Visual Servoing Platform  version 3.2.0

#include <vpServo.h>

Public Types

enum  vpServoType {
  NONE, EYEINHAND_CAMERA, EYEINHAND_L_cVe_eJe, EYETOHAND_L_cVe_eJe,
  EYETOHAND_L_cVf_fVe_eJe, EYETOHAND_L_cVf_fJe
}
 
enum  vpServoIteractionMatrixType { CURRENT, DESIRED, MEAN, USER_DEFINED }
 
enum  vpServoInversionType { TRANSPOSE, PSEUDO_INVERSE }
 
enum  vpServoPrintType {
  ALL, CONTROLLER, ERROR_VECTOR, FEATURE_CURRENT,
  FEATURE_DESIRED, GAIN, INTERACTION_MATRIX, MINIMUM
}
 

Public Member Functions

 vpServo ()
 
 vpServo (vpServoType servoType)
 
virtual ~vpServo ()
 
void addFeature (vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
 
void addFeature (vpBasicFeature &s, const unsigned int select=vpBasicFeature::FEATURE_ALL)
 
vpColVector computeControlLaw ()
 
vpColVector computeControlLaw (double t)
 
vpColVector computeControlLaw (double t, const vpColVector &e_dot_init)
 
vpColVector computeError ()
 
vpMatrix computeInteractionMatrix ()
 
unsigned int getDimension () const
 
vpColVector getError () const
 
vpMatrix getInteractionMatrix () const
 
vpMatrix getI_WpW () const
 
vpServoType getServoType () const
 
vpMatrix getLargeP () const
 
vpMatrix getTaskJacobian () const
 
vpMatrix getTaskJacobianPseudoInverse () const
 
unsigned int getTaskRank () const
 
vpColVector getTaskSingularValues () const
 
vpMatrix getWpW () const
 
vpVelocityTwistMatrix get_cVe () const
 
vpVelocityTwistMatrix get_cVf () const
 
vpVelocityTwistMatrix get_fVe () const
 
vpMatrix get_eJe () const
 
vpMatrix get_fJe () const
 
void kill ()
 
void print (const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
 
vpColVector secondaryTask (const vpColVector &de2dt, const bool &useLargeProjectionOperator=false)
 
vpColVector secondaryTask (const vpColVector &e2, const vpColVector &de2dt, const bool &useLargeProjectionOperator=false)
 
vpColVector secondaryTaskJointLimitAvoidance (const vpColVector &q, const vpColVector &dq, const vpColVector &jointMin, const vpColVector &jointMax, const double &rho=0.1, const double &rho1=0.3, const double &lambda_tune=0.7) const
 
void setCameraDoF (const vpColVector &dof)
 
void setForceInteractionMatrixComputation (bool force_computation)
 
void setInteractionMatrixType (const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
 
void setLambda (double c)
 
void setLambda (const double gain_at_zero, const double gain_at_infinity, const double slope_at_zero)
 
void setLambda (const vpAdaptiveGain &l)
 
void setMu (double mu_)
 
void setServo (const vpServoType &servo_type)
 
void set_cVe (const vpVelocityTwistMatrix &cVe_)
 
void set_cVe (const vpHomogeneousMatrix &cMe)
 
void set_cVf (const vpVelocityTwistMatrix &cVf_)
 
void set_cVf (const vpHomogeneousMatrix &cMf)
 
void set_fVe (const vpVelocityTwistMatrix &fVe_)
 
void set_fVe (const vpHomogeneousMatrix &fMe)
 
void set_eJe (const vpMatrix &eJe_)
 
void set_fJe (const vpMatrix &fJe_)
 
bool testInitialization ()
 
bool testUpdated ()
 

Public Attributes

vpMatrix L
 
vpColVector error
 
vpMatrix J1
 
vpMatrix J1p
 
vpColVector s
 
vpColVector sStar
 
vpColVector e1
 
vpColVector e
 
vpColVector q_dot
 
vpColVector v
 
vpServoType servoType
 
unsigned int rankJ1
 
std::list< vpBasicFeature * > featureList
 
std::list< vpBasicFeature * > desiredFeatureList
 
std::list< unsigned int > featureSelectionList
 
vpAdaptiveGain lambda
 
int signInteractionMatrix
 
vpServoIteractionMatrixType interactionMatrixType
 
vpServoInversionType inversionType
 

Protected Member Functions

void init ()
 
void computeProjectionOperators ()
 

Protected Attributes

vpVelocityTwistMatrix cVe
 
bool init_cVe
 
vpVelocityTwistMatrix cVf
 
bool init_cVf
 
vpVelocityTwistMatrix fVe
 
bool init_fVe
 
vpMatrix eJe
 
bool init_eJe
 
vpMatrix fJe
 
bool init_fJe
 
bool errorComputed
 
bool interactionMatrixComputed
 
unsigned int dim_task
 
bool taskWasKilled
 
bool forceInteractionMatrixComputation
 
vpMatrix WpW
 
vpMatrix I_WpW
 
vpMatrix P
 
vpColVector sv
 
double mu
 
vpColVector e1_initial
 
bool iscJcIdentity
 
vpMatrix cJc
 

Detailed Description

Class required to compute the visual servoing control law descbribed in [Chaumette06a] and [Chaumette07a].

Warning
To avoid potential memory leaks, it is mendatory to call explicitly the kill() function to destroy the task. Otherwise, the destructor ~vpServo() launch an exception vpServoException::notKilledProperly.

To learn how to use this class, we suggest first to follow the Tutorial: Image-based visual servo. The Tutorial: Visual servo simulation on a pioneer-like unicycle robot and Tutorial: How to boost your visual servo control law are also useful for advanced usage of this class.

The example below shows how to build a position-based visual servo from 3D visual features $s=({^{c^*}}t_c,\theta u)$. In that case, we have $s^* = 0$. Let us denote $\theta u$ the angle/axis parametrization of the rotation ${^{c^*}}R_c$. Moreover, $ {^{c^*}}t_c$ and ${^{c^*}}R_c$ represent respectively the translation and the rotation between the desired camera frame and the current one obtained by pose estimation (see vpPose class).

#include <visp3/core/vpColVector.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMatrix.h>
#include <visp3/visual_features/vpFeatureThetaU.h>
#include <visp3/visual_features/vpFeatureTranslation.h>
#include <visp3/vs/vpServo.h>
int main()
{
// Creation of an homogeneous matrix that represent the displacement
// the camera has to achieve to move from the desired camera frame
// and the current one
// ... cdMc is here the result of a pose estimation
// Creation of the current visual feature s = (c*_t_c, ThetaU)
// Set the initial values of the current visual feature s = (c*_t_c, ThetaU)
s_t.buildFrom(cdMc);
s_tu.buildFrom(cdMc);
// Build the desired visual feature s* = (0,0)
vpFeatureTranslation s_star_t(vpFeatureTranslation::cdMc); // Default initialization to zero
vpFeatureThetaU s_star_tu(vpFeatureThetaU::cdRc); // Default initialization to zero
vpColVector v; // Camera velocity
double error; // Task error
// Creation of the visual servo task.
vpServo task;
// Visual servo task initialization
// - Camera is monted on the robot end-effector and velocities are
// computed in the camera frame
// - Interaction matrix is computed with the current visual features s
// - Set the contant gain to 1
task.setLambda(1);
// - Add current and desired translation feature
task.addFeature(s_t, s_star_t);
// - Add current and desired ThetaU feature for the rotation
task.addFeature(s_tu, s_star_tu);
// Visual servoing loop. The objective is here to update the visual
// features s = (c*_t_c, ThetaU), compute the control law and apply
// it to the robot
do {
// ... cdMc is here the result of a pose estimation
// Update the current visual feature s
s_t.buildFrom(cdMc); // Update translation visual feature
s_tu.buildFrom(cdMc); // Update ThetaU visual feature
v = task.computeControlLaw(); // Compute camera velocity skew
error = ( task.getError() ).sumSquare(); // error = s^2 - s_star^2
} while (error > 0.0001); // Stop the task when current and desired visual features are close
// A call to kill() is requested here to destroy properly the current
// and desired feature lists.
task.kill();
}
Examples
manServo4PointsDisplay.cpp, manServoMomentsSimple.cpp, manSimu4Dots.cpp, manSimu4Points.cpp, mbot-apriltag-2D-half-vs.cpp, mbot-apriltag-ibvs.cpp, mbot-apriltag-pbvs.cpp, servoAfma4Point2DArtVelocity.cpp, servoAfma4Point2DCamVelocity.cpp, servoAfma4Point2DCamVelocityKalman.cpp, servoAfma62DhalfCamVelocity.cpp, servoAfma6Cylinder2DCamVelocity.cpp, servoAfma6Cylinder2DCamVelocitySecondaryTask.cpp, servoAfma6Ellipse2DCamVelocity.cpp, servoAfma6FourPoints2DArtVelocity.cpp, servoAfma6FourPoints2DCamVelocityInteractionCurrent.cpp, servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp, servoAfma6Line2DCamVelocity.cpp, servoAfma6Point2DArtVelocity.cpp, servoAfma6Point2DCamVelocity.cpp, servoAfma6Points2DCamVelocityEyeToHand.cpp, servoAfma6Segment2DCamVelocity.cpp, servoAfma6SquareLines2DCamVelocity.cpp, servoAfma6TwoLines2DCamVelocity.cpp, servoBiclopsPoint2DArtVelocity.cpp, servoFrankaPBVS.cpp, servoMomentImage.cpp, servoMomentPoints.cpp, servoMomentPolygon.cpp, servoPioneerPanSegment3D.cpp, servoPioneerPoint2DDepth.cpp, servoPtu46Point2DArtVelocity.cpp, servoSimu3D_cdMc_CamVelocity.cpp, servoSimu3D_cMcd_CamVelocity.cpp, servoSimu4Points.cpp, servoSimuAfma6FourPoints2DCamVelocity.cpp, servoSimuCircle2DCamVelocity.cpp, servoSimuCircle2DCamVelocityDisplay.cpp, servoSimuCylinder.cpp, servoSimuCylinder2DCamVelocityDisplay.cpp, servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp, servoSimuFourPoints2DCamVelocity.cpp, servoSimuFourPoints2DCamVelocityDisplay.cpp, servoSimuFourPoints2DPolarCamVelocityDisplay.cpp, servoSimuLine2DCamVelocityDisplay.cpp, servoSimuPoint2DCamVelocity1.cpp, servoSimuPoint2DCamVelocity2.cpp, servoSimuPoint2DCamVelocity3.cpp, servoSimuPoint2DhalfCamVelocity1.cpp, servoSimuPoint2DhalfCamVelocity2.cpp, servoSimuPoint2DhalfCamVelocity3.cpp, servoSimuPoint3DCamVelocity.cpp, servoSimuSphere.cpp, servoSimuSphere2DCamVelocity.cpp, servoSimuSphere2DCamVelocityDisplay.cpp, servoSimuSphere2DCamVelocityDisplaySecondaryTask.cpp, servoSimuSquareLine2DCamVelocityDisplay.cpp, servoSimuThetaUCamVelocity.cpp, servoSimuViper850FourPoints2DCamVelocity.cpp, servoViper650FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent-SR300.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper650Point2DCamVelocity.cpp, servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionDesired.cpp, servoViper850FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper850FourPointsKinect.cpp, servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp, servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp, servoViper850Point2DArtVelocity-jointAvoidance-large.cpp, servoViper850Point2DArtVelocity.cpp, servoViper850Point2DCamVelocity.cpp, servoViper850Point2DCamVelocityKalman.cpp, simulateCircle2DCamVelocity.cpp, simulateFourPoints2DCartesianCamVelocity.cpp, simulateFourPoints2DPolarCamVelocity.cpp, testFeature.cpp, testFeatureSegment.cpp, tutorial-ibvs-4pts-display.cpp, tutorial-ibvs-4pts-image-tracking.cpp, tutorial-ibvs-4pts-ogre-tracking.cpp, tutorial-ibvs-4pts-ogre.cpp, tutorial-ibvs-4pts-plotter-continuous-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter.cpp, tutorial-ibvs-4pts-wireframe-camera.cpp, tutorial-ibvs-4pts-wireframe-robot-afma6.cpp, tutorial-ibvs-4pts-wireframe-robot-viper.cpp, tutorial-ibvs-4pts.cpp, tutorial-simu-pioneer-continuous-gain-adaptive.cpp, tutorial-simu-pioneer-continuous-gain-constant.cpp, tutorial-simu-pioneer-pan.cpp, and tutorial-simu-pioneer.cpp.

