The package witharrows*

F. Pantigny
fpantigny@wanadoo.fr

July 18, 2018

Abstract

The LaTeX package witharrows provides an environment {WithArrows} which is similar to
environment {aligned} of amsmath (and mathtools) but gives the possibility to draw arrows on
the right side of the alignment. These arrows are usually used to give explanations concerning
the mathematical calculus presented.

This package can be used with xelatex, lualatex, pdflatex but also by the classical workflow
latex-dvips-ps2pdf (or Adobe Distiller). Two compilations may be necessary. This package requires
the packages expl3, xparse and tikz. The following Tikz libraries arrows.meta and bending are also
required.

This package provides an environment {WithArrows} to construct alignments of equations with
arrows for the explanations on the right side:

$\begin{WithArrows}
A & = (a+1)72 \Arrow{we expand} \\
& =2a2+2a+1

\end{WithArrows}$
A= 1)2
(a—|—) Qwe expand
=a?>+2a+1

The arrow has been drawn with the command \Arrow on the row from which it starts. The command
\Arrow must be used in the second column (the best way is to put it at the end of the second cell of
the row as in the previous example).

The environment {WithArrows} bears similarities with the environment {aligned} of amsmath (and
mathtools). The extension witharrows also provides an environment {DispWithArrows} which is
similar to the environment {align} of amsmath: cf. p. 13.

1 Options for the shape of the arrows

The command \Arrow has several options. These options can be put between square brackets, before,
or after the mandatory argument.
The option jump gives the number! of rows the arrow must jump (the default value is, of course, 1).

$\begin{WithArrows}

A & = \bigl((at+b)+1\bigr)~2 \Arrow[jump=2]{we expand} \\
& = (atb)"2 + 2(a+b) +1 \\
& = a”2 + 2ab + b"2 + 2a + 2b +1

\end{WithArrows}$

*This document corresponds to the version 1.7 of witharrows, at the date of 2018/07/18.
t’s not possible to give a non-positive value to jump. See below (p. 2) the way to draw an arrow which goes
backwards.

A= ((a+0b)+1)°
=(a+b)?+2(a+b)+1 >we ezpand
=a®+2ab+b* +2a+2b+1

It’s possible to put several arrows which start from the same row.

$\begin{WithArrows}

A & = \bigl((a+b)+1\bigr) "2 \Arrow{}\Arrow{} [jump=2] \\
& = (atb)"2 + 2(a+b) +1 \\
& = a2 + 2ab + b72 + 2a + 2b +1

\end{WithArrows}$

A:((a+b)+1)2
=(a+b?2+2(a+b)+1 ?
=a?+2ab+b%+2a+2b+1

The option xoffset shifts the arrows to the right (we usually don’t want the arrows to be stucked
on the text). The default value of xoffset is 3 mm.

$\begin{WithArrows}

A & = \bigl((a+b)+1\bigr) 2

\Arrow[xoffset=1cm]{with \texttt{xoffset=1cm}} \\
& = (a+b)”2 + 2(atb) +1

\end{WithArrows}$

A= ((a+b)+1)"

ith t=1
=(a+b)2+2(a+b)+1 \)wz zoffset=1cm

The arrows are drawn with Tikz. That’s why the command \Arrow has an option tikz which can
be used to give to the arrow (in fact, the command \path of Tikz) the options proposed by Tikz for
such an arrow. The following example gives an thick arrow.

$\begin{WithArrows}
A & = (a+1)72 \Arrow[tikz=thick]{we expand} \\
& =a"2+ 2a +1

\end{WithArrows}$
A= 1)?
(a+1) \)’we expand
=a?>+2a+1

It’s also possible to change the arrowheads. For example, we can draw an arrow which goes backwards
with the Tikz option <-.

$\begin{WithArrows}
A & = (a+1)"2 \Arrow[tikz=<-]{we factorize} \\
& = a2 +2a + 1

\end{WithArrows}$
A= (a+1)2
=a’>+2a+1

/j we factorize

It’s also possible to suppress both tips of the arrow with the Tikz option -.

$\begin{WithArrows}

A & = (a+1)"2 \Arrow[tikz=-]{very classicall} \\
& =a2+ 2a+1

\end{WithArrowsl}$

A= (a+1)?2
=a*+2a+1

) very classical

In order to have straight arrows instead of curved ones, we must use the Tikz option “bend left = 0”.

$\begin{WithArrows}
A & = (a+1)"2 \Arrow[tikz={bend left=0}]{we expand} \\
& =a"2 + 2a + 1

\end{WithArrows}$
A= 1)2
(CQL—’—) \Lwe expand
=a“"+2a+1

In fact, it’s possible to change more drastically the shape or the arrows with the option TikzCode
presented p. 15.

One of the most useful options is “text width” to control the width of the text associated to the
arrow.

$\begin{WithArrows}

A & = \bigl((a+b)+1\bigr) "2

\Arrow[jump=2,tikz={text width=5.3cm}]{We have done...} \\
& = (atb)"2 + 2(at+b) +1 \\
& = a”2 + 2ab + b"2 + 2a + 2b +1

\end{WithArrows}$
2
A= ((a +b)+ 1) We have done a two-stages expansion
=(a+ b)2 +2(a+b)+1 > but it would have been clever to ex-
— a2+ 2ab+b%+2a+2b+1 pand with the multinomial theorem.

If we want to change the font of the text associated to the arrow, we can, of course, put a command
like \bfseries, \large or \sffamily at the beginning of the text. But, by default, the texts are
composed with a combination of \small and \itshape. When adding \bfseries at the beginning
of the text, we won’t suppress the \small and the \itshape and we will consequently have a text in
a bold, italic and small font.

$\begin{WithArrows}
A & = (a+1)"2 \Arrow{\bfseries we expand} \\
& =a2+ 2a+1

\end{WithArrows}$
A= 1)2
(a+1) Qwe expand
=a’?+2a+1

If we put commands \\ in the text to force newlines, a command of font placed in the beginning of
the text will have effect only until the first command \\ (like in an environment {tabular}). That’s
why Tikz gives a option font to modify the font of the whole text. Nevertheless, if we use the option
tikz={font={\bfseries}}, the default specification of \small and \itshape will be overwritten.

$\begin{WithArrows}

A & = (a+1)72 \Arrow[tikz={font={\bfseries}}]{we expand} \\
& =a2+ 2a +1

\end{WithArrows}$

A= (a+1)?2

S Qwe expand

If we want exactly the same result as previously, we have to give to the option font the value
{\itshape\small\bfseries}.

Almost all the options can be given directly to the environment {WithArrows} (between square
brackets). In this case, they apply to all the arrows of the environment.?

$\begin{WithArrows} [tikz=blue]

A& \bigl((a+b)+1\bigr) "2 \Arrow{First expansion.} \\
& = (a+b)~2 + 2(at+b) +1 \Arrow{Second expansion.} \\
& = a”2 + 2ab + b2 + 2a + 2b +1

\end{WithArrows}$

A:((a+b)+1)2
=(a+b)*+2(a+b)+1
=a?+2ab+b%>+2a+20+1

Q First expansion.

Q_Second exrpansion.

The environment {WithArrows} has an option displaystyle. With this option, all the elements are
composed in \displaystyle (like in an environment {aligned} of amsmath).

Without the option displaystyle:

$\begin{WithArrows}

\int_0"1 (x+1)72 dx

& = \int_0"1 (x72+2x+1) dx

\Arrow{linearity of integration} \\

& = \int_071 x72 dx + 2 \int_071 x dx + \int_071 dx \\

& = \frac13 + 2\frac12 + 1 \\
& = \frac73
\end{WithArrows}$

fol (x4 1)%dx = fol (2% + 22 + 1)dw
= ['22de+2 [zde + [dx
0 0 0
=i+2l+1
7

-3

Q linearity of integration

The same example with the option displaystyle:

1 1
/ (x +1)%dx = / (x% + 2z + 1)dx
0 0

1 1 1
:/ :172dx+2/ xd:c+/ dzx
0 0 0

> linearity of integration

The version 1.3 of witharrows give two options for a fine tuning of the arrows:

o the option ystart set the vertical distance between the base line of the text and the start of
the arrow (default value: 0.4 ex);

o the option ygap set the vertical distance between two consecutive arrows (default value: 0.4 ex).

2They also apply to the nested environments {WithArrows} (with the logical exceptions of interline, CodeBefore
and CodeAfter).

(cosx + sinx)? = cos? x + 2 coswsinx + sin? x ystart

=cos?z +sin®z + 2sinz cos z Q * ygap

=1+ sin(2z)

Remark: Tt’s also possible to use the options “shorten <” and “shorten >” of Tikz (via the option
tikz of witharrows).

Almost all the options can also be set at the document level with the command \WithArrowsOptions.
In this case, the scope of the declarations is the current TeX group (these declarations are “semi-
global”). For example, if we want all the environments {WithArrows} composed in \displaystyle
with blue arrows, we can write \WithArrowsOptions{displaystyle,tikz=blue}.?

\WithArrowsOptions{displaystyle,tikz=blue}
$\begin{WithArrows}

\sum_q{i=1}"n (x_i+1)"2

& = \sum_{i=1}"n (x_i"2+2x_i+1) \Arrow{by linearity}\\
& = \sum_{i=1}"n x_i"2 + 2\sum_{i=1}"nx i+ n
\end{WithArrows}$

n n

D @i+1)? = (a7 + 2z +1)
> by linearity

i=1 i=1
n n

= E 7+ 2 g Ti+n
i=1 i=1

The command \Arrow is recognized only in the environments {WithArrows}. If we have a command
\Arrow previously defined, it’s possible to go on using it outside the environments {WithArrows}.
However, a previouly defined command \Arrow may still be useful in an environment {WithArrows}.
If we want to use it in such an environment, it’s possible to change the name of the command \Arrow
of the package witharrows: there is an option CommandName for this purpose. The new name of the
command must be given to the option without the leading backslash.

\NewDocumentCommand {\Arrow} {} {\longmapsto}
$\begin{WithArrows} [CommandName=Explanation]
f & = \bigl(x \Arrow (x+1)~2\bigr)
\Explanation{we work directly on fonctions}\\
& = \bigl(x \Arrow x~2+2x+1\bigr)
\end{WithArrows}$
— 2
/= (aj — @+) Qwe work directly on fonctions
= (x»—):z:2—|—2z+1)
The environment {WithArrows} gives also two options CodeBefore and CodeAfter for LaTeX code
that will be executed at the beginning and at the end of the environment. Theses options are not

designed to be hooks (they are avalaible only at the environment level and they are not applied to
the nested environments).

$\begin{WithArrows}[CodeBefore = \color{bluel}]
A & = (atb)~2 \Arrow{we expand} \\
& = a”2 + 2ab + b72

\end{WithArrows}$
A= (a+b)?
a4 2ab 4 B Qwe expand

Special commands are available in CodeAfter : a command \NbLines which gives the number of
lines (=rows) of the current environment (this is a command and not a counter), a special form of
the command \Arrow and the command \MultiArrow : these commands are described in the section
concerning the nested environments, p. 10.

3Since version 1.4 of witharrows, it’s no longer possible to give these options directly when loading the package, i.e.
with the command \usepackage in the preamble.

2 Precise positioning of the arrows

The environment {WithArrows} defines, during the composition of the array, two series of nodes
materialized in red in the following example.*

I= /WO ln(l + tan (I —u))(—du)‘
:/0 1n(1+tan (gfu))du‘

Il
S—
INE)
—
]
N
=
+
= =
+
+ | =+
Q
BB
<
N———

T l+tanu+1—tanu
= ln d'w
0 1+tanu

i 2
()
0 1+tanu

(In2 —In(1 + tanw)) du

T
/ In(1 + tanu) du
0

In2 -1

=)
S
I

Il
AR e S—
INE)

The nodes of the left are at the end of each line of text. These nodes will be called left nodes. The
nodes of the right side are aligned vertically on the right side of the array. These nodes will be called
right nodes.

By default, the arrows use the right nodes. We will say that they are in rr mode (r for right). These
arrows are vertical (we will say that an arrow is vertical when its two ends have the same abscissa).

However, it’s possible to use the left nodes, or a combination of left and right nodes, with one of the
options 1r, rl and 11 (I for left). Those arrows are, usually, not vertical.

0
Therefore I = / ln(l + tan (T — u)) (—du)

\This arrow uses the lr option.
T
:/ ln<1+tan(%—u))du
1—-t

/ m(1+— %) gy
0 1+tanu

1 1-—
/ ln(+tanu + tanu) du
0

1+ tanu
2
[u(ts)
0 1+ tanwu

(In2 — In(1 + tanw)) du

ENE] INE]

INE)

INE)

This arrow uses a 11 option and a
Jump equal to 2

In2— /4 In(1+ tanu) du
0

5
)
|
~

|
AR Y S—
INE]

There is also an option called i (i for intermediate). With this option, the arrow is vertical and at
the leftmost position.

4The option shownodes can be used to materialize the nodes. The nodes are in fact Tikz nodes of shape “rectangle”,
but with zero width. An arrow between two nodes starts at the south anchor of the first node and arrives at the north
anchor of the second node.

$\begin{WithArrows}
(a+b) (a+ib) (a-b) (a-ib)
& = (a+b) (a-b)\cdot (a+ib) (a-ib) \\
& (a72-b72) (a"2+b~2) \Arrow[i]{because $(x-y) (x+y)=x"2-y 23F\\
& = a”4-b"4
\end{WithArrows}$
(a+b)(a+ib)(a —b)(a—ib) = (a+b)(a—1D)- (a+ib)(a—ib)
= (a2~ B)(a? + 1)
— a4 _ b4

\) because (x —y)(z +y) = 2 — 4°

The environment {WithArrows} gives also a group option. With this option, all the arrows of the
environment are grouped on a same vertical line and at a leftmost position.

