Python defines thin wrappers for most c++ Yade classes (for all those registered with YADE CLASS -
BASE DOC _* macro family and several others), which can be constructed from shared_ptr; in this
way, Python reference counting blends with the shared_ptr reference counting model, preventing crashes
due to python objects pointing to c++ objects that were destructed in the meantime.

Typecasting

Frequently, pointers have to be typecast; there is choice between static and dynamic casting.

e dynamic_cast (dynamic_pointer_cast for a shared_ptr) assures cast admissibility by checking
runtime type of its argument and returns NULL if the cast is invalid; such check obviously costs
time. Invalid cast is easily caught by checking whether the pointer is NULL or not; even if such
check (e.g. assert) is absent, dereferencing NULL pointer is easily spotted from the stacktrace
(debugger output) after crash. Moreover, shared_ptr checks that the pointer is non-NULL before
dereferencing in debug build and aborts with “Assertion ‘px!=0’ failed.” if the check fails.

o static_cast is fast but potentially dangerous (static_pointer_cast for shared_ptr). Static
cast will return non-NULL pointer even if types don’t allow the cast (such as casting from State*
to Materialx*); the consequence of such cast is interpreting garbage data as instance of the class
cast to, leading very likely to invalid memory access (segmentation fault, “crash” for short).

To have both speed and safety, Yade provides 2 macros:
YADE_CAST expands to static_cast in optimized builds and to dynamic_cast in debug builds.

YADE_PTR_CAST expands to static_pointer_cast in optimized builds and to dynamic_pointer_cast
in debug builds.

2 Either boost: :shared_ptr or trl::shared_ptr is used, but it is always imported with the using statement so that
unqualified shared_ptr can be used.

4.4. Support framework 87

http://www.doxygen.org

Yade Documentation, Release 1.20.0

4.4.2 Basic numerics

The floating point type to use in Yade Real, which is by default typedef for double. *

Yade uses the Eigen library for computations. It provides classes for 2d and 3d vectors, quaternions and
3x3 matrices templated by number type; their specialization for the Real type are typedef’ed with the
“r” suffix, and occasionally useful integer types with the “i” suffix:
e Vector2r, Vector2i

e Vector3r, Vector3di

e Quaternionr

e Matrix3r

Yade additionally defines a class named Sedr, which contains spatial position (Vector3r
Se3r::position) and orientation (Quaternionr Se3r::orientation), since they are frequently used
one with another, and it is convenient to pass them as single parameter to functions.

Eigen provides full rich linear algebra functionality. Some code firther uses the /cgal/ library for compu-
tational geometry.

In Python, basic numeric types are wrapped and imported from the minieigen module; the types drop
the r type qualifier at the end, the syntax is otherwise similar. Se3r is not wrapped at all, only converted
automatically, rarely as it is needed, from/to a (Vector3,Quaternion) tuple/list.

cross product
Yade [116]: Vector3(1,2,3).cross(Vector3(0,0,1))
OQut[116]: Vector3(2,-1,0)

construct quaternion from azis and angle
Yade [117]: Quaternion(Vector3(0,0,1),pi/2)
Out[117]: Quaternion((0,0,1),1.5707963267948966)

Note: Quaternions are internally stored as 4 numbers. Their usual human-readable representation
is, however, (normalized) axis and angle of rotation around that axis, and it is also how they are

input/output in Python. Raw internal values can be accessed using the [0] .. [3] element access (or
WO, X0, .YO and .Z() methods), in both ¢++ and Python.

4.4.3 Run-time type identification (RTTI)

Since serialization and dispatchers need extended type and inheritance information, which is not suffi-
ciently provided by standard RTTI. Each yade class is therefore derived from Factorable and it must
use macro to override its virtual functions providing this extended RTTT:

YADE_CLASS_BASE_DOC(Foo,Bar Baz,"Docstring) creates the following virtual methods (mediated via
the REGISTER_CLASS_AND_BASE macro, which is not user-visible and should not be used directly):

e std::string getClassName() returning class name (Foo) as string. (There is the
typeid(instanceOrType) .name () standard c++ construct, but the name returned is compiler-
dependent.)

o unsigned getBaseClassNumber () returning number of base classes (in this case, 2).

e std::string getBaseClassName(unsigned i=0) returning name of i-th base class (here, Bar for
i=0 and Baz for i=1).

3 Historically, it was thought that Yade could be also run with single precision based on build-time parameter; it turned
out however that the impact on numerical stability was such disastrous that this option is not available now. There is,
however, QUAD_PRECISION parameter to scons, which will make Real a typedef for long double (extended precision; quad
precision in the proper sense on IA64 processors); this option is experimental and is unlikely to be used in near future,
though.

88 Chapter 4. Programmer’s manual

http://eigen.tuxfamily.org

Yade Documentation, Release 1.20.0

Warning: RTTI relies on virtual functions; in order for virtual functions to work, at least one virtual
method must be present in the implementation (.cpp) file. Otherwise, virtual method table (vtable)
will not be generated for this class by the compiler, preventing virtual methods from functioning

properly.

Some RTTI information can be accessed from python:

Yade [118]: yade.system.childClasses('Shape')

Out [118]:

{'Box',
'ChainedCylinder’,
'Clump’,
'Cylinder’',
'Facet',
'GridConnection',
'GridNode',
'Polyhedra’,
'Sphere',

'Tetra’',
'Wall'}

Yade [119]: Sphere() .name ## getClassName ()

AttributeError Traceback (most recent call last)
/build/yade-peqlpu/yade-1.20.0/debian/tmp/usr/1ib/x86_64-1linux-gnu/yade/py/yade/__init__.pyc in S
----> 1 Sphere() .name ## getClassName ()

AttributeError: 'Sphere' object has no attribute 'name'

tmodule> ()

4.4.4 Serialization
Serialization serves to save simulation to file and restore it later. This process has several necessary
conditions:

o classes know which attributes (data members) they have and what are their names (as strings);

e creating class instances based solely on its name;

o knowing what classes are defined inside a particular shared library (plugin).

This functionality is provided by 3 macros and 4 optional methods; details are provided below.

Serializable: :preload, Serializable: :preSave, Serializable: :postLoad, Serializable: :postSave

Prepare attributes before serialization (saving) or deserialization (loading) or process them after
serialization or deserialization.

See Attribute registration.

YADE_CLASS_BASE_DOC_* Inside the class declaration (i.e. in the .hpp file within the class Foo { /*
. */}; block). See Attribute registration.

Enumerate class attributes that should be saved and loaded; associate each attribute with its literal
name, which can be used to retrieve it. See YADE CLASS _BASE_DOC_* macro family.

Additionally documents the class in python, adds methods for attribute access from python, and
documents each attribute.

REGISTER_SERIALIZABLE In header file, but after the class declaration block. See Class factory.
Associate literal name of the class with functions that will create its new instance (ClassFactory).
YADE_PLUGIN In the implementation .cpp file. See Plugin registration.

Declare what classes are declared inside a particular plugin at time the plugin is being loaded (yade
startup).

4.4. Support framework 89

Yade Documentation, Release 1.20.0

Attribute registration

All (serializable) types in Yade are one of the following:

o Type deriving from Serializable, which provide information on how to serialize themselves via over-
riding the Serializable::registerAttributes method; it declares data members that should
be serialzed along with their literal names, by which they are identified. This method then invokes
registerAttributes of its base class (until Serializable itself is reached); in this way, derived
classes properly serialize data of their base classes.

This funcionality is hidden behind the macro YADE CLASS BASE_DOC_* macro family used
in class declaration body (header file), which takes base class and list of attributes:

YADE_CLASS_BASE_DOC_ATTRS(ThisClass,BaseClass, "class documentation", ((typel,attributel, init}laluel ,,"Docume

Note that attributes are encodes in double parentheses, mnot separated by com-
mas. Empty attribute list can be given simply by YADE_CLASS_BASE_DOC_-
ATTRS(ThisClass,BaseClass, "documentation",) (the last comma is mandatory), or by
omiting ATTRS from macro name and last parameter altogether.

o Fundamental type: strings, various number types, booleans, Vector3r and others. Their “handlers”
(serializers and deserializers) are defined in 1ib/serialization.

o Standard container of any serializable objects.
e Shared pointer to serializable object.

Yade uses the excellent boost::serialization library internally for serialization of data.

Note: YADE_CLASS_BASE_DOC_ATTRS also generates code for attribute access from python; this will
be discussed later. Since this macro serves both purposes, the consequence is that attributes that are

serialized can always be accessed from python.

Yade also provides callback for before/after (de) serialization, virtual functions Serial-
izable::preProcessAttributes and Serializable::postProcessAttributes, which receive one bool
deserializing argument (true when deserializing, false when serializing). Their default im-
plementation in Serializable doesn’t do anything, but their typical use is:

o converting some non-serializable internal data structure of the class (such as multi-dimensional
array, hash table, array of pointers) into a serializable one (pre-processing) and fill this non-
serializable structure back after deserialization (post-processing); for instance, InteractionCon-
tainer uses these hooks to ask its concrete implementation to store its contents to a unified storage
(vector<shared_ptr<Interaction> >) before serialization and to restore from it after deserial-
ization.

o precomputing non-serialized attributes from the serialized values; e.g. Fucet computes its (local)
edge normals and edge lengths from vertices’ coordinates.

Class factory

Each serializable class must use REGISTER_SERIALIZABLE, which defines function to create that class by
ClassFactory. ClassFactory is able to instantiate a class given its name (as string), which is necessary
for deserialization.

Although mostly used internally by the serialization framework, programmer can ask for a class instanti-
ation using shared_ptr<Factorable> f=ClassFactory::instance().createShared("ClassName");,
casting the returned shared_ptr<Factorable> to desired type afterwards. Serializable itself derives
from Factorable, i.e. all serializable types are also factorable (It is possible that different mechanism
will be in place if boost::serialization is used, though.)

90 Chapter 4. Programmer’s manual

http://www.boost.org/doc/libs/release/libs/serialization/

Yade Documentation, Release 1.20.0

Plugin registration

Yade loads dynamic libraries containing all its functionality at startup. ClassFactory must be taught
about classes each particular file provides. YADE_PLUGIN serves this purpose and, contrary to YADE -
CLASS BASE _DOC_* macro family, must be place in the implementation (.cpp) file. It simple enu-
merates classes that are provided by this file:

‘YADE_PLUGIN((ClassFoo)(ClassBar));

Note: You must use parentheses around the class name even if there is only one (preprocessor limita-
tion): YADE_PLUGIN((classFoo)) ;. If there is no class in this file, do not use this macro at all.

Internally, this macro creates function registerThisPluginClasses_ declared specially as __-
attribute__((constructor)) (see GCC Function Attributes); this attributes makes the function being
executed when the plugin is loaded via dlopen from ClassFactory::load(...). It registers all fac-
torable classes from that file in the Class factory.

Note: Classes that do not derive from Factorable, such as Shop or SpherePack, are not declared with
YADE_PLUGIN.

This is an example of a serializable class header:

/*! Homogeneous gravity field; applies gravityxmass force on all bodies. */
class GravityEngine: public GlobalEnginef{
public:
virtual void action();
// registering class and its base for the RTTI system
YADE_CLASS_BASE_DOC_ATTRS (GravityEngine,GlobalEngine,
// documentation visible from python and generated reference documentation
"Homogeneous gravity field; applies gravityxmass force on all bodies.",
// enumerating attributes here, include documentation
((Vector3r,gravity,Vector3r: :ZERO, "acceleration, zero by default [kgms 2]"))
)5
};
// registration function for ClassFactory
REGISTER_SERIALIZABLE(GravityEngine) ;

and this is the implementation:

#include<pkg-common/GravityEngine. hpp>
#include<core/Scene.hpp>

// registering the plugin
YADE_PLUGIN((GravityEngine)) ;

void GravityEngine::action(){
/* do the work here */
}

We can create a mini-simulation (with only one GravityEngine):

Yade [120]: 0.engines=[GravityEngine(gravity=Vector3(0,0,-9.81))]

Yade [121]: O.save('abc.xml')

and the XML looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes" 2>

<!DOCTYPE boost_serialization>

<boost_serialization signature="serialization::archive" version="12">
<scene class_id="0" tracking_level="0" version="1">

4.4. Support framework 91

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

Yade Documentation, Release 1.20.0

<px class_id="1" tracking_level="1" version="0" object_id="_0">
<Serializable class_id="2" tracking_level="1" version="0" object_id="_1"></Serial
<dt>1.00000000000000002e-08</dt>
<iter>0</iter>
<subStepping>0</subStepping>
<subStep>-1</subStep>
<time>0.00000000000000000e+00</time>
<speed>0.00000000000000000e+00</speed>
<stopAtIter>0</stopAtIter>
<stopAtTime>0.00000000000000000e+00</stopAtTime>
<isPeriodic>0</isPeriodic>
<trackEnergy>0</trackEnergy>
<doSort>0</doSort>
<runInternalConsistencyChecks>1</runInternalConsistencyChecks>
<selectedBody>-1</selectedBody>

<flags>0</flags>
<tags class_id="3" tracking_level="0" version="0">
<count>5</count>

<item_version>0</item_version>
<item>author=root~(root@lgw01-51)</item>
<item>isoTime=20151113T141158</item>
<item>id=20151113T141158p14343</item>
<item>d.id=20151113T141158p14343</item>
<item>id.d=20151113T141158p14343</item>
</tags>
<engines class_id="4" tracking_level="0" version="0">
<count>1</count>
<item_version>1</item_version>
<item class_id="5" tracking_level="0" version="1">
<px class_id="7" class_name="GravityEngine" tracking_level="1" vg
<FieldApplier class_id="8" tracking_level="1" version="0!
<GlobalEngine class_id="9" tracking_level="1" vex
<Engine class_id="6" tracking_level="1" \y

<Serializable object_id="_6"></Sg¢
<dead>0</dead>
<ompThreads>-1</ompThreads>
<label></label>
</Engine>
</GlobalEngine>
</FieldApplier>

<gravity class_id="10" tracking_level="0" version="0">
<x>0.00000000000000000e+00</x>
<y>0.00000000000000000e+00</y>
<z>-9.81000000000000050e+00</z>

</gravity>
<mask>0</mask>
<warnOnce>1</warnOnce>
</px>
</item>
</engines>
<_nextEngines>
<count>0</count>

<item_version>1</item_version>
</_nextEngines>
<bodies class_id="11" tracking_level="0" version="1">
<px class_id="12" tracking_level="1" version="0" object_id="_7">
<Serializable object_id="_8"></Serializable>
<body class_id="13" tracking_level="0" version="0">
<count>0</count>
<item_version>1</item_version>
</body>
</px>
</bodies>

lizable>

ersion="0" obje
object_id="_3
rsion="0" objec
yersion="0" obj
erializable>

92 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

<interactions class_id="14" tracking_level="0" version="1">
<px class_id="15" tracking_level="1" version="0" object_id="_9">
<Serializable object_id="_10"></Serializable>
<interaction class_id="16" tracking_ level="0" version="0">

<count>0</count>
<item_version>1</item_version>
</interaction>
<serializeSorted>0</serializeSorted>
<dirty>1</dirty>
</px>
</interactions>

<energy class_id="17" tracking_level="0" version="1">
<px class_id="18" tracking_level="1" version="0" object_id="_11">
<Serializable object_id="_12"></Serializable>
<energies class_id="19" tracking_level="0" version="0">

<size>0</size>
</energies>
<names class_id="20" tracking_level="0" version="0">
<count>0</count>
<item_version>0</item_version>
</names>
<resetStep>
<count>0</count>
</resetStep>
</px>
</energy>
<materials class_id="22" tracking_level="0" version="0">
<count>0</count>
<item_version>1</item_version>
</materials>

<bound class_id="23" tracking_level="0" version="1">
<px class_id="-1"></px>
</bound>
<cell class_id="25" tracking_level="0" version="1">
<px class_id="26" tracking_level="1" version="0" object_id="_13">
<Serializable object_id="_14"></Serializable>
<trsf class_id="27" tracking_level="0" version="0">
<m00>1.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>1.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>1.00000000000000000e+00</m22>
</trsf>
<refHSize>
<m00>1.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>1.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>1.00000000000000000e+00</m22>
</refHSize>
<hSize>
<m00>1.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>

4.4. Support framework 93

Yade Documentation, Release 1.20.0

<m11>1.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>1.00000000000000000e+00</m22>
</hSize>
<prevHSize>
<m00>1.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>1.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>1.00000000000000000e+00</m22>
</prevHSize>
<velGrad>
<m00>0.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>0.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>0.00000000000000000e+00</m22>
</velGrad>
<nextVelGrad>
<m00>0.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>0.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>0.00000000000000000e+00</m22>
</nextVelGrad>
<prevVelGrad>
<m00>0.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>0.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>0.00000000000000000e+00</m22>
</prevVelGrad>
<homoDeform>2</homoDeform>
<velGradChanged>0</velGradChanged>
</px>
</cell>
<miscParams class_id="28" tracking_level="0" version="0">
<count>0</count>
<item_version>1</item_version>
</miscParams>
<dispParams class_id="29" tracking_level="0" version="0">
<count>0</count>
<item_version>1</item_version>
</dispParams>
</px>

94 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

</scene>
</boost_serialization>

Warning: Since XML files closely reflect implementation details of Yade, they will not be compatible
between different versions. Use them only for short-term saving of scenes. Python is the high-level
description Yade uses.

Python attribute access

The macro YADE CLASS BASE _DOC _* macro family introduced above is (behind the scenes) also
used to create functions for accessing attributes from Python. As already noted, set of serialized at-
tributes and set of attributes accessible from Python are identical. Besides attribute access, these
wrapper classes imitate also some functionality of regular python dictionaries:

Yade [122]: s=Sphere()

Yade [123]: s.radius ## read-access
Out[123]: nan

Yade [124]: s.radius=4. ## write access

Yade [125]: s.dict().keysQ) ## show all available keys
Out[125]: ['color', 'highlight', 'wire', 'radius']

Yade [126]: for k in s.dict() .keys(): print s.dict() [k] ## <terate over keys, print their value
Vector3(1,1,1)

False

False

4.0

Yade [127]: s.dict()['radius'] ## same as: 'radius’' in s.keys()
Out [127]: 4.0

Yade [128]: s.dict() ## show dictionary of both attributes and values
Out[128]: {'color': Vector3(1,1,1), 'highlight': False, 'radius': 4.0, 'wire': False}

4.4.5 YADE_CLASS_BASE_DOC_* macro family

There is several macros that hide behind them the functionality of Sphinxz documentation, Run-time type
identification (RTTI), Attribute registration, Python attribute access, plus automatic attribute initializa-
tion and documentation. They are all defined as shorthands for base macro YADE_CLASS_BASE_DOC_-
ATTRS_INIT_CTOR_PY with some arguments left out. They must be placed in class declaration’s body

(.hpp file):

#define YADE_CLASS_BASE_DOC(klass,base,doc) \
YADE_CLASS_BASE_DOC_ATTRS (klass, base, doc,)

#define YADE_CLASS_BASE_DOC_ATTRS(klass,base,doc,attrs) \
YADE_CLASS_BASE_DOC_ATTRS_CTOR (klass,base,doc,attrs,)

#define YADE_CLASS_BASE_DOC_ATTRS_CTOR(klass,base,doc,attrs,ctor) \
YADE_CLASS_BASE DOC_ATTRS_CTOR_PY(klass,base,doc,attrs,ctor,)

#define YADE_CLASS_BASE_DOC_ATTRS_CTOR_PY(klass,base,doc,attrs,ctor,py) \
YADE_CLASS_BASE_DOC_ATTRS_INIT CTOR_PY(klass,base,doc,attrs,,ctor,py)

#define YADE_CLASS_BASE_DOC_ATTRS_INIT_ CTOR_PY(klass,base,doc,attrs,init,ctor,py) \
YADE_CLASS_BASE_DOC_ATTRS_INIT_ CTOR_PY(klass,base,doc,attrs,inits,ctor,py)

Expected parameters are indicated by macro name components separated with underscores. Their mean-
ing is as follows:

klass (unquoted) name of this class (used for RT'TI and python)

4.4. Support framework 95

Yade Documentation, Release 1.20.0

base (unquoted) name of the base class (used for RTTI and python)

doc docstring of this class, written in the ReST syntax. This docstring will appear in generated docu-
mentation (such as CpmMat). It can be as long as necessary, but sequences interpreted by c++
compiler must be properly escaped (therefore some backslashes must be doubled, like in o = €E:

":math: \\sigma=\\epsilon E"

Use \n and \t for indentation inside the docstring. Hyperlink the documentation abundantly with
yref (all references to other classes should be hyperlinks).