Definition at line 149 of file vpServo.h.

Member Enumeration Documentation

◆ vpServoInversionType

Enumerator
TRANSPOSE 

In the control law (see vpServo::vpServoType), uses the transpose instead of the pseudo inverse.

PSEUDO_INVERSE 

In the control law (see vpServo::vpServoType), uses the pseudo inverse.

Definition at line 202 of file vpServo.h.

◆ vpServoIteractionMatrixType

Enumerator
CURRENT 

In the control law (see vpServo::vpServoType), uses the interaction matrix ${\widehat {\bf L}}_s $computed using the current features $\bf s$.

DESIRED 

In the control law (see vpServo::vpServoType), uses the interaction matrix ${\widehat {\bf L}}_{s^*} $computed using the desired features ${\bf s}^*$.

MEAN 

In the control law (see vpServo::vpServoType), uses the interaction matrix ${\widehat {\bf L}} = \left({\widehat {\bf L}}_s + {\widehat {\bf L}}_{s^*}\right)/2 $.

USER_DEFINED 

In the control law (see vpServo::vpServoType), uses an interaction matrix set by the user.

Definition at line 184 of file vpServo.h.

◆ vpServoPrintType

Enumerator
ALL 

Print all the task information.

CONTROLLER 

Print the type of controller law.

ERROR_VECTOR 

Print the error vector $\bf e = (s-s^*)$.

FEATURE_CURRENT 

Print the current features $\bf s$.

FEATURE_DESIRED 

Print the desired features ${\bf s}^*$.

GAIN 

Print the gain $\lambda$.

INTERACTION_MATRIX 

Print the interaction matrix.

MINIMUM 

Same as vpServo::vpServoPrintType::ERROR_VECTOR.

Definition at line 209 of file vpServo.h.

◆ vpServoType

Enumerator
NONE 

No control law is specified.

EYEINHAND_CAMERA 

Eye in hand visual servoing with the following control law

\[{\bf v}_c = -\lambda {\widehat {\bf L}}^{+}_{e} {\bf e}\]

where camera velocities are computed.

EYEINHAND_L_cVe_eJe 

Eye in hand visual servoing with the following control law

\[{\dot {\bf q}} = -\lambda \left( {{\widehat {\bf L}}_{e} {^c}{\bf V}_e {^e}{\bf J}_e} \right)^{+} {\bf e}\]

where joint velocities are computed.

EYETOHAND_L_cVe_eJe 

Eye to hand visual servoing with the following control law

\[{\dot {\bf q}} = \lambda \left( {{\widehat {\bf L}}_{e} {^c}{\bf V}_e {^e}{\bf J}_e} \right)^{+} {\bf e}\]

where joint velocities are computed.

EYETOHAND_L_cVf_fVe_eJe 

Eye to hand visual servoing with the following control law

\[{\dot {\bf q}} = \lambda \left( {{\widehat {\bf L}}_{e} {^c}{\bf V}_f {^f}{\bf V}_e {^e}{\bf J}_e} \right)^{+} {\bf e}\]

where joint velocities are computed.

EYETOHAND_L_cVf_fJe 

Eye to hand visual servoing with the following control law

\[{\dot {\bf q}} = \lambda \left( {{\widehat {\bf L}}_{e} {^c}{\bf V}_f {^f}{\bf J}_e} \right)^{+} {\bf e}\]

where joint velocities are computed.

Definition at line 155 of file vpServo.h.

Constructor & Destructor Documentation

◆ vpServo() [1/2]

vpServo::vpServo ( )

Default constructor that initializes the following settings:

  • No control law is specified. The user has to call setServo() to specify the control law.
  • In the control law, the interaction matrix ${\widehat {\bf L}}_e $ is computed with the desired features ${\bf s}^*$. Using setInteractionMatrixType() you can also compute the interaction matrix with the current visual features, or from the mean $\left({\widehat {\bf L}}_s + {\widehat {\bf L}}_{s^*}\right)/2$.
  • In the control law the pseudo inverse will be used. The method setInteractionMatrixType() allows to use the transpose instead.

Definition at line 68 of file vpServo.cpp.

◆ vpServo() [2/2]

vpServo::vpServo ( vpServoType  servo_type)
explicit

Constructor that allows to choose the visual servoing control law.

Parameters
servo_type: Visual servoing control law.

The other settings are the following:

  • In the control law, the interaction matrix ${\widehat {\bf L}}_e $ is computed with the desired features ${\bf s}^*$. Using setInteractionMatrixType() you can also compute the interaction matrix with the current visual features, or from the mean $\left({\widehat {\bf L}}_s + {\widehat {\bf L}}_{s^*}\right)/2$.
  • In the control law the pseudo inverse will be used. The method setInteractionMatrixType() allows to use the transpose instead.

Definition at line 93 of file vpServo.cpp.

◆ ~vpServo()

vpServo::~vpServo ( )
virtual

Destructor.

In fact, it does nothing. You have to call kill() to destroy the current and desired feature lists.

See also
kill()

Definition at line 115 of file vpServo.cpp.

References taskWasKilled, and vpTRACE.

Member Function Documentation

◆ addFeature() [1/2]

void vpServo::addFeature ( vpBasicFeature s_cur,
const unsigned int  select = vpBasicFeature::FEATURE_ALL 
)

Add a new features $\bf s$ in the task. The desired visual feature denoted ${\bf s}^*$ is equal to zero.

Parameters
s_cur: Current visual feature denoted $\bf s$.
select: Feature selector. By default all the features in s are used, but is is possible to specify which one is used in case of multiple features.

The following sample code explain how to use this method to add a $\theta {\bf u} =(\theta u_x, \theta u_y, \theta u_z)$ feature:

...
vpServo task;
task.addFeature(s);

For example to use only the $\theta u_x$ feature, the previous code becomes:

Definition at line 530 of file vpServo.cpp.

◆ addFeature() [2/2]

void vpServo::addFeature ( vpBasicFeature s_cur,
vpBasicFeature s_star,
const unsigned int  select = vpBasicFeature::FEATURE_ALL 
)

Add a new set of 2 features $\bf s$ and ${\bf s}^*$ in the task.

Parameters
s_cur: Current visual feature denoted $\bf s$.
s_star: Desired visual feature denoted ${\bf s}^*$.
select: Feature selector. By default all the features in s and s_star are used, but is is possible to specify which one is used in case of multiple features.

The following sample code explain how to use this method to add a visual feature point $(x,y)$:

vpFeaturePoint s, s_star;
...
vpServo task;
task.addFeature(s, s_star);

For example to use only the $x$ visual feature, the previous code becomes:

vpFeaturePoint s, s_star;
...
vpServo task;
Examples
manServo4PointsDisplay.cpp, manServoMomentsSimple.cpp, manSimu4Dots.cpp, manSimu4Points.cpp, mbot-apriltag-2D-half-vs.cpp, mbot-apriltag-ibvs.cpp, mbot-apriltag-pbvs.cpp, servoAfma4Point2DArtVelocity.cpp, servoAfma4Point2DCamVelocity.cpp, servoAfma4Point2DCamVelocityKalman.cpp, servoAfma62DhalfCamVelocity.cpp, servoAfma6Cylinder2DCamVelocity.cpp, servoAfma6Cylinder2DCamVelocitySecondaryTask.cpp, servoAfma6Ellipse2DCamVelocity.cpp, servoAfma6FourPoints2DArtVelocity.cpp, servoAfma6FourPoints2DCamVelocityInteractionCurrent.cpp, servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp, servoAfma6Line2DCamVelocity.cpp, servoAfma6Point2DArtVelocity.cpp, servoAfma6Point2DCamVelocity.cpp, servoAfma6Points2DCamVelocityEyeToHand.cpp, servoAfma6Segment2DCamVelocity.cpp, servoAfma6SquareLines2DCamVelocity.cpp, servoAfma6TwoLines2DCamVelocity.cpp, servoBiclopsPoint2DArtVelocity.cpp, servoFrankaPBVS.cpp, servoMomentImage.cpp, servoMomentPoints.cpp, servoMomentPolygon.cpp, servoPioneerPanSegment3D.cpp, servoPioneerPoint2DDepth.cpp, servoPtu46Point2DArtVelocity.cpp, servoSimu3D_cdMc_CamVelocity.cpp, servoSimu3D_cMcd_CamVelocity.cpp, servoSimu4Points.cpp, servoSimuAfma6FourPoints2DCamVelocity.cpp, servoSimuCircle2DCamVelocity.cpp, servoSimuCircle2DCamVelocityDisplay.cpp, servoSimuCylinder.cpp, servoSimuCylinder2DCamVelocityDisplay.cpp, servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp, servoSimuFourPoints2DCamVelocity.cpp, servoSimuFourPoints2DCamVelocityDisplay.cpp, servoSimuFourPoints2DPolarCamVelocityDisplay.cpp, servoSimuLine2DCamVelocityDisplay.cpp, servoSimuPoint2DCamVelocity1.cpp, servoSimuPoint2DCamVelocity2.cpp, servoSimuPoint2DCamVelocity3.cpp, servoSimuPoint2DhalfCamVelocity1.cpp, servoSimuPoint2DhalfCamVelocity2.cpp, servoSimuPoint2DhalfCamVelocity3.cpp, servoSimuPoint3DCamVelocity.cpp, servoSimuSphere.cpp, servoSimuSphere2DCamVelocity.cpp, servoSimuSphere2DCamVelocityDisplay.cpp, servoSimuSphere2DCamVelocityDisplaySecondaryTask.cpp, servoSimuSquareLine2DCamVelocityDisplay.cpp, servoSimuThetaUCamVelocity.cpp, servoSimuViper850FourPoints2DCamVelocity.cpp, servoViper650FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent-SR300.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper650Point2DCamVelocity.cpp, servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionDesired.cpp, servoViper850FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper850FourPointsKinect.cpp, servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp, servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp, servoViper850Point2DArtVelocity-jointAvoidance-large.cpp, servoViper850Point2DArtVelocity.cpp, servoViper850Point2DCamVelocity.cpp, servoViper850Point2DCamVelocityKalman.cpp, simulateCircle2DCamVelocity.cpp, simulateFourPoints2DCartesianCamVelocity.cpp, simulateFourPoints2DPolarCamVelocity.cpp, testFeature.cpp, testFeatureSegment.cpp, tutorial-ibvs-4pts-display.cpp, tutorial-ibvs-4pts-image-tracking.cpp, tutorial-ibvs-4pts-ogre-tracking.cpp, tutorial-ibvs-4pts-ogre.cpp, tutorial-ibvs-4pts-plotter-continuous-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter.cpp, tutorial-ibvs-4pts-wireframe-camera.cpp, tutorial-ibvs-4pts-wireframe-robot-afma6.cpp, tutorial-ibvs-4pts-wireframe-robot-viper.cpp, tutorial-ibvs-4pts.cpp, tutorial-simu-pioneer-continuous-gain-adaptive.cpp, tutorial-simu-pioneer-continuous-gain-constant.cpp, tutorial-simu-pioneer-pan.cpp, and tutorial-simu-pioneer.cpp.