$\begin{WithArrows}[displaystyle,group]

2xy'-3y=\sqrt x

& \Longleftrightarrow 2x(K'y_0+Ky_0')-3Ky_0 = \sqrt x \\

& \Longleftrightarrow 2xK'y_0 + K(2xy_0'-3y_0) = \sqrt x \\
& \Longleftrightarrow 2x K'y_0 = \sqrt x \Arrow{...}\\

{(.ar;d{WithArrows}$
2xy’ — 3y = Vo <= 22(K'yo + Kyp) — 3Kyo = vV
= 20K'yo + K (2zy) — 3y0) = vV
— 22K'yg =V

3 . Q We replace yo by its value.
= 2xK'z? =22

Qsimpliﬁcation of the ©

/ 1
K = 22 \> . . .
1 antiderivation
= K=-5

The environment {WithArrows} gives also a groups option (with a s in the name). With this option,
the arrows are divided into several “groups”. Each group is a set of connected® arrows. All the arrows
of a given group are grouped on a same vertical line and at a leftmost position.

A=B
Qone
—C+D
D Qtwo
=F+F+G+HA+1
=K+L+M
chree
our
=0

If desired, the option group or the option groups can be given to the command \WithArrowsOptions
so that it will become the default value. In this case, it’s still possible to come back to the default
behaviour for a given environment {WithArrows} with the option rr: \begin{WithArrows}{rr}

3 Comparison with the environment {aligned}

{WithArrows} bears similarities with the environment {aligned} of the extension amsmath. These
are only similarities because {WithArrows} has not been written upon the environment {aligned}.’

As in the environments of amsmath, it’s possible to change the spacing between two given rows with
the option of the command \\ of end of line (it’s also possible to use * but is has exactly the same
effect as \\ since an environment {WithArrows} is always unbreakable).

5More precisely: for each arrow a, we note i(a) the number of its initial row and f(a) the number of its final line ;
for two arrows a and b, we say that a ~ b when [i(a), f(a)] N [i(b), f(b)] # @ ; the groups are the equivalence classes
of the transitive closure of ~.

61In fact, it’s possible to use the package witharrows without the package amsmath.

$\begin{WithArrows}

A & = (a+1)72 \Arrow{we expand} \\[2ex]
& =a2+2a+1

\end{WithArrows}$

A=(a+1)2

> we expand
=a’>+2a+1

In the environments of amsmath (or mathtools), the spacing between rows is fixed by a parameter
called \jot (it’s a dimension and not a skip). That’s also the case for the environment {WithArrows}.
An option jot has been given to the environment {WithArrows} in order to change the value of this
parameter \jot for an given environment.”

$\begin{WithArrows} [displaystyle, jot=2ex]
F & = \fracl2G \Arrow{we expand}\\

& = H + \frac12K \Arrow{we go on}\\

& =K
\end{WithArrowsl}$

F-lg

2
) we expand
=H+-K

2 >wego on
=K

However, this new value of \jot will also be used in other alignments included in the environ-
ment {WithArrows}:

$\begin{WithArrows} [jot=2ex]

\varphi(x,y) = 0 & \Leftrightarrow (x+y)~2 + (x+2y)"2 = 0
\Arrow{x and y are reall\\

& \Leftrightarrow \left\{

\begin{aligned}

x+ty & = 0 \\

x+2y & = 0

\end{aligned}

\right.

\end{WithArrows}$

p(r,y) =0 (z+y)* +(z+2y)° =0

z+y=0
=

rz+2y=0

> x and y are real

Maybe this doesn’t correspond to the desired outcome. That’s why an option interline is proposed.
It’s possible to use a skip (=glue) for this option.

$\begin{WithArrows} [interline=2ex]

\varphi(x,y) = 0 & \Leftrightarrow (x+y)~2 + (x+2y)~2 =0
\Arrow{x and y are reall}\\

& \Leftrightarrow \left\{

\begin{aligned}

x+y & = 0 \\

x+2y & = 0 \\

\end{aligned}

\right.

\end{WithArrows}$

"It’s also possible to change \jot with the environment {spreadlines} of mathtools.

p(a,y) =05 (z+y)* + (@ +2y)* =0
x and y are real
z+y=20
<~
rz+2y=0

Like the environment {aligned}, {WithArrows} has an option of placement which can assume the
values t, c or b. However, the default value is not ¢ but t. If desired, it’s possible to have the ¢ value
as the default with the command \WithArrowsOptions{c} at the beginning of the document.

So\enskip

$\begin{WithArrows}

A & = (a+1)72 \Arrow{we expand} \\
& =a2+ 2a + 1

\end{WithArrows}$
So A= (a+1)?
Qwe expand
=a?+2a+1

The value ¢ may be useful, for example, if we want to add curly braces:

On pose\enskip $\left\{
\begin{WithArrows}[c]
f(x) & = 3x73+2x72-x+4
\Arrow[tikz=-]{both are polynoms}\\
g(x) & = 5x~2-5x+6
\end{WithArrows}
\right.$
— 3 2

On pose {f(m) = h 2w d) both are polynoms

g(z) =522 — 52+ 6

Unlike {aligned}, the environment {WithArrows} uses \textstyle by default.
Once again, it’s possible to change this behaviour with \WithArrowsOptions:
\WithArrowsOptions{displaystyle}.

The following example is composed with {aligned}:

n n

S (@i+1)2 = (27 42 +1)

i=1 =1
n n
= E 7+ 2 E Ti+n
i=1 i=1

The following is composed with {WithArrows}[c,displaystyle]. The results are stricly identical.®

n n

Z(xl +1)% = Z(xf +2x; + 1)

i=1 i=1
n n

= E 2+ 2 E Ti+n
i=1 i=1

81n versions of amsmath older than the 5 nov. 2016, an thin space was added on the left of an environment {aligned}.
The new versions do not add this space and neither do {WithArrows}.

4 Arrows in nested environments

The environments {WithArrows} can be nested. In this case, the options given to the encompassing
environment applies also to the inner ones (with logical exceptions for interline, CodeBefore and
CodeAfter). The command Arrow can be used as usual in each environment {WithArrows}.

$\begin{WithArrows}
\varphi (x,y)=0
& \Leftrightarrow (x+2y) 2+(2x+4y)~2 = 0 \Arrow{the numbers are real}\\
& \Leftrightarrow
\left\{\begin{WithArrows}[c]
x+2y & = 0 \\
2x+4y & = 0
\end{WithArrows}\right. \\
& \Leftrightarrow
\left\{\begin{WithArrows}[c]
x+2y & = 0 \Arrow[tikz=-]{the same equation}\\
x+2y & = 0
\end{WithArrows}\right. \\
& \Leftrightarrow x+2y=0

\end{WithArrows}$
ox,y) =0 (z+2y)*+ 2z +4y)? =0
T+2y=0 > the numbers are real
{230 +4y =0

2y=0
= T2y) the same equation
42y =0

Sr+2y=0

However, one may want to draw an arrow between rows that are not in the same environment. For
example, one may want to draw the following arrow :

o(z,y) =0 (z+2y)* + 2z +4y)? =0

r+2y=0
2¢4+4y =0

42y =0 Division by 2
4

r+2y=20
Sr+2y=0

Such a construction is possible by using \Arrow in the CodeAfter option. Indeed, in CodeAfter, a
special version of \Arrow is available (we will call it “\Arrow in CodeAfter”).

A command \Arrow in CodeAfter takes three arguments :
e a specification of the start row of the arrow ;
e a specification of the end row of the arrow ;
e the label of the arrow.

As usual, it’s also possible to give options within square brackets before or after the three arguments.
However, these options are limited (see below).

The specification of the row is constructed with the position of the concerned environment in the
nesting tree, followed (after an hyphen) by the number of the row.

In the previous example, there are two environments {WithArrows} nested in the main environment
{WithArrows}.

10

o(x,y) =0< (x+2y)% + (22 +4y)2 =0
{ r+2y=0

environment number 1

20 4+4y =0
r+2y=0
environment number 2
r+2y=0
Sr+2y=0

The arrow we want to draw starts in the row 2 of the sub-environment number 1 (and therefore,
the specification is 1-2) and ends in the row 2 of the sub-environment number 2 (and therefore, the
specification is 2-2). We can draw the arrow with the following command \Arrow in CodeAfter :

$\begin{WithArrows}[CodeAfter = {\Arrow{1-2}{2-2}{Division by 2}}]
\varphi(x,y)=0
& \Leftrightarrow (x+2y) 2+(2x+4y)~2 = 0 \\

\end{WithArrows}$
o(z,y) =0 (r+2y)° + 2z +4y)2 =0

rz+2y=0
2 +4y =0

= {x +2y =0) Division by 2

r+2y=20
Sax+2y=0

The options allowed for a command \Arrow in CodeAfter are : 11, 1r, rl, rr, v, xoffset, tikz and
TikzCode. Except v, which is specific to \Arrow in CodeAfter, all these options have their usual
meaning.

With the option v, the arrow drawn is vertical to an abscissa computed with the start row and the
end row only : the intermediate lines are not taken into account unlike with the option i. Currently,
the option i is not available for the command \Arrow in CodeAfter. However, it’s always possible
to translate an arrow with xoffset (or xshift of Tikz).

$\begin{WithArrows}[CodeAfter = {\Arrow[v]{1-2}{2-2}{Division by 2}}]
\varphi(x,y)=0
& \Leftrightarrow (x+2y)~ 2+(2x+4y)~2 = 0 \\

\end{WithArrowsl}$
o(x,y) =04 (z+2y)%+ (22 +4y)2 =0

rz+2y=0
2044y =0

z4+2y=0 >Dim’sion by 2
54

r+2y=20
Sr+2y=0

The package witharrows gives also another command available only in CodeAfter : the command
\MultiArrow. This command draws a “rak”. The list of the rows of the environment concerned by
this rak are given in the first argument of the command \MultiArrow. This list is given with the
syntax of the list in a \foreach command of pgfkeys.

$\begin{WithArrows}[tikz = rounded corners,
CodeAfter = {\MultiArrow{l,...,4}{text}}]
A& =B\\
& = C\\

11

& = D \\

& = E\\

& =F
\end{WithArrows}$

A=DB
=C
=D
=F
=F

text

As of now, there is no option available for the command \MultiArrow (maybe in a future release).

5 Arrows from outside environments {WithArrows}

If someone wants to draw arrows from outside the environments {WithArrows}, he can use the Tikz
nodes created in the environments.

The Tikz name of a node created by witharrows is prefixed by wa-. Then, we have a list of numbers
which give the position in the nesting tree and the row number in the environment. At the end, we
have the suffixe 1 for a “left node” and r for a “right node”.

For illustrative purposes, we give an example of nested environments {WithArrows}, and, for each
“right node”, the name of that node.”

A<xB+B+B+B+B+B+B+B+ B+ B+ B+ B+ Bwa-37-1

C < Dwa-37-1-1
‘ wa-37-2
FE < Frwa-37-1-2
G<<H+H+H+H+H+ H+ Hwa-37-2-1
< J <1 Kwa-37-2-1-1 ' wa-37-3
I ' wa-37-2-2
L < Mwa-37-2-1-2
wa-37-4

N < Owa-37-3-1
P < Qwa-37-3-2

The package witharrows provides some tools facilitating the use of these nodes :
e the command \WithArrowsLastEnv gives the number of the last environment of level O ;

e a name can be given to a given environment with the option name and, in this case, the nodes
created in the environment will have aliases constructed with this name ;

o the Tikz style WithArrows/arrow is the style used by witharrows when drawing an arrow'" ;
o the Tikz style WithArrows/arrow/tips is the style for the style of the arrow (loaded by
WithArrows/arrow).

For example, we can draw an arrow from wa-37-2-1-2-r.south to wa-37-3-2-r.north with the
following Tikz command (requires the Tikz library calc).

\begin{tikzpicture} [remember picture,overlay]
\draw [WithArrows/arrow]
($ (wa-\WithArrowsLastEnv-2-1-2-r.south)+(3mm,0)$)
to ($(wa-\WithArrowsLastEnv-3-2-r.north)+(3mm,0)$) ;
\end{tikzpicture}

9There is an option shownodenames to show the names of these nodes.
10More precisely, this style is given to the Tikz option “every path” before drawing the arrow with the code of the
option TikzCode. This style is modified (in TeX scopes) by the option tikz of witharrows.

12

A<«B+B+B+B+B+B+B+B+B+B+B+B+8B
CaD
<
E<xF
Ga«H+H+H+H+H+H+H

< J<a K
I«
LaM

- N<aO
P<aqQ

In this case, it would be easier to use a command \Arrow in CodeAfter but this is an example to
explain how the Tikz nodes created by witharrows can be used.

In the following example, we create two environments {WithArrows} named “first” and “second”
and we draw a line between a node of the first and a node of the second.

$\begin{WithArrows} [name=first]
A& =B\\

& =C
\end{WithArrows}$

\bigskip
$\begin{WithArrows} [name=second]
A" & = B' \\
& = C'
\end{WithArrows}$

\begin{tikzpicturel} [remember picture,overlay]
\draw [WithArrows/arrow]
($(first-1-r.south)+(3mm,0)$)
to ($(second-1-r.north)+(3mm,0)$) ;

\end{tikzpicture}
A=B
=C
A/:B/

6 The environment {DispWithArrows}

As previously said, the environment {WithArrows} bears similarities with the environment {aligned?}
of amsmath (and mathtools). This extension also provides an environment {DispWithArrows} which
is similar to the environments {align} and {flalign} of amsmath.

The environment {DispWithArrows} must be used outside math mode.

\begin{DispWithArrows}

A & = (a+1)72 \Arrow{we expand} \\
& =a"2+ 2a +1

\end{DispWithArrows}

13

A= (a+1)2

4241 Qwe expand

It’s possible to use the command \notag (or \nonumber) to suppress a tag.

It’s possible to use the command \tag to put a special tag (e.g. *).!!

It’s also possible to put a label to the line of an equation with the command \label.
These commands must be in the second column of the environment.

\begin{DispWithArrows}
A & = (a+1)72 \Arrow{we expand} \notag \\

& = a”2 + 2a + 1 \tag{\star} \label{my-equation}
\end{DispWithArrows}

A= (a+1)?

a2 41 Qwe expand

(*)

A link to the equation (). This link has been composed with \eqref{my-equation} (the command
\eqgref is a command of amsmath).

