VTK
|
Base class for statistics algorithms. More...
#include <vtkStatisticsAlgorithm.h>
Classes | |
class | AssessFunctor |
Public Types | |
typedef vtkTableAlgorithm | Superclass |
enum | InputPorts { INPUT_DATA = 0, LEARN_PARAMETERS = 1, INPUT_MODEL = 2 } |
enum | OutputIndices { OUTPUT_DATA = 0, OUTPUT_MODEL = 1, ASSESSMENT = 2, OUTPUT_TEST = 2 } |
Public Member Functions | |
virtual int | IsA (const char *type) |
vtkStatisticsAlgorithm * | NewInstance () const |
void | PrintSelf (ostream &os, vtkIndent indent) |
virtual void | SetColumnStatus (const char *namCol, int status) |
virtual void | ResetAllColumnStates () |
virtual int | RequestSelectedColumns () |
virtual void | ResetRequests () |
virtual vtkIdType | GetNumberOfRequests () |
virtual vtkIdType | GetNumberOfColumnsForRequest (vtkIdType request) |
void | AddColumn (const char *namCol) |
void | AddColumnPair (const char *namColX, const char *namColY) |
virtual void | SetLearnOptionParameterConnection (vtkAlgorithmOutput *params) |
virtual void | SetLearnOptionParameters (vtkDataObject *params) |
virtual void | SetInputModelConnection (vtkAlgorithmOutput *model) |
virtual void | SetInputModel (vtkDataObject *model) |
virtual void | SetLearnOption (bool) |
virtual bool | GetLearnOption () |
virtual void | SetDeriveOption (bool) |
virtual bool | GetDeriveOption () |
virtual void | SetAssessOption (bool) |
virtual bool | GetAssessOption () |
virtual void | SetTestOption (bool) |
virtual bool | GetTestOption () |
virtual void | SetNumberOfPrimaryTables (vtkIdType) |
virtual vtkIdType | GetNumberOfPrimaryTables () |
virtual void | SetAssessNames (vtkStringArray *) |
virtual vtkStringArray * | GetAssessNames () |
virtual const char * | GetColumnForRequest (vtkIdType r, vtkIdType c) |
virtual int | GetColumnForRequest (vtkIdType r, vtkIdType c, vtkStdString &columnName) |
virtual bool | SetParameter (const char *parameter, int index, vtkVariant value) |
virtual void | Aggregate (vtkDataObjectCollection *, vtkMultiBlockDataSet *)=0 |
Static Public Member Functions | |
static int | IsTypeOf (const char *type) |
static vtkStatisticsAlgorithm * | SafeDownCast (vtkObjectBase *o) |
Protected Member Functions | |
virtual vtkObjectBase * | NewInstanceInternal () const |
vtkStatisticsAlgorithm () | |
~vtkStatisticsAlgorithm () | |
virtual int | FillInputPortInformation (int port, vtkInformation *info) |
virtual int | FillOutputPortInformation (int port, vtkInformation *info) |
virtual int | RequestData (vtkInformation *, vtkInformationVector **, vtkInformationVector *) |
virtual void | Derive (vtkMultiBlockDataSet *)=0 |
virtual void | Learn (vtkTable *, vtkTable *, vtkMultiBlockDataSet *)=0 |
virtual void | Assess (vtkTable *, vtkMultiBlockDataSet *, vtkTable *)=0 |
void | Assess (vtkTable *, vtkMultiBlockDataSet *, vtkTable *, int) |
virtual void | Test (vtkTable *, vtkMultiBlockDataSet *, vtkTable *)=0 |
virtual void | SelectAssessFunctor (vtkTable *outData, vtkDataObject *inMeta, vtkStringArray *rowNames, AssessFunctor *&dfunc)=0 |
Protected Attributes | |
int | NumberOfPrimaryTables |
bool | LearnOption |
bool | DeriveOption |
bool | AssessOption |
bool | TestOption |
vtkStringArray * | AssessNames |
vtkStatisticsAlgorithmPrivate * | Internals |
Base class for statistics algorithms.