Definition at line 496 of file vpServo.cpp.

◆ computeControlLaw() [1/3]

vpColVector vpServo::computeControlLaw ( )

Compute the control law specified using setServo(). See vpServo::vpServoType for more details concerning the control laws that are available. The Tutorial: Image-based visual servo and Tutorial: How to boost your visual servo control law are also useful to illustrate the usage of this function.

The general form of the control law is the following:

\[ {\bf \dot q} = \pm \lambda {{\bf \widehat J}_e}^+ {\bf e} \]

where :

  • ${\bf \dot q}$ is the resulting velocity command to apply to the robot.
  • the sign of the control law depends on the eye in hand or eye to hand configuration.
  • $\bf J$ is the Jacobian of the task. It is function of the interaction matrix and of the robot Jacobian.
  • $\bf e = (s-s^*)$ is the error to regulate.

To ensure continuous sequencing the computeControlLaw(double) function can be used. It will ensure that the velocities that are computed are continuous.

Examples
manServo4PointsDisplay.cpp, manServoMomentsSimple.cpp, manSimu4Dots.cpp, manSimu4Points.cpp, mbot-apriltag-2D-half-vs.cpp, mbot-apriltag-ibvs.cpp, mbot-apriltag-pbvs.cpp, servoAfma4Point2DArtVelocity.cpp, servoAfma4Point2DCamVelocity.cpp, servoAfma4Point2DCamVelocityKalman.cpp, servoAfma62DhalfCamVelocity.cpp, servoAfma6Cylinder2DCamVelocity.cpp, servoAfma6Cylinder2DCamVelocitySecondaryTask.cpp, servoAfma6Ellipse2DCamVelocity.cpp, servoAfma6FourPoints2DArtVelocity.cpp, servoAfma6FourPoints2DCamVelocityInteractionCurrent.cpp, servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp, servoAfma6Line2DCamVelocity.cpp, servoAfma6Point2DArtVelocity.cpp, servoAfma6Point2DCamVelocity.cpp, servoAfma6Points2DCamVelocityEyeToHand.cpp, servoAfma6Segment2DCamVelocity.cpp, servoAfma6SquareLines2DCamVelocity.cpp, servoAfma6TwoLines2DCamVelocity.cpp, servoBiclopsPoint2DArtVelocity.cpp, servoFrankaPBVS.cpp, servoMomentImage.cpp, servoMomentPoints.cpp, servoMomentPolygon.cpp, servoPioneerPanSegment3D.cpp, servoPioneerPoint2DDepth.cpp, servoPtu46Point2DArtVelocity.cpp, servoSimu3D_cdMc_CamVelocity.cpp, servoSimu3D_cMcd_CamVelocity.cpp, servoSimu4Points.cpp, servoSimuAfma6FourPoints2DCamVelocity.cpp, servoSimuCircle2DCamVelocity.cpp, servoSimuCircle2DCamVelocityDisplay.cpp, servoSimuCylinder.cpp, servoSimuCylinder2DCamVelocityDisplay.cpp, servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp, servoSimuFourPoints2DCamVelocity.cpp, servoSimuFourPoints2DCamVelocityDisplay.cpp, servoSimuFourPoints2DPolarCamVelocityDisplay.cpp, servoSimuLine2DCamVelocityDisplay.cpp, servoSimuPoint2DCamVelocity1.cpp, servoSimuPoint2DCamVelocity2.cpp, servoSimuPoint2DCamVelocity3.cpp, servoSimuPoint2DhalfCamVelocity1.cpp, servoSimuPoint2DhalfCamVelocity2.cpp, servoSimuPoint2DhalfCamVelocity3.cpp, servoSimuPoint3DCamVelocity.cpp, servoSimuSphere.cpp, servoSimuSphere2DCamVelocity.cpp, servoSimuSphere2DCamVelocityDisplay.cpp, servoSimuSphere2DCamVelocityDisplaySecondaryTask.cpp, servoSimuSquareLine2DCamVelocityDisplay.cpp, servoSimuThetaUCamVelocity.cpp, servoSimuViper850FourPoints2DCamVelocity.cpp, servoViper650FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent-SR300.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper650Point2DCamVelocity.cpp, servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionDesired.cpp, servoViper850FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper850FourPointsKinect.cpp, servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp, servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp, servoViper850Point2DArtVelocity-jointAvoidance-large.cpp, servoViper850Point2DArtVelocity.cpp, servoViper850Point2DCamVelocity.cpp, servoViper850Point2DCamVelocityKalman.cpp, simulateCircle2DCamVelocity.cpp, simulateFourPoints2DCartesianCamVelocity.cpp, simulateFourPoints2DPolarCamVelocity.cpp, testFeatureSegment.cpp, tutorial-ibvs-4pts-display.cpp, tutorial-ibvs-4pts-image-tracking.cpp, tutorial-ibvs-4pts-ogre-tracking.cpp, tutorial-ibvs-4pts-ogre.cpp, tutorial-ibvs-4pts-plotter-continuous-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter.cpp, tutorial-ibvs-4pts-wireframe-camera.cpp, tutorial-ibvs-4pts-wireframe-robot-afma6.cpp, tutorial-ibvs-4pts-wireframe-robot-viper.cpp, tutorial-ibvs-4pts.cpp, tutorial-simu-pioneer-continuous-gain-adaptive.cpp, tutorial-simu-pioneer-continuous-gain-constant.cpp, tutorial-simu-pioneer-pan.cpp, and tutorial-simu-pioneer.cpp.

Definition at line 934 of file vpServo.cpp.

◆ computeControlLaw() [2/3]

vpColVector vpServo::computeControlLaw ( double  t)

Compute the control law specified using setServo(). See vpServo::vpServoType for more details concerning the control laws that are available. The Tutorial: How to boost your visual servo control law is also useful to illustrate the usage of this function.

To the general form of the control law given in computeControlLaw(), we add here an additional term that comes from the task sequencing approach described in [Mansard07e] equation (17). This additional term allows to compute continuous velocities by avoiding abrupt changes in the command.

The form of the control law considered here is the following:

\[ {\bf \dot q} = \pm \lambda {{\bf \widehat J}_e}^+ {\bf e} \mp \lambda {{\bf \widehat J}_{e(0)}}^+ {{\bf e}(0)} \exp(-\mu t) \]

where :

  • ${\bf \dot q}$ is the resulting continuous velocity command to apply to the robot.
  • the sign of the control law depends on the eye in hand or eye to hand configuration.
  • $\bf J$ is the Jacobian of the task. It is function of the interaction matrix and of the robot Jacobian.
  • $\bf e = (s-s^*)$ is the error to regulate.
  • $t$ is the time given as parameter of this method.
  • $\mu$ is a gain that is set by default to 4 and that could be modified using setMu().
  • ${\bf \widehat J}_{e(0)}^+ {\bf e}(0)$ is the value of ${\bf \widehat J}_e^+ {\bf e}$ when $t=0$. This value is internally stored either at the first call of this method, or when t parameter is set to 0.
Parameters
t: Time in second. When set to zero, ${{\bf \widehat J}_{e(0)}}^+ {{\bf e}(0)}$ is refreshed internally.

Definition at line 1086 of file vpServo.cpp.

◆ computeControlLaw() [3/3]

vpColVector vpServo::computeControlLaw ( double  t,
const vpColVector e_dot_init 
)

Compute the control law specified using setServo(). See vpServo::vpServoType for more details concerning the control laws that are available.

To the general form of the control law given in computeControlLaw(), we add here an additional term that comes from the task sequencing approach described in [Mansard07e] equation (17). This additional term allows to compute continuous velocities by avoiding abrupt changes in the command.

The form of the control law considered here is the following:

\[ {\bf \dot q} = \pm \lambda {{\bf \widehat J}_e}^+ {\bf e} + \left({\bf \dot e}(0) \mp \lambda {{\bf \widehat J}_{e(0)}}^+ {{\bf e}(0)}\right) \exp(-\mu t) \]

where :

  • ${\bf \dot q}$ is the resulting continuous velocity command to apply to the robot.
  • the sign of the control law depends on the eye in hand or eye to hand configuration.
  • $\bf J$ is the Jacobian of the task. It is function of the interaction matrix and of the robot Jacobian.
  • $\bf e = (s-s^*)$ is the error to regulate.
  • $t$ is the time given as parameter of this method.
  • $\mu$ is a gain that is set by default to 4 and that could be modified using setMu().
  • ${\bf \widehat J}_{e(0)}^+ {\bf e}(0)$ is the value of ${\bf \widehat J}_e^+ {\bf e}$ when $t=0$. This value is internally stored either at the first call of this method, or when t parameter is set to 0.
Parameters
t: Time in second. When set to zero, ${{\bf \widehat J}_{e(0)}}^+ {{\bf e}(0)}$ is refreshed internally.
e_dot_init: Initial value of ${\bf \dot e}(0)$.

Definition at line 1247 of file vpServo.cpp.

◆ computeError()

vpColVector vpServo::computeError ( )

Compute the error $\bf e =(s - s^*)$ between the current set of visual features $\bf s$ and the desired set of visual features $\bf s^*$.

Returns
The error vector $\bf e$.

Definition at line 715 of file vpServo.cpp.

◆ computeInteractionMatrix()

vpMatrix vpServo::computeInteractionMatrix ( )

Compute and return the interaction matrix related to the set of visual features.

Returns
The interaction matrix ${\widehat {\bf L}}_e$ used in the control law specified using setServo().

Definition at line 653 of file vpServo.cpp.

◆ computeProjectionOperators()

void vpServo::computeProjectionOperators ( )
protected

Compute the classic projetion operator and the large projection operator.

Definition at line 1372 of file vpServo.cpp.

References error, vpColVector::euclideanNorm(), vpArray2D< Type >::getCols(), I_WpW, J1, P, vpArray2D< Type >::resize(), vpColVector::t(), vpMatrix::transpose(), and WpW.

◆ get_cVe()

vpVelocityTwistMatrix vpServo::get_cVe ( ) const
inline

Return the velocity twist matrix used to transform a velocity skew vector from end-effector frame into the camera frame.

Definition at line 324 of file vpServo.h.

◆ get_cVf()

vpVelocityTwistMatrix vpServo::get_cVf ( ) const
inline

Return the velocity twist matrix used to transform a velocity skew vector from robot fixed frame (also called world or base frame) into the camera frame.

Definition at line 330 of file vpServo.h.

◆ get_eJe()

vpMatrix vpServo::get_eJe ( ) const
inline

Return the robot jacobian expressed in the end-effector frame.

Definition at line 340 of file vpServo.h.

◆ get_fJe()

vpMatrix vpServo::get_fJe ( ) const
inline

Return the robot jacobian expressed in the robot fixed frame (also called world or base frame).

Definition at line 345 of file vpServo.h.

◆ get_fVe()

vpVelocityTwistMatrix vpServo::get_fVe ( ) const
inline

Return the velocity twist matrix used to transform a velocity skew vector from robot end-effector frame into the fixed frame (also called world or base frame).

Definition at line 336 of file vpServo.h.

◆ getDimension()

unsigned int vpServo::getDimension ( ) const

Return the task dimension.

Definition at line 559 of file vpServo.cpp.