It’s also possible to suppress all the numbers with the option notag (or nonumber), at the global
or environment level. There is also an environment {DispWithArrows*} which suppresses all the
numbers.

\begin{DispWithArrows*}

A & = (a+1)72 \Arrow{we expand} \\
& =a"2+ 2a +1

\end{DispWithArrows*}

A= (a+1)?

we expand
=a?+2+1 Q P

With the option fleqn, the environment is composed flush left (in a way similar to the option fleqn
of the class article). In this case, the left margin can be controlled with the option mathindent
(with a name inspired by the parameter \mathindent of standard LaTeX). The default value of this
parameter is 25 pt.

\begin{DispWithArrows} [fleqn,mathindent = 1lcm]
A & = (a+1)"2 \Arrow{we expand} \\
& =2a2+2a+1

\end{DispWithArrows}
A=(a+1)° (3)
9 Qwe expand
=a*4+2a+1 (4)

Remark : By design, the option fleqn of witharrows is independant of the option fleqn of LaTeX.
Indeed, since the environments of witharrows are meant to be used with arrows on the right side, the
user may want to use witharrows with the option fleqn (in order to have more space on the right of
the equations for the arrows) while still centering the classical equations.

H1f amsmath (or mathtools) is loaded, it’s also possible to use \tag* which, as in amsmath, typesets the tag without
the parenthesis.

14

If the package amsmath is loaded, it’s possible to use the command \intertext in the environments
{DispWithArrows} and {DispWithArrows*} (and even the \intertext of nccmath if this package is
loaded).

If the option leqno is used (for the document or when the package amsmath is loaded), the labels
will be composed on the left also for the environments {DispWithArrows} et {DispWithArrows*}.

The environment {DispWithArrows} is similar to the environment {align} of amsmath. However,
{DispWithArrows} is not constructed upon {align} (in fact, it’s possible witharrows without ams-
math).

There are differences between {DispWithArrows} and {align}. The environment {DispWithArrows}
allows only 2 columns. With {DispWithArrows}, there is no control of a collision between
an equation and its tag. An environment {DispWithArrows} is always unbreakable (even with
\allowdisplaybreaks of amsmath). The commands \label, \tag, \notag, \nonumber are allowed
only in the second column. The labels of {DispWithArrows} are not always drawn by showkeys.
Last but not least, by default, the elements of a {DispWithArrows} are composed in
textstyle and not in displaystyle (it’s possible to change this point with the option
displaystyle).

7 Advanced features

7.1 The option TikzCode : how to change the shape of the arrows

The option TikzCode allows the user to change the shape of the arrows.

The value of this option must be a valid Tikz drawing instruction (with the final semi-colon) with
three markers #1, #2 and #3 for the start point, the end point and the label of the arrow.

By default, the value is the following :
\draw (#1) to node {#3} (#2) ;

In the following example, we replace this default path by a path with three segments (and the node
overwriting the second segment).

\begin{WithArrows} [ygap=56pt,interline=4mm,
TikzCode = {\draw[rounded corners]
#1) —- ($(#1) + (5mm,0)$)
-- nodel[circle,
draw,
auto = false,
fill = gray!50,
inner sep = 1pt] {\tiny #3}
($(#2) + (5mm,0)$)

-— (#2) ; }]
E & \Longleftrightarrow 3 (2x+4) = 6 \Arrow{$\div 3$} \\
& \Longleftrightarrow 2x+4 = 2 \Arrow{$-4%$} \\
& \Longleftrightarrow 2x = -2 \Arrow{$\div 28} \\
& \Longleftrightarrow x = -1

\end{WithArrows}

E<=32x+4) =6

L
= 2= -2
L

< 2x = -1

<—2r+4=2

15

7.2 Footnotes in the environments of witharrows

If you want to put footnotes in an environment {WithArrows} or {DispWithArrows}, you can use a
pair \footnotemark—\footnotetext.

It’s also possible to extract the footnotes with the help of the package footnote or the package
footnotehyper.

If witharrows is loaded with the option footnote (with \usepackage[footnote]{witharrows} or
with \PassOptionsToPackage), the package footnote is loaded (if it is not yet loaded) and it is used
to extract the footnotes.

If witharrows is loaded with the option footnotehyper, the package footnotehyper is loaded (if it is
not yet loaded) ant it is used to extract footnotes.

Caution: The packages footnote and footnotehyper are incompatible. The package footnotehyper is
the successor of the package footnote and should be used preferently. The package footnote has some
drawbacks, in particular: it must be loaded after the package xcolor and it is not perfectly compatible
with hyperref.

In this document, the package witharrows has been loaded with the option footnotehyper and we
give an example with a footnote in the label of an arrow:

A= (a+b)?
_ f; n b)2 + 9%ab \) We expand*?
8 Examples

8.1 With only one column

It’s possible to use the environment {WithArrows} with making use of the left column only, or the
right column only.

$\begin{WithArrows}

&f (x) \ge g(x) \Arrow{by squaring both sides} \\

& £(x)72 \ge g(x)~2 \Arrow{by moving to left side} \\
& £(x)72 - g(x)"2 \ge O

\end{WithArrows}$

fx) > g(x)
f(x)?* > g(x)?
fx)?—g(x)? >0

\)by squaring both sides
\)by moving to left side

8.2 MoveEqLeft

It’s possible to use \MoveEqLeft of mathtools (if we don’t want ampersand on the first line):

$\begin{WithArrows} [interline=0.5ex]

\MoveEqLeft \arccos(x) = \arcsin \frac45 + \arcsin \frac5{13}

\Arrow{because both are in $[-\frac{\pi}2,\frac{\pi}21$} \\

& \Leftrightarrow x = \sin\left(\arcsin\frac45 + \arcsin\frac5{13}\right) \\

& \Leftrightarrow x = \frac45\cos\arcsin\frac5{13} + \frac5{13} \cos\arcsin\frac45
\Arrow{$\forall x \in [-1,1], \cos(\arcsin x) = \sqrt{1-x"2}$} \\

& \Leftrightarrow x = \frac45\sqrt{1-\bigl(\frac5{13}\bigr) "2}

+ \frac5{13}\sqrt{1-\bigl (\frac45\bigr) "2}

\end{WithArrows}$

arccos(r) = arcsin é + arcsin 35
Q because both are in [—75, 5]

& = sin (arcsm + arcsin 1%)

_ 5 5 4
S x = 5 cosarcsin 73 + 13 COS arcsm

—41./7 (2) /1 (%)
=T = (13) +13 (5)

12A footnote.

> Vx € [—1,1], cos(arcsinx) = v/1 — 2

16

8.3 Modifying the shape of the nodes

It’s possible to change the shape of the labels, which are Tikz nodes, by modifying the key
“every node” of Tikz.

\begin{WithArrows} [%
interline = 4mm,
tikz = {every node/.style = {circle,
draw,
auto = false,
£ill = gray!50,
inner sep = 1pt,
font = \tinyl}}]
E & \Longleftrightarrow 3 (2x+4) = 6
\Arrow{$\div 3$}\\
& \Longleftrightarrow 2x+4 = 2
\Arrow{$-43F\\

& \Longleftrightarrow 2x = -2
\Arrow{$\div 2$} \\
& \Longleftrightarrow 2x = -1

\end{WithArrows}

E<=32x+4) =6

—2r+4=2 E
< 2r = -2 @
<— 2x = —1

8.4 Examples with the option TikzCode

We recall that the option TikzCode is the Tikz code used by witharrows to draw the arrows.

The value by defaut of TikzCode is \draw (#1) to node {#3} (#2) ; where the three markers #1,
#2 and #3 represent the start raw, the end raw and the label of the arrow.

8.4.1 Example 1

In the following example, we define the value of TikzCode with two instructions \path : the first
instruction draws the arrow itself and the second puts the label in a Tikz node in the rectangle
delimited by the arrow.

$\begin{WithArrows}[
displaystyle,
ygap = 2mm,
ystart = Omm,
TikzCode = {\path[draw] (#1) -- ++(4.5cm,0) |- (#2) ;
\path (#1) -- (#2)
node[text width = 4.2cm, right, midway] {#3} ;3]

17

::2 cosz = R(e'™)
1« jkx
=T R(eF)
= R(z +2) = R(z) + R()
g < ei’“—2>
n
kz? exp is a morphism for X et +
L (=, =
=R (Y (¢F)"
n k=0 sum of terms of a geqrznetric
1 1_— (ei%)” progression of ratio et
— =)
n (1—e*2n)
1 1—1
= —§R —
n (]‘—-ﬁﬁz)

8.4.2 Example 2

In the following example, we change the shape of the arrow depending on wether the start raw is
longer than the end row or not. This example requires the Tikz library calc.

\begin{WithArrows}[11l,interline=5mm,xoffset=5mn,
TikzCode = {\draw[rounded corners,
every node/.style = {circle,
draw,
auto = false,
inner sep = 1pt,
fill = gray!50,
font = \tiny 1}]
let \pl = (#1),
\p2 = (#2)
in \ifdim \x1 > \x2
(\p1) -- node {#3} (\x1,\y2) -- (\p2)
\else
(\p1) -- (\x2,\y1) -- node {#3} (\p2)
\fi ;}]
E & \Longleftrightarrow \frac{(x+4)}3 + \frac{5x+3}5 = 7
\Arrow{$\times 15$}\\
& \Longleftrightarrow 5(x+4) + 3(5x+3) = 105 \\
& \Longleftrightarrow 5x+20 + 15x+9 = 105 \\
& \Longleftrightarrow 20x+29 = 105
\Arrow{-29}\\
& \Longleftrightarrow 20x = 76
\Arrow{$\div 20$}I\\
& \Longleftrightarrow x = \frac{38}{10}
\end{WithArrows}

18

F «<— ($§4) + 5965-1—3 =7

— 5(x +4) + 3(5z + 3) = 105 i

<= bx +20+ 152+ 9 = 105

<= 20z + 29 = 105

<=>20x=76?
—=azr=38

8.5 Automatic numbered loop

Assume we want to draw a loop of numbered arrows. In this purpose, it’s possible to write a dedicated
command \NumberedLoop which will do the job when used in CodeAfter. In the following example,
we write this command with \NewDocumentCommand of xparse and \foreach of pgffor (both packages
are loaded when witharrows is loaded).

\NewDocumentCommand \NumberedLoop {}
{\foreach \j in {2,...,\NbLines}
{ \pgfmathtruncatemacro{\i}{\j-1}
\Arrow [rr] {\i}{\jI{\i}
\Arrow[rr,xoffset=1cm,tikz=<-]{1}{\NbLines}{\NbLines}}

The command \NbLines is a command available in CodeAfter which gives the total number of lines
(=rows) of the current environment (it’s a command and not a counter).

$\begin{WithArrows}[CodeAfter = {\NumberedLoop}]

a.\;& f \text{ est continuous on } E \\

b.\;& f \text{ est continuous in } 0 \\

c.\;& f \text{ is bounded on the unit sphere} \\

d.\;& \exists K > O\quad \forall x \in E\quad \|f(x)\| \le K \Ix\| \\
e.\;& f \text{ is lipschitzian}

\end{WithArrows}$

. f est continuous on E

. f est continuous in 0

AK >0 VeeE |f(@)] < K|l

) L
c. f is bounded on the unit sphere QQ 5
y L9
e. f is lipschitzian Q4

As usual, it’s possible to change the characteristic of both arrows and nodes with the option tikz.
However, if we want to change the style to have, for example, numbers in parenthesis, the best way
is to change the value of TikzCode:

TikzCode = {\draw (#1) to node {\footnotesize (#3)} (#2) ;}

a. f est continuous on F Q 1)
b. f est continuous in 0 Q 2)
c. f is bounded on the unit sphere Q) (5)
d.3K >0 VYexeE |f(z)| < K|z Q(U

e. f is lipschitzian

19

9 Implementation

9.1 Declaration of the package and extensions loaded

First, tikz and some Tikz libraries are loaded before the \ProvidesExplPackage. They are loaded
this way because \usetikzlibrary in expl3 code fails.'?

1 \RequirePackage{tikz}
> \usetikzlibrary{arrows.meta,bending}

Then, we can give the traditionnal declaration of a package written with expl3:

s \RequirePackage{13keys2e}

+ \ProvidesExplPackage

s {witharrows}

s {\myfiledate}

{\myfileversion}

s {Draws arrows for explanations on the right}

~

The package xparse will be used to define the environments {WithArrows}, {DispWithArrows},
{DispWithArrows*} and the document-level commands \Arrow and \WithArrowsOptions.

o \RequirePackage{xparse}

9.2 The packages footnote and footnotehyper

A few options can be given to the package witharrows when it is loaded (with \usepackage,
\RequirePackage or \PassOptionsToPackage). Currently (version 1.7), there are two such options:
footnote and footnotehyper. With the option footnote, witharrows loads footnote and uses it to
extract the footnotes from the environments {WithArrows}. Idem for the option footnotehyper.

The boolean \g_@@_footnotehyper_bool will indicate if the option footnotehyper is used.
10 \bool_new:N \g_0@_footnotehyper_bool

The boolean \g_0@_footnote_bool will indicate if the option footnote is used, but quicky, it will
also be set to true if the option footnotehyper is used.

11 \bool_new:N \g_0@_footnote_bool

We define a set of keys WithArrows/package for these options. However, first, we define a “level of
options” \1_@@_level_int even if, in the version 1.7 of witharrows, this integer is not used by the
options of the set WithArrows/package.