See Sphinx documentation for syntax details.

attrs Attribute must be written in the form of parethesized list:

((typel,attrl,initValuel,attrFlags,"Attribute 1 documentation"))
((type2,attr2,,,"Attribute 2 documentation")) // initValue and attrFlags unspecified

This will expand to

1. data members declaration in c++ (note that all attributes are public):

public: typel attri;
type2 attr2;

2. Initializers of the default (argument-less) constructor, for attributes that have non-empty
initValue:

Klass(): attri(initValuel), attr2() { /* comstructor body */ }

No initial value will be assigned for attribute of which initial value is left empty (as
is for attr2 in the above example). Note that you still have to write the commas.

3. Registration of the attribute in the serialization system (unless disabled by attrFlags — see
below)

4. Registration of the attribute in python (unless disabled by attrFlags), so that it can be accesse
The attribute is read-write by default, see attrFlags to change that.

This attribute will carry the docstring provided, along with knowledge of the initial value.
You can add text description to the default value using the comma operator of c++ and
casting the char* to (void):

((Real,dmgTau, ((void) "deactivated if negative",-1),,"Characteristic time for normal viscosity. [s

leading to CpmMat::dmgTau.

The attribute is registered via boost: :python: :add_property specifying return_by_-
value policy rather than return_internal_reference, which is the default when using
def_readwrite. The reason is that we need to honor custom converters for those values;
see note in Custom converters for details.

Attribute flags

By default, an attribute will be serialized and will be read-write from python. There is a number
of flags that can be passed as the 4th argument (empty by default) to change that:

e Attr::noSave avoids serialization of the attribute (while still keeping its accessibility from
Python)

e Attr::readonly makes the attribute read-only from Python

e Attr::triggerPostLoad will trigger call to postLoad function to handle attribute change
after its value is set from Python; this is to ensure consistency of other precomputed data
which depend on this value (such as Cell.trsf and such)

e Attr::hidden will not expose the attribute to Python at all

96 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

o Attr::noResize will not permit changing size of the array from Python [not yet used]

Flags can be combined as usual using bitwise disjunction | (such as Attr::noSave |
Attr::readonly), though in such case the value should be parenthesized to avoid a warning with
some compilers (g++ specifically), i.e. (Attr::noSave | Attr::readonly).

Currently, the flags logic handled at runtime; that means that even for attributes with
Attr::noSave, their serialization template must be defined (although it will never be used). In
the future, the implementation might be template-based, avoiding this necessity.

deprec List of deprecated attribute names. The syntax is

((oldNamel,newNamel, "Explanation why renamed etc."))
((oldName2,newName2,"! Explanation why removed and what to do instaed."))

This will make accessing oldNamel attribute from Python return value of newName, but displaying
warning message about the attribute name change, displaying provided explanation. This happens
whether the access is read or write.

If the explanation’s first character is ! (bang), the message will be displayed upon attribute access,
but exception will be thrown immediately. Use this in cases where attribute is no longer meaningful
or was not straightforwardsly replaced by another, but more complex adaptation of user’s script is
needed. You still have to give newName2, although its value will never be used — you can use any
variable you like, but something must be given for syntax reasons).

Warning: Due to compiler limitations, this feature only works if Yade is compiled with gcc >=
4.4. In the contrary case, deprecated attribute functionality is disabled, even if such attributes
are declared.

init Parethesized list of the form:

((attr3,value3)) ((attré,valued)) \

which will be expanded to initializers in the default ctor:

Klass(): /* attributes declared with the attrs argument */ attr4(value4), attr5(valueb) { 4* constructor

The purpose of this argument is to make it possible to initialize constants and references (which
are not declared as attributes using this macro themselves, but separately), as that cannot be done
in constructor body. This argument is rarely used, though.

ctor will be put directly into the generated constructor’s body. Mostly used for calling createlndex();
in the constructor.

Note: The code must not contain commas ouside parentheses (since preprocessor uses commas
to separate macro arguments). If you need complex things at construction time, create a separate

init() function and call it from the constructor instead.

py will be appeneded directly after generated python code that registers the class and all its attributes.
You can use it to access class methods from python, for instance, to override an existing attribute
with the same name etc:

.def_readonly("omega",&CpmPhys: :omega, "Damage internal variable')
.def_readonly("Fn",&CpmPhys: :Fn, "Magnitude of normal force.")

def_readonly will not work for custom types (such as std::vector), as it bypasses conversion
registry; see Custom converters for details.
Special python constructors

The Python wrapper automatically create constructor that takes keyword (named) arguments corre-
sponding to instance attributes; those attributes are set to values provided in the constructor. In some

4.4. Support framework 97

Yade Documentation, Release 1.20.0

cases, more flexibility is desired (such as InteractionLoop, which takes 3 lists of functors). For such cases,
you can override the function Serializable: :pyHandleCustomCtorArgs, which can arbitrarily modify
the new (already existing) instance. It should modify in-place arguments given to it, as they will be
passed further down to the routine which sets attribute values. In such cases, you should document the
constructor:

. admonition:: Special constructor

Constructs from lists of ..

which then appears in the documentation similar to InteractionLoop.

Static attributes

Some classes (such as OpenGL functors) are instantiated automatically; since we want their attributes
to be persistent throughout the session, they are static. To expose class with static attributes, use the
YADE_CLASS_BASE_DOC_STATICATTRS macro. Attribute syntax is the same as for YADE_CLASS_BASE_-
DOC_ATTRS:

class SomeClass: public BaseClass{
YADE_CLASS_BASE_DOC_STATICATTRS (SomeClass,BaseClass, "Documentation of SomeClass',
((Typel,attrl,defaultl,"doc for attrl"))
((Type2,attr2,default2,"doc for attr2"))
);

};

additionally, you have to allocate memory for static data members in the .cpp file (otherwise, error
about undefined symbol will appear when the plugin is loaded):

There is no way to expose class that has both static and non-static attributes using YADE_CLASS_BASE_x*
macros. You have to expose non-static attributes normally and wrap static attributes separately in the
py parameter.

Returning attribute by value or by reference

When attribute is passed from c++ to python, it can be passed either as

e value: new python object representing the original c++ object is constructed, but not bound to it;
changing the python object doesn’t modify the c++ object, unless explicitly assigned back to it,
where inverse conversion takes place and the c++ object is replaced.

o reference: only reference to the underlying c++ object is given back to python; modifying python
object will make the c++ object modified automatically.

The way of passing attributes given to YADE_CLASS_BASE_DOC_ATTRS in the attrs parameter is deter-
mined automatically in the following manner:

e Vector3, Vector3i, Vector2, Vector2i, Matrix3 and Quaternion objects are passed by reference. For in
0O.bodies|0].state.pos[0]=1.33

will assign correct value to x component of position, without changing the other ones.

e Yade classes (all that use shared_ptr when declared in python: all classes deriving from Serializable
O.engines[4].damping=.3

will change damping parameter on the original engine object, not on its copy.

e All other types are passed by value. This includes, most importantly, sequence types declared in C
O.engines[4]=NewtonIntegrator()

will not work as expected; it will replace 5th element of a copy of the sequence, and this change
will not propagate back to c++.

98 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

4.4.6 Multiple dispatch

Multiple dispatch is generalization of virtual methods: a Dispatcher decides based on type(s) of its
argument(s) which of its Functors to call. Numer of arguments (currently 1 or 2) determines arity of the
dispatcher (and of the functor): unary or binary. For example:

InsertionSortCollider ([Bol_Sphere_Aabb() ,Bol_Facet_Aabb()]) ‘

creates InsertionSortCollider, which internally contains Collider.boundDispatcher, a BoundDispatcher (a
Dispatcher), with 2 functors; they receive Sphere or Facet instances and create Aabb. This code would
look like this in c++:

shared_ptr<InsertionSortCollider> collider=(new InsertionSortCollider);
collider->boundDispatcher->add(new Bol_Sphere_Aabb());
collider->boundDispatcher->add(new Bol_Facet_Aabb());

There are currenly 4 predefined dispatchers (see dispatcher-names) and corresponding functor types.
They are inherit from template instantiations of DispatcheriD or Dispatcher2D (for functors,
Functor1D or Functor2D). These templates themselves derive from DynlibDispatcher (for dispatch-
ers) and FunctorWrapper (for functors).

Example: 1GeomDispatcher

Let’s take (the most complicated perhaps) IGeomDispatcher. I1GeomFunctor, which is dispatched based
on types of 2 Shape instances (a Functor), takes a number of arguments and returns bool. The functor
“call” is always provided by its overridden Functor::go method; it always receives the dispatched
instances as first argument(s) (2 X const shared_ptr<Shape>&) and a number of other arguments it
needs:

class IGeomFunctor: public Functor2D<

bool, //return type
TYPELIST_7(const shared_ptr<Shape>&, // 1st class for dispatch
const shared_ptr<Shape>&, // 2nd class for dispatch
const State&, // other arguments passed to ::go
const State&, Y/
const Vector3r&, Y/
const boolé, Y/
const shared_ptr<Interaction>& am
)

>

The dispatcher is declared as follows:

class IGeomDispatcher: public Dispatcher2D<

Shape, // 1st class for dispatch
Shape, // 2nd class for dispatch
IGeomFunctor, // functor type

bool, // return type of the functor

// follow argument types for functor call
// they must be exactly the same as types
// given to the IGeomFunctor above.
TYPELIST_7(const shared_ptr<Shape>&,

const shared_ptr<Shape>&,

const State&,

const State&,

const Vector3r&,

const bool &,

const shared_ptr<Interaction>&

),

// handle symetry automatically

4.4. Support framework 99

Yade Documentation, Release 1.20.0

// (if the dispatcher receives SpheretFacet,
// the dispatcher might call functor for Facet+Sphere,
// reversing the arguments)
false
>

{ /.. =/}

Functor derived from IGeomFunctor must then

o override the ::go method with appropriate arguments (they must match exactly types given to
TYPELIST_* macro);

o declare what types they should be dispatched for, and in what order if they are not the same.

class Ig2_Facet_Sphere_ScGeom: public IGeomFunctor{
public:

// override the IGeomFunctor::go
// (it is really inherited from FunctorWrapper template,
/7 therefore not declare explicitly in the
/7 IGeomFunctor declaration as such)
// since dispatcher dispatches only for declared types
// (or types derived from them), we can do
// static_cast<Facet>(shapel) and static_cast<Sphere>(shape2)
// in the ::go body, without worrying about types being wrong.
virtual bool go(
// objects for dispatch
const shared_ptr<Shape>& shapel, const shared_ptr<Shape>& shape2,
// other arguments
const State& statel, const State& state2, const Vector3r& shift2,
const bool& force, const shared_ptr<Interaction>& c
)3
VA 4

// this declares the type we want to be dispatched for, matching

// first 2 arguments to ::go and first 2 classes in TYPELIST 7 above
// shapel is a Facet and shape2 is a Sphere

// (or vice versa, see lines below)

FUNCTOR2D (Facet ,Sphere) ;

// declare how to swap the arguments
// so that we can receive those as well
DEFINE_FUNCTOR_ORDER_2D(Facet,Sphere) ;
/¥ . %/
};

Dispatch resolution

The dispatcher doesn’t always have functors that exactly match the actual types it receives. In the same
way as virtual methods, it tries to find the closest match in such way that:

1. the actual instances are derived types of those the functor accepts, or exactly the accepted types;

2. sum of distances from actual to accepted types is sharp-minimized (each step up in the class
hierarchy counts as 1)

If no functor is able to accept given types (first condition violated) or multiple functors have the same
distance (in condition 2), an exception is thrown.

This resolution mechanism makes it possible, for instance, to have a hierarchy of ScGeom classes (for
different combination of shapes), but only provide a LawFunctor accepting ScGeom, rather than having
different laws for each shape combination.

Note: Performance implications of dispatch resolution are relatively low. The dispatcher lookup is only

100 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

done once, and uses fast lookup matrix (1D or 2D); then, the functor found for this type(s) is cached
within the Interaction (or Body) instance. Thus, regular functor call costs the same as dereferencing
pointer and calling virtual method. There is blueprint to avoid virtual function call as well.

Note: At the beginning, the dispatch matrix contains just entries exactly matching given functors.
Only when necessary (by passing other types), appropriate entries are filled in as well.

Indexing dispatch types

Classes entering the dispatch mechanism must provide for fast identification of themselves and of their
parent class. * This is called class indexing and all such classes derive from Indezable. There are
top-level Indexables (types that the dispatchers accept) and each derived class registers its index
related to this top-level Indexable. Currently, there are:

Top-level Indexable | used by

Shape BoundFunctor, IGeomDispatcher
Material IPhysDispatcher

IPhys LawDispatcher

I1Geom LawDispatcher

The top-level Indexable must use the REGISTER_INDEX_COUNTER macro, which sets up the machinery
for identifying types of derived classes; they must then use the REGISTER_CLASS_INDEX macro and call
createIndex() in their constructor. For instance, taking the Shape class (which is a top-level Indexable):

// derive from Indezable
class Shape: public Serializable, public Indexable {
// never call createIndex() in the top-level Indexable ctor!

VLI 4

// allow index registration for classes deriving from ~Shape™
REGISTER_INDEX_COUNTER (Shape) ;
+;

Now, all derived classes (such as Sphere or Facet) use this:

class Sphere: public Shape{
VA 74
YADE_CLASS_BASE_DOC_ATTRS_CTOR(Sphere, Shape, "docstring",
((Typel,attrl,defaultl, "docstringl"))
VAT
// this is the CTOR argument
// important; assigns indexz to the class at runtime

createIndex();
)
// register index for this class, and give name of the immediate parent class
// (i.e. if there were a class deriving from Sphere, it would use
/7 REGISTER_CLASS_INDEX (SpecialSphere,Sphere),
// not REGISTER_CLASS_INDEX (SpecialSphere,Shape)!)

REGISTER_CLASS_INDEX (Sphere,Shape) ;
}s

At runtime, each class within the top-level Indexable hierarchy has its own unique numerical index.
These indices serve to build the dispatch matrix for each dispatcher.

Inspecting dispatch in python

If there is a need to debug/study multiple dispatch, python provides convenient interface for this low-level
functionality.

4 The functionality described in Run-time type identification (RTTI) serves a different purpose (serialization) and would
hurt the performance here. For this reason, classes provide numbers (indices) in addition to strings.

4.4. Support framework 101

https://blueprints.launchpad.net/yade/+spec/devirtualize-functor-calls

Yade Documentation, Release 1.20.0

We can inspect indices with the dispIndex property (note that the top-level indexable Shape has negative
(invalid) class index; we purposively didn’t call createIndex in its constructor):

Yade [129]: Sphere().dispIndex, Facet().dispIndex, Wall().dispIndex
Out[129]: (1, 5, 10)

Yade [130]: Shape().dispIndex # top-level indezable
Out[130]: -1

Dispatch hierarchy for a particular class can be shown with the dispHierarchy() function, returning
list of class names: Oth element is the instance itself, last element is the top-level indexable (again, with
invalid index); for instance:

Yade [131]: ScGeom() .dispHierarchy() # parent class of all other ScGeom_ classes
Out[131]: ['ScGeom', 'GenericSpheresContact', 'IGeom']

Yade [132]: ScGridCoGeom() .dispHierarchy(), ScGeom6D().dispHierarchy(), CylScGeom() .dispHierarchy
Out[132]:

(['ScGridCoGeom', 'ScGeom6D', 'ScGeom', 'GenericSpheresContact', 'IGeom'],
['ScGeom6D', 'ScGeom', 'GenericSpheresContact', 'IGeom'],
['CylScGeom', 'ScGeom', 'GenericSpheresContact', 'IGeom'])

Yade [133]: CylScGeom() .dispHierarchy(names=False) # show numeric indices instead
Out[133]: [4, 1, 0, -1]

O

Dispatchers can also be inspected, using the .dispMatrix() method:

Yade [134]: ig=IGeomDispatcher ([
e Ig2_Sphere_Sphere_ScGeom(),
e Ig2_Facet_Sphere_ScGeom(),
el Ig2_Wall_Sphere_ScGeom()

Yade [135]: ig.dispMatrix()

Out [135]:

{('Facet', 'Sphere'): 'Ig2_Facet_Sphere_ScGeom',
('Sphere', 'Facet'): 'Ig2_Facet_Sphere_ScGeom',
('Sphere', 'Sphere'): 'Ig2_Sphere_Sphere_ScGeom',
('Sphere', 'Wall'): 'Ig2_Wall_Sphere_ScGeom',
('Wall', 'Sphere'): 'Ig2_Wall_Sphere_ScGeom'}

Yade [136]: ig.dispMatrix(False) # don't convert to class names
Out[136]:
{(1, 1): 'Ig2_Sphere_Sphere_ScGeom',

(1, 5): 'Ig2_Facet_Sphere_ScGeom',

(1, 10): 'Ig2_Wall_Sphere_ScGeom',

(5, 1): 'Ig2_Facet_Sphere_ScGeom',

(10, 1): 'Ig2_Wall_Sphere_ScGeom'}

We can see that functors make use of symmetry (i.e. that Sphere+Wall are dispatched to the same
functor as Wall+Sphere).

Finally, dispatcher can be asked to return functor suitable for given argument(s):

Yade [137]: 1ld=LawDispatcher([Law2_ScGeom_CpmPhys_Cpm()])

Yade [138]: 1d.dispMatrix()
Out[138]: {('GenericSpheresContact', 'CpmPhys'): 'Law2_ScGeom_CpmPhys_Cpm'}

see how the entry for ScGridCoGeom will be filled after this request
Yade [139]: 1d.dispFunctor(ScGridCoGeom() ,CpmPhys())
Out [139]: <Law2_ScGeom_CpmPhys_Cpm instance at 0x89daf40>

Yade [140]: 1d.dispMatrix()

102 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

Out [140] :
{('GenericSpheresContact', 'CpmPhys'): 'Law2_ScGeom_CpmPhys_Cpm',
('ScGridCoGeom', 'CpmPhys'): 'Law2_ScGeom_CpmPhys_Cpm'}

OpenGL functors

OpenGL rendering is being done also by 1D functors (dispatched for the type to be rendered). Since it
is sufficient to have exactly one class for each rendered type, the functors are found automatically. Their
base functor types are GlShapeFunctor, GlBoundFunctor, GlIGeomFunctor and so on. These classes
register the type they render using the RENDERS macro:

class Gl1_Sphere: public GlShapeFunctor {
public :
virtual void go(const shared_ptr<Shape>&,
const shared_ptr<State>&,
bool wire,
const GLViewInfo&
);
RENDERS (Sphere) ;
YADE_CLASS_BASE_DOC_STATICATTRS(Gl1_Sphere,GlShapeFunctor, "docstring",
((Typel,staticAttrl,informativeDefault, "docstring"))
VA V4
);
};
REGISTER_SERIALIZABLE(Gl1_Sphere);

You can list available functors of a particular type by querying child classes of the base functor:

Yade [141]: yade.system.childClasses('GlShapeFunctor')

Out [141]:

{'Gl1_Box',
'Gl1_ChainedCylinder"',
'Gl1_Cylinder',
'Gl1_Facet',
'Gll_GridConnection',
'Gl1_Polyhedra',
'Gl1_Sphere',
'Gll_Tetra',
'Gl1_Wall'}

Note: OpenGL functors may disappear in the future, being replaced by virtual functions of each class
that can be rendered.

4.4.7 Parallel execution

Yade was originally not designed with parallel computation in mind, but rather with maximum flexibility
(for good or for bad). Parallel execution was added later; in order to not have to rewrite whole Yade
from scratch, relatively non-instrusive way of parallelizing was used: OpenMP. OpenMP is standartized
shared-memory parallel execution environment, where parallel sections are marked by special #pragma
in the code (which means that they can compile with compiler that doesn’t support OpenMP) and a few
functions to query/manipulate OpenMP runtime if necessary.

There is parallelism at 3 levels:

o Computation, interaction (python, GUI) and rendering threads are separate. This is done via
regular threads (boost::threads) and is not related to OpenMP.

o ParallelEngine can run multiple engine groups (which are themselves run serially) in parallel; it
rarely finds use in regular simulations, but it could be used for example when coupling with an
independent expensive computation:

4.4. Support framework 103

http://www.openmp.org

Yade Documentation, Release 1.20.0

ParallelEngine ([
[Enginel() ,Engine2()], # Enginel will run before Engine2
[Engine3()] # Engine3() will run in parallel with the group [Eng%
arbitrary number of groups can be used
D

Engine2 will be run after Enginel, but in parallel with Engine3.