◆ getError()

vpColVector vpServo::getError ( ) const
inline

Return the error $\bf e = (s - s^*)$ between the current set of visual features $\bf s$ and the desired set of visual features $\bf s^*$. The error vector is updated after a call of computeError() or computeControlLaw().

vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
vpColVector e = task.getError(); // Get the error vector
Examples
manServoMomentsSimple.cpp, servoAfma4Point2DArtVelocity.cpp, servoAfma4Point2DCamVelocity.cpp, servoAfma62DhalfCamVelocity.cpp, servoAfma6Cylinder2DCamVelocity.cpp, servoAfma6Cylinder2DCamVelocitySecondaryTask.cpp, servoAfma6Ellipse2DCamVelocity.cpp, servoAfma6FourPoints2DArtVelocity.cpp, servoAfma6FourPoints2DCamVelocityInteractionCurrent.cpp, servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp, servoAfma6Line2DCamVelocity.cpp, servoAfma6Point2DArtVelocity.cpp, servoAfma6Point2DCamVelocity.cpp, servoAfma6Points2DCamVelocityEyeToHand.cpp, servoAfma6Segment2DCamVelocity.cpp, servoAfma6SquareLines2DCamVelocity.cpp, servoAfma6TwoLines2DCamVelocity.cpp, servoBiclopsPoint2DArtVelocity.cpp, servoFrankaPBVS.cpp, servoMomentImage.cpp, servoMomentPoints.cpp, servoMomentPolygon.cpp, servoPioneerPanSegment3D.cpp, servoPtu46Point2DArtVelocity.cpp, servoSimu3D_cdMc_CamVelocity.cpp, servoSimu3D_cMcd_CamVelocity.cpp, servoSimu4Points.cpp, servoSimuAfma6FourPoints2DCamVelocity.cpp, servoSimuCircle2DCamVelocity.cpp, servoSimuCircle2DCamVelocityDisplay.cpp, servoSimuCylinder.cpp, servoSimuCylinder2DCamVelocityDisplay.cpp, servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp, servoSimuFourPoints2DCamVelocity.cpp, servoSimuFourPoints2DCamVelocityDisplay.cpp, servoSimuFourPoints2DPolarCamVelocityDisplay.cpp, servoSimuLine2DCamVelocityDisplay.cpp, servoSimuPoint2DCamVelocity1.cpp, servoSimuPoint2DCamVelocity2.cpp, servoSimuPoint2DCamVelocity3.cpp, servoSimuPoint2DhalfCamVelocity1.cpp, servoSimuPoint2DhalfCamVelocity2.cpp, servoSimuPoint2DhalfCamVelocity3.cpp, servoSimuPoint3DCamVelocity.cpp, servoSimuSphere.cpp, servoSimuSphere2DCamVelocity.cpp, servoSimuSphere2DCamVelocityDisplay.cpp, servoSimuSphere2DCamVelocityDisplaySecondaryTask.cpp, servoSimuSquareLine2DCamVelocityDisplay.cpp, servoSimuThetaUCamVelocity.cpp, servoSimuViper850FourPoints2DCamVelocity.cpp, servoViper650FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent-SR300.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper650Point2DCamVelocity.cpp, servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionDesired.cpp, servoViper850FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper850FourPointsKinect.cpp, servoViper850Point2DArtVelocity.cpp, servoViper850Point2DCamVelocity.cpp, servoViper850Point2DCamVelocityKalman.cpp, testFeatureSegment.cpp, tutorial-ibvs-4pts-plotter-continuous-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter.cpp, tutorial-simu-pioneer-continuous-gain-adaptive.cpp, tutorial-simu-pioneer-continuous-gain-constant.cpp, tutorial-simu-pioneer-pan.cpp, and tutorial-simu-pioneer.cpp.

Definition at line 281 of file vpServo.h.

◆ getI_WpW()

vpMatrix vpServo::getI_WpW ( ) const

Return the projection operator ${\bf I}-{\bf W}^+{\bf W}$. This operator is updated after a call of computeControlLaw().

vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
vpMatrix I_WpW = task.getI_WpW(); // Get the projection operator
See also
getWpW()

Definition at line 1759 of file vpServo.cpp.

◆ getInteractionMatrix()

vpMatrix vpServo::getInteractionMatrix ( ) const
inline

Definition at line 297 of file vpServo.h.

◆ getLargeP()

vpMatrix vpServo::getLargeP ( ) const

Return the large projection operator. This operator is updated after a call of computeControlLaw().

vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
vpMatrix P = task.getP(); // Get the large projection operator
See also
getP()

Definition at line 1773 of file vpServo.cpp.

◆ getServoType()

vpServoType vpServo::getServoType ( ) const
inline

Return the visual servo type.

Definition at line 303 of file vpServo.h.

◆ getTaskJacobian()

vpMatrix vpServo::getTaskJacobian ( ) const

Return the task jacobian $J$. The task jacobian is updated after a call of computeControlLaw().

In the general case, the task jacobian is given by ${\bf J} = {\widehat {\bf L}} {^c}{\bf V}_a {^a}{\bf J}_e$.

vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing vpMatrix
J = task.getTaskJacobian(); // Get the task jacobian used to compute v
See also
getTaskJacobianPseudoInverse(), getInteractionMatrix()
Examples
servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp, and servoViper850Point2DCamVelocityKalman.cpp.

Definition at line 1789 of file vpServo.cpp.

◆ getTaskJacobianPseudoInverse()

vpMatrix vpServo::getTaskJacobianPseudoInverse ( ) const

Return the pseudo inverse of the task jacobian $J$.

In the general case, the task jacobian is given by ${\bf J} = {\widehat {\bf L}} {^c}{\bf V}_a {^a}{\bf J}_e$.

The task jacobian and its pseudo inverse are updated after a call of computeControlLaw().

Returns
Pseudo inverse ${J}^{+}$ of the task jacobian.
vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing vpMatrix
Jp = task.getTaskJacobianPseudoInverse(); // Get the pseudo inverse of task jacobian used to compute v
See also
getTaskJacobian()
Examples
servoAfma4Point2DCamVelocityKalman.cpp, and servoViper850Point2DCamVelocityKalman.cpp.

Definition at line 1808 of file vpServo.cpp.

◆ getTaskRank()

unsigned int vpServo::getTaskRank ( ) const

Return the rank of the task jacobian. The rank is updated after a call of computeControlLaw().

vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
unsigned int rank = task.getTaskRank(); // Get the rank of the task jacobian
Examples
servoAfma6Ellipse2DCamVelocity.cpp, servoPioneerPanSegment3D.cpp, servoSimuCircle2DCamVelocity.cpp, servoSimuCircle2DCamVelocityDisplay.cpp, servoSimuSphere2DCamVelocity.cpp, servoSimuSphere2DCamVelocityDisplay.cpp, and simulateCircle2DCamVelocity.cpp.

Definition at line 1820 of file vpServo.cpp.

◆ getTaskSingularValues()

vpColVector vpServo::getTaskSingularValues ( ) const
inline

Get task singular values.

Returns
Singular values that relies on the task jacobian pseudo inverse.

Definition at line 316 of file vpServo.h.

◆ getWpW()

vpMatrix vpServo::getWpW ( ) const

Return the projection operator ${\bf W}^+{\bf W}$. This operator is updated after a call of computeControlLaw().

When the dimension of the task is equal to the number of degrees of freedom available ${\bf W^+W = I}$.

vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
vpMatrix WpW = task.getWpW(); // Get the projection operator
See also
getI_WpW()

Definition at line 1837 of file vpServo.cpp.

◆ init()

void vpServo::init ( void  )
protected

Basic initialization.

Initialize the servo with the following settings:

  • No control law is specified. The user has to call setServo() to specify the control law.
  • In the control law, the interaction matrix ${\widehat {\bf L}}_e $ is computed with the desired features ${\bf s}^*$. Using setInteractionMatrixType() you can also compute the interaction matrix with the current visual features, or from the mean $\left({\widehat {\bf L}}_s + {\widehat {\bf L}}_{s^*}\right)/2$.
  • In the control law the pseudo inverse will be used. The method setInteractionMatrixType() allows to use the transpose instead.

Definition at line 141 of file vpServo.cpp.

◆ kill()

void vpServo::kill ( )

Task destruction. Kill the current and desired visual feature lists.

It is mendatory to call explicitly this function to avoid potential memory leaks.

vpServo task ;
...
task.addFeature(s); // Add current ThetaU feature
task.kill(); // A call to kill() is requested here
Examples
manServo4PointsDisplay.cpp, manSimu4Dots.cpp, manSimu4Points.cpp, servoAfma4Point2DArtVelocity.cpp, servoAfma4Point2DCamVelocity.cpp, servoAfma4Point2DCamVelocityKalman.cpp, servoAfma62DhalfCamVelocity.cpp, servoAfma6Cylinder2DCamVelocity.cpp, servoAfma6Cylinder2DCamVelocitySecondaryTask.cpp, servoAfma6Ellipse2DCamVelocity.cpp, servoAfma6FourPoints2DArtVelocity.cpp, servoAfma6FourPoints2DCamVelocityInteractionCurrent.cpp, servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp, servoAfma6Line2DCamVelocity.cpp, servoAfma6Point2DArtVelocity.cpp, servoAfma6Point2DCamVelocity.cpp, servoAfma6Points2DCamVelocityEyeToHand.cpp, servoAfma6Segment2DCamVelocity.cpp, servoAfma6SquareLines2DCamVelocity.cpp, servoAfma6TwoLines2DCamVelocity.cpp, servoBiclopsPoint2DArtVelocity.cpp, servoFrankaPBVS.cpp, servoMomentImage.cpp, servoMomentPoints.cpp, servoMomentPolygon.cpp, servoPioneerPanSegment3D.cpp, servoPioneerPoint2DDepth.cpp, servoPtu46Point2DArtVelocity.cpp, servoSimu3D_cdMc_CamVelocity.cpp, servoSimu3D_cMcd_CamVelocity.cpp, servoSimu4Points.cpp, servoSimuAfma6FourPoints2DCamVelocity.cpp, servoSimuCircle2DCamVelocity.cpp, servoSimuCircle2DCamVelocityDisplay.cpp, servoSimuCylinder.cpp, servoSimuCylinder2DCamVelocityDisplay.cpp, servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp, servoSimuFourPoints2DCamVelocity.cpp, servoSimuFourPoints2DCamVelocityDisplay.cpp, servoSimuFourPoints2DPolarCamVelocityDisplay.cpp, servoSimuLine2DCamVelocityDisplay.cpp, servoSimuPoint2DCamVelocity1.cpp, servoSimuPoint2DCamVelocity2.cpp, servoSimuPoint2DCamVelocity3.cpp, servoSimuPoint2DhalfCamVelocity1.cpp, servoSimuPoint2DhalfCamVelocity2.cpp, servoSimuPoint2DhalfCamVelocity3.cpp, servoSimuPoint3DCamVelocity.cpp, servoSimuSphere.cpp, servoSimuSphere2DCamVelocity.cpp, servoSimuSphere2DCamVelocityDisplay.cpp, servoSimuSphere2DCamVelocityDisplaySecondaryTask.cpp, servoSimuSquareLine2DCamVelocityDisplay.cpp, servoSimuThetaUCamVelocity.cpp, servoSimuViper850FourPoints2DCamVelocity.cpp, servoViper650FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent-SR300.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper650Point2DCamVelocity.cpp, servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionDesired.cpp, servoViper850FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper850FourPointsKinect.cpp, servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp, servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp, servoViper850Point2DArtVelocity-jointAvoidance-large.cpp, servoViper850Point2DArtVelocity.cpp, servoViper850Point2DCamVelocity.cpp, servoViper850Point2DCamVelocityKalman.cpp, simulateCircle2DCamVelocity.cpp, simulateFourPoints2DCartesianCamVelocity.cpp, simulateFourPoints2DPolarCamVelocity.cpp, testFeature.cpp, testFeatureSegment.cpp, tutorial-ibvs-4pts-display.cpp, tutorial-ibvs-4pts-image-tracking.cpp, tutorial-ibvs-4pts-ogre-tracking.cpp, tutorial-ibvs-4pts-ogre.cpp, tutorial-ibvs-4pts-plotter-continuous-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter.cpp, tutorial-ibvs-4pts-wireframe-camera.cpp, tutorial-ibvs-4pts-wireframe-robot-afma6.cpp, tutorial-ibvs-4pts-wireframe-robot-viper.cpp, tutorial-ibvs-4pts.cpp, tutorial-simu-pioneer-continuous-gain-adaptive.cpp, tutorial-simu-pioneer-continuous-gain-constant.cpp, tutorial-simu-pioneer-pan.cpp, and tutorial-simu-pioneer.cpp.