12 \int_new:N \1_@@_level_int

12 \keys_define:nn {WithArrows/package}

14 {footnote .bool_gset:N = \g_0@_footnote_bool,

15 footnotehyper .bool_gset:N = \g_0@_footnotehyper_bool}

We process the options when the package is loaded (with \usepackage).
16 \ProcessKeysOptions {WithArrows/packagel}

17 \msg_new:nnn {witharrows}

18 {Option~incompatible~with~Beamer}
19 {The~option~"\tl_use:N \1_keys_key_t1"\ is~incompatible~
20 with~Beamer~because~Beamer~has~its~own~system~to~extract~footnotes.}

21 \msg_new:nnn {witharrows}

2 {footnote~with~footnotehyper~package}

23 {You~can't~use~the~option~footnote~because~the~package~

2 footnotehyper~has~already~been~loaded. ~

25 If~you~want, ~you~can~use~the~option~"footnotehyper"~and~the~footnotes~

26 within~the~environments~{WithArrows}~will~be~extracted~with~the~tools~
7 of ~the~package~footnotehyper.}

13¢f. tex.stackexchange.com/questions/57424/using-of-usetikzlibrary-in-an-expl3-package-fails

20

2 \msg_new:nnn {witharrows}

29 {footnotehyper~with~footnote~package}

30 {You~can't~use~the~option~"footnotehyper"~because~the~package~

31 footnote~has~already~been~loaded.~

32 If~you~want,~you~can~use~the~option~"footnote"~and~the~footnotes~

33 within~the~environments~{WithArrows}~will~be~extracted~with~the~tools~
34 of ~the~package~footnote.}

55 \bool_if:NT \g_0@_footnote_bool
36 {\@ifclassloaded {beamer}
37 {\msg_fatal:nn {witharrows}

38 {Option~incompatible~with~Beamer}}
39 {3

40 \@ifpackageloaded{footnotehyper}

4 {\msg_fatal:nn {witharrows}

P {footnote~with~footnotehyper~package}}
43 {3+

4 \usepackage{footnote}}

25 \bool_if:NT \g_@@_footnotehyper_bool

4 {\@ifclassloaded {beamer}

a7 {\msg_fatal:nn {witharrows}

a8 {Option~incompatible~with~Beamer}}
49 {3

50 \@ifpackageloaded{footnote}

51 {\msg_fatal:nn {witharrows}

52 {footnotehyper~with~footnote~package}}
53 {3

54 \usepackage{footnotehyper}

55 \bool_gset_true:N \g_00_footnote_bool}

The flag \g_0@_footnote_bool is raised and so, we will only have to test \g_@@_footnote_bool in
order to known if we have to insert an environnement {savenotes} (see the definition of environ-
nement {WithArrows}).

9.3 Some technical definitions

We define a Tikz style @@_node_style for the nodes that will be created in the \halign. The nodes
are Tikz nodes of shape “rectangle” but with zero width. An arrow between two nodes starts from
the south anchor of the first node and arrives at the north anchor of the second node.

56 \tikzset{@@_node_style/.style= {

57 above = \1_@@_ystart_dim,

58 inner~sep = 0 pt,

59 minimum~width = Opt,

60 minimum~height = \1_0@_ygap_dim,

61 red,

62 \bool_if:NT \1_@@_shownodes_bool {draw} }}

The color of the nodes is red, but in fact, the nodes will be drawn only when the option shownodes
is used (this option is useful for debugging).

The style @@_standard is load in standard in the {tikzpicture} we need. The names of the nodes
are prefixed by wa (by security) but also by a prefix which is the position-in-the-tree of the nested
environments.

63 \tikzset{@Q@_standard/.style= { remember~picture,

64 overlay,

65 name~prefix = wa-\1_Q@_prefix_str- }}

We also define a style for the tips of arrow. The final user of the extension witharrows will use this
style if he wants to draw an arrow directly with a Tikz command in his document (probably using
the Tikz nodes created by {WithArrows} in the \halign).

o6 \tikzset{WithArrows/arrow/tips/.style = { > = {Straight~Barb[scale=1.2,bend]} }}

21

o7 \tikzset{WithArrows/arrow/.style = { align = left,
68 auto = left,

69 font = {\small\itshape},
70 WithArrows/arrow/tips,
71 bend~left = 45,

72 -> 1}

In order to increase the interline in the environments {WithArrows}, we will use the command
\spread@equation of amsmath. When used, this command becomes no-op (in the current TeX
group). Therefore, it will be possible to use the environments of amsmath (e.g. {aligned}) in an
environment {WithArrows}.
Nevertheless, we want the extension witharrows available without amsmath. That’s why we give a
definition of \spread@equation (this definition will be loaded only if amsmath — or mathtools —
has not been loaded yet).

73 \cs_if_free:NT \spread@equation

74 {\cs_set_protected:Npn \spread@equation

75 {\openup\ jot

76 \cs_set_protected:Npn \spread@equation {}}}
Don’t put \cs_set_eq:NN \spread@equation \prog_do_nothing: in the last line because this
would raise errors with nested environments.

9.4 Variables

The boolean \1_0@_in_witharrows_bool will be raised if (and only if) we are in an environment
{WithArrows} (and not in an environment {DispWithArrows} or {DispWithArrows*}).

77 \bool_new:N \1_@@_in_witharrows_bool
The following sequence is the position of the last environment {WithArrows} in the tree of the nested
environments {WithArrows}.

75 \seq_new:N \g_0@_position_in_the_tree_seq
70 \seq_gput_right:Nn \g_0Q@_position_in_the_tree_seq 1

The following counter will give the number of the last environment {WithArrows} of level 0. This
counter will be used only in the definition of \WithArrowsLastEnv.

s \int_new:N \g_0@_last_env_int

The following skip (=glue) is the vertical space inserted between two lines (=rows) of the \halign.

st \skip_new:N \1_0@_interline_skip

The following integer indicates the position of the box that will be created: 0 (=t=\vtop),
1 (=c=\vcenter) or 2 (=b=\vbox).

& \int_new:N \1_@@_pos_env_int

33 \dim_new:N \1_@@_xoffset_dim
32 \dim_set:Nn \1_0@_xoffset_dim {3mm}

The integer \1_0@_pos_arrows_int indicates the position of the arrows with the following code (the
option v is accessible only for the arrows in CodeAfter where the options i, group et groups are not
available).

option rr 11 rl 1r v i group groups

\1_@@_pos_arrows_int 0 1 2 3 4 5 6 7

The option v can be used only in \Arrow in CodeAfter (see below).

s \int_new:N \1_Q@_pos_arrows_int

22

When we scan a list of options, we want to be able to raise an error if two options of position of the
arrows are present. That’s why we keep the code of the first option of position in a variable called
\1_0@_previous_pos_arrows_int. This variable will be set to —1 each time we start the scanning
of a list of options.

s \int_new:N \1_Q@@_previous_pos_arrows_int

At each possible level for the options (global, environment or local: see below), the new values will
be appended on the right of this token list.

The dimension \g_0@_x_dim will be used to compute the z-value for some vertical arrows when one
of the options i, group and groups (values 5, 6 and 7 of \1_0@_pos_arrows_int) is used.

&7 \dim_new:N \g_0@_x_dim

In the \halign of an environment {WithArrows}, we will have to use three counters:
e \g_00_arrow_int to count the arrows created in the environment ;

e \g_0@_line_int to count the lines of the \halign ;

e \g_00_line_bis_int to count the lines of the \halign which have a second column.'*

These three counters will be incremented in a cell of the \halign and, therefore, the incrementation
must be global. However, we want to be able to include a {WithArrows} in another {WithArrows}. To
do so, we must restore the previous value of these counters at the end of an environment {WithArrows}
and we decide to manage a stack for each of these counters.

s \seq_new:N \g_0@_arrow_int_seq

s \int_new:N \g_0@_arrow_int

o0 \seq_new:N \g_00_line_int_seq

o1 \int_new:N \g_0@_line_int

> \seq_new:N \g_0@_line_bis_int_seq

o3 \int_new:N \g_0@_line_bis_int

©

The token list \1_@@_name_t1 will contain the name of the environment (given with the option name).
This name will be used to create aliases for the names of the nodes.

92 \tl_new:N \1_@@_name_tl

The boolean \1_@@_notag_bool will be used in {DispWithArrows}. In particular, it will be raised
when the command \notag is used.

o5 \bool_new:N \1_0@_notag_bool

The token list \1_@@_tag_t1 will contain the argument of the command \tag.
o5 \tl_new:N \1_Q0@_tag_tl

The boolean \1_@@_tag_star_bool will be raised if the user uses the command \tag with a star.
o7 \bool_new:N \1_@@_tag_star_bool

The command \@@_label :n will be linked to \1abel in the second column of the \halign of the envi-
ronment {DispWithArrows}. This command will store its argument in the token list \1_@@_label_t1.

e \tl_new:N \1_@@_label tl
90 \cs_set:Nn \@@_label:n {\tl_set:Nn \1_@@_label_tl {#1}}

The boolean \1_@@_fleqn_bool indicates wether the environments {DispWithArrows} must be com-
posed flush left or centered. It corresponds to the option fleqn.

100 \bool_new:N \1_0Q@_fleqn_bool

M This counter is used in order to raise an error if there is a line without the second column (such an situation could
raise a PGF error for an undefined node).

23

The dimension \1_@@_mathindent_dim is used only by the environments {DispWithArrows} : it’s
the left margin of the environments {DispWithArrows} if the environment {DispWithArrows} is
composed flush left (option fleqn).

100 \dim_new:N \1_@@_mathindent_dim
102 \dim_set:Nn \1_0@_mathindent_dim {25pt}

9.5 The definition of the options

There are four levels where options can be set:
o with \usepackagel[...]{witharrows}: this level will be called package level (number 0);
o with \WithArrowsOptions{...}: this level will be called global level (number 1);
o with \begin{WithArrows}[...]: this level will be called environment level (number 2);

o with \Arrow[...] (included in CodeAfter): this level will be called local level (number 3).

The level is specified in the variable \1_@@_level_int and the code attached to the options can use
this information to alter its actions.

103 \int_set:Nn \1_@@_level_int 1

We start with a submodule which will be loaded only at the global or the environment level.

The options t, ¢ and b indicate if we will create a \vtop, a \vcenter or a \vbox. This information is
stored in the variable \1_@@_pos_env_int. Of course, they are available only in {WithArrows} and
not in {DispWithArrows} or {DispWithArrows*}

104 \keys_define:nn {WithArrows/GlobalOrEnv}

105 { t .code:n = {\bool_if:NTF \1_@@_in_witharrows_bool

106 {\int_set:Nn \1_0@_pos_env_int 0}

107 {\msg_error:nn {witharrows} {Option~will~be~ignored}}},
108 t .value_forbidden:n = true,

109 c .code:n = {\bool_if:NTF \1_@@_in_witharrows_bool

110 {\int_set:Nn \1_0@_pos_env_int 1}

111 {\msg_error:nn {witharrows} {Option~will~be~ignored}}},
112 c .value_forbidden:n = true,

113 b .code:n = {\bool_if:NTF \1_@@_in_witharrows_bool

114 {\int_set:Nn \1_0@_pos_env_int 2}

115 {\msg_error:nn {witharrows} {Option~will~be~ignored}}},
116 b .value_forbidden:n = true,

The gap between two consecutive arrows.

117 ygap .dim_set:N = \1_00_ygap_dim,
118 ygap .value_required:n = true,
119 ygap .initial:n = 0.4 ex,

The vertical position of the start point of an arrow.

120 ystart .dim_set:N = \1_@@_ystart_dim,
121 ystart .value_required:n = true,
122 ystart .initial:n = 0.4 ex,

Usually, the number of columns in a {WithArrows} environment is limited to 2. Nevertheless, it’s
possible to have more columns with the option MoreColumns.

123 MoreColumns .code:n = { \msg_redirect_name:nnn

124 {witharrows}

125 {Third~column~in~an~environment~{WithArrows}}
126 {none} 7,

127 MoreColumns .value_forbidden:n = true,

24

By default, an error message is raised if there is a line without ampersand (&). However, it’s possible
to suppress this error with the option AllowLineWithoutAmpersand.

128 AllowLineWithoutAmpersand .code:n = { \msg_redirect_name:nnn

129 {witharrows}

130 {All~lines~must~have~an~ampersand}
131 {none} 1},

132 AllowLineWithoutAmpersand .value_forbidden:n = true,

If the user wants to give a new name to the \Arrow command (and the name \Arrow remains free).

133 CommandName .tl_set:N = \1_0@_CommandName_t1,
134 CommandName .initial:n = Arrow ,
135 CommandName .value_required:n = true,

136 TikzCode .tl_set:N
137 TikzCode .initial:n

\1_@@_tikz_code_t1,
\draw~ (#1) ~to~node{#3}~ (#2) ~;
138 TikzCode .value_required:n = true,

)

With the option displaystyle, the environments will be composed in \displaystyle.

139 displaystyle .bool_set:N = \1_0@_displaystyle_bool,
140 displaystyle .initial:n = false,

With the option shownodes, the nodes will be drawn in red (useful only for debugging).

141 shownodes .bool_set:N \1_@@_shownodes_bool,
142 shownodes .initial:n false,

With the option shownodenames, the name of the “right nodes” will be written in the document
(useful only for debugging).

143 shownodenames .bool_set:N
144 shownodenames .initial:n

\1_@@_shownodenames_bool,
false,

With the option group, all the arrows of the environment are vertical with the same abscissa and at
a leftmost position.

145 group .code:n = {\int_compare:nNnT \1_0@_previous_pos_arrows_int > {-1}
146 {\msg_error:nn {witharrows}

147 {Two~options~are~incompatible}}
148 \int_set:Nn \1_0@_previous_pos_arrows_int 6

149 \int_set:Nn \1_Q@_pos_arrows_int 6} ,

150 group .value_forbidden:n = true,

With the option groups (with a s), the arrows of the environment are divided in groups by an
argument of connexity, and, in each group, the arrows are vertical with the same abscissa and at a

leftmost position. When the option group or groups is used, it’s not possible to another option of
position like 11, 1r, etc. for a individual key.

151 groups .code:n = {\int_compare:nNnT \1_0@_previous_pos_arrows_int > {-1}
152 {\msg_error:nn {witharrows}

153 {Two~options~are~incompatible}}
154 \int_set:Nn \1_0Q@_previous_pos_arrows_int 7

155 \int_set:Nn \1_0@_pos_arrows_int 7} ,

156 groups .value_forbidden:n = true,

The option CodeBefore gives a code that is executed at the beginning of the environment
{WithArrows} (after the eventual \begin{savenotes}).

157 CodeBefore .code:n = {\int_compare:nNnTF \1_0@@_level_int = 1

158 {\msg_error:nn {witharrows} {Option~will~be~ignored}}
150 {\tl_put_right:Nn \1_0@_code_before_tl {#1}}} ,
160 CodeBefore .value_required:n = true,

25

The option CodeAfter gives a code that is executed at the end of the environment {WithArrows}
(after the eventual \end{savenotes}).

161 CodeAfter .code:n = {\int_compare:nNnTF \1_0@_level_int = 1

162 {\msg_error:nn {witharrows} {Option~will~be~ignored}}
163 {\tl_put_right:Nn \1_0@_code_after_tl {#1}}} ,
164 CodeAfter .value_required:n = true,

The option name is a name given to the environment. If this option is used, the nodes created in the

environment will have aliases constructed with this name (and it will be easier to use these nodes
from outside the environment).