All statistics algorithms can conceptually be operated with several operations: Learn: given an input data set, calculate a minimal statistical model (e.g., sums, raw moments, joint probabilities). Derive: given an input minimal statistical model, derive the full model (e.g., descriptive statistics, quantiles, correlations, conditional probabilities). NB: It may be, or not be, a problem that a full model was not derived. For instance, when doing parallel calculations, one only wants to derive the full model after all partial calculations have completed. On the other hand, one can also directly provide a full model, that was previously calculated or guessed, and not derive a new one. Assess: given an input data set, input statistics, and some form of threshold, assess a subset of the data set. Test: perform at least one statistical test. Therefore, a vtkStatisticsAlgorithm has the following ports 3 optional input ports: Data (vtkTable) Parameters to the learn operation (vtkTable) Input model (vtkMultiBlockDataSet) 3 output ports: Data (input annotated with assessments when the Assess operation is ON). Output model (identical to the the input model when Learn operation is OFF). Output of statistical tests. Some engines do not offer such tests yet, in which case this output will always be empty even when the Test operation is ON.
Definition at line 75 of file vtkStatisticsAlgorithm.h.
typedef vtkTableAlgorithm vtkStatisticsAlgorithm::Superclass |
Definition at line 78 of file vtkStatisticsAlgorithm.h.
enumeration values to specify input port types
Enumerator | |
---|---|
INPUT_DATA |
Port 0 is for learn data. |
LEARN_PARAMETERS |
Port 1 is for learn parameters (initial guesses, etc.) |
INPUT_MODEL |
Port 2 is for a priori models. |
Definition at line 84 of file vtkStatisticsAlgorithm.h.
enumeration values to specify output port types
Definition at line 94 of file vtkStatisticsAlgorithm.h.
|
protected |
|
protected |
|
static |
|
virtual |
Reimplemented in vtkKMeansStatistics, vtkMultiCorrelativeStatistics, vtkDescriptiveStatistics, vtkContingencyStatistics, vtkCorrelativeStatistics, vtkOrderStatistics, vtkExtractHistogram2D, vtkPCAStatistics, vtkPairwiseExtractHistogram2D, vtkPOrderStatistics, vtkPContingencyStatistics, vtkPCAStatisticsGnuR, vtkAutoCorrelativeStatistics, vtkPPairwiseExtractHistogram2D, vtkContingencyStatisticsGnuR, vtkCorrelativeStatisticsGnuR, vtkDescriptiveStatisticsGnuR, vtkPExtractHistogram2D, vtkPCorrelativeStatistics, vtkPDescriptiveStatistics, vtkPMultiCorrelativeStatistics, vtkPPCAStatistics, vtkPKMeansStatistics, and vtkPAutoCorrelativeStatistics.
|
static |
|
protectedvirtual |
Reimplemented in vtkKMeansStatistics, vtkMultiCorrelativeStatistics, vtkDescriptiveStatistics, vtkContingencyStatistics, vtkCorrelativeStatistics, vtkOrderStatistics, vtkExtractHistogram2D, vtkPCAStatistics, vtkPairwiseExtractHistogram2D, vtkPOrderStatistics, vtkPContingencyStatistics, vtkPCAStatisticsGnuR, vtkAutoCorrelativeStatistics, vtkPPairwiseExtractHistogram2D, vtkContingencyStatisticsGnuR, vtkCorrelativeStatisticsGnuR, vtkDescriptiveStatisticsGnuR, vtkPExtractHistogram2D, vtkPCorrelativeStatistics, vtkPDescriptiveStatistics, vtkPMultiCorrelativeStatistics, vtkPPCAStatistics, vtkPKMeansStatistics, and vtkPAutoCorrelativeStatistics.
vtkStatisticsAlgorithm* vtkStatisticsAlgorithm::NewInstance | ( | ) | const |
void vtkStatisticsAlgorithm::PrintSelf | ( | ostream & | os, |
vtkIndent | indent | ||
) |
|
inlinevirtual |
A convenience method for setting learn input parameters (if one is expected or allowed). It is equivalent to calling SetInputConnection( 1, params );
Definition at line 110 of file vtkStatisticsAlgorithm.h.