Definition at line 191 of file vpServo.cpp.

◆ print()

void vpServo::print ( const vpServo::vpServoPrintType  displayLevel = ALL,
std::ostream &  os = std::cout 
)

Prints on os stream information about the task:

Parameters
displayLevel: Indicates which are the task information to print. See vpServo::vpServoPrintType for more details.
os: Output stream.
Examples
manServo4PointsDisplay.cpp, manServoMomentsSimple.cpp, manSimu4Dots.cpp, manSimu4Points.cpp, mbot-apriltag-2D-half-vs.cpp, mbot-apriltag-ibvs.cpp, mbot-apriltag-pbvs.cpp, servoAfma4Point2DArtVelocity.cpp, servoAfma4Point2DCamVelocity.cpp, servoAfma4Point2DCamVelocityKalman.cpp, servoAfma62DhalfCamVelocity.cpp, servoAfma6Cylinder2DCamVelocity.cpp, servoAfma6Cylinder2DCamVelocitySecondaryTask.cpp, servoAfma6Ellipse2DCamVelocity.cpp, servoAfma6FourPoints2DArtVelocity.cpp, servoAfma6FourPoints2DCamVelocityInteractionCurrent.cpp, servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp, servoAfma6Line2DCamVelocity.cpp, servoAfma6Point2DArtVelocity.cpp, servoAfma6Point2DCamVelocity.cpp, servoAfma6Points2DCamVelocityEyeToHand.cpp, servoAfma6Segment2DCamVelocity.cpp, servoAfma6SquareLines2DCamVelocity.cpp, servoAfma6TwoLines2DCamVelocity.cpp, servoBiclopsPoint2DArtVelocity.cpp, servoMomentImage.cpp, servoMomentPoints.cpp, servoMomentPolygon.cpp, servoPioneerPanSegment3D.cpp, servoPioneerPoint2DDepth.cpp, servoPtu46Point2DArtVelocity.cpp, servoSimu3D_cdMc_CamVelocity.cpp, servoSimu3D_cMcd_CamVelocity.cpp, servoSimu4Points.cpp, servoSimuAfma6FourPoints2DCamVelocity.cpp, servoSimuCircle2DCamVelocity.cpp, servoSimuCircle2DCamVelocityDisplay.cpp, servoSimuCylinder.cpp, servoSimuCylinder2DCamVelocityDisplay.cpp, servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp, servoSimuFourPoints2DCamVelocity.cpp, servoSimuFourPoints2DCamVelocityDisplay.cpp, servoSimuFourPoints2DPolarCamVelocityDisplay.cpp, servoSimuLine2DCamVelocityDisplay.cpp, servoSimuPoint2DCamVelocity1.cpp, servoSimuPoint2DCamVelocity2.cpp, servoSimuPoint2DCamVelocity3.cpp, servoSimuPoint2DhalfCamVelocity1.cpp, servoSimuPoint2DhalfCamVelocity2.cpp, servoSimuPoint2DhalfCamVelocity3.cpp, servoSimuPoint3DCamVelocity.cpp, servoSimuSphere.cpp, servoSimuSphere2DCamVelocity.cpp, servoSimuSphere2DCamVelocityDisplay.cpp, servoSimuSphere2DCamVelocityDisplaySecondaryTask.cpp, servoSimuSquareLine2DCamVelocityDisplay.cpp, servoSimuThetaUCamVelocity.cpp, servoSimuViper850FourPoints2DCamVelocity.cpp, servoViper650FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent-SR300.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper650Point2DCamVelocity.cpp, servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionDesired.cpp, servoViper850FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper850FourPointsKinect.cpp, servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp, servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp, servoViper850Point2DArtVelocity-jointAvoidance-large.cpp, servoViper850Point2DArtVelocity.cpp, servoViper850Point2DCamVelocity.cpp, servoViper850Point2DCamVelocityKalman.cpp, simulateCircle2DCamVelocity.cpp, simulateFourPoints2DCartesianCamVelocity.cpp, simulateFourPoints2DPolarCamVelocity.cpp, tutorial-simu-pioneer-continuous-gain-adaptive.cpp, tutorial-simu-pioneer-continuous-gain-constant.cpp, tutorial-simu-pioneer-pan.cpp, and tutorial-simu-pioneer.cpp.

Definition at line 312 of file vpServo.cpp.

◆ secondaryTask() [1/2]

vpColVector vpServo::secondaryTask ( const vpColVector de2dt,
const bool &  useLargeProjectionOperator = false 
)

Compute and return the secondary task vector according to the classic projection operator ${\bf I-W^+W}$ (see equation(7) in the paper [Marchand05b]) or the new large projection operator (see equation(24) in the paper [Marey:2010]).

Parameters
de2dt: Value of $\frac{\partial {\bf e_2}}{\partial t}$ the derivative of the secondary task ${\bf e}_2$.
useLargeProjectionOperator: if true will be use the large projection operator, if false the classic one (default).
Returns
The secondary task vector.

If the classic projection operator is used ( useLargeProjectionOperator = false (default value)) this function return:

\[ ({\bf I-W^+W})\frac{\partial {\bf e_2}}{\partial t} \]

Note that the secondary task vector need than to be added to the primary task which can be in the general case written as:

\[ -\lambda {\bf W^+W {\widehat {\bf J}}_e^+({\bf s-s^*})} \]

Otherwise if the new large projection operator is used ( useLargeProjectionOperator = true ) this function return:

\[ {\bf P}\frac{\partial {\bf e_2}}{\partial t} \]

where

\[ {\bf P} =\bar{\lambda }\left ( \left \| {\bf e} \right \| \right ){\bf P}_{ \left \| {\bf e } \right \| } \left ( 1 - \bar{\lambda }\left ( \left \| {\bf e } \right \| \right ) \right ) \left ( {\bf I-W^+W}\right ) \]

with

\[ {\bf P}_{\left \| {\bf e } \right \| } = I_{n} - \frac{1}{{\bf e }^\top {\bf J_{{\bf e }} } {\bf J_{{\bf e }}^\top }{\bf e }}{\bf J_{{\bf e }}^\top }{\bf e }{\bf e }^\top{\bf J_{{\bf e }} } \]

Warning
computeControlLaw() must be call prior to this function since it updates the projection operators.

The following sample code shows how to use this method to compute a secondary task using the classic projection operator:

// Velocity applied to the robot vpColVector de2dt; vpServo task;
...
v = task.computeControlLaw(); // Compute the primary task
v += task.secondaryTask(de2dt) // Compute and add the secondary task using the classical projection operator

The following sample code shows how to use this method to compute a secondary task using the large projection operator:

// Velocity applied to the robot vpColVector de2dt; vpServo task;
...
v = task.computeControlLaw(); // Compute the primary task
v += task.secondaryTask(de2dt, true) // Compute and add the secondary task using the large projection operator
See also
computeControlLaw()
Examples
servoAfma6Cylinder2DCamVelocitySecondaryTask.cpp, servoSimuCylinder.cpp, servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp, servoSimuSphere2DCamVelocityDisplaySecondaryTask.cpp, and servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp.

Definition at line 1484 of file vpServo.cpp.

◆ secondaryTask() [2/2]

vpColVector vpServo::secondaryTask ( const vpColVector e2,
const vpColVector de2dt,
const bool &  useLargeProjectionOperator = false 
)

Compute and return the secondary task vector according to the classic projection operator ${\bf I-W^+W}$ (see equation(7) in the paper [Marchand05b]) or the new large projection operator (see equation(24) in the paper [Marey:2010]).

Parameters
e2: Value of the secondary task ${\bf e}_2$.
de2dt: Value of $\frac{\partial {\bf e_2}}{\partial t}$ the derivative of the secondary task ${\bf e}_2$.
useLargeProjectionOperatorif true will be use the large projection operator, if false the classic one (default).
Returns
The secondary task vector.

If the classic projection operator is used ( useLargeProjectionOperator = false (default value)) this function return:

\[ -\lambda ({\bf I-W^+W}) {\bf e_2} + ({\bf I-W^+W})\frac{\partial {\bf e_2}}{\partial t} \]

Note that the secondary task vector need than to be added to the primary task which can be in the general case written as:

\[ -\lambda {\bf W^+W {\widehat {\bf J}}_e^+({\bf s-s^*})} \]

Otherwise if the new large projection operator is used ( useLargeProjectionOperator = true ) this function return:

\[ -\lambda {\bf P} {\bf e_2} + {\bf P}\frac{\partial {\bf e_2}}{\partial t} \]

where

\[ {\bf P} =\bar{\lambda }\left ( \left \| {\bf e} \right \| \right ){\bf P}_{ \left \| {\bf e } \right \| } \left ( 1 - \bar{\lambda }\left ( \left \| {\bf e } \right \| \right ) \right ) \left ( {\bf I-W^+W}\right ) \]

with

\[ {\bf P}_{\left \| {\bf e } \right \| } = I_{n} - \frac{1}{{\bf e }^\top {\bf J_{{\bf e }} } {\bf J_{{\bf e }}^\top }{\bf e }}{\bf J_{{\bf e }}^\top }{\bf e }{\bf e }^\top{\bf J_{{\bf e }} } \]

Warning
computeControlLaw() must be call prior to this function since it updates the projection operators.

The following sample code shows how to use this method to compute a secondary task using the classical projection operator:

// Velocity applied to the robot vpColVector e2; vpColVector de2dt; vpServo
task;
...
v = task.computeControlLaw(); // Compute the primary task
v += task.secondaryTask(e2, de2dt) // Compute and add the secondary task using the classical projection operator

The following sample code shows how to use this method to compute a secondary task using the large projection operator:

// Velocity applied to the robot vpColVector e2; vpColVector de2dt; vpServo
task;
...
v = task.computeControlLaw(); // Compute the primary task
v += task.secondaryTask(e2, de2dt, true) // Compute and add the secondary task using the large projection operator
See also
computeControlLaw()

Definition at line 1588 of file vpServo.cpp.

◆ secondaryTaskJointLimitAvoidance()

vpColVector vpServo::secondaryTaskJointLimitAvoidance ( const vpColVector q,
const vpColVector dq,
const vpColVector qmin,
const vpColVector qmax,
const double &  rho = 0.1,
const double &  rho1 = 0.3,
const double &  lambda_tune = 0.7 
) const

Compute and return the secondary task vector for joint limit avoidance [Marey:2010b] using the new large projection operator (see equation(24) in the paper [Marey:2010]). The robot avoids the joint limits very smoothly even when the main task constrains all the robot degrees of freedom.