165 name .code:n = {\int_compare:nNnTF \1_0@@_level_int = 1
166 {\msg_error:nn {witharrows} {Option~will~be~ignored}}
167 {\tl_set:Nn \1_@@_name_t1 {#1}}} ,

168 name .value_required:n = true,

The option fleqn indicates wether the environments {DispWithArrows} are composed centered or
flush left.

160 fleqgn .code:n = {\bool_if:NTF \1_@@_in_witharrows_bool

170 {\msg_error:nn {witharrows} {Option~will~be~ignored}}
171 {\tl_if_eq:nnTF {#1} {truel}

172 {\bool_set_true:N \1_@@_fleqn_bool}

173 {\bool_set_false:N \1_0@@_fleqn_bool}}},

174 flegn .default:n = true,

The option mathindent is the left margin of the environments {DispWithArrows} when the option
fleqn is used.

175 mathindent .code:n = {\bool_if:NTF \1_@@_in_witharrows_bool

176 {\msg_error:nn {witharrows} {Option~will~be~ignored}}
177 {\dim_set:Nn \1_@@_mathindent_dim {#1}}},

178 mathindent .value_required:n = true,

The option notag indicates wether the environments {DispWithArrows} will be without tags (like
{DispWithArrows*}).

179 notag .code:n = {\bool_if:NTF \1_@@_in_witharrows_bool

180 {\msg_error:nn {witharrows} {Option~will~be~ignored}}
181 {\tl_if_eq:nnTF {#1} {true}

182 {\bool_set_true:N \1_0@_notag_bool}

183 {\bool_set_false:N \1_0@@_notag_bool}}},

184 notag .default:n = true,

185 nonumber .meta:n = notag,

186 unknown .code:n = \msg_error:nn {witharrows} {Option~unknown}

187 }

Then we define the main module called WithArrows/General which will be loaded at all the levels.

The option tikz gives Tikz parameters that will be given to the arrow when it is drawn (more
precisely, the parameters will be given to the command \path of Tikz).

15 \keys_define:nn {WithArrows/General}

189 {tikz .code:n = \tikzset {WithArrows/arrow/.append~style = {#1}},
190 tikz .initial:n = {},
191 tikz .value_required:n = true,

The other options are for the position of the arrows. The treatment is the same for the options 11,

rr, 1r, 1r and i and that’s why a dedicated fonction \@@_analyze_option_position:n has been
written (see below).

192 rr .value_forbidden:n = true,
193 rr .code:n = \Q@@_analyze_option_position:n O ,
104 11 .value_forbidden:n = true,
195 11 .code:n = \@Q@_analyze_option_position:n 1 ,

26

196 rl .value_forbidden:n true,

197 rl .code:n = \@Q@_analyze_option_position:n 2 ,
198 1r .value_forbidden:n = true,
199 1r .code:n = \@@_analyze_option_position:n 3 ,
200 i .value_forbidden:n = true,
201 i .code:n = \@@_analyze_option_position:n 5 ,

The option xoffset change the z-offset of the arrows (towards the right). It’s a dimension and not a
skip. It’s not possible to change the value of this parameter for a individual arrow if the option group
or the option groups is used. When we will treat an individual arrow, we will give it the option
tikz={xshift=\1_0@_xoffset_dim} (we can’t to it at the global or the environment level because
the Tikz options xshift are cumulative.

202 xoffset .code:n = {\bool_if:nTF {\int_compare_p:nNn \1_0@_level_int = 3 &&
203 \int_compare_p:nNn \1_Q@_pos_arrows_int > 5}
204 {\msg_error:nn {witharrows}

205 {Option~incompatible~with~"group(s)"}}
206 {\dim_set:Nn \1_@@_xoffset_dim {#1}}} ,

207 xoffset .value_required:n = true,

The option jot exists for compatibility. It changes directly the value of the parameter \jot, which
is a LaTeX parameter and not a parameter specific to witharrows. It’s allowed only at the level of the

environment (maybe we should suppress completely this option in the future).
2

208 jot .code:n = {\int_compare:nNnTF \1_Q@_level_int =

209 {\dim_set:Nn \jot {#1}}

210 {\msg_error:nn {witharrows}

211 {Option~will~be~ignored}}} ,
212 jot .value_required:n = true,

The option interline gives the vertical skip (=glue) inserted between two lines (independently of
\jot). It’s accepted only at the level of the environment (this last point is a kind of security).
Futhermore, this option has a particular behaviour: it applies only to the current environment and
doesn’t apply to the nested environments.

213 interline .code:n = {\int_compare:nNnTF \1_Q@_level_int = 2

214 {\skip_set:Nn \1_0@_interline_skip {#1}}

215 {\msg_error:nn {witharrows}

216 {Option~will~be~ignored}}} ,
217 interline .value_required:n = true,

Eventually, a key jump (see below) and a key for unknown keys.

218 jump .code:n = \msg_error:nn {witharrows} {Option~will~be~ignored} ,
219 unknown .code:n = \msg_error:nn {witharrows} {Option~unknown}

20 }

The key jump indicates the number of lines jumped by the arrow (1 by default). This key will be
extracted when the command \Arrow will be executed. That’s why there is a special module for this
key. The key jump is extracted in the command \Arrow because we want to compute right away the
final line of the arrow (this will be useful for the options group and groups).

»1 \keys_define:nn {WithArrows/jump}

222 {jump .code:n = {\int_set:Nn \1_@@_jump_int {#1}

223 \int_compare:nNnF \1_Q@_jump_int > 0O

224 {\msg_error:nn {witharrows}

225 {The~option~"jump"~must~be~non~negative}}} ,

226 jump .value_required:n = true}

The following command is for technical reasons. It’s used for the following options of position: 11,
1r, rl, rr and i. The argument is the corresponding code for the position of the arrows.

27 \cs_new_protected:Nn \@@_analyze_option_position:n
28 {\int_compare:nNnT \1_Q@_previous_pos_arrows_int > {-1}

27

229 {\msg_error:nn {witharrows}

230 {Two~options~are~incompatible}}

231 \int_set:Nn \1_@@_previous_pos_arrows_int {#1}

It’s not possible to use one of the considered options at the level of an arrow (level 2) when the option
group or the option groups is used. However, if we are at the level of an environment, it’s possible to
override a previous option group or groups (this previous option group or groups would necessarily
have been set at a global level by \WithArrowsOptions).

232 \bool_if:nTF { \int_compare_p:nNn \1_0@_level_int = 3 &&

233 \int_compare_p:nNn \1_@@_pos_arrows_int > 5}
234 {\msg_error:nn {witharrows}

235 {Option~incompatible~with~"group(s)"}}

236 {\int_set:Nn \1_@@_pos_arrows_int {#1}}}

\WithArrowsOptions is the command of the witharrows package to fix options at the document level.

237 \NewDocumentCommand \WithArrowsOptions {m}

238 {\int_set:Nn \1_0@_previous_pos_arrows_int {-1}
230 \keys_set_known:nnN {WithArrows/General} {#1} \1_tmpa_tl
240 \keys_set:nV {WithArrows/GlobalOrEnv} \1_tmpa_t1l}

9.6 The command Arrow

In fact, the internal command is not named \Arrow but \@@_Arrow. Usually, at the beginning of
an environment {WithArrows}, \Arrow is set to be equivalent to \@@_Arrow. However, the user can
change the name with the option CommandName and the user command for \@@_Arrow will be different.
This mechanism can be useful when the user has already a command named \Arrow he wants to still
be able to use in the environment {WithArrows}.

211 \NewDocumentCommand \@@_Arrow {0{} m 0{}}
242 {

The counter \g_@Q@_arrow_int counts the arrows in the environment. The incrementation must be
global (gincr) because the command \Arrow will be used in the cell of a \halign. It’s recalled that
we manage a stack for this counter.

23 \int_gincr:N \g_0@_arrow_int

We decide to extract immediatly the key jump in order to compute the end line. That’s the reason
why there is a module WithArrows/jump with this sole key. The remainded key-value pairs are stored
in \1_tmpa_t1 and will be stored further in the properly list of the arrow.

244 \int_zero_new:N \1_Q@_jump_int
25 \int_set:Nn \1_0@_jump_int 1
246 \keys_set_known:nnN {WithArrows/jump} {#1,#3} \1_tmpa_tl

We will construct a global property list to store the informations of the considered arrow. The four
fields of this property list are “initial”, “final”, “options” and “label”.

1. First, the line from which the arrow starts:
247 \prop_put:NnV \1_tmpa_prop {initial} \g_@@_line_int
2. The line where the arrow ends (that’s why it was necessary to extract the key jump):

28 \int_set:Nn \1_tmpa_int {\g_0@_line_int + \1_Q@_jump_int}
249 \prop_put:NnV \1_tmpa_prop {final} \1_tmpa_int

3. All the options of the arrow (it’s a token list):
250 \prop_put:NnV \1_tmpa_prop {options} \1_tmpa_tl
4. The label of the arrow (it’s also a token list):

251 \prop_put:Nnn \1_tmpa_prop {label} {#2}

28

The property list has been created in a local variable for convenience. Now, it will be stored in a
global variable indicating both the position-in-the-tree and the number of the arrow.

252 \prop_gclear_new:c

253 {g_0@_arrow_\1_0@_prefix_str _\int_use:N\g_0@_arrow_int _prop}
254 \prop_gset_eq:cN

255 {g_00_arrow_\1_0@_prefix_str _\int_use:N\g_QQ_arrow_int _prop}
256 \1_tmpa_prop

257 }

255 \cs_new_protected:Nn \@@_Arrow_first_column:

All messages of LaTeX3 must be fully expandable and that’s why we do the affectation (necessary for
a comparison) before the \msg_error:nn.

250 {\tl_set:Nn \1_tmpa_tl {Arrow}
260 \msg_error:nn {witharrows} {Arrow~in~first~column}
261 \@@_Arrow}

9.7 The environment {WithArrows}

The command \@@_pre_environement: is a code common to the environments {WithArrows} and
{DispWithArrows}. The argument is the options given to the environment.

262 \cs_new_protected:Nn \@@_pre_environment:n

First the initialisation of the three counters \g_@@_arrow_int, \g_@@_line_int and \g_@@_line_bis_int.
However, we have to save their previous values with the three stacks created for this end.

263 { \seq_gput_right:NV \g_0@_arrow_int_seq \g_00@_arrow_int

264 \int_gzero:N \g_0@_arrow_int

265 \seq_gput_right:NV \g_0@_line_int_seq \g_0@_line_int

266 \int_gzero:N \g_0@_line_int

267 \seq_gput_right:NV \g_0@_line_bis_int_seq \g_0@_line_bis_int
268 \int_gzero:N \g_00@_line_bis_int

We also have to update the position on the nesting tree.

269 \seq_gput_right:Nn \g_0@@_position_in_the_tree_seq 1

The nesting tree is used to create a prefix which will be used in the names of the Tikz nodes and in the
names of the arrows (each arrow is a property list of four fields). If we are in the second environment
{WithArrows} nested in the third environment {WithArrows} of the document, the prefix will be
3-2 (although the position in the tree is [3,2, 1] since such a position always ends with a 1). First,
we do a copy of the position-in-the-tree and then we pop the last element of this copy (in order to
drop the last 1).

270 \seq_set_eq:NN \1_tmpa_seq \g_Q@_position_in_the_tree_seq

271 \seq_pop_right:NN \1_tmpa_seq \1l_tmpa_tl

272 \str_clear_new:N \1_Q@_prefix_str

273 \str_set:Nx \1_Q@_prefix_str {\seq_use:Nnnn \1_tmpa_seq {-} {-} {-}}

We define the command \\ to be the command \@@_cr: (defined below).

274 \cs_set_eq:NN \\ \@@_cr:
275 \dim_zero:N \mathsurround

These counters will be used later as variables.

276 \int_zero_new:N \1_@@_initial_int
277 \int_zero_new:N \1_@@_final_int
278 \int_zero_new:N \1_@@_arrow_int

The value corresponding to the key interline is put to zero before the treatment of the options of
the environment.'®

279 \skip_zero:N \1_0@_interline_skip

151¢’s recalled that, by design, the option interline of an environment doesn’t apply in the nested environments.

29

The value corresponding to the key CodeBefore is put to nil before the treatment of the options of
the environment, because, of course, we don’t want the code executed at the beginning of all the
nested environments {WithArrows}. Idem for CodeAfter.

280 \tl_clear_new:N \1_@@_code_before_tl

281 \tl_clear_new:N \1_@@_code_after_tl

We process the options given to the {WithArrows} environment. The level of options is set to 1.

282 \int_set:Nn \1_@@_previous_pos_arrows_int {-1}

283 \int_set:Nn \1_@@_level_int 2

284 \keys_set_known:nnN {WithArrows/General} {#1} \1_tmpa_tl
285 \keys_set:nV {WithArrows/GlobalOrEnv} \1_tmpa_tl

If the option footnote or the option footnotehyper is used, then we extract the footnotes with an
environment {savenotes} (of the package footnote or the package footnotehyper).
286 \bool_if:NT \g_@@_footnote_bool {\begin{savenotesl}}

We execute the code \1_0@_code_before_tl of the option CodeBefore of the environment after the
eventual \begin{savenotes} and, symetricaly, we will execute the \1_@@_code_after_tl before
the eventual \end{savenotes} (we have a good reason for the last point : we want to extract the
footnotes of the arrows executed in the CodeAfter).

287 \1_@@_code_before_tl

If the user has given a value for the option CommandName (at the global or at the environment level), a
command with this name is defined locally in the environment with meaning \@@_Arrow. The default
value of the option CommandName is “Arrow” and thus, by default, the name of the command will be
\Arrow.

288 \cs_set_eq:cN \1_0@_CommandName_t1l \QQ@_Arrow}

This is the end of \@@_pre_environment :n.