Warning: It is your reponsibility to avoid concurrent access to data when using
ParallelEngine. Make sure you understand very well what the engines run in parallel
do.

o Parallelism inside Engines. Some loops over bodies or interactions are parallelized (notably Inter-
actionLoop and NewtonIntegrator, which are treated in detail later (FIXME: link)):

#pragma omp parallel for

for(long id=0; id<size; id++){
const shared_ptr<Body>& b(scene->bodies[id]);
/¥ *)

Note: OpenMP requires loops over contiguous range of integers (OpenMP 3 also
accepts containers with random-access iterators).

If you consider running parallelized loop in your engine, always evalue its benefits.
OpenMP has some overhead fo creating threads and distributing workload, which is
proportionally more expensive if the loop body execution is fast. The results are highly
hardware-dependent (CPU caches, RAM controller).

Maximum number of OpenMP threads is determined by the OMP_NUM_THREADS environment variable
and is constant throughout the program run. Yade main program also sets this variable (before loading
OpenMP libraries) if you use the -j/--threads option. It can be queried at runtime with the omp_-
get_max_threads function.

At places which are susceptible of being accessed concurrently from multiple threads, Yade provides some
mutual exclusion mechanisms, discussed elsewhere (FIXME):

o simultaneously writeable container for ForceContainer,

o mutex for Body::state.

4.4.8 Timing

Yade provides 2 services for measuring time spent in different pars of the code. One has the granularity
of engine and can be enabled at runtime. The other one is finer, but requires adjusting and recompiling
the code being measured.

Per-engine timing

The coarser timing works by merely accumulating numebr of invocations and time (with the precision
of the clock_gettime function) spent in each engine, which can be then post-processed by associated
Python module yade.timing. There is a static bool variable controlling whether such measurements
take place (disabled by default), which you can change

’Timinglnfo::enabled=True; // an ct+

‘O.timingEnabled=True ## in python

After running the simulation, yade.timing.stats() function will show table with the results and per-
centages:

104 Chapter 4. Programmer’s manual

el1(),Engine2()

Yade Documentation, Release 1.20.0

Yade [142]: TriaxialTest (number0fGrains=100).load()

Yade [143]: 0.engines[0].label='firstEngine' ## labeled engines will show by labels in the sta
Yade [144]: import yade.timing;

Yade [145]: 0.timingEnabled=True

Yade [146]: yade.timing.reset() ## not necessary if used for the first time
Yade [147]: 0.run(50); 0.wait()

Yade [148]: yade.timing.stats()

Name Count Time Rel
"firstEngine" 50 92us 0.767
InsertionSortCollider 24 4087us 33.661
InteractionLoop 50 4841us 39.88]
GlobalStiffnessTimeStepper 2 46us 0.38]
TriaxialCompressionEngine 50 903us 7.447
TriaxialStateRecorder 3 352us 2.90}
NewtonIntegrator 50 1818us 14.98;)
TOTAL 12142us 100.007

ts table

Exec count and time can be accessed and manipulated through Engine::timingInfo from c++ or
Engine() .execCount and Engine() .execTime properties in Python.

In-engine and in-functor timing

Timing within engines (and functors) is based on TimingDeltas class. It is made for timing loops
(functors’ loop is in their respective dispatcher) and stores cummulatively time differences between
checkpoints.

Note: Fine timing with TimingDeltas will only work if timing is enabled globally (see previous section).
The code would still run, but giving zero times and exec counts.

1. Engine::timingDeltas must point to an instance of TimingDeltas (prefferably instantiate 7im-
ingDeltas in the constructor):

// header file
class Law2_ScGeom_CpmPhys_Cpm: public LawFunctor {
VA 4
YADE_CLASS_BASE_DOC_ATTRS_CTOR(Law2_ScGeom_CpmPhys_Cpm,LawFunctor, "docstring",
/* attrs */,
/* constructor */
timingDeltas=shared_ptr<TimingDeltas>(new TimingDeltas); // timingDeltas object

ts automaticall

2. Inside the loop, start the timing by calling timingDeltas->start () ;

3. At places of interest, call timingDeltas->checkpoint("label"). The label is used only for post-
processing, data are stored based on the checkpoint position, not the label.

Warning: Checkpoints must be always reached in the same order, otherwise the
timing data will be garbage. Your code can still branch, but you have to put check-
points to places which are in common.

void Law2_ScGeom_CpmPhys_Cpm: :go(shared_ptr<IGeom>& _geom,
shared_ptr<IPhys>& _phys,

4.4. Support framework 105

Yade Documentation, Release 1.20.0

Interaction* I,
Scene* scene)

timingDeltas->start(); // the point at which the first timing starts
// prepare some variables etc here
timingDeltas->checkpoint ("setup");

// find geometrical data (deformations) here
timingDeltas->checkpoint ("geom") ;

// compute forces here
timingDeltas->checkpoint ("material");

// apply forces, cleanup here
timingDeltas->checkpoint ("rest");

}

4. Alternatively, you can compile Yade using -DENABLE__ PROFILING=1 cmake option and use pre

void Law2_ScGeom_CpmPhys_Cpm: :go(shared_ptr<IGeom>& _geom,
shared_ptr<IPhys>& _phys,
Interaction* I,
Scene* scene)
{
TIMING_DELTAS_START();
// prepare some variables etc here
TIMING_DELTAS_CHECKPOINT("setup")
// find geometrical data (deformations) here
TIMING_DELTAS_CHECKPOINT("geom")
// compute forces here
TIMING_DELTAS_CHECKPOINT("material")
// apply forces, cleanup here
TIMING_DELTAS_CHECKPOINT ("rest")
}

The output might look like this (note that functors are nested inside dispatchers and TimingDeltas
inside their engine/functor):

Name Count Time Rel. time
ForceReseter 400 9449us 0.01%
BoundDispatcher 400 1171770us 1.15%
InsertionSortCollider 400 9433093us 9.24%,
IGeomDispatcher 400 15177607us 14.87%
IPhysDispatcher 400 9518738us 9.33%
LawDispatcher 400 64810867 s 63.49%
Law2_ScGeom_CpmPhys_Cpm
setup 4926145 7649131us 15.25Y%
geom 4926145 23216292us 46.28%
material 4926145 8595686us 17.147
rest 4926145 10700007 s 21.33%
TOTAL 50161117us 100.00%
NewtonIntegrator 400 1866816us 1.83%
"strainer" 400 21589us 0.02%
"plotDataCollector" 160 64284us 0.06%
"damageChecker" 9 3272us 0.00%
TOTAL 102077490us 100.00%

Warning: Do not use TimingDeltas in parallel sections, results might not be meaningful. In par-
ticular, avoid timing functors inside InteractionLoop when running with multiple OpenMP threads.

TimingDeltas data are accessible from Python as list of (label *time* *count*) tuples, one tuple repre-
senting each checkpoint:

106 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

deltas=someEngineOrFunctor.timingDeltas.data()
deltas[0][0] # Oth checkpoint label
deltas([0] [1] # Oth checkpoint time in nmanoseconds
deltas[0][2] # Oth checkpoint execution count
deltas[1]1[0] # 1st checkpoint label

..
deltas.reset()

Timing overhead

The overhead of the coarser, per-engine timing, is very small. For simulations with at least several
hundreds of elements, they are below the usual time variance (a few percent).

The finer TimingDeltas timing can have major performance impact and should be only used during
debugging and performance-tuning phase. The parts that are file-timed will take disproportionally
longer time that the rest of engine; in the output presented above, LawDispatcher takes almost of total
simulation time in average, but the number would be twice of thrice lower typically (note that each
checkpoint was timed almost 5 million times in this particular case).

4.4.9 OpenGL Rendering

Yade provides 3d rendering based on QGLViewer. It is not meant to be full-featured rendering and
post-processing, but rather a way to quickly check that scene is as intended or that simulation behaves
sanely.

Note: Although 3d rendering runs in a separate thread, it has performance impact on the computa-
tion itself, since interaction container requires mutual exclusion for interaction creation/deletion. The

InteractionContainer: :drawloopmutex is either held by the renderer (OpenGLRenderingEngine) or
by the insertion/deletion routine.

Warning: There are 2 possible causes of crash, which are not prevented because of serious perfor-
mance penalty that would result:
1. access to BodyContainer, in particular deleting bodies from simulation; this is a rare operation,
though.
2. deleting Interaction::phys or Interaction::geom.

Renderable entities (Shape, State, Bound, IGeom, IPhys) have their associated OpenGL functors. An
entity is rendered if

1. Rendering such entities is enabled by appropriate attribute in OpenGLRenderingEngine
2. Functor for that particular entity type is found via the dispatch mechanism.

G1l1_x* functors operating on Body’s attributes (Shape, State, Bound) are called with the OpenGL con-
text translated and rotated according to State::pos and State::ori. Interaction functors work in global
coordinates.

4.5 Simulation framework

Besides the support framework mentioned in the previous section, some functionality pertaining to
simulation itself is also provided.

There are special containers for storing bodies, interactions and (generalized) forces. Their internal func-
tioning is normally opaque to the programmer, but should be understood as it can influence performance.

4.5. Simulation framework 107

http://www.libqglviewer.com

Yade Documentation, Release 1.20.0

4.5.1 Scene

Scene is the object containing the whole simulation. Although multiple scenes can be present in the
memory, only one of them is active. Saving and loading (serializing and deserializing) the Scene object
should make the simulation run from the point where it left off.

Note: All Engines and functors have interally a Scene* scene pointer which is updated regularly by
engine/functor callers; this ensures that the current scene can be accessed from within user code.

For outside functions (such as those called from python, or static functions in Shop), you can use
Omega: :instance() .getScene() to retrieve a shared_ptr<Scene> of the current scene.

4.5.2 Body container

Body container is linear storage of bodies. Each body in the simulation has its unique ¢d, under which it
must be found in the BodyContainer. Body that is not yet part of the simulation typically has id equal
to invalid value Body: :ID_NONE, and will have its id assigned upon insertion into the container. The
requirements on BodyContainer are

o O(1) access to elements,

o linear-addressability (0..n indexability),

e store shared_ptr, not objects themselves,

» no mutual exclusion for insertion/removal (this must be assured by the called, if desired),
o intelligent allocation of id for new bodies (tracking removed bodies),

e eagy iteration over all bodies.

Note: Currently, there is “abstract” class BodyContainer, from which derive concrete implementations;
the initial idea was the ability to select at runtime which implementation to use (to find one that performs

the best for given simulation). This incurs the penalty of many virtual function calls, and will probably
change in the future. All implementations of BodyContainer were removed in the meantime, except
BodyVector (internally a vector<shared_ptr<Body> > plus a few methods around), which is the fastest.

Insertion/deletion

Body insertion is typically used in FileGenerator's:

shared_ptr<Body> body(new Body) ;
// .. (body setup)
scene->bodies->insert(body); // assigns the id

Bodies are deleted only rarely:

scene->bodies->erase(id);

Warning: Since mutual exclusion is not assured, never insert/erase bodies from parallel sections,
unless you explicitly assure there will be no concurrent access.

Iteration

The container can be iterated over using FOREACH macro (shorthand for BOOST_FOREACH):

FOREACH(const shared_ptr<Body>& b, *scene->bodies){
if(!b) continue; // skip deleted bodies
/* do something here */

}

108 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

Note a few important things:

1. Always use const shared_ptr<Body>& (const reference); that avoids incrementing and decrement-
ing the reference count on each shared_ptr.

2. Take care to skip NULL bodies (if(!b) continue): deleted bodies are deallocated from the
container, but since body id’s must be persistent, their place is simply held by an empty shared_-
ptr<Body>() object, which is implicitly convertible to false.

In python, the BodyContainer wrapper also has iteration capabilities; for convenience (which is different
from the c++ iterator), NULL bodies as silently skipped:

Yade [149]: 0.bodies.append([Body(),Body(),Body()1)
Out [149]: [0, 1, 2]

Yade [150]: 0.bodies.erase(1)
Out [150]: True

Yade [151]: [b.id for b in 0.bodies]
Out[151]: [0, 2]

In loops parallelized using OpenMP, the loop must traverse integer interval (rather than using iterators):

const long size=(long)bodies.size(); // store this wvalue, since it doesn't change during t
#pragma omp parallel for
for(long _id=0; _id<size; _id++){

const shared_ptr<Body>& b(bodies([_id]);

if(!'b) continue;

/* . %/

he loop

4.5.3 InteractionContainer
Interactions are stored in special container, and each interaction must be uniquely identified by pair of
ids (id1,id2).

o O(1) access to elements,

o linear-addressability (0..n indexability),

e store shared_ptr, not objects themselves,

» mutual exclusion for insertion/removal,

e easy iteration over all interactions,

o addressing symmetry, i.e. interaction(id1,id2) interaction(id2,id1)

Note: As with BodyContainer, there is “abstract” class InteractionContainer, and then its concrete
implementations. Currently, only InteractionVecMap implementation is used and all the other were

removed. Therefore, the abstract InteractionContainer class may disappear in the future, to avoid
unnecessary virtual calls.

Further, there is a blueprint for storing interactions inside bodies, as that would give extra advantage of
quickly getting all interactions of one particular body (currently, this necessitates loop over all interac-
tions); in that case, InteractionContainer would disappear.

Insert/erase

Creating new interactions and deleting them is delicate topic, since many eleents of simulation must be
synchronized; the exact workflow is described in Handling interactions. You will almost certainly never
need to insert/delete an interaction manually from the container; if you do, consider designing your code
differently.

4.5. Simulation framework 109

https://blueprints.launchpad.net/yade/+spec/intrs-inside-bodies

Yade Documentation, Release 1.20.0

// both insertion and erase are internally protected by a mutez,

// and can be dome from parallel sections safely
scene->interactions->insert(shared_ptr<Interaction>(new Interactions(idl,id2)));
scene->interactions->erase(id1,id2);

Iteration

As with BodyContainer, iteration over interactions should use the FOREACH macro:

FOREACH(const shared_ptr<Interaction>% i, *scene->interactions){
if(!'i->isReal()) continue;
VLI 4

}

Again, note the usage const reference for i. The check if (!i->isReal()) filters away interactions
that exist only potentially, i.e. there is only Bound overlap of the two bodies, but not (yet) overlap of
bodies themselves. The i->isReal() function is equivalent to i->geom && i->phys. Details are again
explained in Handling interactions.

In some cases, such as OpenMP-loops requiring integral index (OpenMP >= 3.0 allows parallelization
using random-access iterator as well), you need to iterate over interaction indices instead:

inr nIntr=(int)scene->interactions->size(); // hoist container size
#pragma omp parallel for
for(int j=0; j<nIntr, j++){
const shared_ptr<Interaction>& i(scene->interactions[jl);
if(!->isReal()) continue;

VLI 4

4.5.4 ForceContainer

ForceContainer holds “generalized forces”, i.e. forces, torques, (explicit) dispalcements and rotations for
each body.

During each computation step, there are typically 3 phases pertaining to forces:
1. Resetting forces to zero (usually done by the ForceResetler engine)
2. Incrementing forces from parallel sections (solving interactions — from LawFunctor)

3. Reading absolute force values sequentially for each body: forces applied from different interactions
are summed together to give overall force applied on that body (NewtonIntegrator, but also various
other engine that read forces)

This scenario leads to special design, which allows fast parallel write access:

o cach thread has its own storage (zeroed upon request), and only writes to its own storage; this
avoids concurrency issues. Each thread identifies itself by the omp_get thread num() function
provided by the OpenMP runtime.

e before reading absolute values, the container must be synchronized, i.e. values from all threads
are summed up and stored separately. This is a relatively slow operation and we provide Force-
Container::syncCount that you might check to find cummulative number of synchronizations and
compare it against number of steps. Ideally, ForceContainer is only synchronized once at each
step.

o the container is resized whenever an element outside the current range is read/written to (the
read returns zero in that case); this avoids the necessity of tracking number of bodies, but also is
potential danger (such as scene->forces.getForce(1000000000), which will probably exhaust
your RAM). Unlike c++, Python does check given id against number of bodies.

110 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

// resetting forces (inside ForceResetter)
scene->forces.reset ()

// in a parallel section
scene->forces.addForce(id,force); // add force

// container is not synced after we wrote to it, sync before reading
scene->forces.sync();
const Vector3r& f=scene->forces.getForce(id);

Synchronization is handled automatically if values are read from python:

Yade [152]: 0.bodies.append(Body())
Out[152]: 3

Yade [153]: 0.forces.addF(0,Vector3(1,2,3))

Yade [154]: 0.forces.f(0)
Out[154]: Vector3(1,2,3)

Yade [155]: 0.forces.f(100)

IndexError Traceback (most recent call last)
/build/yade-peqlpu/yade-1.20.0/debian/tmp/usr/1ib/x86_64-linux-gnu/yade/py/yade/__init__.pyc in S
---=> 1 0.forces.f(100)

IndexError: Body id out of range.

tmodule> ()

4.5.5 Handling interactions

Creating and removing interactions is a rather delicate topic and number of components must cooperate
so that the whole behaves as expected.

Terminologically, we distinguish

potential interactions, having neither geometry nor physics. Interaction.isReal can be used to query
the status (Interaction::isReal() in c++).

real interactions, having both geometry and physics. Below, we shall discuss the possibility of inter-
actions that only have geometry but no physics.

During each step in the simulation, the following operations are performed on interactions in a typical
simulation:

1. Collider creates potential interactions based on spatial proximity. Not all pairs of bodies are
susceptible of entering interaction; the decision is done in Collider::mayCollide:

o clumps may not enter interactions (only their members can)
e clump members may not interact if they belong to the same clump

 bitwise AND on both bodies’ masks must be non-zero (i.e. there must be at least one bit set
in common)

2. Collider erases interactions that were requested for being erased (see below).

3. InteractionLoop (via IGeomDispatcher) calls appropriate IGeomFunctor based on Shape combina-
tion of both bodies, if such functor exists. For real interactions, the functor updates associated
IGeom. For potential interactions, the functor returns

false if there is no geometrical overlap, and the interaction will stillremain potential-
only

true if there is geometrical overlap; the functor will have created an /G'eom in such case.

Note: For real interactions, the functor must return true, even if there is no more

4.5. Simulation framework 111

Yade Documentation, Release 1.20.0

spatial overlap between bodies. If you wish to delete an interaction without geometrical
overlap, you have to do this in the LawFunctor.

This behavior is deliberate, since different laws have different requirements, though ide-
ally using relatively small number of generally useful geometry functors.

Note: If there is no functor suitable to handle given combination of shapes, the inter-
action will be left in potential state, without raising any error.

4. For real interactions (already existing or just created in last step), InteractionLoop (via IPhys-
Dispatcher) calls appropriate IPhysFunctor based on Material combination of both bodies. The
functor must update (or create, if it doesn’t exist yet) associated IPhys instance. It is an error if
no suitable functor is found, and an exception will be thrown.

5. For real interactions, InteractionLoop (via LawDispatcher) calls appropriate LawFunctor based on
combination of /Geom and IPhys of the interaction. Again, it is an error if no functor capable of
handling it is found.

6. LawDispatcher takes care of erasing those interactions that are no longer active (such as if bodies
get too far apart for non-cohesive laws; or in case of complete damage for damage models). This
is triggered by the LawFunctor returning false. For this reason it is of upmost importance for the
LawFunctor to return consistently.

Such interaction will not be deleted immediately, but will be reset to potential state. At the next
execution of the collider InteractionContainer: :conditionalyEraseNonReal will be called, which
will completely erase interactions only if the bounding boxes ceased to overlap; the rest will be kept in
potential state.

Creating interactions explicitly

Interactions may still be created explicitly with utils. createlInteraction, without any spatial requirements.
This function searches current engines for dispatchers and uses them. IGeomFunctor is called with the
force parameter, obliging it to return true even if there is no spatial overlap.

4.5.6 Associating Material and State types

Some models keep extra state information in the Body.state object, therefore requiring strict association
of a Material with a certain State (for instance, CpmMat is associated to CpmState and this combination
is supposed by engines such as CpmState Updater).

If a Material has such a requirement, it must override 2 virtual methods:

1. Material.newAssocState, which returns a new State object of the corresponding type. The default
implementation returns State itself.

2. Material.state Type Ok, which checks whether a given State object is of the corresponding type (this
check is run at the beginning of the simulation for all particles).