Parameters
q: Actual joint positions vector
dq: Actual joint velocities vector
qmin: Vector containing the low limit value of each joint in the chain.
qmax: Vector containing the high limit value of each joint in the chain.
rho: tuning paramenter ${\left [ 0,\frac{1}{2} \right ]}$ used to define the safe configuration for the joint. When the joint angle value cross the max or min boundaries ( ${ q_{l_{0}}^{max} }$ and ${q_{l_{0}}^{min}}$) the secondary task is actived gradually.
rho1: tuning paramenter ${\left ] 0,1 \right ]}$ to compute the external boundaries ( ${q_{l_{1}}^{max}}$ and ${q_{l_{1}}^{min}}$) for the joint limits. Here the secondary task it completely activated with the highest gain.
lambda_tune: value ${\left [ 0,1 \right ]}$ used to tune the difference in magnitude between the absolute value of the elements of the primary task and the elements of the secondary task. (See equation (17) [Marey:2010b] )
vpServo task;
// Fill vector qmin and qmax with min and max limits of the joints (same joint order than vector q).
// Update vector of joint position q and velocities dq;
...
// Compute the velocity corresponding to the visual servoing
// Compute and add the secondary task for the joint limit avoidance
// using the large projection operator
v += task.secondaryTaskJointLimitAvoidance(q, dq, qmin, qmax)
Examples
servoViper850Point2DArtVelocity-jointAvoidance-large.cpp.

Definition at line 1666 of file vpServo.cpp.

◆ set_cVe() [1/2]

void vpServo::set_cVe ( const vpHomogeneousMatrix cMe)
inline

Set the velocity twist matrix used to transform a velocity skew vector from end-effector frame into the camera frame.

Definition at line 458 of file vpServo.h.

◆ set_cVe() [2/2]

void vpServo::set_cVe ( const vpVelocityTwistMatrix cVe_)
inline

Set the velocity twist matrix used to transform a velocity skew vector from end-effector frame into the camera frame.

Examples
manServo4PointsDisplay.cpp, manSimu4Dots.cpp, manSimu4Points.cpp, mbot-apriltag-2D-half-vs.cpp, mbot-apriltag-ibvs.cpp, mbot-apriltag-pbvs.cpp, servoAfma4Point2DArtVelocity.cpp, servoAfma6FourPoints2DArtVelocity.cpp, servoAfma6Point2DArtVelocity.cpp, servoAfma6Points2DCamVelocityEyeToHand.cpp, servoBiclopsPoint2DArtVelocity.cpp, servoPioneerPanSegment3D.cpp, servoPioneerPoint2DDepth.cpp, servoPtu46Point2DArtVelocity.cpp, servoSimu4Points.cpp, servoSimuCylinder.cpp, servoSimuFourPoints2DCamVelocity.cpp, servoSimuFourPoints2DCamVelocityDisplay.cpp, servoSimuFourPoints2DPolarCamVelocityDisplay.cpp, servoSimuPoint2DCamVelocity2.cpp, servoSimuPoint2DCamVelocity3.cpp, servoSimuSphere.cpp, servoViper650FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionDesired.cpp, servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp, servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp, servoViper850Point2DArtVelocity-jointAvoidance-large.cpp, servoViper850Point2DArtVelocity.cpp, simulateFourPoints2DCartesianCamVelocity.cpp, simulateFourPoints2DPolarCamVelocity.cpp, tutorial-simu-pioneer-continuous-gain-adaptive.cpp, tutorial-simu-pioneer-continuous-gain-constant.cpp, tutorial-simu-pioneer-pan.cpp, and tutorial-simu-pioneer.cpp.

Definition at line 449 of file vpServo.h.

◆ set_cVf() [1/2]

void vpServo::set_cVf ( const vpHomogeneousMatrix cMf)
inline

Set the velocity twist matrix used to transform a velocity skew vector from robot fixed frame (also called world or base frame) into the camera frame.

Definition at line 478 of file vpServo.h.

◆ set_cVf() [2/2]

void vpServo::set_cVf ( const vpVelocityTwistMatrix cVf_)
inline

Set the velocity twist matrix used to transform a velocity skew vector from robot fixed frame (also called world or base frame) into the camera frame.

Definition at line 468 of file vpServo.h.

◆ set_eJe()

void vpServo::set_eJe ( const vpMatrix eJe_)
inline

◆ set_fJe()

void vpServo::set_fJe ( const vpMatrix fJe_)
inline

Set the robot jacobian expressed in the robot fixed frame (also called world or base frame).

Definition at line 516 of file vpServo.h.

◆ set_fVe() [1/2]

void vpServo::set_fVe ( const vpHomogeneousMatrix fMe)
inline

Set the velocity twist matrix used to transform a velocity skew vector from robot end-effector frame into the fixed frame (also called world or base frame).

Definition at line 498 of file vpServo.h.

◆ set_fVe() [2/2]

void vpServo::set_fVe ( const vpVelocityTwistMatrix fVe_)
inline

Set the velocity twist matrix used to transform a velocity skew vector from robot end-effector frame into the fixed frame (also called world or base frame).

Definition at line 488 of file vpServo.h.

◆ setCameraDoF()

void vpServo::setCameraDoF ( const vpColVector dof)

Set a 6-dim column vector representing the degrees of freedom that are controlled in the camera frame. When set to 1, all the 6 dof are controlled.

Parameters
dof: Degrees of freedom to control in the camera frame. Below we give the correspondance between the index of the vector and the considered dof:
  • dof[0] = 1 if translation along X is controled, 0 otherwise;
  • dof[1] = 1 if translation along Y is controled, 0 otherwise;
  • dof[2] = 1 if translation along Z is controled, 0 otherwise;
  • dof[3] = 1 if rotation along X is controled, 0 otherwise;
  • dof[4] = 1 if rotation along Y is controled, 0 otherwise;
  • dof[5] = 1 if rotation along Z is controled, 0 otherwise;

The following example shows how to use this function to control only wx, wy like a pan/tilt:

#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
int main()
{
vpServo servo;
servo.addFeature(s, sd);
vpColVector dof(6, 1);
dof[0] = 0; // turn off vx
dof[1] = 0; // turn off vy
dof[2] = 0; // turn off vz
dof[5] = 0; // turn off wz
servo.setCameraDoF(dof);
while(1) {
// vpFeatureBuilder::create(s, ...); // update current feature
vpColVector v = servo.computeControlLaw(); // compute control law
// only v[3] and v[4] corresponding to wx and wy are different from 0
}
servo.kill();
}

Definition at line 288 of file vpServo.cpp.

◆ setForceInteractionMatrixComputation()

void vpServo::setForceInteractionMatrixComputation ( bool  force_computation)
inline

Set a variable which enables to compute the interaction matrix at each iteration.

When the interaction matrix is computed from the desired features ${\bf s}^*$ which are in general constant, the interaction matrix ${\widehat {\bf L}}_{s^*}$ is computed just at the first iteration of the servo loop. Sometimes, when the desired features are time dependent ${{\bf s}(t)}^*$ or varying, the interaction matrix need to be computed at each iteration of the servo loop. This method allows to force the computation of ${\widehat {\bf L}}$ in this particular case.

Parameters
force_computation: If true it forces the interaction matrix computation even if it is already done.

Definition at line 380 of file vpServo.h.

◆ setInteractionMatrixType()

void vpServo::setInteractionMatrixType ( const vpServoIteractionMatrixType interactionMatrixType,
const vpServoInversionType interactionMatrixInversion = PSEUDO_INVERSE 
)

Set the interaction matrix type (current, desired, mean or user defined) and how its inverse is computed.

Parameters
interactionMatrixType: The interaction matrix type. See vpServo::vpServoIteractionMatrixType for more details.
interactionMatrixInversion: How is the inverse computed. See vpServo::vpServoInversionType for more details.
Examples
manServo4PointsDisplay.cpp, manServoMomentsSimple.cpp, manSimu4Dots.cpp, manSimu4Points.cpp, mbot-apriltag-2D-half-vs.cpp, mbot-apriltag-ibvs.cpp, mbot-apriltag-pbvs.cpp, servoAfma4Point2DArtVelocity.cpp, servoAfma62DhalfCamVelocity.cpp, servoAfma6Cylinder2DCamVelocity.cpp, servoAfma6Cylinder2DCamVelocitySecondaryTask.cpp, servoAfma6Ellipse2DCamVelocity.cpp, servoAfma6FourPoints2DArtVelocity.cpp, servoAfma6FourPoints2DCamVelocityInteractionCurrent.cpp, servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp, servoAfma6Point2DArtVelocity.cpp, servoAfma6Points2DCamVelocityEyeToHand.cpp, servoAfma6Segment2DCamVelocity.cpp, servoAfma6SquareLines2DCamVelocity.cpp, servoBiclopsPoint2DArtVelocity.cpp, servoFrankaPBVS.cpp, servoMomentImage.cpp, servoMomentPoints.cpp, servoMomentPolygon.cpp, servoPioneerPanSegment3D.cpp, servoPioneerPoint2DDepth.cpp, servoPtu46Point2DArtVelocity.cpp, servoSimu3D_cdMc_CamVelocity.cpp, servoSimu3D_cMcd_CamVelocity.cpp, servoSimu4Points.cpp, servoSimuAfma6FourPoints2DCamVelocity.cpp, servoSimuCircle2DCamVelocityDisplay.cpp, servoSimuCylinder.cpp, servoSimuCylinder2DCamVelocityDisplay.cpp, servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp, servoSimuFourPoints2DCamVelocity.cpp, servoSimuFourPoints2DCamVelocityDisplay.cpp, servoSimuFourPoints2DPolarCamVelocityDisplay.cpp, servoSimuPoint2DCamVelocity2.cpp, servoSimuPoint2DhalfCamVelocity2.cpp, servoSimuPoint2DhalfCamVelocity3.cpp, servoSimuSphere.cpp, servoSimuSquareLine2DCamVelocityDisplay.cpp, servoSimuThetaUCamVelocity.cpp, servoSimuViper850FourPoints2DCamVelocity.cpp, servoViper650FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent-SR300.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionDesired.cpp, servoViper850FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper850FourPointsKinect.cpp, servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp, servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp, servoViper850Point2DArtVelocity-jointAvoidance-large.cpp, servoViper850Point2DArtVelocity.cpp, servoViper850Point2DCamVelocityKalman.cpp, simulateCircle2DCamVelocity.cpp, simulateFourPoints2DCartesianCamVelocity.cpp, simulateFourPoints2DPolarCamVelocity.cpp, testFeatureSegment.cpp, tutorial-ibvs-4pts-display.cpp, tutorial-ibvs-4pts-image-tracking.cpp, tutorial-ibvs-4pts-ogre-tracking.cpp, tutorial-ibvs-4pts-ogre.cpp, tutorial-ibvs-4pts-plotter-continuous-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter.cpp, tutorial-ibvs-4pts-wireframe-camera.cpp, tutorial-ibvs-4pts-wireframe-robot-afma6.cpp, tutorial-ibvs-4pts-wireframe-robot-viper.cpp, tutorial-ibvs-4pts.cpp, tutorial-simu-pioneer-continuous-gain-adaptive.cpp, tutorial-simu-pioneer-continuous-gain-constant.cpp, tutorial-simu-pioneer-pan.cpp, and tutorial-simu-pioneer.cpp.

Definition at line 573 of file vpServo.cpp.

References interactionMatrixType, and inversionType.

◆ setLambda() [1/3]

void vpServo::setLambda ( const double  gain_at_zero,
const double  gain_at_infinity,
const double  slope_at_zero 
)
inline

Set the gain $\lambda$ used in the control law (see vpServo::vpServoType) as adaptive. Value of $\lambda$ that is used in computeControlLaw() depend on the infinity norm of the task Jacobian.

The usage of an adaptive gain rather than a constant gain allows to reduce the convergence time.