Now, we begin the environment {WithArrows}.
230 \NewDocumentEnvironment {WithArrows} {0{}}

200 { \bool_set_true:N \1_0Q@_in_witharrows_bool

201 \reverse_if:N \if_mode_math:

202 \msg_error:nn {witharrows}

203 {{WithArrows}~used~outside~math~mode}

204 \fi:

295 \cs_set:Npn \notag {\msg_error:nnn {witharrows}

206 {Command~not~allowed~in~{WithArrows}}

207 {\notagl}}

208 \cs_set:Npn \nonumber {\msg_error:nnn {witharrows}

200 {Command~not~allowed~in~{WithArrows}}
300 {\nonumber}}

301 \cs_set:Npn \tag ##1 {\msg_error:nnn {witharrows}

302 {Command~not~allowed~in~{WithArrows}}
303 {\tag}}

304 \cs_set:Npn \label ##1 {\msg_error:nnn {witharrows}

305 {Command~not~allowed~in~{WithArrowsl}}
306 {\labell}}

307 \@@_pre_environment:n {#1}

The environment begins with a \vtop, a \vcenter or a \vbox'® depending of the value of
\1_00@_pos_env_int (fixed by the options t, ¢ or b). The environment {WithArrows} must be
used in math mode'” and therefore, we can use \vcenter.

308 \int_case:nn \1_0@_pos_env_int
309 {0 {\vtop}

310 1 {\vcenter}

311 2 {\vbox}}

312 \bgroup

16Notice that the use of \vtop seems color-safe here...
17 An error is raised if the environment is used outside math mode.

30

The command \spread@equation is the command used by amsmath in the beginning of an alignment
to fix the interline. When used, it becomes no-op. However, it’s possible to use witharrows without
amsmath since we have redefined \spread@equation (if it is not defined yet).

313 \spread@equation

We begin the \halign and the preamble.
314 \ialign\bgroup

We increment the counter \g_0@_line_int which will be used in the names of the Tikz nodes created
in the array. This incrementation must be global (gincr) because we are in the cell of a \halign.
It’s recalled that we manage a stack for this counter.

315 \int_gincr:N \g_0@_line_int

316 \cs_set_eq:cN \1_0@_CommandName_t1l \Q@@_Arrow_first_column:
317 \strut\hfil

318 $\bool_if:NT \1_0@_displaystyle_bool \displaystyle {##}$
319 &

In the second column, we increment the counter \g_@@_line_bis_int because we want to count the
lines with a second column and raise an error if there is lines without a second column. Once again,
the incrementation must be global and it’s recalled that we manage a stack for this counter too.

320 \int_gincr:N \g_0@_line_bis_int

321 $\bool_if:NT \1_0@_displaystyle_bool \displaystyle {{}##}$

We create the “left node” of the line (when using macros in Tikz node names, the macros have to be
fully expandable: here, \t1_use:N and \int_use:N are fully expandable).

322 \tl_if_empty:NTF \1_Q@_name_tl

323 {\tikz [remember~picture,overlay]

324 \node [@@_node_style,

325 name = wa-\1_0@@_prefix_str-\int_use:N\g_00@_line_int-1] {} ;}

If the environment {WithArrows} has a name (given with the option name), the node has also an
alias constructed with this name.

326 {\tikz [remember~picture,overlay]

327 \node [@@_node_style,

328 name = wa-\1_0@_prefix_str-\int_use:N\g_0@_line_int-1,
329 alias = \1_0@_name_tl-\int_use:N\g_@@_line_int-1] {} ;}
330 \hfil

Now, after the \hfil, we create the “right node” and, if the option shownodenames is raised, the
name of the node is written in the document (useful for debugging).

331 \tl_if_empty:NTF \1_Q@_name_tl

332 {\tikz [remember~picture,overlay]

333 \node [@@_node_style,

334 name = wa-\1_0@@_prefix_str-\int_use:N\g_00@_line_int-r] {} ;}
335 {\tikz [remember~picture,overlay]

336 \node [@@_node_style,

337 name = wa-\1_Q@@_prefix_str-\int_use:N\g_00_line_int-r,

338 alias = \1_Q@_name_tl-\int_use:N\g_@@_line_int-r] {3} ;}

339 \bool_if:NT \1_@@_shownodenames_bool

340 {\hbox_overlap_right:n {\small wa-\1_@@_prefix_str

341 -\int_use:N\g_0@_line_int}}

Usually, the \halign of an environment {WithArrows} will have exactly two columns. Nevertheless,
if the user wants to use more columns (without arrows) it’s possible with the option MoreColumns.

342 && \msg_error:nn {witharrows} {Third~column~in~an~environment~{WithArrows}}

343 $\bool_if:NT \1_0@_displaystyle_bool \displaystyle {##}$
344 \CI‘
345 }

31

We begin the second part of the environment {WithArrows}. We have two \egroup: one for the
\halign and one for the \vtop (or \vcenter or \vbox).

346 {\crcr

347 \egroup

348 \egroup

349 \@@_post_environment:}

This is the end of the environment {WithArrows}.

The command \@@_post_environment: is a code common to the second part of the environment
{WithArrows} and the environment {DispWithArrows}.

550 \cs_new_protected:Nn \Q@Q_post_environment:

If there is a line without the second column, we raise an error (a line without the second column
could generate an PGF error for an unknown node since the nodes are created in the second column).

351 {\int_compare:nNnT \g_@@_line_bis_int < \g_00@_line_int
352 {\msg_error:nn {witharrows} {All~lines~must~have~an~ampersand}}

It there is really arrows in the environment, we draw the arrows:
o if neither option group or groups is used, we can draw directly ;

o if option group or option groups is used (\1_0@_pos_arrows_int > 5), we have to draw the
arrows group by group ; the macro \@@_draw_arrows: does the work.

353 \int_compare:nNnT \g_0@_arrow_int > 0

354 {\int_compare:nNnTF \1_0@_pos_arrows_int > 5
355 \@@_draw_arrows:

356 {\@@_draw_arrows:nn 1 \g_0@_arrow_int}}

We will execute the code specified in the option CodeAfter, after some settings.

357 \group_begin:

358 \tikzset{every~picture/.style = @@_standard}

The command \NbLines is not used by witharrows. It’s only a convenience given to the user.
350 \cs_set:Npn \NbLines {\int_use:N \g_0@_line_int}

The command \MultiArrow is available in CodeAfter, and we have a special version of \Arrow, called
“\Arrow in CodeAfter” in the documentation.'®

360 \cs_set_eq:NN \MultiArrow \@@_MultiArrow:nn

361 \cs_set_eq:cN \1_0@_CommandName_tl \Q@_Arrow_code_after
362 \1_@@_code_after_tl

363 \group_end:

If the option footnote or the option footnotehyper is used, then we extract the footnotes with an
environment {footnote} (of the package footnote or the package footnotehyper).

364 \bool_if:NT \g_@@_footnote_bool {\end{savenotesl}}

We update the position-in-the-tree. First, we drop the last component and then we increment the
last element.

365 \seq_gpop_right:NN \g_0@_position_in_the_tree_seq \1_tmpa_tl
366 \seq_gpop_right:NN \g_0@_position_in_the_tree_seq \1_tmpa_tl
367 \seq_gput_right:Nx \g_0@_position_in_the_tree_seq {\int_eval:n {\1_tmpa_t1l+1}}

We update the value of the counter \g_0@_last_env_int. This counter is used only by the user
function \WithArrowsLastEnv.

368 \int_compare:nNnT {\seq_count:N \g_0@_position_in_the_tree_seq} = 1

369 {\int_gincr:N \g_0@_last_env_int}

18 As for now, \MultiArrow has no option, and that’s why its internal name is a name of expl3 with the signature :nn
whereas \Arrow in CodeAfter provides options and has the name of a function defined with \NewDocumentCommand.

32

Finally, we restore the previous values of the three counters \g_0@_arrow_int, \g_0@@_line_int and
\g_00@_line_bis_int. It is recalled that we manage three stacks in order to be able to do such a
restoration.

370 \seq_gpop_right:NN \g_0@_arrow_int_seq {\1_tmpa_tl}
371 \int_gset:Nn \g_0@_arrow_int {\1_tmpa_tl1}

372 \seq_gpop_right:NN \g_0@_line_int_seq \1l_tmpa_tl

373 \int_gset:Nn \g_00@_line_int {\1_tmpa_t1l}

374 \seq_gpop_right:NN \g_0@_line_bis_int_seq \1l_tmpa_tl
375 \int_gset:Nn \g_00@_line_bis_int {\1_tmpa_t1l}
376 }

That’s the end of the command \@@_post_environment:.

We give now the definition of \@@_cr: which is the definition of \\ in an environment {WithArrows}.
The two expl3 commands \group_align_safe_begin: and \group_align_safe_end: are specifically
designed for this purpose: test the token that follows in a \halign structure.

First, we remove an eventual token * since the commands \\ and * are equivalent in an environment
{WithArrows} (an environment {WithArrows}, like an environment {aligned} of amsmath, is always
unbreakable).

577 \cs_new_protected:Nn \@@_cr:

378 {\scan_stop:
379 \group_align_safe_begin:
380 \peek_meaning_remove:NTF * \Q@@_cr_i: \@@_cr_i:}

Then, we peek the next token to see if it’s a [. In this case, the command \\ has an optional argument
which is the vertical skip (=glue) to put.

351 \cs_new_protected:Nn \@@_cr_i:

382 {\peek_meaning:NTF [{\@@_cr_ii:} {\@@_cr_ii:[\c_zero_dim]} }
;63 \cs_new_protected:Npn \Q@_cr_ii: [#1]
384 {\group_align_safe_end:

For the environment {DispWithArrows}, the behaviour of \\ is different because we add the third
column which is the column for the tag (number of the equation).

385 \bool_if:NF \1_@@_in_witharrows_bool

386 {\bool_if:NTF \1_@@_notag_bool

If there is no tag to put, we use as well the third column because you want to raise an error if the
user uses more than two columns.

387 {&}

388 {

Here, we can’t use \refstepcounter{equation} (even the \refstepcounter modified by \hyperref)
because if the user has issued a \tag command, we have to use \1_@@_tag_t1 and not \theequation.
That’s why we do the incrementation of the counter “manually” and, the, we insert some code inspired
by the code of \refstepcounter.

389 \tl_if_empty:NT \1_Q@_tag_tl

300 {\int_gincr:N \c@equation}

We store in \g_tmpa_t1 the tag we will have to compose at the end in the line. We use a global
variable because we will use it in the next cell (after the &).

301 \cs_gset:Npx \g_tmpa_tl

392 {\tl_if_empty:NTF \1_0@@_tag_tl
303 \theequation

304 \1_0@_tag_tl}

395 \tl_if_empty:NF \1_0@@_label_tl

396 {

The following code is inspired from the definition of \refstepcounter in source2e.

307 \cs_set_eq:NN \Qcurrentlabel \g_tmpa_tl

The following code is inspired from the redefinition of \refstepcounter done by hyperref. It is
executed only if hyperref has been loaded.

308 \cs_if_exist:NT \hyper@refstepcounter
300 {\cs_set:Npn \This@name {equation}
400 \hyper@refstepcounter{equation}}

33

Now, we can issue the command \label.
401 \@@_old_label {\1_@@_label_tl}}

We store the boolean \1_0@_tag_star_bool in the global variable \g_tmpa_bool because we will
use it in the next cell (after the &).

402 \bool_gset_eq:NN \g_tmpa_bool \1_@@_tag_star_bool
403 & \cs_set_eq:NN \theequation \g_tmpa_tl
404 \bool_if:NT \g_tmpa_bool {\cs_set:Npn \tagform@ {}}

We use \@eqnnum (we recall that there are two definitions of \@eqnnum, a standard definition and
another, loaded if the option \legno is used).

405 \hbox_overlap_left:n \@egnnum

406 }}

407 \cr\noalign{\skip_vertical:n {#1 + \1_Q@_interline_skip}
408 \scan_stop:}}

According to the documentation of expl3, the previous addition in “#1 + \1_Q@_interline_skip”
is really an addition of skips (=glues).

9.8 The environment {DispWithArrows}

For the environment {DispWithArrows}, the construction is a construction of the type:
\[\vcenter{\halign to \displaywith {...}}\]
The purpose of the \vcenter is to have an environment unbreakable.

200 \NewDocumentEnvironment {DispWithArrows} {0{}}
410 {

The command \intertext@ is a command of amsmath which loads the definition of \intertext (if
it is loaded, the package nccmath gives a new defintion of \intertextQ@).

a11 \cs_if_exist_use:N \intertext@

a12 \if_mode_math:

413 \msg_error:nn {witharrows}

414 {{DispWithArrows}~used~in~math~mode}
415 \fi:

416 \bool_set_false:N \1_@@_in_witharrows_bool

a7 \@@_pre_environment:n {#1}

We use a \vcenter in order to prevent page breaks in the environment.

418 \begin{displaymath}

419 \vcenter \bgroup

420 \spread@equation

421 \bool_if:NTF \1_0@_fleqn_bool

422 {\tabskip = \c_zero_skip}

423 {\tabskip = O pt plus 1000 pt minus 1000 pt}

If amsmath is loaded, the LaTeX version of \1label is stored in \1tx@label. If not, it’s, of course,
stored in \label. We store this definition of \label because we will redefine \1label in the environ-
ment.