In c++, the code looks like this (for CpmMat):

class CpmMat: public FrictMat {
public:
virtual shared_ptr<State> newAssocState() const { return shared_ptr<State>(new CpmState); 1}
virtual bool stateTypeOk(State* s) const { return (bool)dynamic_cast<CpmState*>(s); }
VL B V4
5

This allows one to construct Body objects from functions such as utils.sphere only by knowing the requires
Material type, enforcing the expectation of the model implementor.

112 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.20.0

4.6 Runtime structure

4.6.1 Startup sequence
Yade’s main program is python script in core/main/main.py.in; the build system replaces a few
${variables} in that file before copying it to its install location. It does the following:

1. Process command-line options, set environment variables based on those options.

2. Import main yade module (import yade), residing in py/ init .py.in. This module locates
plugins (recursive search for files 1ib*.so in the 1ib installation directory). yade.boot module is
used to setup temporary directory, .. and, most importantly, loads plugins.

3. Manage further actions, such as running scripts given at command line, opening gt. Controller (if
desired), launching the ipython prompt.

4.6.2 Singletons

There are several “global variables” that are always accessible from c++ code; properly speaking, they
are Singletons, classes of which exactly one instance always exists. The interest is to have some general
functionality acessible from anywhere in the code, without the necessity of passing pointers to such objects
everywhere. The instance is created at startup and can be always retrieved (as non-const reference) using
the instance() static method (e.g. Omega: :instance() .getScene()).

There are 3 singletons:

SerializableSingleton Handles serialization/deserialization; it is not used anywhere except for the
serialization code proper.

ClassFactory Registers classes from plugins and able to factor instance of a class given its name as
string (the class must derive from Factorable). Not exposed to python.

Omega Access to simulation(s); deserves separate section due to its importance.

Omega

The Omega class handles all simulation-related functionality: loading/saving, running, pausing.

In python, the wrapper class to the singleton is instantiated ° as global variable 0. For convenience,
Omega is used as proxy for scene’s attribute: although multiple Scene objects may be instantiated in
c++, it is always the current scene that Omega represents.

The correspondence of data is literal: Omega.materials corresponds to Scene: :materials of the current
scene; likewise for materials, bodies, interactions, tags, cell, engines, initializers, miscParams.

To give an overview of (some) variables:

Python ct++

Omega.iter Scene::iter

Omega.dt Scene: :dt

Omega.time Scene: :time
Omega.realtime Omega: :getRealTime ()
Omega.stopAtlter | Scene: :stopAtIter

Omega in c++ contains pointer to the current scene (Omega::scene, retrieved by
Omega: :instance() .getScene()). Using Omega.switchScene, it is possible to swap this pointer
with Omega: : sceneAnother, a completely independent simulation. This can be useful for example (and
this motivated this functionality) if while constructing simulation, another simulation has to be run to
dynamically generate (i.e. by running simulation) packing of spheres.

5 It is understood that instantiating Omega() in python only instantiates the wrapper class, not the singleton itself.

4.6. Runtime structure 113

https://github.com/yade/trunk/blob/master/core/main/main.py.in
https://github.com/yade/trunk/blob/master/py/__init__.py.in
https://github.com/yade/trunk/blob/master/core/main/pyboot.cpp
http://en.wikipedia.org/wiki/Singleton_pattern

Yade Documentation, Release 1.20.0

4.6.3 Engine loop

Running simulation consists in looping over Engines and calling them in sequence. This loop is defined
in Scene: :moveToNextTimeStep function in core/Scene.cpp. Before the loop starts, O.initializers are
called; they are only run once. The engine loop does the following in each iteration over O.engines:

1. set Engine: :scene pointer to point to the current Scene.

2. Call Engine: :isActivated(); if it returns false, the engine is skipped.
3. Call Engine::action()
4

. If O.timingEnabled, increment Engine::exec Time by the difference from the last time reading (either
after the previous engine was run, or immediately before the loop started, if this engine comes first).
Increment Engine::execCount by 1.

After engines are processed, virtual time is incremented by timestep and iteration number is incremented
by 1.

Background execution

The engine loop is (normally) executed in background thread (handled by SimulationFlow class), leaving
foreground thread free to manage user interaction or running python script. The background thread is
managed by O.run()and O.pause() commands. Foreground thread can be blocked until the loop finishes
using O.wait().

Single iteration can be run without spawning additional thread using O.step().

4.7 Python framework

4.7.1 Wrapping c++ classes

Each class deriving from Serializable is automatically exposed to python, with access to its (registered)
attributes. This is achieved via YADE CLASS BASE_DOC_* macro family. All classes registered
in class factory are default-constructed in Omega: :buildDynlibDatabase. Then, each serializable class
calls Serializable: :pyRegisterClass virtual method, which injects the class wrapper into (initially
empty) yade.wrapper module. pyRegisterClass is defined by YADE_CLASS_BASE_DOC and knows about
class, base class, docstring, attributes, which subsequently all appear in boost::python class definition.

Wrapped classes define special constructor taking keyword arguments corresponding to class attributes;
therefore, it is the same to write:

Yade [156]: fl=ForceEngine()
Yade [157]: f1.ids=[0,4,5]

Yade [158]: f1.force=Vector3(0,-1,-2)

and

Yade [159]: f2=ForceEngine(ids=[0,4,5],force=Vector3(0,-1,-2))

Yade [160]: print f1.dict()
{'ompThreads': -1, 'force': Vector3(0,-1,-2), 'ids': [0, 4, 5], 'dead': False, 'label': ''}

Yade [161]: print £2.dict()
{'ompThreads': -1, 'force': Vector3(0,-1,-2), 'ids': [0, 4, 5], 'dead': False, 'label': ''}

Wrapped classes also inherit from Serializable several special virtual methods: dict() returning all reg-
istered class attributes as dictionary (shown above), clone() returning copy of instance (by copying
attribute values), updateAttrs() and updateEzistingAttrs() assigning attributes from given dictionary
(the former thrown for unknown attribute, the latter doesn’t).

114 Chapter 4. Programmer’s manual

https://github.com/yade/trunk/blob/master/core/Scene.cpp#L73
https://github.com/yade/trunk/blob/master/core/SimulationFlow.hpp

Yade Documentation, Release 1.20.0

Read-only property name wraps c++ method getClassName() returning class name as string. (Since
c++ class and the wrapper class always have the same name, getting python type using __class__ and
its property __name__ will give the same value).

Yade [162]: s=Sphere()

Yade [163]: s.__class__.__name__
Out[163]: 'Sphere'

4.7.2 Subclassing c++ types in python

In some (rare) cases, it can be useful to derive new class from wrapped c++ type in pure python. This is
done in the yade.pack module module: Predicate is c4++ base class; from this class, several c++ classes are
derived (such as inGtsSurface), but also python classes (such as the trivial inSpace predicate). inSpace
derives from python class Predicate; it is, however, not direct wrapper of the c++ Predicate class,
since virtual methods would not work.

boost: :python provides special boost: :python: :wrapper template for such cases, where each overrid-
able virtual method has to be declared explicitly, requesting python override of that method, if present.
See Overridable virtual functions for more details.

4.7.3 Reference counting

Python internally uses reference counting on all its objects, which is not visible to casual user. It has to
be handled explicitly if using pure Python/C API with Py_INCREF and similar functions.

boost: :python used in Yade fortunately handles reference counting internally. Additionally, it auto-
matically integrates reference counting for shared_ptr and python objects, if class A is wrapped as
boost: :python: :class_<A,shared_ptr<A>>. Since all Yade classes wrapped using YADE CLASS -
BASE_DOC_* macro family are wrapped in this way, returning shared_ptr<..> objects from is the
preferred way of passing objects from c++ to python.

Returning shared_ptr is much more efficient, since only one pointer is returned and reference count
internally incremented. Modifying the object from python will modify the (same) object in c++ and
vice versa. It also makes sure that the c+4 object will not be deleted as long as it is used somewhere in
python, preventing (important) source of crashes.

4.7.4 Custom converters

When an object is passed from c++ to python or vice versa, then either

1. the type is basic type which is transparently passed between c++ and python (int, bool, std::string
ete)

2. the type is wrapped by boost::python (such as Yade classes, Vector3 and so on), in which case
wrapped object is returned; °

Other classes, including template containers such as std::vector must have their custom converters
written separately. Some of them are provided in py/wrapper/customConverters.cpp, notably converters
between python (homogeneous, i.e. with all elements of the same type) sequences and c++ std: :vector
of corresponding type; look in that source file to add your own converter or for inspiration.

When an object is crossing c++/python boundary, boost::python’s global “converters registry” is
searched for class that can perform conversion between corresponding c++ and python types. The

6 Wrapped classes are automatically registered when the class wrapper is created. If wrapped class derives from
another wrapped class (and if this dependency is declared with the boost::python::bases template, which Yade’s
classes do automatically), parent class must be registered before derived class, however. (This is handled via loop in
Omega: :buildDynlibDatabase, which reiterates over classes, skipping failures, until they all successfully register) Math
classes (Vector3, Matrix3, Quaternion) are wrapped in minieigen, which is available as a separate package. Use your
package manager to install it.

4.7. Python framework 115

http://wiki.python.org/moin/boost.python/OverridableVirtualFunctions
http://en.wikipedia.org/wiki/Reference_counting
http://docs.python.org/c-api/index.html
http://wiki.python.org/moin/boost.python/PointersAndSmartPointers
http://wiki.python.org/moin/boost.python/PointersAndSmartPointers
https://github.com/yade/trunk/blob/master/py/wrapper/customConverters.cpp

Yade Documentation, Release 1.20.0

)

“converters registry” is common for the whole program instance: there is no need to register convert-
ers in each script (by importing _customConverters, for instance), as that is done by yade at startup
already.

Note: Custom converters only work for value that are passed by value to python (not “by reference”):
some attributes defined using YADE CLASS BASE DOC _* macro family are passed by value, but if

you define your own, make sure that you read and understand Why is my automatic to-python conversion
not being found?.

In short, the default for def_readwrite and def_readonly is to return references to underlying c++
objects, which avoids performing conversion on them. For that reason, return value policy must be set
to return_by_value explicitly, using slighly more complicated add_property syntax, as explained at
the page referenced.

4.8 Maintaining compatibility

In Yade development, we identified compatibility to be very strong desire of users. Compatibility concerns
python scripts, not simulations saved in XML or old c++ code.

4.8.1 Renaming class

Script scripts/rename-class.py should be used to rename class in c++ code. It takes 2 parameters (old
name and new name) and must be run from top-level source directory:

$ scripts/rename-class.py 0ldClassName NewClassName
Replaced 4 occurences, moved O files and O directories
Update python scripts (if wanted) by running: perl -pi -e 's/\bOldClassName\b/NewClassName/g' ~1ls **/*.py |grep

This has the following effects:
1. If file or directory has basename 01dClassName (plus extension), it will be renamed using bzr.
2. All occurences of whole word 01dClassName will be replaced by NewClassName in c++ sources.

3. An extry is added to py/system.py, which contains map of deprecated class names. At yade startup,
proxy class with 01dClassName will be created, which issues a DeprecationWarning when being
instantiated, informing you of the new name you should use; it creates an instance of NewClassName,
hence not disruting your script’s functioning:

Yade [3]: SimpleViscoelasticMat()
/usr/local/lib/yade-trunk/py/yade/__init__.py:1: DeprecationWarning: Class ~SimpleViscoelasticMat' was ren
-> [3]: <ViscElMat instance at 0x2d06770>

As you have just been informed, you can run yade --update to all old names with their new names in
scripts you provide:

‘$ yade-trunk --update scriptl.py some/where/script2.py

This gives you enough freedom to make your class name descriptive and intuitive.

4.8.2 Renaming class attribute

Renaming class attribute is handled from ¢4+ code. You have the choice of merely warning at accessing
old attribute (giving the new name), or of throwing exception in addition, both with provided explanation.
See deprec parameter to YADE CLASS BASE_DOC_* macro family for details.

116 Chapter 4. Programmer’s manual

http://www.boost.org/doc/libs/1_42_0/libs/python/doc/v2/faq.html#topythonconversionfailed
http://www.boost.org/doc/libs/1_42_0/libs/python/doc/v2/faq.html#topythonconversionfailed
https://github.com/yade/trunk/blob/master/scripts/rename-class.py
https://github.com/yade/trunk/blob/master/py/system.py

Yade Documentation, Release 1.20.0

4.9 Debian packaging instructions

In order to make parallel installation of several Yade version possible, we adopted similar strategy as e.g.
gcc packagers in Debian did:

1. Real Yade packages are named yade-0.30 (for stable versions) or yade-bzr2341 (for snapshots).
2. They provide yade or yade-snapshot virtual packages respectively.
3. Each source package creates several installable packages (using bzr2341 as example version):

(a) yade-bzr2341 with the optimized Dbinaries; the executable binary is yade-bzr2341
(yade-bzr2341-multi, ...)

(b) yade-bzr2341-dbg with debug binaries (debugging symbols, non-optimized, and with crash
handlers); the executable binary is yade-bzr2341-dbg

(¢) yade-bzr2341-doc with sample scripts and some documentation (see bug #398176 however)
(d) (future?) yade-bzr2341-reference with reference documentation (see bug #401004)

4. Using Debian alternatives, the highest installed package provides additionally commands without
the version specification like yade, yade-multi, ... as aliases to that version’s binaries. (yade-dbg,
... for the debuggin packages). The exact rule is:

(a) Stable releases have always higher priority than snapshots

(b) Higher versions/revisions have higher pripority than lower versions/revisions.

4.9.1 Prepare source package

Debian packaging files are located in debian/ directory. They contain build recipe debian/rules, de-
pendecy and package declarations debian/control and maintainer scripts. Some of those files are only
provided as templates, where some variables (such as version number) are replaced by special script.

The script scripts/debian-prep processes templates in debian/ and creates files which can be used by
debian packaging system. Before running this script:

1. If you are releasing stable version, make sure there is file named RELEASE containing single line
with version number (such as 0.30). This will make scripts/debian-prep create release packages.
In absence of this file, snapshots packaging will be created instead. Release or revision number (as
detected by running bzr revno in the source tree) is stored in VERSION file, where it is picked up
during package build and embedded in the binary.

2. Find out for which debian/ubuntu series your package will be built. This is the name that will
appear on the top of (newly created) debian/changelog file. This name will be usually unstable,
testing or stable for debian and karmic, lucid etc for ubuntu. WHen package is uploaded to
Launchpad’s build service, the package will be built for this specified release.

Then run the script from the top-level directory, giving series name as its first (only) argument:

‘$ scripts/debian-prep lucid

After this, signed debian source package can be created:

|$ debuild -S -sa -k62A21250 -I -Tattic

(-k gives GPG key identifier, -I skips .bzr and similar directories, ~Iattic will skip the useless attic
directory).

4.9.2 Create binary package

Local in-tree build Once files in debian/ are prepared, packages can be build by issuing:: $ fakeroot
debian/rules binary

4.9. Debian packaging instructions 117

https://bugs.launchpad.net/yade/+bug/398176
https://bugs.launchpad.net/yade/+bug/401004
http://www.debian-administration.org/articles/91
https://github.com/yade/trunk/blob/master/debian/
https://github.com/yade/trunk/blob/master/debian/rules
https://github.com/yade/trunk/blob/master/debian/control
https://github.com/yade/trunk/blob/master/scripts/debian-prep
https://github.com/yade/trunk/blob/master/debian/
https://github.com/yade/trunk/blob/master/scripts/debian-prep

Yade Documentation, Release 1.20.0

Clean system build Using pbuilder system, package can be built in a chroot containing clean de-
bian/ubuntu system, as if freshly installed. Package dependencies are automatically installed and
package build attempted. This is a good way of testing packaging before having the package built
remotely at Launchpad. Details are provided at wiki page.

Launchpad build service Launchpad provides service to compile package for different ubuntu releases
(series), for all supported architectures, and host archive of those packages for download via APT.
Having appropriate permissions at Launchpad (verified GPG key), source package can be uploaded
to yade’s archive by:

$ dput ppa:yade-users/ppa ../yade-bzr2341_1_source.changes

After several hours (depending on load of Launchpad build farm), new binary packages will be
published at https://launchpad.net/~yade-users/+archive/ppa.

This process is well documented at https://help.launchpad.net/Packaging/PPA.

118 Chapter 4. Programmer’s manual

https://www.yade-dem.org/wiki/DebianPackages
https://launchpad.net/~yade-users/+archive/ppa
https://help.launchpad.net/Packaging/PPA

Chapter 5

Installation

Yade can be installed from packages (pre-compiled binaries) or source code. The choice depends on what
you need: if you don’t plan to modify Yade itself, package installation is easier. In the contrary case,
you must download and install the source code.

5.1 Packages

Pre-built packages are provided for all currently supported Debian and Ubuntu versions of distributions
and available on yade-dem.org/packages .

These are daily versions of packages and are updating regularly and include all the newly added features.

To install daily-version one needs to add this repository to your /etc/apt/sources.list, add a PGP-key
AA915EEB as a trusted and install yadedaily

sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ trusty/" >> /etc/apt/sources.list’
wget -0 - http://www.yade-dem.org/packages/yadedev_pub.gpg | sudo apt-key add -

sudo apt-get update

sudo apt-get install yadedaily

If you have another distribution, not Ubuntu Trusty (Version 14.04 LTS), be sure to use the correct name
in the first line (for instance, trusty, jessie or wheezy). For the list of currently supported distributions,
please visit yade-dem.org/packages.

After that you can normally start Yade using “yadedaily” or “yadedaily-batch” command. yadedaily on
older distributions can have some disabled features due to older library versions, shipped with particular
distribution.

Git-repository for packaging stuff is available on GitHub. Each branch corresponds to one distribution
e.g. trusty, jessie etc. The scripts for building all of this stuff is here. It uses pbuilder to build packages,
so all packages are building in a clean environment.

If you do not need yadedaily-package any more, just remove the corresponding line in
/etc/apt/sources.list and the package itself:

’sudo apt-get remove yadedaily

To remove our key from keyring, execute the following command:

‘sudo apt-key remove AA915EEB

Since 2011 all Ubuntu versions (starting from 11.10, Oneiric) and Debian (starting from Wheezy) are
having already Yade in their main repositories. There are only stable releases are placed. To install the
program, run the following:

sudo apt-get install yade

119

http://yade-dem.org/packages/
http://yade-dem.org/packages/
https://github.com/yade/yadedaily/
https://github.com/yade/trunk/tree/master/scripts/ppa

Yade Documentation, Release 1.20.0

To check, what version of Yade is in specific distribution, visit the links for Ubuntu and Debian. Debian-
Backports repository is updating regularly to bring the newest Yade to a users of stable Debians.

Daily and stable Yade versions can coexist without any conflicts.

5.2 Source code

Installation from source code is reasonable, when you want to add or modify constitutive laws, engines
or functions... Installing the latest trunk version allows one to use newly added features, which are not
yet available in packaged versions.

5.2.1 Download

If you want to install from source, you can install either a release (numbered version, which is frozen)
or the current development version (updated by the developers frequently). You should download the
development version (called trunk) if you want to modify the source code, as you might encounter
problems that will be fixed by the developers. Release version will not be modified (except for updates
due to critical and easy-to-fix bugs), but they are in a more stabilized state that trunk generally.

1. Releases can be downloaded from the download page, as compressed archive. Uncompressing the
archive gives you a directory with the sources.

2. developement version (trunk) can be obtained from the code repository at github.

We use GIT (the git command) for code management (install the git package in your distribution and
create a GitHub account):

git clone git@github.com:yade/trunk.git

will download the whole code repository of trunk. Check out Yade on GitHub for more.

Alternatively, a read-only checkout is possible via https without a GitHub account (easier if you don’t
want to modify the main Yade branch):

git clone https://github.com/yade/trunk.git

For those behind firewall, you can download the sources from our GitHub repository as compressed
archive.

Release and trunk sources are compiled in the same way. To be notified about new commits into the
trunk, use watch option on GitHub.