Parameters
gain_at_zero: the expected gain when $x=0$: $\lambda(0)$.
gain_at_infinity: the expected gain when $x=\infty$: $\lambda(\infty)$.
slope_at_zero: the expected slope of $\lambda(x)$ when $x=0$: ${\dot \lambda}(0)$.

For more details on these parameters see vpAdaptiveGain class.

Definition at line 422 of file vpServo.h.

◆ setLambda() [2/3]

void vpServo::setLambda ( const vpAdaptiveGain l)
inline

Set the gain $\lambda$ used in the control law (see vpServo::vpServoType) as adaptive. Value of $\lambda$ that is used in computeControlLaw() depend on the infinity norm of the task Jacobian.

The usage of an adaptive gain rather than a constant gain allows to reduce the convergence time.

See also
vpAdaptiveGain

Definition at line 434 of file vpServo.h.

◆ setLambda() [3/3]

void vpServo::setLambda ( double  c)
inline

Set the gain $\lambda$ used in the control law (see vpServo::vpServoType) as constant.

The usage of an adaptive gain allows to reduce the convergence time, see setLambda(const vpAdaptiveGain&).

Parameters
c: Constant gain. Values are in general between 0.1 and 1. Higher is the gain, higher are the velocities that may be applied to the robot.
Examples
manServo4PointsDisplay.cpp, manServoMomentsSimple.cpp, manSimu4Dots.cpp, manSimu4Points.cpp, mbot-apriltag-2D-half-vs.cpp, mbot-apriltag-ibvs.cpp, mbot-apriltag-pbvs.cpp, servoAfma4Point2DArtVelocity.cpp, servoAfma4Point2DCamVelocity.cpp, servoAfma4Point2DCamVelocityKalman.cpp, servoAfma62DhalfCamVelocity.cpp, servoAfma6Cylinder2DCamVelocity.cpp, servoAfma6Cylinder2DCamVelocitySecondaryTask.cpp, servoAfma6Ellipse2DCamVelocity.cpp, servoAfma6FourPoints2DArtVelocity.cpp, servoAfma6FourPoints2DCamVelocityInteractionCurrent.cpp, servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp, servoAfma6Line2DCamVelocity.cpp, servoAfma6Point2DArtVelocity.cpp, servoAfma6Point2DCamVelocity.cpp, servoAfma6Points2DCamVelocityEyeToHand.cpp, servoAfma6Segment2DCamVelocity.cpp, servoAfma6SquareLines2DCamVelocity.cpp, servoAfma6TwoLines2DCamVelocity.cpp, servoBiclopsPoint2DArtVelocity.cpp, servoFrankaPBVS.cpp, servoMomentImage.cpp, servoMomentPoints.cpp, servoMomentPolygon.cpp, servoPioneerPanSegment3D.cpp, servoPioneerPoint2DDepth.cpp, servoPtu46Point2DArtVelocity.cpp, servoSimu3D_cdMc_CamVelocity.cpp, servoSimu3D_cMcd_CamVelocity.cpp, servoSimu4Points.cpp, servoSimuAfma6FourPoints2DCamVelocity.cpp, servoSimuCircle2DCamVelocity.cpp, servoSimuCircle2DCamVelocityDisplay.cpp, servoSimuCylinder.cpp, servoSimuCylinder2DCamVelocityDisplay.cpp, servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp, servoSimuFourPoints2DCamVelocity.cpp, servoSimuFourPoints2DCamVelocityDisplay.cpp, servoSimuFourPoints2DPolarCamVelocityDisplay.cpp, servoSimuLine2DCamVelocityDisplay.cpp, servoSimuPoint2DCamVelocity1.cpp, servoSimuPoint2DCamVelocity2.cpp, servoSimuPoint2DCamVelocity3.cpp, servoSimuPoint2DhalfCamVelocity1.cpp, servoSimuPoint2DhalfCamVelocity2.cpp, servoSimuPoint2DhalfCamVelocity3.cpp, servoSimuPoint3DCamVelocity.cpp, servoSimuSphere.cpp, servoSimuSphere2DCamVelocity.cpp, servoSimuSphere2DCamVelocityDisplay.cpp, servoSimuSphere2DCamVelocityDisplaySecondaryTask.cpp, servoSimuSquareLine2DCamVelocityDisplay.cpp, servoSimuThetaUCamVelocity.cpp, servoSimuViper850FourPoints2DCamVelocity.cpp, servoViper650FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent-SR300.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper650Point2DCamVelocity.cpp, servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionDesired.cpp, servoViper850FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper850FourPointsKinect.cpp, servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp, servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp, servoViper850Point2DArtVelocity-jointAvoidance-large.cpp, servoViper850Point2DArtVelocity.cpp, servoViper850Point2DCamVelocity.cpp, servoViper850Point2DCamVelocityKalman.cpp, simulateCircle2DCamVelocity.cpp, simulateFourPoints2DCartesianCamVelocity.cpp, simulateFourPoints2DPolarCamVelocity.cpp, testFeatureSegment.cpp, tutorial-ibvs-4pts-display.cpp, tutorial-ibvs-4pts-image-tracking.cpp, tutorial-ibvs-4pts-ogre-tracking.cpp, tutorial-ibvs-4pts-ogre.cpp, tutorial-ibvs-4pts-plotter-continuous-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter.cpp, tutorial-ibvs-4pts-wireframe-camera.cpp, tutorial-ibvs-4pts-wireframe-robot-afma6.cpp, tutorial-ibvs-4pts-wireframe-robot-viper.cpp, tutorial-ibvs-4pts.cpp, tutorial-simu-pioneer-continuous-gain-adaptive.cpp, tutorial-simu-pioneer-continuous-gain-constant.cpp, tutorial-simu-pioneer-pan.cpp, and tutorial-simu-pioneer.cpp.

Definition at line 405 of file vpServo.h.

◆ setMu()

void vpServo::setMu ( double  mu_)
inline

Set the value of the parameter $\mu$ used to ensure the continuity of the velocities computed using computeControlLaw(double).

A recommended value is 4.

Definition at line 441 of file vpServo.h.

◆ setServo()

void vpServo::setServo ( const vpServoType servo_type)

Set the visual servoing control law.

Parameters
servo_type: Control law that will be considered. See vpServo::vpServoType to see the possible values.
Examples
manServo4PointsDisplay.cpp, manServoMomentsSimple.cpp, manSimu4Dots.cpp, manSimu4Points.cpp, mbot-apriltag-2D-half-vs.cpp, mbot-apriltag-ibvs.cpp, mbot-apriltag-pbvs.cpp, servoAfma4Point2DArtVelocity.cpp, servoAfma4Point2DCamVelocity.cpp, servoAfma4Point2DCamVelocityKalman.cpp, servoAfma62DhalfCamVelocity.cpp, servoAfma6Cylinder2DCamVelocity.cpp, servoAfma6Cylinder2DCamVelocitySecondaryTask.cpp, servoAfma6Ellipse2DCamVelocity.cpp, servoAfma6FourPoints2DArtVelocity.cpp, servoAfma6FourPoints2DCamVelocityInteractionCurrent.cpp, servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp, servoAfma6Line2DCamVelocity.cpp, servoAfma6Point2DArtVelocity.cpp, servoAfma6Point2DCamVelocity.cpp, servoAfma6Points2DCamVelocityEyeToHand.cpp, servoAfma6Segment2DCamVelocity.cpp, servoAfma6SquareLines2DCamVelocity.cpp, servoAfma6TwoLines2DCamVelocity.cpp, servoBiclopsPoint2DArtVelocity.cpp, servoFrankaPBVS.cpp, servoMomentImage.cpp, servoMomentPoints.cpp, servoMomentPolygon.cpp, servoPioneerPanSegment3D.cpp, servoPioneerPoint2DDepth.cpp, servoPtu46Point2DArtVelocity.cpp, servoSimu3D_cdMc_CamVelocity.cpp, servoSimu3D_cMcd_CamVelocity.cpp, servoSimu4Points.cpp, servoSimuAfma6FourPoints2DCamVelocity.cpp, servoSimuCircle2DCamVelocity.cpp, servoSimuCircle2DCamVelocityDisplay.cpp, servoSimuCylinder.cpp, servoSimuCylinder2DCamVelocityDisplay.cpp, servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp, servoSimuFourPoints2DCamVelocity.cpp, servoSimuFourPoints2DCamVelocityDisplay.cpp, servoSimuFourPoints2DPolarCamVelocityDisplay.cpp, servoSimuLine2DCamVelocityDisplay.cpp, servoSimuPoint2DCamVelocity1.cpp, servoSimuPoint2DCamVelocity2.cpp, servoSimuPoint2DCamVelocity3.cpp, servoSimuPoint2DhalfCamVelocity1.cpp, servoSimuPoint2DhalfCamVelocity2.cpp, servoSimuPoint2DhalfCamVelocity3.cpp, servoSimuPoint3DCamVelocity.cpp, servoSimuSphere.cpp, servoSimuSphere2DCamVelocity.cpp, servoSimuSphere2DCamVelocityDisplay.cpp, servoSimuSphere2DCamVelocityDisplaySecondaryTask.cpp, servoSimuSquareLine2DCamVelocityDisplay.cpp, servoSimuThetaUCamVelocity.cpp, servoSimuViper850FourPoints2DCamVelocity.cpp, servoViper650FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent-SR300.cpp, servoViper650FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper650Point2DCamVelocity.cpp, servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp, servoViper850FourPoints2DArtVelocityInteractionDesired.cpp, servoViper850FourPoints2DCamVelocityInteractionCurrent.cpp, servoViper850FourPointsKinect.cpp, servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp, servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp, servoViper850Point2DArtVelocity-jointAvoidance-large.cpp, servoViper850Point2DArtVelocity.cpp, servoViper850Point2DCamVelocity.cpp, servoViper850Point2DCamVelocityKalman.cpp, simulateCircle2DCamVelocity.cpp, simulateFourPoints2DCartesianCamVelocity.cpp, simulateFourPoints2DPolarCamVelocity.cpp, testFeatureSegment.cpp, tutorial-ibvs-4pts-display.cpp, tutorial-ibvs-4pts-image-tracking.cpp, tutorial-ibvs-4pts-ogre-tracking.cpp, tutorial-ibvs-4pts-ogre.cpp, tutorial-ibvs-4pts-plotter-continuous-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter-gain-adaptive.cpp, tutorial-ibvs-4pts-plotter.cpp, tutorial-ibvs-4pts-wireframe-camera.cpp, tutorial-ibvs-4pts-wireframe-robot-afma6.cpp, tutorial-ibvs-4pts-wireframe-robot-viper.cpp, tutorial-ibvs-4pts.cpp, tutorial-simu-pioneer-continuous-gain-adaptive.cpp, tutorial-simu-pioneer-continuous-gain-constant.cpp, tutorial-simu-pioneer-pan.cpp, and tutorial-simu-pioneer.cpp.

Definition at line 222 of file vpServo.cpp.

◆ testInitialization()

bool vpServo::testInitialization ( )

Test if all the initialization are correct. If true, the control law can be computed.

Definition at line 831 of file vpServo.cpp.

References EYEINHAND_CAMERA, EYEINHAND_L_cVe_eJe, EYETOHAND_L_cVe_eJe, EYETOHAND_L_cVf_fJe, EYETOHAND_L_cVf_fVe_eJe, init_cVe, init_cVf, init_eJe, init_fJe, init_fVe, NONE, vpServoException::servoError, servoType, and vpERROR_TRACE.

◆ testUpdated()

bool vpServo::testUpdated ( )

Test if all the update are correct. If true control law can be computed.

Definition at line 870 of file vpServo.cpp.