424 \cs_if_exist:NTF \1ltx@label

425 {\cs_set_eq:NN _0@@_old_label \1ltx@label}

426 {\cs_set_eq:NN _@@_old_label \label}

427 \cs_set:Npn \notag {\msg_error:nnn {witharrows}

428 {Command~not~allowed~in~{DispWithArrows}}

20 {\notag}}

430 \cs_set:Npn \nonumber {\msg_error:nnn {witharrows}

431 {Command~not~allowed~in~{DispWithArrows}}
432 {\nonumber}}

433 \cs_set:Npn \tag ##1 {\msg_error:nnn {witharrows}

434 {Command~not~allowed~in~{DispWithArrows}}
435 {\tag}}

436 \cs_set:Npn \label ##1 {\msg_error:nnn {witharrows}

437 {Command~not~allowed~in~{DispWithArrows}}

34

438 {\labell}}

439 \halign to \displaywidth \bgroup

440 \int_gincr:N \g_0@_line_int

441 \cs_set_eq:cN \1_@@_CommandName_t1l \@@_Arrow_first_column:

442 \strut

443 \bool_if:NT \1_@@_fleqn_bool

444 {\hspace{\1_0@_mathindent_dim}}

445 \hfil

446 $\bool_if:NT \1_@@_displaystyle_bool \displaystyle {##1}$

447 \tabskip = \c_zero_skip

44 &

449 \cs_set:Npn \notag {\bool_set_true:N \1_Q@_notag_bool}

450 \cs_set_eq:NN \nonumber \notag

451 \cs_set_eq:NN \tag \@@_tag

452 \cs_set_eq:NN \label \@@_label:n

453 $\bool_if:NT \1_@@_displaystyle_bool \displaystyle {{}##}$

454 \tabskip = O pt plus 1000 pt minus 1000 pt

455 \int_gincr:N \g_0@_line_bis_int

456 \tl_if_empty:NTF \1_Q@_name_tl

457 {\tikz [remember~picture,overlay]

458 \node [_0@_node_style,

459 name = wa-\1_Q@_prefix_str-\int_use:N\g_0@_line_int-1] {} ;}
460 {\tikz [remember~picture,overlay]

461 \node [_0@_node_style,

462 name = wa-\1_Q@_prefix_str-\int_use:N\g_0@_line_int-1,
463 alias = \1_@@_name_tl-\int_use:N\g_0@_line_int-1] {3} ;}
464 \hfil

465 \tl_if_empty:NTF \1_Q@_name_tl

466 {\tikz [remember~picture,overlay]

467 \node [_0@_node_style,

468 name = wa-\1_Q@_prefix_str-\int_use:N\g_0@_line_int-r] {} ;}
469 {\tikz [remember~picture,overlay]

470 \node [_0@_node_style,

471 name = wa-\1_Q@_prefix_str-\int_use:N\g_0@_line_int-r,

a2 alias = \1_@@_name_tl-\int_use:N\g_0@_line_int-r] {} ;}
473 \bool_if:NT \1_@@_shownodenames_bool

474 {\hbox_overlap_right:n {\small wa-\1_Q@_prefix_str

475 -\int_use:N\g_@@_line_int}}
476 & ##

ar7 \tabskip = \c_zero_skip

478 && \msg_error:nn {witharrows} {Third~column~in~an~environment~{DispWithArrows}}
479 \iffalse ## \fi

480 \cr}

481 {\\

The following \egroup is for the \halign.
482 \egroup

The following \egroup is for the \vcenter (aimed to prevent page breaks).

483 \egroup

484 \end{displaymath}

485 \@@_post_environment:
486 \ignorespacesafterend
487 }

The command \@@_tag will be linked to \tag in the environment {DispWithArrows}.
255 \NewDocumentCommand \@@_tag {sm}

489 {\bool_set_false:N \1_Q@@_notag_bool
490 \tl_set:Nn \1_@@_tag_tl {#2}
401 \bool_set:Nn \1_@@_tag_star_bool {#1}

The starred version \tag* can’t be use if amsmath has not been loaded because this version does
the job by desactivating the command \tagform@ inserted by amsmath in the (two versions of the)

35

command \@egnnum.'?

492 \bool_if:nT {#1 && ! \cs_if_exist_p:N \tagform@}
493 { \msg_error:nn {witharrows} {tag*~without~amsmath} }

494 }

With the environment {DispWithArrows*}, the equations are not numbered.

205 \NewDocumentEnvironment {DispWithArrows*} {}

496 {\WithArrowsOptions{notag}
497 \DispWithArrows}
498 {\endDispWithArrows}

9.9 We draw the arrows

\@@_draw_arrows: draws the arrows when the option group or the option groups is used. In both
cases, we have to compute the z-value of a group of arrows before actually drawing the arrows of
that group. The arrows will actually be drawn by the macro \@@_draw_arrows:nn.

29 \cs_new_protected:Nn \QQ@_draw_arrows:
soo { \group_begin:

\1_@@_first_arrow_of_group_int will be the first arrow of the current group.
\1_00_first_line_of_group_int will be the first line involved in the group of arrows (equal to the
initial line of the first arrow of the group because the option jump is always positive).
\1_0@_last_line_of_group_int will be the last line involved in the group (impossible to guess in
advance).

501 \int_zero_new:N \1_@@_first_arrow_of_group_int
502 \int_zero_new:N \1_@@_first_line_of_group_int
503 \int_zero_new:N \1_0@_last_line_of_group_int
504 \bool_set_true:N \1_@@_new_group_bool

We begin a loop over all the arrows of the environment. Inside this loop, if a group is finished, we
will draw the lines of that group.

505 \int_set:Nn \1_@@_arrow_int 1
506 \int_until_do:nNnn \1_@@_arrow_int > \g_Q@_arrow_int
507 {

We extract from the property list of the current arrow the fields “initial” and “final” and we store
these values in \1_@@_initial_int and \1_0@_final_int. However, we have to do a conversion
because the components of a property list are token lists.

508 \prop_get:cnN {g_00_arrow_\1_0@_prefix_str _\int_use:N\1_0@_arrow_int _prop}
500 {initial} \1_tmpa_tl

510 \int_set:Nn \1_0@_initial_int {\1_tmpa_t1}

511 \prop_get:cnN {g_00_arrow_\1_0@_prefix_str _\int_use:N\1_0@_arrow_int _prop}
512 {final} \1_tmpa_t1l

513 \int_set:Nn \1_@@_final_int {\1_tmpa_t1}

We test if the previous arrow was in fact the last arrow of a group. In this case, we have to draw all
the arrows of that group (with the z-value computed in \g_0@_x_dim).

514 \bool_if:nT { \int_compare_p:nNn \1_@@_pos_arrows_int = 7

515 && \int_compare_p:nNn \1_@@_arrow_int > 1

516 && \int_compare_p:nNn

517 \1_@@_initial_int > \1_0@_last_line_of_group_int}

518 {\@@_draw_arrows:nn \1_Q@_first_arrow_of_group_int {\1_0@_arrow_int - 1}
519 \bool_set_true:N \1_00@_new_group_bool}

9There are two versions of @eqnnum, a standard version and a version for the option legno.

36

The flag \1_0@_new_group_bool indicates if we have to begin a new group of arrows. In fact,
we have to begin a new group in two circonstancies: if we are at the first arrow of the environ-
ment (that’s why the flag is raised before the beginning of the loop) an if we have just finished a
group (that’s why the flag is raised in the previous conditionnal). At the beginning of a group,
we have to initialize four variables: \1_@@_first_arrow_int, \1_Q@@_first_line_of_group_int,
\1_0@_last_line_of_group and \g_@@_x_dim (global for technical reasons). The last two will evolve
during the construction of the group.

520 \bool_if:nTF \1_@@_new_group_bool

521 {\bool_set_false:N \1_@@_new_group_bool

522 \int_set:Nn \1_0@_first_arrow_of_group_int \1_@@_arrow_int

523 \int_set:Nn \1_0@_first_line_of_group_int \1_Q@_initial_int

524 \int_set:Nn \1_0@_last_line_of_group_int \1_0@_final_int

525 \begin{tikzpicture} [@@_standard]

526 \tikz@parse@node\pgfutil@firstofone (\int_use:N\1_Q@_initial_int-1)
527 \dim_gset:Nn \g_0@_x_dim \pgf@x

528 \end{tikzpicture}

529 }

If we are not at the beginning of a new group, we actualize \1_@@_last_line_of_group_int.

530 {\int_set:Nn \1_0@_last_line_of_group_int
531 {\int_max:nn \1_0@_last_line_of_group_int \1_Q@@_final_int}}

We update the current a-value (in \g_0@_x_dim) even if we are at the beginning of a group. Indeed,
the previous initialisation of \g_0@@_x_dim only considers the initial line of the arrows and now we
consider all the lines between the initial and the final line. This is done with \@@_update_x_value:nn.
We have written a command for this because it is also used with the option 1 (\1_@@_pos_arrows_int
= 5).

532 \@@_update_x_value:nn \1_@@_initial_int \1_0@_final_int

Incrementation of the index of the loop (and end of the loop).

533 \int_incr:N \1_@@_arrow_int

534 T

After the last arrow of the environment, we have to draw the last group of arrows.

535 \@@_draw_arrows:nn \1_Q@_first_arrow_of_group_int \g_00_arrow_int
536 \group_end:

The following code is necessary because we will have to expand an argument exactly 3 times.

533 \CsS_generate_variant:Nn \keys_set:nn {no}
539 \cs_new_protected:Nn \Q@@_keys_set: {\keys_set:no {WithArrows/General}}

The macro \@@_draw_arrows:nn draws all the arrows whose numbers are between #1 and #2. #1
and #2 must be expressions that expands to an integer (they are expanded in the beginning of the
macro).

s10 \cs_new_protected:Nn \@@_draw_arrows:nn
sa {\group_begin:

542 \int_zero_new:N \1_Q@_first_arrow_int
543 \int_set:Nn \1_@@_first_arrow_int {#1}
544 \int_zero_new:N \1_@@_last_arrow_int

545 \int_set:Nn \1_@@_last_arrow_int {#2}

We begin a loop over the arrows we have to draw. The variable \1_0@_arrow_int (local in the
environment {WithArrows}) will be used as index for the loop.

546 \int_set:Nn \1_Q@@_arrow_int \1_@@_first_arrow_int
547 \int_until_do:nNnn \1_@@_arrow_int > \1_Q@_last_arrow_int
548 {

37

We extract from the property list of the current arrow the fields “initial” and “final” and we store
these values in \1_@@_initial_int and \1_@@_final_int. However, we have to do a conversion
because the components of a property list are token lists.

549 \prop_get:cnN {g_0@_arrow_\1_@@_prefix_str _\int_use:N\1_@@_arrow_int _prop}
550 {initial} \1_tmpa_t1l

551 \int_set:Nn \1_Q@_initial_int {\1_tmpa_t1}

552 \prop_get:cnN {g_0@_arrow_\1_@@_prefix_str _\int_use:N\1_@@_arrow_int _prop}
553 {final} \1_tmpa_tl

554 \int_set:Nn \1_@@_final_int {\1_tmpa_t1l}

If the arrow ends after the last line of the environment, we raise an error (we recall that, after the
construction of the \halign, \g_0@_line_int is the total number of lines of the environment). If
the initial node or the final node doesn’t exist, we also raise an error.2’

555 \int_compare:nNnTF \1_@@_final_int > \g_@@_line_int

556 {\msg_error:nn {witharrows} {Too~few~lines~for~an~arrowl}}

557 {\cs_if_free:cTF {pgf0sh@ns@wa-\1_0@_prefix_str-\int_use:N\1_00@_initial_int-1}
558 { \msg_error:nn {witharrows} {A~PGF~node~doesn't~exist} }

550 {\cs_if_free:cTF {pgf@sh@ns@wa-\1_0@@_prefix_str-\int_use:N\1_00@_final_int-1}
560 { \msg_error:nn {witharrows} {A~PGF~node~doesn't~exist} }

561 {\@@_draw_arrows_i:}}}

562 \int_incr:N \1_@@_arrow_int

563 T

564 \group_end:

565 }

The macro \@@_draw_arrows_i: is only for the lisibility of the code. This macro will draw the current

arrow if the arrow is not impossible (that is to say if the Tikz node exists). The first \group_begin:
is for the options of the arrow.

s66 \cs_new:Nn \@@_draw_arrows_i:

567 {\group_begin:
568 \int_set:Nn \1_@@_previous_pos_arrows_int {-1}
560 \int_set:Nn \1_@@_level_int 3

We process the options of the current arrow. The second argument of \keys_set:nn must be ex-

panded exactly three times. An x-expansion is not possible because there can be tokens like \bfseries
in the option font of the option tikz. This expansion is a bit tricky.

570 \prop_get:cnN {g_0@_arrow_\1_0@_prefix_str

571 _\int_use:N\1_0@@_arrow_int _prop} {options} \1_tmpa_tl
572 \exp_args:NNo \exp_args:No

573 \@@_keys_set: {\1_tmpa_tl,tikz={xshift = \1_@@_xoffset_dim}}

We create two booleans to indicate the position of the initial node and final node of the arrow in
cases of options rr, rl, 1r or 11:

574 \bool_set_false:N \1_@@_initial_r_bool

575 \bool_set_false:N \1_Q@_final_r_bool

576 \int_case:nn \1_0@_pos_arrows_int

577 {0 {\bool_set_true:N \1_@@_initial_r_bool

578 \bool_set_true:N \1_@@_final_r_bool}

579 2 {\bool_set_true:N \1_@@_initial_r_bool}

580 3 {\bool_set_true:N \1_@@_final_r_booll}}
option rr 11 rl 1lr v i group groups
\1_0@_pos_arrows_int 0 1 2 3 4 5 6 7

The option v can be used only in \Arrow in CodeAfter (see below).

20This case occurs if the considered line has no ampersand. In fact, we raise an error if there is such a line in the
\halign, but, nonetheless, we consider the case where the user goes on and we try to avoid other errors.

38

In case of option i (\1_@@_pos_arrows_int = 5), we have to compute the z-value of the arrow
(which is vertical). The computed z-value is stored in \g_0@_x_dim (the same variable used when
the option group or the option groups is used). This variable is global for technical reasons: we have
to do assignments in a Tikz node.

581 \int_compare:nNnT \1_0@_pos_arrows_int = 5

582 {

First, we calculate the initial value for \g_0@_x_dim. We use a Tikz command, but, in fact, nothing
is drawn. We use this Tikz command only to read the abscissa of a Tikz node.

583 \begin{tikzpicture} [@@_standard]

584 \tikz@parse@node\pgfutil@firstofone (\int_use:N\1_@@_initial_int-1)
585 \dim_gset:Nn \g_0@_x_dim \pgf@x

586 \end{tikzpicture}

A global assignment is necessary because of Tikz.

Then, we will loop to determine the maximal length of the lines between the lines \1_@@_initial_int
and \1_@@_final_int... but we have written a command dedicated to this work because it will also
be used in \@@_draw_arrows:.

587 \@@_update_x_value:nn \1_Q@_initial_int \1_0@_final_int

588 }

\1_0@_initial_t1 contains the name of the Tikz node from which the arrow starts (in normal cases...
because with the option i, group and groups, the point will perhaps have another z-value — but
always the same y-value). Idem for \1_0@_final_t1.