5.2.2 Prerequisites

Yade relies on a number of external software to run; they are checked before the compilation starts.
Some of them are only optional. The last ones are only relevant for using the fluid coupling module
(FlowEngine).

e cmake build system

o gee compiler (g++); other compilers will not work; you need g++>=4.2 for openMP support
e boost 1.35 or later

o Qt library

o freeglut3

e 1libQGLViewer

e python, numpy, ipython

e matplotlib

o eigen algebra library (minimal required version 3.2.1)

120 Chapter 5. Installation

https://launchpad.net/ubuntu/+source/yade
http://packages.qa.debian.org/y/yade.html
http://backports.debian.org/Instructions
http://backports.debian.org/Instructions
https://launchpad.net/yade/+download
https://github.com/yade/
http://git-scm.com/
https://github.com/yade
https://help.github.com/articles/watching-repositories/
http://www.cmake.org/
http://www.gcc.gnu.org
http://www.boost.org/
http://www.qt.io/
http://freeglut.sourceforge.net
http://www.libqglviewer.com
http://www.python.org
http://numpy.scipy.org
http://ipython.scipy.org
http://matplotlib.sf.net
http://eigen.tuxfamily.org

Yade Documentation, Release 1.20.0

e gdb debugger

e sqlite3 database engine

e Loki library

o VTK library (optional but recommended)

o CGAL library (optional)

o SuiteSparse sparse algebra library (fluid coupling, optional, requires eigen>=3.1)

e OpenBLAS optimized and parallelized alternative to the standard blas+lapack (fluid coupling,
optional)
o Metis matrix preconditioning (fluid coupling, optional)
Most of the list above is very likely already packaged for your distribution. In case you are confronted
with some errors concerning not available packages (e.g. Package libmetis-dev is not available) it may

be necessary to add yade external ppa from https://launchpad.net/~yade-users/+archive/external (see
below) as well as http://www.yade-dem.org/packages (see the top of this page):

sudo add-apt-repository ppa:yade-users/external
sudo apt-get update

The following commands have to be executed in command line of corresponding distributions. Just
copy&paste to the terminal. To perform commands you should have root privileges

e Ubuntu, Debian and their derivatives:

sudo apt-get install cmake git freeglut3-dev libloki-dev \

libboost-all-dev fakeroot dpkg-dev build-essential g++ \

python-dev ipython python-matplotlib libsqlite3-dev python-numpy python-tk gnuplot \
libgts-dev python-pygraphviz libvtk5-dev python-scientific libeigen3-dev \
python-x1ib python-qt4 pyqt4-dev-tools gtk2-engines-pixbuf python-argparse \
libgglviewer-dev python-imaging libjs-jquery python-sphinx python-git python-bibtex \
libxmu-dev libxi-dev libcgal-dev help2man libbz2-dev zliblg-dev python-minieigen

Some of packages (for example, cmake, eigen3) are mandatory, some of them are optional. Watch for
notes and warnings/errors, which are shown by cmake during configuration step. If the missing package
is optional, some of Yade features will be disabled (see the messages at the end of configuration).

Additional packages, which can become mandatory later:

sudo apt-get install python-gts

For effective usage of direct solvers in the PFV-type fluid coupling, the following libraries are recom-
mended, together with eigen>=3.1: blas, lapack, suitesparse, and metis. All four of them are available in
many different versions. Different combinations are possible and not all of them will work. The following
was found to be effective on recent deb-based systems. On ubuntu 12.04, better compile openblas with
USE__OPENMP=1, else yade will run on a single core:

sudo apt-get install libopenblas-dev libsuitesparse-metis-dev

Some packages listed here are relatively new and they can be absent in your distribution (for example,
libmetis-dev or python-gts). They can be installed from yade-dem.org/packages or from our external
PPA. If not installed the related features will be disabled automatically.

If you are using other distribution, than Debian or its derivatives, you should install the softwares listed
above. Their names can differ from the names of Debian-packages.

5.2. Source code 121

http://www.gnu.org/software/gdb
http://www.sqlite.org
http://loki-lib.sf.net
http://www.vtk.org/
http://www.cgal.org/
http://www.cise.ufl.edu/research/sparse/SuiteSparse/
http://www.openblas.net/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview/
https://launchpad.net/~yade-users/+archive/external
http://www.yade-dem.org/packages
http://yade-dem.org/packages/
https://launchpad.net/~yade-users/+archive/external/
https://launchpad.net/~yade-users/+archive/external/

Yade Documentation, Release 1.20.0

Warning: If you have Ubuntu 14.04 Trusty, you need to add -DCMAKE_CXX_ FLAGS="-
frounding-math” during the configuration step of compilation (see below) or to install libcgal-dev
from our external PPA. Otherwise the following error occurs on AMDG64 architectures:

terminate called after throwing an instance of 'CGAL::Assertion_exception'
what(): CGAL ERROR: assertion violation!

Expr: -CGAL_IA_MUL(-1.1, 10.1) != CGAL_IA_MUL(1.1, 10.1)

File: /usr/include/CGAL/Interval_nt.h

Line: 209

Explanation: Wrong rounding: did you forget the -frounding-math option if you use GCC (or -fp-model strict
Aborted

5.2.3 Compilation

You should create a separate build-place-folder, where Yade will be configured and where the source code
will be compiled. Here is an example for a folder structure:

myYade/ ## base directory
trunk/ ## folder for sourcecode in which you use github
build/ ## folder in which sources will be compiled; build-directory; use cmake here
install/ ## install folder

Then inside this build-directory you should start cmake to configure the compilation process:

cmake -DCMAKE_INSTALL_PREFIX=/path/to/installfolder /path/to/sources

For the folder structure given above call the following command in folder “build”:
cmake -DCMAKE_INSTALL PREFIX=../install ../trunk

Additional options can be configured in the same line with the following syntax:

’cmake -DOPTION1=VALUE1 -DOPTION2=VALUE2 ‘

The following options are available:
o CMAKE_INSTALL_PREFIX: path where Yade should be installed (/usr/local by default)
o LIBRARY_ OUTPUT_PATH: path to install libraries (lib by default)
o DEBUG: compile in debug-mode (OFF by default)

« CMAKE_ VERBOSE_MAKEFILE: output additional information during compiling (OFF by de-
fault)

o SUFFIX: suffix, added after binary-names (version number by default)

o NOSUFFIX: do not add a suffix after binary-name (OFF by default)

« YADE_VERSION: explicitely set version number (is defined from git-directory by default)
o ENABLE_GUI: enable GUI option (ON by default)

o ENABLE_CGAL: enable CGAL option (ON by default)

o« ENABLE_VTK: enable VTK-export option (ON by default)

o ENABLE_OPENMP: enable OpenMP-parallelizing option (ON by default)

« ENABLE_GTS: enable GTS-option (ON by default)

o ENABLE_GL2PS: enable GL2PS-option (ON by default)

o ENABLE_LINSOLV: enable LINSOLV-option (ON by default)

« ENABLE_ PFVFLOW: enable PFVFLOW-option, FlowEngine (ON by default)

o ENABLE_LBMFLOW: enable LBMFLOW-option, LBM__ENGINE (ON by default)

« ENABLE_SPH: enable SPH-option, Smoothed Particle Hydrodynamics (OFF by default)

122 Chapter 5. Installation

https://launchpad.net/~yade-users/+archive/external/

Yade Documentation, Release 1.20.0

o ENABLE_LIQMIGRATION: enable LIQMIGRATION-option, see [Mani2013] for details (OFF
by default)

o« ENABLE MASK ARBITRARY: enable MASK ARBITRARY option (OFF by default)

« ENABLE_PROFILING: enable profiling, e.g. shows some more metrics, which can define bottle-
necks of the code (OFF by default)

o runtimePREFIX: used for packaging, when install directory is not the same is runtime directory
(/usr/local by default)

e CHUNKSIZE: used, if you want several sources to be compiled at once. Increases compilation
speed and RAM-consumption during it (1 by default)

o VECTORIZE: enables vectorization and alignment in Eigen3 library, experimental (OFF by de-
fault)

o USE_QT5: use QTS5 for GUI, experimental (OFF by default)

For using an extended parameters of cmake, please, follow the corresponding documentation on cmake-
webpage.

Warning: To provide Qt4->Qt5 migration one needed to provide an additional option USE_ -
QT5. This option should be On or Off according to the Qt version, which was used to compile
libQGLViewer. On Debian/Ubuntu operating systems libQGLViewer of version 2.6.3 and higher are
compiled against Qt5 (for other operating systems refer to the package archive of your distribution),
so if you are using such version, please switch on this option. Otherwise, if you mix Qt-versions
Segmentation fault will appear just after Yade is started. To provide necessary build dependencies
for Qt5, install python-pyqt5 pyqtb-dev-tools ~° instead of "~ “python-qt4 pyqté4-dev-tools,
which is needed for Qt4.

If the compilation is finished without errors, you will see all enabled and disabled options. Then start
the standard the compilation process:

‘make

The compilation process can take a long time, be patient. An additional parameter on many cores
systems -j can be added to decrease compilation time and split the compilation on many cores. For
example, on 4-core machines it would be reasonable to set the parameter -j4. Note, the Yade requires
approximately 2GB/core for compilation, otherwise the swap-file will be used and a compilation time
dramatically increases.

Installing performs with the following command:

’make install

|

The “install” command will in fact also recompile if source files have been modified. Hence there is no
absolute need to type the two commands separately. You may receive make errors if you don’t permission
to write into the target folder. These errors are not critical but without writing permissions Yade won’t
be installed in /usr/local/bin/.

After compilation finished successfully the mnew built can be started by navigating to
/path/to/installfolder/bin and calling yade via (based on version yade-2014-02-20.git-a7048f4):

cd /path/to/installfolder/bin
./yade-2014-02-20.git-a7048f4

For building the documentation you should at first execute the command “make install” and then “make
doc” to build it. The generated files will be stored in your current build directory/doc/sphinx/__build.
Once again writing permissions are necessary for installing into /usr/local/share/doc/.

“make manpage” command generates and moves manpages in a standard place. “make check” command
executes standard test to check the functionality of compiled program.

Yade can be compiled not only by GCC-compiler, but also by CLANG front-end for the LLVM compiler.
For that you set the environment variables CC and CXX upon detecting the C and C++ compiler to
use:

5.2. Source code 123

http://clang.llvm.org/

Yade Documentation, Release 1.20.0

export CC=/usr/bin/clang
export CXX=/usr/bin/clang++
cmake -DOPTION1=VALUE1 -DOPTION2=VALUE2

Clang does not support OpenMP-parallelizing for the moment, that is why the feature will be disabled.

5.3 Yubuntu

If you are not running Ubuntu nor Debian, there is a way to create a Yubuntu live-usb on any usb
mass-storage device (minimum recommended size is 5GB). It is a way to make a bootable usb-key with
a preinstalled minimalist operating system (Xubuntu), including Yadedaily and Paraview.

More informations about this alternative are available here (see the README file first).

124 Chapter 5. Installation

http://en.wikipedia.org/wiki/Live_USB
http://geo.hmg.inpg.fr/~chareyre/pubs/yubuntu/

Chapter 6

Yade on GitHub

6.1 Fast checkout without GitHub account (read-only)

Getting the source code without registering on GitHub can be done via a single command. It will not
allow interactions with the remote repository, which you access the read-only way:

‘ git clone https://github.com/yade/trunk.git

6.2 Using branches on GitHub (for frequent commits see git/trunk
section below)

Most usefull commands are below. For more details, see for instance http://gitref.org/index.html and
https://help.github.com/articles/set-up-git

6.2.1 Setup

1. Register on github.com
2. Add your SSH key to GitHub:

On the GitHub site Click “Account Settings” (top right) > Click “SSH keys” > Click “Add
SSH key”

3. Set your username and email through terminal:

git config --global user.name "Firstname Lastname"
git config --global user.email "your_email@youremail.com"

4. Fork a repo:
Click the “Fork” button on the https://github.com/yade/trunk
5. Set Up Your Local Repo through terminal:

git clone git@github.com:username/trunk.git

This creates a new folder, named trunk, that contains the whole code.

6. Configure remotes

cd to/newly/created/folder
git remote add upstream git@github.com:yade/trunk.git
git fetch upstream

125

http://gitref.org/index.html
https://help.github.com/articles/set-up-git
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/fork-a-repo
https://github.com/yade/trunk

Yade Documentation, Release 1.20.0

Now, your “trunk” folder is linked with the code hosted on github.com. Through appropriate
commands explained below, you will be able to update your code to include changes commited
by others, or to commit yourself changes that others can get.

6.2.2 Retrieving older Commits

In case you want to work with, or compile, an older version of Yade which is not tagged, you can create
your own (local) branch of the corresponding daily build. Look here for details.

6.2.3 Committing and updating
For those used to other version control systems, note that the commit mechanisms in Git significantly

differs from that of Bazaar or SVN. Therefore, don’t expect to find a one-to-one command replacement.
In some cases, however, the equivalent bazaar command is indicated below to ease the transition.

Inspecting changes

You may start by inspecting your changes with a few commands. For the “diff” command, it is convenient
to copy from the output of “status” instead of typing the path to modified files.

git status
git diff path/to/modified/file.cpp

Committing changes

Then you proceed to commit through terminal:

git add path/to/new/file.cpp #Version a newly created file: equivalent of "bzr add"
git commit path/to/new_or_modified/file.cpp -m'Commit message'™"
git push #Push your changes into GitHub. Equivalent of "bzr commit", except that your are commit

Changes will be pushed to your personal “fork”, If you have tested your changes and you are ready to
push them into the main trunk, just do a “pull request” [5] or create a patch from your commit via:

git format-patch origin #create patch file in current folder)

and send to the developers maililng list (yade-dev@lists.launchpad.net) as attachment. In either way,
after reviewing your changes they will be added to the main trunk.

When the pull request has been reviewed and accepted, your changes are integrated in the main trunk.
Everyone will get them via git fetch.

Updating

You may want to get changes done by others:

#Validate a change. It can be done several ti

ing to your ow

git fetch upstream #Pull new updates from the upstream to your branch. Eq. of "bzr update", upda
git merge upstream/master #Merge upstream changes into your master-branch (eq. of "bzr update",

ating the remot
updating your

Alternatively, this will do fetch+merge all at once (discouraged if you have uncommited changes):

git pull ’

126 Chapter 6. Yade on GitHub

https://answers.launchpad.net/yade/+question/235867
http://bazaar.canonical.com/en/
https://subversion.apache.org/
mailto:yade-dev@lists.launchpad.net

Yade Documentation, Release 1.20.0

6.3 Working directly on git/trunk (recommended for frequent com-
mits)

This direct access to trunk will sound more familiar to bzr or svn users. It is only possible for members
of the git team “developpers”. Send an email at yade-dev@lists.launchpad.net to join this team (don’t
forget to tell your git account name).

o Get trunk:

git clone git@github.com:yade/trunk.git

This creates a new folder, named trunk, that contains the whole code.

o Update

’ git pull

e Commit to local repository

’ git commit filenamel filename2 ...

e Push changes to remote trunk

‘ git push

Now, the changes you made are included in the on-line code, and can be get back by every
user.

To avoid confusing logs after each commit/pull/push cycle, it is better to setup automatic rebase:

‘git config --global branch.autosetuprebase always

Now your file ~/.gitconfig should include:
[branch] autosetuprebase = always
Check also .git/config file in your local trunk folder (rebase = true):
[branch “master”] remote = origin
merge = refs/heads/master
rebase = true

Auto-rebase may have unpleasant side effects by blocking “pull” if you have uncommited changes. In
this case you can use “git stash”:

git pull

1lib/SConscript: needs update

refusing to pull with rebase: your working tree is not up-to-date
git stash #hide the uncommited changes away

git pull #now it's ok

git push #push the commited changes

git stash pop #get uncommited changes back

6.4 General guidelines for pushing to yade/trunk

1. Set autorebase once on the computer! (see above)

2. Inspect the diff to make sure you will not commit junk code (typically some “cout<<” left here
and there), using in terminal:

git diff filel

Or, alternatively, any GUI for git: gitg, git-cola...

6.3. Working directly on git/trunk (recommended for frequent commits) 127

http://bazaar.canonical.com/en/
https://subversion.apache.org/
mailto:yade-dev@lists.launchpad.net

Yade Documentation, Release 1.20.0

Commit selectively:

git commit filel file2 file3 -m "message" # is good
git commit -a -m "message"

is bad. It is the best way to commit things tha

t should not be

Be sure to work with an up-to-date version launching:

git pull

Make sure it compiles and that regression tests pass: try “yade —test” and “yade —check”.

You can finally let all Yade-users enjoy your work:

git push

Thanks a lot for your cooperation to Yade!

128

Chapter 6. Yade on GitHub

Chapter 7

DEM Background

In this chapter, we mathematically describe general features of explicit DEM simulations, with some
reference to Yade implementation of these algorithms. They are given roughly in the order as they
appear in simulation; first, two particles might establish a new interaction, which consists in

1. detecting collision between particles;

2. creating new interaction and determining its properties (such as stiffness); they are either precom-
puted or derived from properties of both particles;

Then, for already existing interactions, the following is performed:
1. strain evaluation;
2. stress computation based on strains;
3. force application to particles in interaction.

This simplified description serves only to give meaning to the ordering of sections within this chapter.
A more detailed description of this simulation loop is given later.

In this chapter we refer to kinematic variables of the contacts as ‘“‘strains‘‘, although at this scale it
is also common to speak of ‘‘displacements‘. Which semantic is more appropriate depends on the
conceptual model one is starting from, and therefore it cannot be decided independently of specific
problems. The reader familiar with displacements can mentaly replace normal strain and shear strain by
normal displacement and shear displacement, respectively, without altering the meaning of what follows.

7.1 Collision detection

7.1.1 Generalities

Exact computation of collision configuration between two particles can be relatively expensive (for in-
stance between Sphere and Facet). Taking a general pair of bodies i and j and their “exact** (In the
sense of precision admissible by numerical implementation.) spatial predicates (called Shape in Yade)
represented by point sets Pi, P;j the detection generally proceeds in 2 passes:

1. fast collision detection using approximate predicate Py and l3j; they are pre-constructed in such a
way as to abstract away individual features of P; and P; and satisfy the condition

Vx eR¥:xEePi=xeEP; (7.1)

(likewise for P;). The approximate predicate is called “‘bounding volume” (Bound in Yade) since it
bounds any particle’s volume from outside (by virtue of the implication). It follows that (PiNPj) #
0 = (PyNPj) # 0 and, by applying modus tollens,

(]Simf)j) =0 = (Piﬂpj) =0 (72)

which is a candidate exclusion rule in the proper sense.

129

Yade Documentation, Release 1.20.0

2. By filtering away impossible collisions in (7.2), a more expensive, exact collision detection algo-
rithms can be run on possible interactions, filtering out remaining spurious couples (151 N 15]-) #*
VAN (Pi N Pj) = (). These algorithms operate on P; and P; and have to be able to handle all possible
combinations of shape types.

It is only the first step we are concerned with here.

7.1.2 Algorithms

Collision evaluation algorithms have been the subject of extensive research in fields such as robotics,
computer graphics and simulations. They can be roughly divided in two groups:

Hierarchical algorithms which recursively subdivide space and restrict the number of approximate
checks in the first pass, knowing that lower-level bounding volumes can intersect only if they
are part of the same higher-level bounding volume. Hierarchy elements are bounding volumes of
different kinds: octrees [Jungl997], bounding spheres [Hubbard1996], k-DOP’s [Klosowskil998].

Flat algorithms work directly with bounding volumes without grouping them in hierarchies first; let
us only mention two kinds commonly used in particle simulations:

Sweep and prune algorithm operates on axis-aligned bounding boxes, which overlap
if and only if they overlap along all axes. These algorithms have roughly O(nlogn)
complexity, where n is number of particles as long as they exploit temporal coherence
of the simulation.

Grid algorithms represent continuous R3 space by a finite set of regularly spaced
points, leading to very fast neighbor search; they can reach the O(n) complex-
ity [Munjiza1998] and recent research suggests ways to overcome one of the major
drawbacks of this method, which is the necessity to adjust grid cell size to the largest
particle in the simulation (/Munjiza2006], the “‘multistep” extension).

Temporal coherence expresses the fact that motion of particles in simulation is not arbitrary but
governed by physical laws. This knowledge can be exploited to optimize performance.

Numerical stability of integrating motion equations dictates an upper limit on At (sect. Stability consid-
erations) and, by consequence, on displacement of particles during one step. This consideration is taken
into account in /Munjiza2006], implying that any particle may not move further than to a neighboring
grid cell during one step allowing the O(n) complexity; it is also explored in the periodic variant of the
sweep and prune algorithm described below.

On a finer level, it is common to enlarge P; predicates in such a way that they satisfy the (7.1) condition
during several timesteps; the first collision detection pass might then be run with stride, speeding up
the simulation considerably. The original publication of this optimization by Verlet [Verlet1967] used
enlarged list of neighbors, giving this technique the name Verlet list. In general cases, however, where
neighbor lists are not necessarily used, the term Verlet distance is employed.