Member Data Documentation

◆ cJc

vpMatrix vpServo::cJc
protected

A diag matrix used to determine which are the degrees of freedom that are controlled in the camera frame

Definition at line 675 of file vpServo.h.

◆ cVe

vpVelocityTwistMatrix vpServo::cVe
protected

Twist transformation matrix between Re and Rc.

Definition at line 605 of file vpServo.h.

◆ cVf

vpVelocityTwistMatrix vpServo::cVf
protected

Twist transformation matrix between Rf and Rc.

Definition at line 608 of file vpServo.h.

◆ desiredFeatureList

std::list<vpBasicFeature *> vpServo::desiredFeatureList

List of desired visual features $\bf s^*$.

Definition at line 582 of file vpServo.h.

◆ dim_task

unsigned int vpServo::dim_task
protected

Dimension of the task updated during computeControlLaw().

Definition at line 634 of file vpServo.h.

◆ e

vpColVector vpServo::e

Task $e = e_1 + (I-{J_1}^{+} J_1) e_2$.

Definition at line 566 of file vpServo.h.

◆ e1

vpColVector vpServo::e1

Primary task $e_1 = {J_1}^{+}(s-s*)$.

Definition at line 564 of file vpServo.h.

◆ e1_initial

vpColVector vpServo::e1_initial
protected

Definition at line 668 of file vpServo.h.

◆ eJe

vpMatrix vpServo::eJe
protected

Jacobian expressed in the end-effector frame.

Definition at line 619 of file vpServo.h.

◆ error

vpColVector vpServo::error

Error $(s - s^*)$ between the current set of visual features $s$ and the desired set of visual features $s^*$. This vector is updated after a call of computeError() or computeControlLaw().

Examples
servoAfma4Point2DCamVelocityKalman.cpp, and servoMomentImage.cpp.

Definition at line 548 of file vpServo.h.

Referenced by computeProjectionOperators().

◆ errorComputed

bool vpServo::errorComputed
protected

true if the error has been computed.

Definition at line 630 of file vpServo.h.

◆ featureList

std::list<vpBasicFeature *> vpServo::featureList

List of current visual features $\bf s$.

Definition at line 580 of file vpServo.h.

◆ featureSelectionList

std::list<unsigned int> vpServo::featureSelectionList

List of selection among visual features used for selection of a subset of each visual feature if required.

Definition at line 585 of file vpServo.h.

◆ fJe

vpMatrix vpServo::fJe
protected

Jacobian expressed in the robot reference frame.

Definition at line 622 of file vpServo.h.

◆ forceInteractionMatrixComputation

bool vpServo::forceInteractionMatrixComputation
protected

Force the interaction matrix computation even if it is already done.

Definition at line 638 of file vpServo.h.

◆ fVe

vpVelocityTwistMatrix vpServo::fVe
protected

Twist transformation matrix between Re and Rf.

Definition at line 611 of file vpServo.h.

◆ I_WpW

vpMatrix vpServo::I_WpW
protected

Projection operators $\bf I-WpW$.

Definition at line 643 of file vpServo.h.

Referenced by computeProjectionOperators().

◆ init_cVe

bool vpServo::init_cVe
protected

Definition at line 606 of file vpServo.h.

Referenced by testInitialization().

◆ init_cVf

bool vpServo::init_cVf
protected

Definition at line 609 of file vpServo.h.

Referenced by testInitialization().

◆ init_eJe

bool vpServo::init_eJe
protected

Definition at line 620 of file vpServo.h.

Referenced by testInitialization().

◆ init_fJe

bool vpServo::init_fJe
protected

Definition at line 623 of file vpServo.h.

Referenced by testInitialization().

◆ init_fVe

bool vpServo::init_fVe
protected

Definition at line 612 of file vpServo.h.

Referenced by testInitialization().

◆ interactionMatrixComputed

bool vpServo::interactionMatrixComputed
protected

true if the interaction matrix has been computed.

Definition at line 632 of file vpServo.h.

◆ interactionMatrixType

vpServoIteractionMatrixType vpServo::interactionMatrixType

Type of the interaction matrox (current, mean, desired, user)

Definition at line 594 of file vpServo.h.

Referenced by setInteractionMatrixType().

◆ inversionType

vpServoInversionType vpServo::inversionType

Indicates if the transpose or the pseudo inverse of the interaction matrix should be used to compute the task.

Definition at line 597 of file vpServo.h.

Referenced by setInteractionMatrixType().

◆ iscJcIdentity

bool vpServo::iscJcIdentity
protected

Boolean to know if cJc is identity (for fast computation)

Definition at line 671 of file vpServo.h.

◆ J1

vpMatrix vpServo::J1

Task Jacobian $J_1 = L {^c}V_a {^a}J_e$.

Examples
servoAfma4Point2DCamVelocityKalman.cpp.

Definition at line 550 of file vpServo.h.

Referenced by computeProjectionOperators().

◆ J1p

vpMatrix vpServo::J1p

Pseudo inverse ${J_1}^{+}$ of the task Jacobian.

Definition at line 552 of file vpServo.h.

◆ L

vpMatrix vpServo::L

Interaction matrix.

Examples
servoMomentImage.cpp.

Definition at line 543 of file vpServo.h.

◆ lambda

vpAdaptiveGain vpServo::lambda

Gain used in the control law.

Definition at line 588 of file vpServo.h.

◆ mu

double vpServo::mu
protected

Definition at line 666 of file vpServo.h.

◆ P

vpMatrix vpServo::P
protected

New Large projection operator (see equation(24) in the paper [Marey:2010]). This projection operator allows performing secondary task even when the main task is full rank.

\[ {\bf P} =\bar{\lambda }\left ( \left \| {\bf e} \right \| \right ){\bf P}_{ \left \| {\bf e } \right \| } \left ( 1 - \bar{\lambda }\left ( \left \| {\bf e } \right \| \right ) \right ) \left ( {\bf I-W^+W}\right ) \]

with

\[ {\bf P}_{\left \| {\bf e } \right \| } = I_{n} - \frac{1}{{\bf e }^\top {\bf J_{{\bf e }} } {\bf J_{{\bf e }}^\top } {\bf e }}{\bf J_{{\bf e }}^\top }{\bf e }{\bf e }^\top{\bf J_{{\bf e }} } \]

Definition at line 661 of file vpServo.h.

Referenced by computeProjectionOperators().

◆ q_dot

vpColVector vpServo::q_dot

Articular velocity.

Definition at line 569 of file vpServo.h.

◆ rankJ1

unsigned int vpServo::rankJ1

Rank of the task Jacobian.

Definition at line 577 of file vpServo.h.

◆ s

vpColVector vpServo::s

Current state of visual features $s$. This vector is updated after a call of computeError() or computeControlLaw().

Examples
servoBiclopsPoint2DArtVelocity.cpp.

Definition at line 557 of file vpServo.h.

◆ servoType

vpServoType vpServo::servoType

Chosen visual servoing control law.

Definition at line 574 of file vpServo.h.

Referenced by testInitialization().

◆ signInteractionMatrix

int vpServo::signInteractionMatrix

Sign of the interaction +/- 1 (1 for eye-in-hand, -1 for eye-to-hand configuration)

Definition at line 592 of file vpServo.h.

◆ sStar

vpColVector vpServo::sStar

Desired state of visual features $s^*$. This vector is updated after a call of computeError() or computeControlLaw().

Examples
servoBiclopsPoint2DArtVelocity.cpp.

Definition at line 561 of file vpServo.h.

◆ sv

vpColVector vpServo::sv
protected

Singular values from the pseudo inverse.

Definition at line 664 of file vpServo.h.

◆ taskWasKilled

bool vpServo::taskWasKilled
protected

Flag to indicate if the task was killed.

Definition at line 636 of file vpServo.h.

Referenced by ~vpServo().

◆ v

vpColVector vpServo::v

Camera velocity.

Definition at line 571 of file vpServo.h.

◆ WpW

vpMatrix vpServo::WpW
protected

Projection operators $\bf WpW$.

Definition at line 641 of file vpServo.h.

Referenced by computeProjectionOperators().

vpServo::secondaryTaskJointLimitAvoidance
vpColVector secondaryTaskJointLimitAvoidance(const vpColVector &q, const vpColVector &dq, const vpColVector &jointMin, const vpColVector &jointMax, const double &rho=0.1, const double &rho1=0.3, const double &lambda_tune=0.7) const
Definition: vpServo.cpp:1666
vpServo::error
vpColVector error
Definition: vpServo.h:548
vpServo::getI_WpW
vpMatrix getI_WpW() const
Definition: vpServo.cpp:1759
vpFeatureThetaU::selectTUx
static unsigned int selectTUx()
Definition: vpFeatureThetaU.cpp:718
vpServo::kill
void kill()
Definition: vpServo.cpp:191
vpServo::CURRENT
Definition: vpServo.h:185
vpFeatureTranslation::cdMc
Definition: vpFeatureTranslation.h:286
vpServo::setLambda
void setLambda(double c)
Definition: vpServo.h:405
vpServo::getTaskJacobianPseudoInverse
vpMatrix getTaskJacobianPseudoInverse() const
Definition: vpServo.cpp:1808
vpServo::WpW
vpMatrix WpW
Projection operators .
Definition: vpServo.h:641
vpServo::EYEINHAND_CAMERA
Definition: vpServo.h:158
vpServo::getTaskJacobian
vpMatrix getTaskJacobian() const
Definition: vpServo.cpp:1789
vpFeatureTranslation
Class that defines the translation visual feature .
Definition: vpFeatureTranslation.h:275
vpServo::P
vpMatrix P
Definition: vpServo.h:661
vpServo::getWpW
vpMatrix getWpW() const
Definition: vpServo.cpp:1837
vpColVector
Implementation of column vector and the associated operations.
Definition: vpColVector.h:71
vpServo::v
vpColVector v
Camera velocity.
Definition: vpServo.h:571
vpMatrix
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:103
vpServo::setServo
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:222
vpFeaturePoint::selectX
static unsigned int selectX()
Definition: vpFeaturePoint.cpp:506
vpFeatureThetaU::cdRc
Definition: vpFeatureThetaU.h:235
vpServo::secondaryTask
vpColVector secondaryTask(const vpColVector &de2dt, const bool &useLargeProjectionOperator=false)
Definition: vpServo.cpp:1484
vpServo::getError
vpColVector getError() const
Definition: vpServo.h:281
vpFeatureThetaU
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
Definition: vpFeatureThetaU.h:223
vpServo::getTaskRank
unsigned int getTaskRank() const
Definition: vpServo.cpp:1820
vpServo::e
vpColVector e
Task .
Definition: vpServo.h:566
vpServo::setCameraDoF
void setCameraDoF(const vpColVector &dof)
Definition: vpServo.cpp:288
vpServo::s
vpColVector s
Definition: vpServo.h:557
vpFeaturePoint
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
Definition: vpFeaturePoint.h:180
vpServo::setInteractionMatrixType
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:573
vpServo
Definition: vpServo.h:149
vpServo::computeControlLaw
vpColVector computeControlLaw()
Definition: vpServo.cpp:934
vpServo::addFeature
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:496
vpColVector::vpColVector
vpColVector()
Basic constructor that creates an empty 0-size column vector.
Definition: vpColVector.h:77
vpHomogeneousMatrix
Implementation of an homogeneous matrix and operations on such kind of matrices.
Definition: vpHomogeneousMatrix.h:91
vpFeatureThetaU::cRcd
Definition: vpFeatureThetaU.h:239
vpServo::I_WpW
vpMatrix I_WpW
Projection operators .
Definition: vpServo.h:643
vpBasicFeature::vpServo
Definition: vpBasicFeature.h:87