51 #include <visp/vpCameraParameters.h>
52 #include <visp/vpCylinder.h>
53 #include <visp/vpDisplayOpenCV.h>
54 #include <visp/vpDisplayX.h>
55 #include <visp/vpDisplayGTK.h>
56 #include <visp/vpDisplayGDI.h>
57 #include <visp/vpDisplayD3D.h>
58 #include <visp/vpFeatureBuilder.h>
59 #include <visp/vpHomogeneousMatrix.h>
60 #include <visp/vpImage.h>
61 #include <visp/vpImageIo.h>
62 #include <visp/vpIoTools.h>
63 #include <visp/vpMath.h>
64 #include <visp/vpParseArgv.h>
65 #include <visp/vpRobotCamera.h>
66 #include <visp/vpServo.h>
67 #include <visp/vpTime.h>
68 #include <visp/vpVelocityTwistMatrix.h>
69 #include <visp/vpWireFrameSimulator.h>
71 #define GETOPTARGS "dh"
73 #ifdef VISP_HAVE_DISPLAY
83 void usage(
const char *name,
const char *badparam)
86 Demonstration of the wireframe simulator with a simple visual servoing.\n\
88 The visual servoing consists in bringing the camera at a desired position\n\
91 The visual features used to compute the pose of the camera and \n\
92 thus the control law are two lines. These features are computed thanks \n\
93 to the equation of a cylinder.\n\
95 This demonstration explains also how to move the object around a world \n\
96 reference frame. Here, the movment is a rotation around the x and y axis \n\
97 at a given distance from the world frame. In fact the object trajectory \n\
98 is on a sphere whose center is the origin of the world frame.\n\
101 %s [-d] [-h]\n", name);
106 Turn off the display.\n\
112 fprintf(stdout,
"\nERROR: Bad parameter [%s]\n", badparam);
127 bool getOptions(
int argc,
const char **argv,
bool &display)
134 case 'd': display =
false;
break;
135 case 'h': usage(argv[0], NULL);
return false;
break;
138 usage(argv[0], optarg);
143 if ((c == 1) || (c == -1)) {
145 usage(argv[0], NULL);
146 std::cerr <<
"ERROR: " << std::endl;
147 std::cerr <<
" Bad argument " << optarg << std::endl << std::endl;
156 main(
int argc,
const char ** argv)
158 bool opt_display =
true;
161 if (getOptions(argc, argv, opt_display) ==
false) {
168 #if defined VISP_HAVE_X11
170 #elif defined VISP_HAVE_OPENCV
172 #elif defined VISP_HAVE_GDI
174 #elif defined VISP_HAVE_D3D9
176 #elif defined VISP_HAVE_GTK
185 display[0].
init(Iint, 100, 100,
"The internal view") ;
186 display[1].
init(Iext, 100, 100,
"The first external view") ;
203 float sampling_time = 0.040f;
229 cylinder.track(cdMo);
246 for (
int i = 0 ; i < 2 ; i++)
292 std::cout <<
"Click on a display" << std::endl;
311 double vitesse = 0.3;
330 cylinder.track(cMo) ;
337 if ( iter%tempo < 200 && iter%tempo >= 0)
340 e1[0] = -fabs(vitesse) ;
342 rapport = -vitesse/proj_e1[0];
347 if ( iter%tempo < 300 && iter%tempo >= 200)
350 e2[1] = -fabs(vitesse) ;
352 rapport = -vitesse/proj_e2[1];
357 if ( iter%tempo < 500 && iter%tempo >= 300)
360 e1[0] = -fabs(vitesse) ;
362 rapport = vitesse/proj_e1[0];
367 if ( iter%tempo < 600 && iter%tempo >= 500)
370 e2[1] = -fabs(vitesse) ;
372 rapport = vitesse/proj_e2[1];
404 std::cout <<
"|| s - s* || = " << (task.
getError() ).sumSquare() <<std::endl ;
416 vpERROR_TRACE(
"You do not have X11, OpenCV, GDI, D3D9 or GTK display functionalities...");
The object displayed at the desired position is the same than the scene object defined in vpSceneObje...
Definition of the vpMatrix class.
A cylinder of 80cm length and 10cm radius.
The class provides a data structure for the homogeneous matrices as well as a set of operations on th...
void setPosition(const vpHomogeneousMatrix &cMw)
Display for windows using GDI (available on any windows 32 platform).
Define the X11 console to display images.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
create a new ste of two visual features
static const vpColor none
void setLambda(double _lambda)
set the gain lambda
void init(vpImage< unsigned char > &I, int winx=-1, int winy=-1, const char *title=NULL)
static double measureTimeMs()
vpColVector secondaryTask(vpColVector &de2dt)
Add a secondary task.
static int wait(double t0, double t)
void setCameraPositionRelObj(const vpHomogeneousMatrix &cMo)
void set_cVe(vpVelocityTwistMatrix &_cVe)
static void flush(const vpImage< unsigned char > &I)
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
void setExternalCameraPosition(const vpHomogeneousMatrix &camMf)
virtual void setSamplingTime(const double &delta_t)
Display for windows using Direct3D.
void kill()
destruction (memory deallocation if required)
vpColVector getError() const
vpHomogeneousMatrix get_fMo() const
vpColVector computeControlLaw()
compute the desired control law
virtual void setWindowPosition(int winx, int winy)=0
Class that defines the simplest robot: a free flying camera.
static void display(const vpImage< unsigned char > &I)
void set_eJe(vpMatrix &_eJe)
The vpDisplayOpenCV allows to display image using the opencv library.
Generic class defining intrinsic camera parameters.
Class that defines a 2D line visual feature which is composed by two parameters that are and ...
void initScene(const vpSceneObject &obj, const vpSceneDesiredObject &desiredObject)
The vpDisplayGTK allows to display image using the GTK+ library version 1.2.
Class that consider the particular case of twist transformation matrix that allows to transform a vel...
void getExternalImage(vpImage< unsigned char > &I)
Implementation of a wire frame simulator. Compared to the vpSimulator class, it does not require thir...
static void displayFrame(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, double size, const vpColor &color, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Set the type of the interaction matrix (current, mean, desired, user).
static double rad(double deg)
void setExternalCameraParameters(const vpCameraParameters &cam)
void getInternalImage(vpImage< unsigned char > &I)
void getPosition(vpHomogeneousMatrix &cMw) const
Class that defines what is a cylinder.
Class that provides a data structure for the column vectors as well as a set of operations on these v...
void setDesiredCameraPosition(const vpHomogeneousMatrix &cdMo)
void get_eJe(vpMatrix &eJe)
vpHomogeneousMatrix inverse() const
void setInternalCameraParameters(const vpCameraParameters &cam)
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
virtual bool getClick(bool blocking=true)=0
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class required to compute the visual servoing control law descbribed in and .
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &v)
void setServo(vpServoType _servo_type)
Choice of the visual servoing control law.
void set_fMo(const vpHomogeneousMatrix &fMo)
vpHomogeneousMatrix getExternalCameraPosition() const