7.1.3 Sweep and prune

Let us describe in detail the sweep and prune algorithm used for collision detection in Yade (class
InsertionSortCollider). Axis-aligned bounding boxes (Aabb) are used as Pi; each Aabb is given by lower
and upper corner € R? (in the following, PX°, PX! are minimum/maximum coordinates of P; along the
x-axis and so on). Construction of Aabb from various particle Shape's (such as Sphere, Facet, Wall) is
straightforward, handled by appropriate classes deriving form BoundFunctor (Bol_Sphere Aabb, Bol -
Facet__Aabb, ..).

Presence of overlap of two Aabb‘s can be determined from conjunction of separate overlaps of intervals
along each axis (fig-sweep-and-prune):

(Penpy) 20 A [((Pro,pet) (P ppt)) 0]
we{x,y,z}

where (a,b) denotes interval in R.

130 Chapter 7. DEM Background

Yade Documentation, Release 1.20.0

v

px0 px1
P3 < b P3

Fig. 7.1: Sweep and prune algorithm (shown in 2D), where Aabb of each sphere is represented by
minimum and maximum value along each axis. Spatial overlap of Aabl’s is present if they overlap along
all axes. In this case, Py NP, # 0 (but note that Py NP, =0) and P, NP3 # (.}

The collider keeps 3 separate lists (arrays) L,, for each axis w € {x,y, z}

Lo = {Pro,pr}

1

where 1 traverses all particles. L,, arrays (sorted sets) contain respective coordinates of minimum and
maximum corners for each Aabb (we call these coordinates bound in the following); besides bound, each
of list elements further carries id referring to particle it belongs to, and a flag whether it is lower or
upper bound.

In the initial step, all lists are sorted (using quicksort, average O(nlogn)) and one axis is used to create
initial interactions: the range between lower and upper bound for each body is traversed, while bounds
in-between indicate potential Aabb overlaps which must be checked on the remaining axes as well.

At each successive step, lists are already pre-sorted. Inversions occur where a particle’s coordinate has
just crossed another particle’s coordinate; this number is limited by numerical stability of simulation and
its physical meaning (giving spatio-temporal coherence to the algorithm). The insertion sort algorithm
swaps neighboring elements if they are inverted, and has complexity between bigO{n} and bigO{n"2},
for pre-sorted and unsorted lists respectively. For our purposes, we need only to handle inversions, which
by nature of the sort algorithm are detected inside the sort loop. An inversion might signify:

« overlap along the current axis, if an upper bound inverts (swaps) with a lower bound (i.e. that the
upper bound with a higher coordinate was out of order in coming before the lower bound with a
lower coordinate). Overlap along the other 2 axes is checked and if there is overlap along all axes,
a new potential interaction is created.

o End of overlap along the current axis, if lower bound inverts (swaps) with an upper bound. If there
is only potential interaction between the two particles in question, it is deleted.

e Nothing if both bounds are upper or both lower.

Aperiodic insertion sort

Let us show the sort algorithm on a sample sequence of numbers:
|3 7 2 4

Elements are traversed from left to right; each of them keeps inverting (swapping) with neighbors to the
left, moving left itself, until any of the following conditions is satisfied:

7.1. Collision detection 131

Yade Documentation, Release 1.20.0

(<) | the sorting order with the left neighbor is correct, or
(II) | the element is at the beginning of the sequence.

We start at the leftmost element (the current element is marked)

131 7 2 4

It obviously immediately satisfies (||), and we move to the next element:

[S 4 B

<

Condition (<) holds, therefore we move to the right. The is not in order (violating (<)) and two
inversions take place; after that, (||) holds:

All elements having been traversed, the sequence is now sorted.

It is obvious that if the initial sequence were sorted, elements only would have to be traversed without
any inversion to handle (that happens in O(n) time).

For each inversion during the sort in simulation, the function that investigates change in Aabb overlap is
invoked, creating or deleting interactions.

The periodic variant of the sort algorithm is described in Periodic insertion sort algorithm, along with
other periodic-boundary related topics.

Optimization with Verlet distances

As noted above, [Verlet1967] explored the possibility of running the collision detection only sparsely by
enlarging predicates Pj.

In Yade, this is achieved by enlarging Aabb of particles by fixed relative length (or Verlet’s distance) in all
dimensions AL (InsertionSortCollider.sweepLength). Suppose the collider run last time at step m and the
current step is n. NewtonlIntegrator tracks the cummulated distance traversed by each particle between
m and n by comparing the current position with the reference position from time n (Bound::refPos),

Lmn = |X.rl - Xm| (73)
triggering the collider re-run as soon as one particle gives:

Lon > AL. (7.4)

InsertionSortCollider.targetInterv is used to adjust AL independently for each particle. Larger AL will
be assigned to the fastest ones, so that all particles would ideally reach the edge of their bounds after this
“target” number of iterations. Results of using Verlet distance depend highly on the nature of simulation
and choice of InsertionSortCollider.targetInterv. Adjusting the sizes independently for each particle is
especially efficient if some parts of a problem have high-speed particles will others are not moving. If

132 Chapter 7. DEM Background

Yade Documentation, Release 1.20.0

it is not the case, no significant gain should be expected as compared to targetInterv=0 (assigning the
same AL to all particles).

The number of particles and the number of available threads is also to be considered for choosing an
appropriate Verlet’s distance. A larger distance will result in less time spent in the collider (which runs
single-threaded) and more time in computing interactions (multi-threaded). Typically, large AL will be
used for large simulations with more than 10 particles on multi-core computers. On the other hand
simulations with less than 10% particles on single processor will probably benefit from smaller AL. Users
benchmarks may be found on Yade’s wiki (see e.g. https://yade-dem.org/wiki/Colliders performace).

7.2 Creating interaction between particles

Collision detection described above is only approximate. Exact collision detection depends on the ge-
ometry of individual particles and is handled separately. In Yade terminology, the Collider creates only
potential interactions; potential interactions are evaluated exactly using specialized algorithms for colli-
sion of two spheres or other combinations. Exact collision detection must be run at every timestep since
it is at every step that particles can change their mutual position (the collider is only run sometimes if
the Verlet distance optimization is in use). Some exact collision detection algorithms are described in
Strain evaluation; in Yade, they are implemented in classes deriving from IGeomFunctor (prefixed with
Ig2).

Besides detection of geometrical overlap (which corresponds to IGeom in Yade), there are also non-
geometrical properties of the interaction to be determined (/Phys). In Yade, they are computed for
every new interaction by calling a functor deriving from IPhysFunctor (prefixed with Ip2) which accepts
the given combination of Material types of both particles.

7.2.1 Stiffnesses

Basic DEM interaction defines two stiffnesses: normal stiffness KN and shear (tangent) stiffness Kr.
It is desirable that Ky be related to fictitious Young’s modulus of the particles’ material, while Kt is
typically determined as a given fraction of computed Kyn. The Ky/Ky ratio determines macroscopic
Poisson’s ratio of the arrangement, which can be shown by dimensional analysis: elastic continuum has
two parameters (E and v) and basic DEM model also has 2 parameters with the same dimensions Ky and
K1/Kn; macroscopic Poisson’s ratio is therefore determined solely by Ky /Ky and macroscopic Young’s
modulus is then proportional to Ky and affected by Ky/Ky.

Naturally, such analysis is highly simplifying and does not account for particle radius distribution, packing
configuration and other possible parameters such as the interaction radius introduced later.

Normal stiffness

The algorithm commonly used in Yade computes normal interaction stiffness as stiffness of two springs
in serial configuration with lengths equal to the sphere radii (fig-spheres-contact-stiffness).

Fig. 7.2: Series of 2 springs representing normal stiffness of contact between 2 spheres.

Let us define distance | = 11 +1,, where 1; are distances between contact point and sphere centers, which
are initially (roughly speaking) equal to sphere radii. Change of distance between the sphere centers Al

7.2. Creating interaction between particles 133

https://yade-dem.org/wiki/Colliders_performace

Yade Documentation, Release 1.20.0

is distributed onto deformations of both spheres Al = Aly + Al, proportionally to their compliances.
Displacement change Al generates force Fy = K{Al;, where K; assures proportionality and has physical
meaning and dimension of stiffness; K; is related to the sphere material modulus E; and some length 1;
proportional to rj.

Al = Al + Al
Ki = Eily
KnAL=F=F =F,
Kn (Al + AlLy) =F

FOF
Kn(—+—)=F
N(K1 +K2>

K4+ K T =Ky
KK,
K+ K

. ELED
N E]i] +Eziz

N

The most used class computing interaction properties Ip2 FrictMat FrictMat FrictPhys uses l; = 2ry.

Some formulations define an equivalent cross-section A.q, which in that case appears in the 1l; term as

Ki = iy = E; Alj“. Such is the case for the concrete model (Ip2 CpmMat CpmMat CpmPhys), where

Aeq = mil’l(ﬁ y Tz).

For reasons given above, no pretense about equality of particle-level E; and macroscopic modulus E should
be made. Some formulations, such as [Hentz2003], introduce parameters to match them numerically.
This is not appropriate, in our opinion, since it binds those values to particular features of the sphere
arrangement that was used for calibration.

7.2.2 Other parameters

Non-elastic parameters differ for various material models. Usually, though, they are averaged from
the particles’ material properties, if it makes sense. For instance, Ip2 CpmMat CpmMat _CpmPhys
averages most quantities, while Ip2 FrictMat_FrictMat FrictPhys computes internal friction angle as
@ = min(@1, @2) to avoid friction with bodies that are frictionless.

7.3 Strain evaluation

In the general case, mutual configuration of two particles has 6 degrees of freedom (DoFs) just like a
beam in 3D space: both particles have 6 DoFs each, but the interaction itself is free to move and rotate
in space (with both spheres) having 6 DoFs itself; then 12 — 6 = 6. They are shown at fig-spheres-dofs.

We will only describe normal and shear components of strain in the following, leaving torsion and bending
aside. The reason is that most constitutive laws for contacts do not use the latter two.

7.3.1 Normal strain

Constants

Let us consider two spheres with initial centers C_1, C, and radii 11, T2 that enter into contact. The
order of spheres within the contact is arbitrary and has no influence on the behavior. Then we define
lengths

do =|C2 — Cq
do—11—12
2)

di =1+ d, =do—d;.

134 Chapter 7. DEM Background

Yade Documentation, Release 1.20.0

initial configuration normal straining (1DoF) shearing (2 DoFs)

twisting (1DoF') bending (2 DoFs)

Fig. 7.3: Degrees of freedom of configuration of two spheres. Normal strain appears if there is a difference
of linear velocity along the interaction axis (n); shearing originates from the difference of linear velocities
perpendicular to n and from the part of w; + w, perpendicular to n; twisting is caused by the part of
w1 — w;y parallel with n; bending comes from the part of w; — w; perpendicular to n.

These quantities are constant throughout the life of the interaction and are computed only once when
the interaction is established. The distance dg is the reference distance and is used for the conversion
of absolute displacements to dimensionless strain, for instance. It is also the distance where (for usual
contact laws) there is neither repulsive nor attractive force between the spheres, whence the name
equilibrium distance.

N
g

' d

Fig. 7.4: Geometry of the initial contact of 2 spheres; this case pictures spheres which already overlap
when the contact is created (which can be the case at the beginning of a simulation) for the sake of
generality. The initial contact point C is in the middle of the overlap zone.

Distances d; and d; define reduced (or expanded) radii of spheres; geometrical radii 1 and r, are used
only for collision detection and may not be the same as dy and d,, as shown in fig. fig-sphere-sphere.
This difference is exploited in cases where the average number of contacts between spheres should be
increased, e.g. to influence the response in compression or to stabilize the packing. In such case,
interactions will be created also for spheres that do not geometrically overlap based on the interaction
radius Ry, a dimensionless parameter determining ,non-locality“ of contact detection. For Ry = 1, only
spheres that touch are considered in contact; the general condition reads

do < Ri(ry +12). (7.5)

The value of Ry directly influences the average number of interactions per sphere (percolation), which
for some models is necessary in order to achieve realistic results. In such cases, Aabb (or P; predicates
in general) must be enlarged accordingly (Bol_Sphere_Aabb.aabbEnlargeFactor).

7.3. Strain evaluation 135

Yade Documentation, Release 1.20.0

Contact cross-section

Some constitutive laws are formulated with strains and stresses (Law2 ScGeom_CpmPhys Cpm, the
concrete model described later, for instance); in that case, equivalent cross-section of the contact must
be introduced for the sake of dimensionality. The exact definition is rather arbitrary; the CPM model
(Ip2_CpmMat_CpmMat_CpmPhys) uses the relation

Acq = mmin(ry,12)? (7.6)

which will be used to convert stresses to forces, if the constitutive law used is formulated in terms of
stresses and strains. Note that other values than 7t can be used; it will merely scale macroscopic packing
stiffness; it is only for the intuitive notion of a truss-like element between the particle centers that we
choose Acq representing the circle area. Besides that, another function than min(ry,r2) can be used,
although the result should depend linearly on r; and 1, so that the equation gives consistent results if
the particle dimensions are scaled.

Variables

The following state variables are updated as spheres undergo motion during the simulation (as C7 and
C3 change):

CZ_C? o o
n=—=———=06-C 7.7
|C2—C~|‘ 2 1 ()
and
co= o <d1 _ dO—|C22—C1|) 0 (78)

The contact point C° is always in the middle of the spheres’ overlap zone (even if the overlap is neg-
ative, when it is in the middle of the empty space between the spheres). The contact plane is always
perpendicular to the contact plane normal n° and passes through C°.

Normal displacement and strain can be defined as

uN = |C§* ?‘*dO)
ey = N |C3—C(1)|71.
do do

Since uy is always aligned with n, it can be stored as a scalar value multiplied by n if necessary.

For massively compressive simulations, it might be beneficial to use the logarithmic strain, such that the
strain tends to —oo (rather than —1) as centers of both spheres approach. Otherwise, repulsive force
would remain finite and the spheres could penetrate through each other. Therefore, we can adjust the
definition of normal strain as follows:

_ fog (1S5S i Ies - €1 < do
R GRS

i otherwise.
0

Such definition, however, has the disadvantage of effectively increasing rigidity (up to infinity) of contacts,
requiring At to be adjusted, lest the simulation becomes unstable. Such dynamic adjustment is possible
using a stiffness-based time-stepper (GlobalStiffness TimeStepper in Yade).

7.3.2 Shear strain

In order to keep ur consistent (e.g. that ur must be constant if two spheres retain mutually constant
configuration but move arbitrarily in space), then either ur must track spheres’ spatial motion or must
(somehow) rely on sphere-local data exclusively.

Geometrical meaning of shear strain is shown in fig-shear-2d.

136 Chapter 7. DEM Background

Yade Documentation, Release 1.20.0

Fig. 7.5: Evolution of shear displacement ut due to mutual motion of spheres, both linear and rotational.
Left configuration is the initial contact, right configuration is after displacement and rotation of one
particle.

The classical incremental algorithm is widely used in DEM codes and is described frequently
([Luding2008], [Alonso2004]). Yade implements this algorithm in the ScGeom class. At each step,
shear displacement uy is updated; the update increment can be decomposed in 2 parts: motion of the
interaction (i.e. C and n) in global space and mutual motion of spheres.

1. Contact moves dues to changes of the spheres’ positions C; and C;, which updates current C°
and n° as per (7.8) and (7.7). uy is perpendicular to the contact plane at the previous step n~
and must be updated so that uy 4+ (Aut) =u$ L n°; this is done by perpendicular projection to
the plane first (which might decrease [ut|) and adding what corresponds to spatial rotation of the
interaction instead:

(Aut); =—uy x (N~ xn°)
At

(Aut); = —uy x <2n° (w§ + w?)) ne

2. Mutual movement of spheres, using only its part perpendicular to n°; vy, denotes mutual velocity
of spheres at the contact point:
vi2 = (V§ 4+ w; x (—dn°)) — (Vi + wF x (d1n°))
Viz =viz— (n°-vipn®

(Aut)z = —Atv%z

Finally, we compute

u =ug + (Aut); + (Aut);y + (Aug)s.

7.4 Stress evaluation (example)

Once strain on a contact is computed, it can be used to compute stresses/forces acting on both spheres.

The constitutive law presented here is the most usual DEM formulation, originally proposed by Cundall.
While the strain evaluation will be similar to algorithms described in the previous section regardless
of stress evaluation, stress evaluation itself depends on the nature of the material being modeled. The
constitutive law presented here is the most simple non-cohesive elastic case with dry friction, which Yade
implements in Law2 ScGeom_ FrictPhys CundallStrack (all constitutive laws derive from base class
LawFunctor).

In DEM generally, some constitutive laws are expressed using strains and stresses while others prefer
displacement /force formulation. The law described here falls in the latter category.

7.4. Stress evaluation (example) 137

Yade Documentation, Release 1.20.0

When new contact is established (discussed in Engines) it has its properties (IPhys) computed from
Materials associated with both particles. In the simple case of frictional material FrictMat, Ip2 -
FrictMat_FrictMat_FrictPhys creates a new FrictPhys instance, which defines normal stiffness Ky,
shear stiffness Kt and friction angle ¢.

At each step, given normal and shear displacements uyn, ur, normal and shear forces are computed (if
un > 0, the contact is deleted without generating any forces):

Fn = Knunm,

chl‘ = Krur

where Fy is normal force and Fy is trial shear force. A simple non-associated stress return algorithm is
applied to compute final shear force

. {F%F‘“Fﬁfn“’ if [Fr| > [Fx|tan @,
T:

F otherwise.

Summary force F = Fy + Fy is then applied to both particles — each particle accumulates forces and
torques acting on it in the course of each step. Because the force computed acts at contact point C,
which is difference from spheres’ centers, torque generated by F must also be considered.

Fi+=F F,+=—-F
Ti+=d7(—m) x F T+ =dmxF.

7.5 Motion integration

Each particle accumulates generalized forces (forces and torques) from the contacts in which it partici-
pates. These generalized forces are then used to integrate motion equations for each particle separately;
therefore, we omit 1 indices denoting the i-th particle in this section.

The customary leapfrog scheme (also known as the Verlet scheme) is used, with some adjustments for
rotation of non-spherical particles, as explained below. The “leapfrog” name comes from the fact that
even derivatives of position/orientation are known at on-step points, whereas odd derivatives are known
at mid-step points. Let us recall that we use a—, a°, at for on-step values of a at t — At, t and t + At
respectively; and a®, a® for mid-step values of a at t — At/2, t + At/2.

Described integration algorithms are implemented in the Newtonlntegrator class in Yade.

7.5.1 Position

Integrating motion consists in using current acceleration 1i° on a particle to update its position from the
current value u° to its value at the next timestep u™. Computation of acceleration, knowing current
forces F acting on the particle in question and its mass m, is simply

1 =F/m.
Using the 2nd order finite difference with step At, we obtain

u —2u°+ut
At?

O

u

from which we express

ut =2u° —u + At =

u® —u- .

- +1U°At).
e

(1)

:u°+At(

138 Chapter 7. DEM Background

Yade Documentation, Release 1.20.0

Typically, u™ is already not known (only u® is); we notice, however, that

uwo~ -
At

i.e. the mean velocity during the previous step, which is known. Plugging this approximate into the (7)
term, we also notice that mean velocity during the current step can be approximated as

1 ~u® +i°At,
which is (f); we arrive finally at
ut =u® + At (U° +10°AL).

The algorithm can then be written down by first computing current mean velocity 1® which we need to
store for the next step (just as we use its old value u® now), then computing the position for the next
time step u™:

u® =1 + At

ut =u® +u%At.

Positions are known at times 1At (if At is constant) while velocities are known at iAt+45t. The facet that
they interleave (jump over each other) in such way gave rise to the colloquial name “leapfrog” scheme.

7.5.2 Orientation (spherical)

Updating particle orientation q° proceeds in an analogous way to position update. First, we compute
current angular acceleration ° from known current torque T. For spherical particles where the inertia
tensor is diagonal in any orientation (therefore also in current global orientation), satisfying Iy =152 =
153, we can write

Wi =T/,
We use the same approximation scheme, obtaining an equation analogous to (?7?)
w® = w + Atw°.
The quaternion Aq representing rotation vector w®At is constructed, i.e. such that
(Aq)s =|w®],
(Aq)u = w®

Finally, we compute the next orientation q* by rotation composition

q" =Aqq°.

7.5.3 Orientation (aspherical)

Integrating rotation of aspherical particles is considerably more complicated than their position, as their
local reference frame is not inertial. Rotation of rigid body in the local frame, where inertia matrix I is
diagonal, is described in the continuous form by Euler’s equations (i € {1,2, 3} and 1, j, k are subsequent
indices):

Ty = L + (I — Ijj) wjwy.