|
inlinevirtual |
A convenience method for setting learn input parameters (if one is expected or allowed). It is equivalent to calling SetInputData( 1, params );
Definition at line 118 of file vtkStatisticsAlgorithm.h.
|
inlinevirtual |
A convenience method for setting the input model connection (if one is expected or allowed). It is equivalent to calling SetInputConnection( 2, model );
Definition at line 126 of file vtkStatisticsAlgorithm.h.
|
inlinevirtual |
A convenience method for setting the input model (if one is expected or allowed). It is equivalent to calling SetInputData( 2, model );
Definition at line 133 of file vtkStatisticsAlgorithm.h.
|
virtual |
Set/Get the Learn operation.
|
virtual |
Set/Get the Learn operation.
|
virtual |
Set/Get the Derive operation.
|
virtual |
Set/Get the Derive operation.
|
virtual |
Set/Get the Assess operation.
|
virtual |
Set/Get the Assess operation.
|
virtual |
Set/Get the Test operation.
|
virtual |
Set/Get the Test operation.
|
virtual |
Set/Get the number of tables in the primary model.
|
virtual |
Set/Get the number of tables in the primary model.
|
virtual |
Set/get assessment names.
|
virtual |
Set/get assessment names.
|
virtual |
Add or remove a column from the current analysis request. Once all the column status values are set, call RequestSelectedColumns() before selecting another set of columns for a different analysis request. The way that columns selections are used varies from algorithm to algorithm. Note: the set of selected columns is maintained in vtkStatisticsAlgorithmPrivate::Buffer until RequestSelectedColumns() is called, at which point the set is appended to vtkStatisticsAlgorithmPrivate::Requests. If there are any columns in vtkStatisticsAlgorithmPrivate::Buffer at the time RequestData() is called, RequestSelectedColumns() will be called and the selection added to the list of requests.
|
virtual |
Set the the status of each and every column in the current request to OFF (0).
|
virtual |
Use the current column status values to produce a new request for statistics to be produced when RequestData() is called. See SetColumnStatus() for more information.
|
virtual |
Empty the list of current requests.
|
virtual |
Return the number of requests. This does not include any request that is in the column-status buffer but for which RequestSelectedColumns() has not yet been called (even though it is possible this request will be honored when the filter is run – see SetColumnStatus() for more information).
|
virtual |
Return the number of columns for a given request.
|
virtual |
Provide the name of the c-th column for the r-th request. For the version of this routine that returns an integer, if the request or column does not exist because r or c is out of bounds, this routine returns 0 and the value of columnName is unspecified. Otherwise, it returns 1 and the value of columnName is set. For the version of this routine that returns const char*, if the request or column does not exist because r or c is out of bounds, the routine returns NULL. Otherwise it returns the column name. This version is not thread-safe.
|
virtual |
Provide the name of the c-th column for the r-th request. For the version of this routine that returns an integer, if the request or column does not exist because r or c is out of bounds, this routine returns 0 and the value of columnName is unspecified. Otherwise, it returns 1 and the value of columnName is set. For the version of this routine that returns const char*, if the request or column does not exist because r or c is out of bounds, the routine returns NULL. Otherwise it returns the column name. This version is not thread-safe.
void vtkStatisticsAlgorithm::AddColumn | ( | const char * | namCol | ) |
Convenience method to create a request with a single column name namCol
in a single call; this is the preferred method to select columns, ensuring selection consistency (a single column per request). Warning: no name checking is performed on namCol
; it is the user's responsibility to use valid column names.
void vtkStatisticsAlgorithm::AddColumnPair | ( | const char * | namColX, |
const char * | namColY | ||
) |
Convenience method to create a request with a single column name pair (namColX
, namColY
) in a single call; this is the preferred method to select columns pairs, ensuring selection consistency (a pair of columns per request). Unlike SetColumnStatus(), you need not call RequestSelectedColumns() after AddColumnPair(). Warning: namColX
and namColY
are only checked for their validity as strings; no check is made that either are valid column names.
|
virtual |
A convenience method (in particular for access from other applications) to set parameter values of Learn mode. Return true if setting of requested parameter name was excuted, false otherwise. NB: default method (which is sufficient for most statistics algorithms) does not have any Learn parameters to set and always returns false.