Due to the presence of the current values of both w and w, they cannot be solved using the standard
leapfrog algorithm (that was the case for translational motion and also for the spherical bodies’ rotation
where this equation reduced to T = I).

The algorithm presented here is described by [Allen1989] (pg. 84-89) and was designed by Fincham
for molecular dynamics problems; it is based on extending the leapfrog algorithm by mid-step/on-step

7.5. Motion integration 139

Yade Documentation, Release 1.20.0

estimators of quantities known at on-step/mid-step points in the basic formulation. Although it has
received criticism and more precise algorithms are known (/Omelyani1999], [Neto2006], [Johnson2008]),
this one is currently implemented in Yade for its relative simplicity.

Each body has its local coordinate system based on the principal axes of inertia for that body. We use ® to
denote vectors in local coordinates. The orientation of the local system is given by the current particle’s
orientation ¢° as a quaternion; this quaternion can be expressed as the (current) rotation matrix A.
Therefore, every vector a is transformed as a = qaq* = Aa. Since A is a rotation (orthogonal) matrix,
the inverse rotation A~' = AT,

For given particle in question, we know
e T (constant) inertia matrix; diagonal, since in local, principal coordinates,
o T° external torque,
e (° current orientation (and its equivalent rotation matrix A),
e W® mid-step angular velocity,

e L® mid-step angular momentum; this is an auxiliary variable that must be tracked in addition for
use in this algorithm. It will be zero in the initial step.

Our goal is to compute new values of the latter three, that is LY, q", w®. We first estimate current
angular momentum and compute current local angular velocity:

At ~o
L°:L@+T°7, L =AL°,
L = L° + T°At, ¥ = AL®,
@ =1L,

O =1T1°.

Then we compute ¢°, using q° and @°:

9w Gw —4x —dy —4z\ [O
ax | _1[ax aw -4z oy || D
Ay | 2149y 9z dw x| | Dy’
qz 9z —qy 9% 9w/ \@.
At
® __ o o™/~

We evaluate ¢® from q® and @7 in the same way as in (??) but shifted by At/2 ahead. Then we can
finally compute the desired values

q" =q"+4%At,

w® =AT®?

7.5.4 Clumps (rigid aggregates)

DEM simulations frequently make use of rigid aggregates of particles to model complex shapes [Price2007]
called clumps, typically composed of many spheres. Dynamic properties of clumps are computed from
the properties of its members:

e For non-overlapping clump members the clump’s mass m. is summed over members, the inertia
tensor I. is computed using the parallel axes theorem: I. = } ;(m; * d? + I;), where m; is the
mass of clump member i, d; is the distance from center of clump member 1 to clump’s centroid
and I; is the inertia tensor of the clump member i.

140 Chapter 7. DEM Background

Yade Documentation, Release 1.20.0

e For overlapping clump members the clump’s mass m. is summed over cells using a regular grid
spacing inside axis-aligned bounding box (Aabb) of the clump, the inertia tensor is computed using
the parallel axes theorem: I, = > ; (my * d)-2 +1;), where m; is the mass of cell j, d; is the distance
from cell center to clump’s centroid and Ij is the inertia tensor of the cell j.

Local axes are oriented such that they are principal and inertia tensor is diagonal and clump’s orientation
is changed to compensate rotation of the local system, as to not change the clump members’ positions
in global space. Initial positions and orientations of all clump members in local coordinate system are
stored.

In Yade (class Clump), clump members behave as stand-alone particles during simulation for purposes of
collision detection and contact resolution, except that they have no contacts created among themselves
within one clump. It is at the stage of motion integration that they are treated specially. Instead of inte-
grating each of them separately, forces/torques on those particles F;, T; are converted to forces/torques
on the clump itself. Let us denote r; relative position of each particle with regards to clump’s centroid,
in global orientation. Then summary force and torque on the clump are

Fe=) F

Tc:ZriXFi+Ti-

Motion of the clump is then integrated, using aspherical rotation integration. Afterwards, clump members
are displaced in global space, to keep their initial positions and orientations in the clump’s local coordinate
system. In such a way, relative positions of clump members are always the same, resulting in the behavior
of a rigid aggregate.

7.5.5 Numerical damping

In simulations of quasi-static phenomena, it it desirable to dissipate kinetic energy of particles. Since most
constitutive laws (including Law_ScGeom__FrictPhys_Basic shown above, Stress evaluation (example))
do not include velocity-based damping (such as one in [Addetta2001]), it is possible to use artificial
numerical damping. The formulation is described in [Pfe3dManual30], although our version is slightly
adapted. The basic idea is to decrease forces which increase the particle velocities and vice versa by
(AF) 4, comparing the current acceleration sense and particle velocity sense. This is done by component,
which makes the damping scheme clearly non-physical, as it is not invariant with respect to coordinate
system rotation; on the other hand, it is very easy to compute. Cundall proposed the form (we omit
particle indices 1 since it applies to all of them separately):

AF) gw .
(F& = _}\d Sgn(qu‘?\;)) we {x,y,z}

where Aq4 is the damping coefficient. This formulation has several advantages [Hentz2003]:
o it acts on forces (accelerations), not constraining uniform motion;
e it is independent of eigenfrequencies of particles, they will be all damped equally;
o it needs only the dimensionless parameter Ay which does not have to be scaled.
In Yade, we use the adapted form
% = —AgsgnF, <1:I.?V + I%At)
-

~1L°
~ULS,

(7.9)

where we replaced the previous mid-step velocity 11° by its on-step estimate in parentheses. This is to
avoid locked-in forces that appear if the velocity changes its sign due to force application at each step,
i.e. when the particle in question oscillates around the position of equilibrium with 2At period.

In Yade, damping (7.9) is implemented in the NewtonlIntegrator engine; the damping coefficient A4 is
NewtonlIntegrator.damping.

7.5. Motion integration 141

Yade Documentation, Release 1.20.0

7.5.6 Stability considerations
Critical timestep

In order to ensure stability for the explicit integration sceheme, an upper limit is imposed on At:

Ate, = 2 (7.10)

wmax

where Wpax is the highest eigenfrequency within the system.
Single mass-spring system

Single 1D mass-spring system with mass m and stiffness K is governed by the equation
mx = —Kx

where x is displacement from the mean (equilibrium) position. The solution of harmonic oscillation is
x(t) = A cos(wt+ @) where phase @ and amplitude A are determined by initial conditions. The angular

frequency
W= /K (7.11)
m

does not depend on initial conditions. Since there is one single mass, wr(rlgx = w1, Plugging (7.11) into

(7.10), we obtain

Aty =2/wi), =2/m/K

ax

for a single oscillator.

General mass-spring system

In a general mass-spring system, the highest frequency occurs if two connected masses mi, m; are in
opposite motion; let us suppose they have equal velocities (which is conservative) and they are connected
by a spring with stiffness K;: displacement Ax; of m; will be accompained by Ax; = —Ax; of m;, giving
AF; = —K;(Ax; — (—Axi)) = —2K;Ax;. That results in apparent stiffness ng) = 2K, giving maximum

eigenfrequency of the whole system
Wmax = Max 4/ KEZ)/mi.
1

The overall critical timestep is then

2) [My . [my . /My
At = P = min 2 @ = min 2 K, = mlln\fz K (7.12)

This equation can be used for all 6 degrees of freedom (DOF) in translation and rotation, by considering

generalized mass and stiffness matrices M and K, and replacing fractions T]?l‘ by eigen values of M.K~1.

The critical timestep is then associated to the eigen mode with highest frequency :

Ate, = minAtey, k e€{1,...,6} (7.13)

DEM simulations

In DEM simulations, per-particle stiffness Kj; is determined from the stiffnesses of contacts in which
it participates [Chareyre2005]. Suppose each contact has normal stiffness Kny, shear stiffness Kpx =

142 Chapter 7. DEM Background

Yade Documentation, Release 1.20.0

EKnk and is oriented by normal my. A translational stiffness matrix Ki; can be defined as the sum of
contributions of all contacts in which it participates (indices k), as

Ky = Z(KNk — Kn)nin; + Kpe = Z Knk ((T=&nin; + &) (7.14)
k j

with 1 and j € {x,y,z}. Equations (7.13) and (7.14) determine At in a simulation. A similar ap-
proach generalized to all 6 DOFs is implemented by the GlobalStiffnessTimeStepper engine in Yade. The
derivation of generalized stiffness including rotational terms is very similar but not developped here, for
simplicity. For full reference, see “PFC3D - Theoretical Background”.

Note that for computation efficiency reasons, eigenvalues of the stiffness matrices are not computed.
They are only approximated assuming than DOF’s are uncoupled, and using diagonal terms of K.M~'.
They give good approximates in typical mechanical systems.

There is one important condition that Wy, > 0: if there are no contacts between particles and wpax = 0,
we would obtain value At., = co. While formally correct, this value is numerically erroneous: we were
silently supposing that stiffness remains constant during each timestep, which is not true if contacts are
created as particles collide. In case of no contact, therefore, stiffness must be pre-estimated based on
future interactions, as shown in the next section.

Estimation of At., by wave propagation speed

Estimating timestep in absence of interactions is based on the connection between interaction stiffnesses
and the particle’s properties. Note that in this section, symbols E and p refer exceptionally to Young’s
modulus and density of particles, not of macroscopic arrangement.

In Yade, particles have associated Material which defines density p (Material.density), and also may
define (in ElastMat and derived classes) particle’s “Young’s modulus” E (ElastMat.young). p is used
when particle’s mass m is initially computed from its p, while E is taken in account when creating new
interaction between particles, affecting stiffness Ky. Knowing m and Ky, we can estimate (7.14) for
each particle; we obviously neglect

e number of interactions per particle Nji; for a “reasonable” radius distribution, however, there is a
geometrically imposed upper limit (6 for a 2D-packing of spheres with equal radii, for instance);

 the exact relationship the between particles’ rigidities Ej, Ej, supposing only that Ky is somehow
proportional to them.

By defining E and p, particles have continuum-like quantities. Explicit integration schemes for continuum
equations impose a critical timestep based on sonic speed /E/p; the elastic wave must not propagate
farther than the minimum distance of integration points l,,;, during one step. Since E, p are parameters
of the elastic continuum and l,,;, is fixed beforehand, we obtain

[P
At = Liny [/ =-
Ccr E

For our purposes, we define E and p for each particle separately; ly,in can be replaced by the sphere’s
radius Ri; technically, 1, = 2R; could be used, but because of possible interactions of spheres and facets
(which have zero thickness), we consider lyi, = R; instead. Then

ALP) = minR; g—

This algorithm is implemented in the wutils. PWave TimeStep function.

Let us compare this result to (7.12); this necessitates making several simplifying hypotheses:
o all particles are spherical and have the same radius R;
e the sphere’s material has the same E and p;

e the average number of contacts per sphere is N;

o the contacts have sufficiently uniform spatial distribution around each particle;

7.5. Motion integration 143

Yade Documentation, Release 1.20.0

e the & = KN /K7 ratio is constant for all interactions;

e contact stiffness Ky is computed from E using a formula of the form
Kn = EnU'R/, (7.15)

where 7’ is some constant depending on the algorithm in usefootnote{For example, " = /2
in the concrete particle model (Ip2 CpmMat CpmMat CpmPhys), while 1’ = 2 in the classical
DEM model (Ip2_ FrictMat FrictMat_ FrictPhys) as implemented in Yade.} and R’ is half-distance
between spheres in contact, equal to R for the case of interaction radius Ry = 1. If Ry = 1 (and
R’ = R by consequence), all interactions will have the same stiffness Kn. In other cases, we will
consider Ky as the average stiffness computed from average R’ (see below).

As all particles have the same parameters, we drop the i index in the following formulas.

We try to express the average per-particle stiffness from (7.14). It is a sum over all interactions where Ky
and & are scalars that will not rotate with interaction, while n,,, is w-th component of unit interaction
normal n. Since we supposed uniform spatial distribution, we can replace n2, by its average value ﬁf\,
Recognizing components of n as direction cosines, the average values of n2 is 1/3. %we find the average
value by integrating over all possible orientations, which are uniformly distributed in space:

Moreover, since all directions are equal, we can write the per-body stiffness as K = K,, for allw € {x,y, z}.
We obtain

K = ZKN<1— +E.)=ZKN1

and can put constant terms (everything) in front of the summation.) 1 equals the number of contacts
per sphere, i.e. N. Arriving at

1—-2¢

K = NKy 3

we substitute K into (7.12) using (7.15):

m 7TR3 /7’
Ater = V2 [= V2 [G NERRIZE \[N(T—28)°

Atéf’

The ratio of timestep Atgf) predicted by the p-wave velocity and numerically stable timestep At., is the
inverse value of the last (dimensionless) term:

At _, N0+
Ate, /-

Actual values of this ratio depend on characteristics of packing N, Kn /Kt = § ratio and the way of
computing contact stiffness from particle rigidity. Let us show it for two models in Yade:
Concrete particle model computes contact stiffness from the equivalent area A.q first (7.6),

A

Acq = TR?KN 1
0

do is the initial contact length, which will be, for interaction radius (7.5) Ry > 1, in average
larger than 2R. For Ry = 1.5 (sect. sect-calibration-elastic-properties), we can roughly estimate

do=125-2R= %R, getting
2
2

where £7t =7’ by comparison with (7.15).

Interaction radius R; = 1.5 leads to average N = 12 interactions per sphere for dense packing of
spheres with the same radius R. & = 0.2 is calibrated (sect. sect-calibration-elastic-properties) to
match the desired macroscopic Poisson’s ratio v = 0.2.

144 Chapter 7. DEM Background

Yade Documentation, Release 1.20.0

Finally, we obtain the ratio

(p) _ 9.
itcr > 12(1 7T2 0.2) —3.39,
tor 2/5)7

showing significant overestimation by the p-wave algorithm.

Non-cohesive dry friction model is the basic model proposed by Cundall explained in Stress evalu-
ation (example). Supposing almost-constant sphere radius R and rather dense packing, each sphere
will have N = 6 interactions on average (that corresponds to maximally dense packing of spheres
with a constant radius). If we use the Ip2 FrictMat FrictMat_FrictPhys class, we have 1/ = 2
as Ky = E2R; we again use & = 0.2 (for lack of a more significant value). In this case, we obtain
the result

AP 6(1—2-0.2)

= 2 —_— = 0. 2
At /2 3.0

which again overestimates the numerical critical timestep.

To conclude, p-wave timestep gives estimate proportional to the real At.,, but in the cases shown, the
value of about At = O.SAt((;F) should be used to guarantee stable simulation.

Non-elastic At constraints

Let us note at this place that not only At assuring numerical stability of motion integration is a
constraint. In systems where particles move at relatively high velocities, position change during one
timestep can lead to non-elastic irreversible effects such as damage. The At needed for reasonable result
can be lower At.,. We have no rigorously derived rules for such cases.

7.6 Periodic boundary conditions

While most DEM simulations happen in R3 space, it is frequently useful to avoid boundary effects by
using periodic space instead. In order to satisfy periodicity conditions, periodic space is created by
repetition of parallelepiped-shaped cell. In Yade, periodic space is implemented in the Cell class. The
geometry of the cell in the reference coordinates system is defined by three edges of the parallepiped.
The corresponding base vectors are stored in the columns of matrix H (Cell.hSize).

The initial H can be explicitly defined as a 3x3 matrix at the beginning of the simulation. There are no
restricitions on the possible shapes: any parallelepiped is accepted as the initial cell. If the base vectors
are axis-aligned, defining only their sizes can be more convenient than defining the full H matrix; in that
case it is enough to define the norms of columns in H (see Cell.size).

After the definition of the initial cell’s geometry, H should generally not be modified by direct assignment.
Instead, its deformation rate will be defined via the velocity gradient Cell.velGrad described below. It
is the only variable that let the period deformation be correctly accounted for in constitutive laws and
Newton integrator (Newtonlntegrator).

7.6.1 Deformations handling

The deformation of the cell over time is defined via a matrix representing the gradient of an homoge-
neous velocity field Vv (Cell.velGrad). This gradient represents arbitrary combinations of rotations and
stretches. It can be imposed externaly or updated by boundary controllers (see PeriTriazController or
Peri3dController) in order to reach target strain values or to maintain some prescribed stress.

The velocity gradient is integrated automatically over time, and the cumulated transformation is re-
flected in the transformation matrix F (Cell.trsf) and the current shape of the cell H. The per-step
transformation update reads (it is similar for H), with I the identity matrix:

F™ = (I+ VvAL)F.

7.6. Periodic boundary conditions 145

Yade Documentation, Release 1.20.0

F can be set back to identity at any point in simulations, in order to define the current state as reference
for strains definition in boundary controllers. It will have no effect on H.

Along with the automatic integration of cell transformation, there is an option to homothetically displace
all particles so that Vv is applied over the whole simulation (enabled via Cell.homoDeform). This avoids
all boundary effects coming from change of the velocity gradient.

7.6.2 Collision detection in periodic cell

In usual implementations, particle positions are forced to be inside the cell by wrapping their positions
if they get over the boundary (so that they appear on the other side). As we wanted to avoid abrupt
changes of position (it would make particle’s velocity inconsistent with step displacement change), a
different method was chosen.

Approximate collision detection

Pass 1 collision detection (based on sweep and prune algorithm, sect. Sweep and prune) operates on
axis-aligned bounding boxes (Aabb) of particles. During the collision detection phase, bounds of all
Aabb’s are wrapped inside the cell in the first step. At subsequent runs, every bound remembers by how
many cells it was initially shifted from coordinate given by the Aabb and uses this offset repeatedly as
it is being updated from Aabb during particle’s motion. Bounds are sorted using the periodic insertion
sort algorithm (sect. Periodic insertion sort algorithm), which tracks periodic cell boundary ||.

Upon inversion of two Aabb‘s, their collision along all three axes is checked, wrapping real coordinates
inside the cell for that purpose.

This algorithm detects collisions as if all particles were inside the cell but without the need of constructing
“ghost particles” (to represent periodic image of a particle which enters the cell from the other side) or
changing the particle’s positions.

It is required by the implementation (and partly by the algorithm itself) that particles do not span more
than half of the current cell size along any axis; the reason is that otherwise two (or more) contacts
between both particles could appear, on each side. Since Yade identifies contacts by Body.id of both
bodies, they would not be distinguishable.

In presence of shear, the sweep-and-prune collider could not sort bounds independently along three axes:
collision along x axis depends on the mutual position of particles on the y axis. Therefore, bounding
boxes are expressed in transformed coordinates which are perpendicular in the sense of collision detection.
This requires some extra computation: Aabb of sphere in transformed coordinates will no longer be cube,
but cuboid, as the sphere itself will appear as ellipsoid after transformation. Inversely, the sphere in
simulation space will have a parallelepiped bounding “box”, which is cuboid around the ellipsoid in
transformed axes (the Aabb has axes aligned with transformed cell basis). This is shown in fig. fig-cell-
shear-aabb.

The restriction of a single particle not spanning more than half of the transformed axis becomes stringent
as Aabb is enlarged due to shear. Considering Aabb of a sphere with radius r in the cell where x' = x,
z' =z, but Z(y,y’) = @, the x-span of the Aabb will be multiplied by 1/cos ¢. For the infinite shear
@ — m/2, which can be desirable to simulate, we have 1/ cos @ — oco. Fortunately, this limitation can be
easily circumvented by realizing the quasi-identity of all periodic cells which, if repeated in space, create
the same grid with their corners: the periodic cell can be flipped, keeping all particle interactions intact,
as shown in fig. fig-cell-flip. It only necessitates adjusting the Interaction.cellDist of interactions and
re-initialization of the collider (Collider: :invalidatePersistentData). Cell flipping is implemented
in the wutils.flipCell function.

This algorithm is implemented in InsertionSortCollider and is used whenever simulation is periodic
(Omega.isPeriodic); individual BoundFunctor’s are responsible for computing sheared Aabb’s; currently
it is implemented for spheres and facets (in Bol Sphere Aabb and Bol Facet Aabb respectively).

146 Chapter 7. DEM Background

Yade Documentation, Release 1.20.0

N

OOy OO
$0%¢)

: \ g L ‘ ; >
.‘\YQ‘Q! / /\ g “’“v/\ 4“’“(\ 4‘
XS X XA I
Ll Y
p OSSOSO

B/ NIVan N/ s
</ \"X </ \" ‘l \" '
ANOENG

J

Fig. 7.6: Flipping cell (utils.flipCell) to avoid infinite stretch of the bounding boxes’ spans with growing
@. Cell flip does not affect interactions from the point of view of the simulation. The periodic arrange-
ment on the left is the same as the one on the right, only the cell is situated differently between identical
grid points of repetition; at the same time |@2| < |@1] and sphere bounding box’s x-span stretched by
1/ cos @ becomes smaller. Flipping can be repeated, making effective infinite shear possible.

Fig. 7.7: Constructing axis-aligned bounding box (Aabd) of a sphere in simulation space coordinates
(without periodic cell — left) and transformed cell coordinates (right), where collision detection axes x’,
y’ are not identical with simulation space axes x, y. Bounds’ projection to axes is shown by orange lines.

7.6. Periodic boundary conditions 147

Yade Documentation, Release 1.20.0

Exact collision detection

When the collider detects approximate contact (on the Aabb level) and the contact does not yet exist,
it creates potential contact, which is subsequently checked by exact collision algorithms (depending on
the combination of Shapes). Since particles can interact over many periodic cells (recall we never change
their positions in simulation space), the collider embeds the relative cell coordinate of particles in the
interaction itself (Interaction.cellDist) as an integer vector ¢. Multiplying current cell size Ts by c
component-wise, we obtain particle offset Ax in aperiodic R?; this value is passed (from InteractionLoop)
to the functor computing exact collision (/GeomFunctor), which adds it to the position of the particle
Interaction.id2.

By storing the integral offset ¢, Ax automatically updates as cell parameters change.

Periodic insertion sort algorithm

The extension of sweep and prune algorithm (described in Sweep and prune) to periodic boundary
conditions is non-trivial. Its cornerstone is a periodic variant of the insertion sort algorithm, which
involves keeping track of the “period” of each boundary; e.g. taking period (0,10), then 8; = —2; < 2,
(subscript indicating period). Doing so efficiently (without shuffling data in memory around as bound
wraps from one period to another) requires moving period boundary rather than bounds themselves and
making the comparison work transparently at the edge of the container.

This algorithm was also extended to handle non-orthogonal periodic Cell boundaries by working in trans-
formed rather than Cartesian coordinates; this modifies computation of Aabb from Cartesian coordinates
in which bodies are positioned (treated in detail in Approzimate collision detection).

The sort algorithm is tracking Aabb extrema along all axes. At the collider’s initialization, each value is
assigned an integral period, i.e. its distance from the cell’s interior expressed in the cell’s dimension along
its respective axis, and is wrapped to a value inside the cell. We put the period number in subscript.

Let us give an example of coordinate sequence along x axis (in a real case, the number of elements would
be even, as there is maximum and minimum value couple for each particle; this demonstration only
shows the sorting algorithm, however.)

4 12, || =1, —24 50

with cell x-size sy, = 10. The 47 value then means that the real coordinate x; of this extremum is
xi +1-10 =4, ie. xi = —4. The || symbol denotes the periodic cell boundary.

Sorting starts from the first element in the cell, i.e. right of ||, and inverts elements as in the aperiodic
variant. The rules are, however, more complicated due to the presence of the boundary ||:

(<)| stop inverting if neighbors are ordered;

(Ile) current element left of || is below 0 (lower period boundary); in this case, decrement element’s
period, decrease its coordinate by sy and move || right;

(o|)| current element right of || is above sy (upper period boundary); increment element’s period,
increase its coordinate by s, and move || left;

@) | inversion across || must subtract sy from the left coordinate during comparison. If the elements
are not in order, they are swapped, but they must have their periods changed as they traverse
l. Apply (|lo) if necessary;

(llo)l if after @) the element that is now right of || has x; < sx, decrease its coordinate by sy and
decrement its period. Do not move ||.

In the first step, (||e) is applied, and inversion with 12, happens; then we stop because of (<):

44 12 || |12 —24 30,
44 122W I =24 50,
p
44 12, || =24 5.
<

148 Chapter 7. DEM Background

Yade Documentation, Release 1.20.0

We move to next element ; first, we apply (||e), then invert until (<):

44 N 12 || |—24 30,
4 9 12, [85] I 5o,

£
4 99 [8] 122 I 5,
£
4 (8] 9 12, | 5.
<

The next element is ; we satisfy {f), therefore instead of comparing 12, > 50, we must do (12, —sy) =
23 < 5; we adjust periods when swapping over || and apply (|lo), turning 12, into 23; then we keep
inverting, until (<):

4 83 9 12, _|l_[50];
4 8 9 [51] 7\5\ 23,
4 8 [51] ’ 9 I 25
41\<? ’ 83 9 I 2.

We move (wrapping around) to , which is ordered:

5 83 99 Il 23
\M

and so is the last element

41M 83 91 I 2.
<

7.7 Computational aspects

7.7.1 Cost

The DEM computation using an explicit integration scheme demands a relatively high number of steps
during simulation, compared to implicit scehemes. The total computation time Z of simulation spanning
T seconds (of simulated time), containing N particles in volume V depends on:

o linearly, the number of steps i = T/(s{At.;), where s is timestep safety factor; At., can be estimated

by p-wave velocity using E and p (sect. Estimation of by wave propagation speed) as Atg?] = r\/g .
Therefore

) T |E
i=—y/—.
st \ p

e the number of particles N; for fixed value of simulated domain volume V and particle radius r
\%
N=p;—

403’
37"

where p is packing porosity, roughly % for dense irregular packings of spheres of similar radius.

7.7. Computational aspects 149

Yade Documentation, Release 1.20.0

The dependency is not strictly linear (which would be the best case), as some algorithms do not
scale linearly; a case in point is the sweep and prune collision detection algorithm introduced in
sect. Sweep and prune, with scaling roughly O(N log N).

The number of interactions scales with N, as long as packing characteristics are the same.

o the number of computational cores ngpy; in the ideal case, the dependency would be inverse-linear
were all algorithms parallelized (in Yade, collision detection is not).

Let us suppose linear scaling. Additionally, let us suppose that the material to be simulated (E, p) and
the simulation setup (V, T) are given in advance. Finally, dimensionless constants s¢, p and Mep, will
have a fixed value. This leaves us with one last degree of freedom, r. We may write

1T T JE.V 1 11 1

Z x iN

=P X —— = —.
Mepu StT\ P %nﬁ Nepu 113 14

This (rather trivial) result is essential to realize DEM scaling; if we want to have finer results, refining
the “mesh” by halving 1, the computation time will grow 2% = 16 times.

For very crude estimates, one can use a known simulation to obtain a machine “constant”

Z

Hzm

with the meaning of time per particle and per timestep (in the order of 1075 for current machines).
p will be only useful if simulation characteristics are similar and non-linearities in scaling do not have
major influence, i.e. N should be in the same order of magnitude as in the reference case.

7.7.2 Result indeterminism

It is naturally expected that running the same simulation several times will give exactly the same results:
although the computation is done with finite precision, round-off errors would be deterministically the
same at every run. While this is true for single-threaded computation where exact order of all operations
is given by the simulation itself, it is not true anymore in multi-threaded computation which is described
in detail in later sections.

The straight-forward manner of parallel processing in explicit DEM is given by the possibility of treating
interactions in arbitrary order. Strain and stress is evaluated for each interaction independently, but
forces from interactions have to be summed up. If summation order is also arbitrary (in Yade, forces are
accumulated for each thread in the order interactions are processed, then summed together), then the
results can be slightly different. For instance

(1/10.)+(1/13.)+(1/17.)=0.23574660633484162
(1/17.)+(1/13.)+(1/10.)=0.23574660633484165

As forces generated by interactions are assigned to bodies in quasi-random order, summary force F; on
the body can be different between single-threaded and multi-threaded computations, but also between
different runs of multi-threaded computation with exactly the same parameters. Exact thread scheduling
by the kernel is not predictable since it depends on asynchronous events (hardware interrupts) and other
unrelated tasks running on the system; and it is thread scheduling that ultimately determines summation
order of force contributions from interactions.

Numerical damping influence

The effect of summation order can be significantly amplified by the usage of a discontinuous damping
function in Newtonlntegrator given in (7.9) as

AF . 5, At
(AFaw _ —AasgnFy, (Ul + 22—).

F.. 2

If the sgn argument is close to zero then the least significant finite precision artifact can determine whether
the equation (relative increment of F,,) is +Agq or —Aq. Given commonly used values of Aq = 0.4, it
means that such artifact propagates from least significant place to the most significant one at once.

150 Chapter 7. DEM Background

Chapter 8

Class reference (yade.wrapper
module)

8.1 Bodies

8.1.1 Body

class yade.wrapper.Body (inherits Serializable)
A particle, basic element of simulation; interacts with other bodies.

aspherical (=false)
Whether this body has different inertia along principal axes; NewtonlIntegrator makes use of
this flag to call rotation integration routine for aspherical bodies, which is more expensive.

bound (=uninitalized)
Bound, approximating volume for the purposes of collision detection.

bounded (=true)
Whether this body should have Body.bound created. Note that bodies without a bound do
not participate in collision detection. (In c++, use Body: : isBounded/Body: : setBounded)

chain
Returns Id of chain to which the body belongs.

clumpId
Id of clump this body makes part of;, invalid number if not part of clump; see
Body::isStandalone, Body::isClump, Body::isClumpMember properties.
Not meant to be modified directly from Python, use O.bodies.appendClumped instead.
dict() — dict
Return dictionary of attributes.
dynamic (=true)
Whether this body will be moved by forces. (In ct++, use
Body: : isDynamic/Body: : setDynamic)

flags(=FLAG _BOUNDED)
Bits of various body-related flags. Do not access directly. In c++, wuse isDy-
namic/setDynamic, isBounded/setBounded, isAspherical/setAspherical. In python, use
Body.dynamic, Body.bounded, Body.aspherical.

groupMask (=1)
Bitmask for determining interactions.

151

Yade Documentation, Release 1.20.0

id(=Body::ID__NONE)
Unique id of this body.

intrs() — list
Return all interactions in which this body participates.

isClump
True if this body is clump itself, false otherwise.

isClumpMember
True if this body is clump member, false otherwise.

isStandalone
True if this body is neither clump, nor clump member; false otherwise.

iterBorn
Returns step number at which the body was added to simulation.

mask
Shorthand for Body::groupMask

mat
Shorthand for Body::material

material (=uninitalized)
Material instance associated with this body.

shape (=uninitalized)
Geometrical Shape.

state(=new State)
Physical state.

timeBorn
Returns time at which the body was added to simulation.

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

8.1.2 Shape

Cylinder ChainedCylinder

Wall GridNode

Polyhedra

152 Chapter 8. Class reference (yade.wrapper module)

Yade Documentation, Release 1.20.0

class yade.wrapper.Shape (inherits Serializable)
Geometry of a body

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict () — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Box (inherits Shape — Serializable)
Box (cuboid) particle geometry. (Avoid using in new code, prefer Facet instead.

color (=Vectordr(1, 1, 1))
Color for rendering (normalized RGB).

dict() — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

extents (=uninitalized)
Half-size of the cuboid

highlight (=false)
Whether this Shape will be highlighted when rendered.

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.ChainedCylinder (inherits Cylinder — Sphere — Shape — Serializable)
Geometry of a deformable chained cylinder, using geometry Cylinder.

chainedOrientation(=Quaternionr::Identity())
Deviation of nodel orientation from node-to-node vector

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict() — dict
Return dictionary of attributes.

8.1. Bodies 153

Yade Documentation, Release 1.20.0

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex

Return class index of this instance.
highlight (=false)

Whether this Shape will be highlighted when rendered.
initLength(=0)

tensile-free length, used as reference for tensile strain
length(=NaN)

Length [m]
radius (=Nal)

Radius [m]
segment (= Vector3r::Zero())

Length vector

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Clump (inherits Shape — Serializable)
Rigid aggregate of bodies

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict() — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

members
Return clump members as {‘id1’:(relPos,relOri),...}

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Cylinder (inherits Sphere — Shape — Serializable)
Geometry of a cylinder, as Minkowski sum of line and sphere.

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict() — dict
Return dictionary of attributes.

154 Chapter 8. Class reference (yade.wrapper module)

Yade Documentation, Release 1.20.0

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.
highlight (=false)
Whether this Shape will be highlighted when rendered.
length(=NaN)
Length [m)]
radius (=NaN)
Radius [m)]
segment (= VectorSr::Zero())
Length vector

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Facet (inherits Shape — Serializable)
Facet (triangular particle) geometry.

area(=NaN)
Facet’s area

color (=Vectordr(1, 1, 1))
Color for rendering (normalized RGB).

dict() — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

normal (=Vectordr(NaN, NaN, NaN))
Facet’s normal (in local coordinate system)

setVertices ((Vector3)arg2, (Vector3)arg3, (Vector3)arg4) — None
TODO

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

vertices (=vector<Vector8r>(3, Vector8r(NaN, NaN, NaN)))
Vertex positions in local coordinates.

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.GridConnection (inherits Sphere — Shape — Serializable)
GridConnection shape. Component of a grid designed to link two GridNodes. It’s highly recom-
mended to use utils.gridConnection(...) to generate correct GridConnections.

8.1. Bodies 155

Yade Documentation, Release 1.20.0

cellDist (=Vector3i(0, 0, 0))
missing doc :(

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict () — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

nodel (=uninitalized)
First Body the GridConnection is connected to.

node2 (=uninitalized)
Second Body the GridConnection is connected to.

periodic(=false)

true if two nodes from different periods are connected.
radius (=NalN)

Radius [m]
updateAttrs ((dict)arg2) — None

Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.GridNode (inherits Sphere — Shape — Serializable)

GridNode shape, component of a grid. To create a Grid, place the nodes first, they will define the
spacial discretisation of it. It’s highly recommended to use utils.gridNode(...) to generate correct
GridNodes. Note that the GridNodes should only be in an Interaction with other GridNodes. The
Sphere-Grid contact is only handled by the GridConnections.

ConnList (=uninitalized)
List of GridConnections the GridNode is connected to.

addConnection((Body)Body) — None
Add a GridConnection to the GridNode.

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict() — dict
Return dictionary of attributes.

dispHierarchy([(bool)namBS:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.
highlight (=false)
Whether this Shape will be highlighted when rendered.

156

Chapter 8. Class reference (yade.wrapper module)

Yade Documentation, Release 1.20.0

radius(=NaN)
Radius [m]
updateAttrs ((dict)arg2) — None

Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Polyhedra (inherits Shape — Serializable)

Polyhedral (convex) geometry.

GetCentroid() — Vector3
return polyhedra’s centroid

GetInertia() — Vector3
return polyhedra’s inertia tensor

GetOri() — Quaternion
return polyhedra’s orientation

GetSurfaceTriangulation() — object
triangulation of facets (for plotting)

GetSurfaces() — object
get indices of surfaces’ vertices (for postprocessing)

GetVolume () — float
return polyhedra’s volume

Initialize() — None
Initialization

color (=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict() — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

seed (=time(___null))
Seed for random generator.

setVertices((object)arg2) — None
set vertices and update receiver

size(=Vectorsr(1., 1., 1.))
Size of the grain in meters - x,y,z - before random rotation

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

v (=uninitalized)
Tetrahedron vertices in global coordinate system.

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

8.1.

Bodies 157

Yade Documentation, Release 1.20.0

class yade.wrapper.Sphere (inherits Shape — Serializable)
Geometry of spherical particle.

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict () — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.
highlight (=false)
Whether this Shape will be highlighted when rendered.
radius(=NalV)
Radius [m]
updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Tetra(inherits Shape — Serializable)
Tetrahedron geometry.

color (=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict() — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.
highlight (=false)
Whether this Shape will be highlighted when rendered.

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

v (=std::vector< Vector3r>(4))
Tetrahedron vertices (in local coordinate system).

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Wall (inherits Shape — Serializable)
Object representing infinite plane aligned with the coordinate system (axis-aligned wall).
axis(=0)
Axis of the normal; can be 0,1,2 for +x, +y, 4z respectively (Body’s orientation is disregarded
for walls)

color (=Vectordr(l, 1, 1))
Color for rendering (normalized RGB).

158 Chapter 8. Class reference (yade.wrapper module)

Yade Documentation, Release 1.20.0

dict() — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

sense(=0)
Which side of the wall interacts: -1 for negative only, 0 for both, +1 for positive only

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

8.1.3 State

JCFpmState

ChainedState

class yade.wrapper.State (inherits Serializable)
State of a body (spatial configuration, internal variables).

angMom (= VectorSr::Zero())
Current angular momentum

angVel (= Vector3r::Zero())
Current angular velocity

blockedDOFs
Degress of freedom where linear /angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict() — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

8.1. Bodies 159

Yade Documentation, Release 1.20.0

dispIndex
Return class index of this instance.

displ() — Vector3

Displacement from reference position (pos - refPos)
inertia(=VectorSr::Zero())

Inertia of associated body, in local coordinate system.

isDamped (=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass (=0)
Mass of this body

ori
Current orientation.

pos
Current position.

press
Returns the pressure (only for SPH-model).

ref0ri(=Quaternionr::Identity())
Reference orientation

refPos (= Vector3r::Zero())
Reference position

rho
Returns the current density (only for SPH-model).

rhoO
Returns the rest density (only for SPH-model).

rot () — Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector8r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

vel (=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.ChainedState (inherits State — Serializable)

State of a chained bodies, containing information on connectivity in order to track contacts jumping
over contiguous elements. Chains are 1D lists from which id of chained bodies are retrieved via
rank and chainNumber.

addToChain((int)bodyld) — None
Add body to current active chain

angMom (= Vector3r::Zero())
Current angular momentum

angVel (=Vector3r::Zero())
Current angular velocity

bId(=-1)
id of the body containing - for postLoad operations only.

blockedDOFs
Degress of freedom where linear /angular velocity will be always constant (equal to zero, or to

160

Chapter 8. Class reference (yade.wrapper module)

Yade Documentation, Release 1.20.0

an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

chainNumber (=0)
chain id.

currentChain = 0
densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict () — dict
Return dictionary of attributes.

dispHierarchy([(bool)nameS:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() — Vector3
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isDamped (=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass (=0)
Mass of this body

ori
Current orientation.

pos
Current position.

press
Returns the pressure (only for SPH-model).

rank (=0)
rank in the chain.

ref0ri(=Quaternionr::Identity())
Reference orientation

refPos (= Vector3r::Zero())
Reference position

rho
Returns the current density (only for SPH-model).

rho0
Returns the rest density (only for SPH-model).

rot() — Vector3
Rotation from reference orientation (as rotation vector)
se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

vel (=Vector3r::Zero())
Current linear velocity.

8.1.

Bodies 161

Yade Documentation, Release 1.20.0

class yade.wrapper.CpmState (inherits State — Serializable)

State information about body use by cpm-model.
None of that is used for computation (at least not now), only for post-processing.

angMom (= Vectorsr::Zero())
Current angular momentum

angVel (= Vector3r::Zero())
Current angular velocity

blockedDOFs
Degress of freedom where linear /angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

damageTensor (=Matriz3r::Zero())
Damage tensor computed with microplane theory averaging. state.damageTensor.trace() =
state.normDmg

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict() — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() — Vector3
Displacement from reference position (pos - refPos)

epsVolumetric(=0)
Volumetric strain around this body (unused for now)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isDamped (=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass (=0)
Mass of this body

normDmg (=0)
Average damage including already deleted contacts (it is really not damage, but 1-
relResidualStrength now)

numBrokenCohesive (=0)
Number of (cohesive) contacts that damaged completely

numContacts (=0)
Number of contacts with this body

ori
Current orientation.

pos
Current position.

press
Returns the pressure (only for SPH-model).

162

Chapter 8. Class reference (yade.wrapper module)

Yade Documentation, Release 1.20.0

ref0ri(=Quaternionr::Identity())
Reference orientation

refPos (= Vector3r::Zero())
Reference position

rho
Returns the current density (only for SPH-model).

rhoO
Returns the rest density (only for SPH-model).

rot() — Vector3
Rotation from reference orientation (as rotation vector)
se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))

Position and orientation as one object.

stress (=Matriz3r::Zero())
Stress tensor of the spherical particle (under assumption that particle volume = pi*r*r*r*4/3.)
for packing fraction 0.62

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

vel (=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.JCFpmState (inherits State — Serializable)

JCFpm state information about each body.

angMom (= Vector3r::Zero())
Current angular momentum

angVel (=Vector8r::Zero())
Current angular velocity

blockedDOFs
Degress of freedom where linear /angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict () — dict
Return dictionary of attributes.

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numeri