Reimplemented in vtkPCAStatistics, vtkKMeansStatistics, and vtkOrderStatistics.
|
pure virtual |
Given a collection of models, calculate aggregate model
Implemented in vtkExtractHistogram2D, vtkKMeansStatistics, vtkPairwiseExtractHistogram2D, vtkOrderStatistics, vtkDescriptiveStatistics, vtkMultiCorrelativeStatistics, vtkAutoCorrelativeStatistics, vtkContingencyStatistics, and vtkCorrelativeStatistics.
|
protectedvirtual |
Reimplemented in vtkPCAStatistics.
|
protectedvirtual |
Reimplemented in vtkExtractHistogram2D, and vtkPairwiseExtractHistogram2D.
|
protectedvirtual |
|
protectedpure virtual |
Execute the calculations required by the Learn option, given some input Data
Implemented in vtkExtractHistogram2D, vtkKMeansStatistics, vtkPairwiseExtractHistogram2D, vtkOrderStatistics, vtkDescriptiveStatistics, vtkMultiCorrelativeStatistics, vtkAutoCorrelativeStatistics, vtkContingencyStatistics, vtkCorrelativeStatistics, vtkPOrderStatistics, vtkPContingencyStatistics, vtkPMultiCorrelativeStatistics, vtkPExtractHistogram2D, vtkPPCAStatistics, vtkPCorrelativeStatistics, vtkPDescriptiveStatistics, and vtkPAutoCorrelativeStatistics.
|
protectedpure virtual |
Execute the calculations required by the Derive option.
Implemented in vtkPCAStatistics, vtkExtractHistogram2D, vtkKMeansStatistics, vtkPairwiseExtractHistogram2D, vtkOrderStatistics, vtkDescriptiveStatistics, vtkMultiCorrelativeStatistics, vtkAutoCorrelativeStatistics, vtkContingencyStatistics, and vtkCorrelativeStatistics.
|
protectedpure virtual |
Execute the calculations required by the Assess option.
Implemented in vtkPCAStatistics, vtkExtractHistogram2D, vtkKMeansStatistics, vtkPairwiseExtractHistogram2D, vtkOrderStatistics, vtkDescriptiveStatistics, vtkMultiCorrelativeStatistics, vtkAutoCorrelativeStatistics, vtkContingencyStatistics, and vtkCorrelativeStatistics.
|
protected |
A convenience implementation for generic assessment with variable number of variables.
|
protectedpure virtual |
Execute the calculations required by the Test option.
Implemented in vtkPCAStatistics, vtkKMeansStatistics, vtkExtractHistogram2D, vtkPairwiseExtractHistogram2D, vtkOrderStatistics, vtkDescriptiveStatistics, vtkMultiCorrelativeStatistics, vtkAutoCorrelativeStatistics, vtkContingencyStatistics, vtkCorrelativeStatistics, vtkPPCAStatistics, vtkPCorrelativeStatistics, and vtkPAutoCorrelativeStatistics.
|
protectedpure virtual |
A pure virtual method to select the appropriate assessment functor.
Implemented in vtkPCAStatistics, vtkKMeansStatistics, vtkOrderStatistics, vtkDescriptiveStatistics, vtkMultiCorrelativeStatistics, vtkAutoCorrelativeStatistics, vtkContingencyStatistics, and vtkCorrelativeStatistics.
|
protected |
Definition at line 325 of file vtkStatisticsAlgorithm.h.
|
protected |
Definition at line 326 of file vtkStatisticsAlgorithm.h.
|
protected |
Definition at line 327 of file vtkStatisticsAlgorithm.h.
|
protected |
Definition at line 328 of file vtkStatisticsAlgorithm.h.
|
protected |
Definition at line 329 of file vtkStatisticsAlgorithm.h.
|
protected |
Definition at line 330 of file vtkStatisticsAlgorithm.h.
|
protected |
Definition at line 331 of file vtkStatisticsAlgorithm.h.