580 \tl_set:Nx \1_Q@_initial_t1

500 {\int_use:N\1_0@@_initial_int-\bool_if:NTF\1_@@_initial_r_bool rl .south}
501 \tl_set:Nx \1_@@_final_ tl

502 {\int_use:N\1_0@@_final_int-\bool_if:NTF\1_@@_final_r_bool rl .north}

We use “.south” and “.north” because we want a small gap between two consecutive arrows (and
the Tikz nodes created have the shape of small vertical segments: use option shownodes to visualize
the nodes).

The label of the arrow will is stored in \1_tmpa_t1.

593 \prop_get:cnN {g_0@_arrow_\1_0@_prefix_str _\int_use:N\1_Q@_arrow_int _prop}
504 {label}
595 \l_tmpa_tl

We have to compute the coordinates of the extremities of the arrow. We retrieve the coordinates in
\g_tmpa_t1l and \g_tmpb_tl. This extraction of the coordinates is necessary because we must give
coordinates and not nodes (even anchored) to \@@_draw_arrow:nnn to have the xshift correct.

506 \int_compare:nNnTF \1_@@_pos_arrows_int < 5

597 {\begin{tikzpicture} [@@_standard]

598 \tikz@scan@one@point\pgfutil@firstofone(\1_0@_initial_tl)
599 \tl_gset:Nx \g_tmpa_tl {\dim_use:N\pgf@x,\dim_use:N\pgfQy}
600 \tikz@scan@one@point\pgfutil@firstofone(\1_Q@0@_final_t1l)

601 \tl_gset:Nx \g_tmpb_tl {\dim_use:N\pgf@x,\dim_use:N\pgfQy}
602 \end{tikzpicture}

603 }

If we use option i or group or groups, we use the abscissa specially computed in \g_0@_x_dim.
604 {\begin{tikzpicture} [@@_standard]

605 \tikz@scan@one@point\pgfutil@firstofone (\1_Q@_initial_t1l)

606 \tl_gset:Nx \g_tmpa_tl {\dim_use:N \g_00_x_dim , \dim_use:N \pgfQy}

607 \tikz@scan@one@point\pgfutil@firstofone (\1_0@_final_tl)

608 \tl_gset:Nx \g_tmpb_tl {\dim_use:N \g_00@_x_dim , \dim_use:N \pgfQy}

609 \end{tikzpicturel}}

39

Eventually, we can draw the arrow with the code in \1_@@_tikz_code_t1l. We recall that the value by
default for this token list is : “\draw (#1) to node {#3} (#2) ;”. This value can be modified with
the option TikzCode. We use the variant \@@_draw_arrow:nno of the macro \@@_draw_arrow:nnn
because of the characters underscore in the name \1_tmpa_t1l : if the user uses the Tikz library
babel, the third argument of the command \@@_draw_arrow:nno will be rescanned because this
third argument will be in the argument of a command node of an instruction \draw of Tikz... and
we will have an error because of the characters underscore.”!

610 \@@_draw_arrow:nno {\g_tmpa_t1l} {\g_tmpb_tl} {\1_tmpa_t1l}

We close the TeX group opened for the options given to \Arrow[...] (local level of the options).
611 \group_end: }

The function @@_tmpa:nnn will draw the arrow. It’s merely an environment {tikzpicture}. How-
ever, the Tikz instruction in this environment must be inserted from \1_0@_tikz_code_t1 with the
markers #1, #2 and #3. That’s why we create a function \@@_def_function_tmpa:n which will create
the function \@@_tmpa :nnn.

61> \cs_new_protected:Nn \@@_def_function_tmpa:n

613 {\cs_set:Nn \@@_tmpa:nnn

614 {\begin{tikzpicture} [@@_standard,every~path/.style = {WithArrows/arrowl}]
615 #1

616 \end{tikzpicture}}}

When we draw the arrow (with \@@_draw_arrow:nnn), we create first the function \@@_tmpa:nnn
and, then, we use the function \@@_tmpa:nnn :

617 \cs_new_protected:Nn \@@_draw_arrow:nnn

618 {\exp_args:No \@0_def_function_tmpa:n \1_00@_tikz_code_tl

619 \@@_tmpa:nnn {#1} {#2} {#3} }

o0 \cs_generate_variant:Nn \@@_draw_arrow:nnn {nno}

The command \@@_update_x_value:nn will analyze the lines®? between #1 and #2 in order to modify
\g_0@_x_dim in consequence. More precisely, \g_0@_x_dim is increased if a line longer than the
current value of \g_0@_x_dim is found. \@@_update_x_value:nn is used in \@@_draw_arrows: (for
options group and groups) and in \@@_draw_arrows:nn (for option i).

621 \cs_new_protected:Nn \@Q@_update_x_value:nn

622 {\int_step_inline:nnnn {#1} \c_one {#2}

623 {\cs_if_exist:cT {pgf@sh@ns@wa-\1_00@_prefix_str-##1-1}

624 {\begin{tikzpicture} [@Q_standard]

625 \tikz@scan@one@point\pgfutil@firstofone (##1-1)

626 \dim_gset:Nn \g_00_x_dim {\dim_max:nn \g_0@_x_dim \pgf@x}
627 \end{tikzpicture} } } }

The command \WithArrowsLastEnv is not used by the package witharrows. It’s only a facility given
to the final user. It gives the number of the last environment {WithArrows} at level 0 (to the sens
of the nested environments). This macro is fully expandable and, thus, can be used directly in the
name of a Tikz node.

o5 \cs_new:Npn \WithArrowsLastEnv {\int_use:N \g_0@_last_env_int}

21 There were other solutions : use another name without underscore (like \1tmpatl) or use the package underscore
(with this package, the characters underscore will be rescanned without errors, even in text mode).

221f a line has no ampersand, this line is ignored. In fact, we raise an error if there is a line without ampersand but,
nonetheless, we consider the case where the user goes on and we try to avoid other errors.

40

9.10 The command Arrow in CodeAfter

The option CodeAfter is an option of the environment {WithArrows} (this option is only available at
the environment level). In the option CodeAfter, one can use the command Arrow but it’s a special
version of the command Arrow. For this special version (internally called \@@_Arrow_code_after),
we define a special set of keys called WithArrows/CodeAfter.

020 \keys_define:nn {WithArrows/CodeAfter}

630 {tikz .code:n = \tikzset {WithArrows/arrow/.append~style = {#1}} ,
631 tikz .value_required:n = true,

632 rr .value_forbidden:n = true,

633 rr .code:n = \@@_analyze_option_position:n O ,
634 11 .value_forbidden:n = true,

635 11 .code:n = \@@_analyze_option_position:n 1 ,
636 rl .value_forbidden:n = true,

637 rl .code:n = \@Q@_analyze_option_position:n 2 ,
638 1r .value_forbidden:n = true,

639 1r .code:n = \@@_analyze_option_position:n 3 ,
640 v .value_forbidden:n = true,

641 v .code:n = \@@_analyze_option_position:n 4 ,
642 TikzCode .tl_set:N = \1_@@_tikz_code_t1,

643 TikzCode .value_required:n = true,

644 xoffset .dim_set:N = \1_00@_xoffset_dim,

645 xoffset .value_required:n = true}

616 \NewDocumentCommand \@@_Arrow_code_after {0{} mmm O0{}}

647 {\int_set:Nn \1_0@@_pos_arrows_int 1
648 \int_set:Nn \1_Q@_previous_pos_arrows_int {-1}
649 \group_begin:

Even if \Arrow in CodeAfter has its own set of options (WithArrows/CodeAfter), we set the level
of the options to 3 (as with the classical command \Arrow) because of the error messages.

650 \int_set:Nn \1_0@_level_int 3

651 \keys_set:nn {WithArrows/CodeAfter}

652 {#1,#5,tikz={xshift = \1_@@_xoffset_dim}}

653 \bool_set_false:N \1_Q@_initial_r_bool

654 \bool_set_false:N \1_@@_final_r_bool

655 \int_case:nn \1_0@_pos_arrows_int

656 {0 {\bool_set_true:N \1_@@_initial_r_bool

657 \bool_set_true:N \1_@@_final_r_bool}

658 2 {\bool_set_true:N \1_@@_initial_r_bool}

650 3 {\bool_set_true:N \1_@@_final_r_booll}}

We test wether the two Tikz nodes (#2-1) and (#3-1) really exist. If not, the arrow won’t be drawn.
660 \cs_if_free:cTF {pgf@sh@ns@wa-\1_Q0_prefix_str-#2-1}

661 {\msg_error:nnx {witharrows} {Wrong~line~specification~in~Arrow} {#2}}

662 {\cs_if_free:cTF {pgf@sh@ns@wa-\1_00_prefix_str-#3-1}

663 {\msg_error:nnx {witharrows} {Wrong~line~specification~in~Arrow} {#3}}

664 {\int_compare:nNnTF \1_@@_pos_arrows_int = 4

665 {\begin{tikzpicture} [@@_standard]

666 \tikz@scan@one@point\pgfutil@firstofone (#2-1.south)

667 \dim_set_eq:NN \1_tmpa_dim \pgf@x

668 \dim_set_eq:NN \1_tmpb_dim \pgfQy

669 \tikz@scan@one@point\pgfutil@firstofone (#3-1.north)

670 \dim_set:Nn \1_tmpa_dim {\dim_max:nn \1_tmpa_dim \pgf@x}

671 \tl_gset:Nx \g_tmpa_tl {\dim_use:N \1_tmpa_dim , \dim_use:N \1_tmpb_dim}
672 \tl_gset:Nx \g_tmpb_tl {\dim_use:N \1_tmpa_dim , \dim_use:N \pgfQy}
673 \end{tikzpicture} }

674 {\begin{tikzpicture} [@@_standard]

675 \tikz@scan@one@point\pgfutil@firstofone

676 (#2-\bool_if:NTF\1_@@_initial_r_bool rl .south)
677 \tl_gset:Nx \g_tmpa_tl {\dim_use:N \pgf@x , \dim_use:N \pgfQ@y}

678 \tikz@scan@one@point\pgfutil@firstofone

679 (#3-\bool_if:NTF\1_@@_final_r_bool rl .north)

41

680 \tl_gset:Nx \g_tmpb_tl {\dim_use:N \pgf@x , \dim_use:N \pgfQy}
681 \end{tikzpicturel}}

682 \@@_draw_arrow:nnn {\g_tmpa_t1l} {\g_tmpb_t1} {#4} }}

683 \group_end:

684 ¥

9.11 MultiArrow

The command \@@_MultiArrow:nn will be linked to \MultiArrow when the CodeAfter is executed.

635 \cS_new_protected:Nn \@@_MultiArrow:nn

686 {

The user of the command \MultiArrow (in CodeAfter) will be able to specify the list of lines with
the same syntax as the loop \foreach of pgffor. That’s why we construct a “clist” of expl3 from the
specification of list given by the user. The construction of the “clist” must be global in order to exit
the \foreach and that’s why we construct the list in \g_tmpa_clist.

687 \foreach \x in {#1} {\cs_if_free:cTF {pgf@sh@ns@wa-\1_@@_prefix_str-\x-1}

688 {\msg_error:nnx {witharrows}

689 {Wrong~line~specification~in~MultiArrow}

690 {\x}}

691 {\clist_gput_right:Nx \g_tmpa_clist {\x}}}

We sort the list \g_tmpa_clist because we want to extract the minimum and the maximum.

602 \int_compare:nNnTF {\clist_count:N \g_tmpa_clist} < 2

693 {\msg_error:nn {witharrows} {Too~small~specification~for~MultiArrowl}}
604 {\clist_sort:Nn \g_tmpa_clist

695 {\int_compare:nNnTF {##1} > {##2}

696 {\sort_return_swapped:}

607 {\sort_return_same:}}

We extract the minimum in \1_tmpa_t1 (it must be a integer but we store it in a token list of expl3).
698 \clist_pop:NN \g_tmpa_clist \1_tmpa_tl

We extract the maximum in \1_tmpb_t1l. The remaining list (in \g_tmpa_clist will be sorted in
decreasing order but never mind...).

699 \clist_reverse:N \g_tmpa_clist

700 \clist_pop:NN \g_tmpa_clist \1_tmpb_tl

We draw the teeth of the rak (except the first one and the last one) with the auxiliary function
\@@_MultiArrow_i:n. This auxiliary fonction is necessary to expand the specification of the list in
the \foreach loop. The first and the last teeth of the rak can’t be drawn the same way as the others
(think, for example, to the case of the option “rounded corners” is used).

701 \exp_args:Nx \@@_MultiArrow_i:n {\g_tmpa_clist}

Now, we draw the rest of the structure.

702 \begin{tikzpicture}[0@_standard,every~path/.style={WithArrows/arrowl}]

703 \draw [<->] ($(\1_tmpa_tl-r.south)+(\1_0@_xoffset_dim,0)$)

704 -- ++(5mm,0)

705 -- node {#2} ($(\1_tmpb_tl-r.south)+(\1_@@_xoffset_dim+5mm,0)$)
706 -= ($(\1_tmpb_tl-r.south)+(\1_0@_xoffset_dim,0)$) ;

707 \end{tikzpicture} } }

700 \cs_new_protected:Nn \@@_MultiArrow_i:n

710 {\begin{tikzpicture} [@@_standard,every~path/.style={WithArrows/arrow}]

711 \foreach \k in {#1}

712 {\draw[<-] ($(\k-r.south)+(\1_@@_xoffset_dim,0)$) -- ++(5mm,0) ;} ;
713 \end{tikzpicture}}

42

9.12 The error messages of the package

712 \msg_new:nnn {witharrows}

715 {Third~column~in~an~environment~{WithArrows}}

716 {By~default,~an~environment~\{WithArrows\}~can~only~have~two~columns.~
77 Maybe~you~have~forgotten~a~\str_use:N \c_backslash_str

718 \str_use:N \c_backslash_str.~If~you~really~want~more~than~two~columns, ~
719 you~should~use~the~option~"MoreColumns"~at~a~global~level~or~for~

720 an~environment.~However, ~you~can~go~one~for~this~time.}

721 \msg_new:nnn {witharrows}

722 {Third~column~in~an~environment~{DispWithArrows}}

723 {An~environment~\{DispWithArrows\}~or~\{DispWithArrows*\}~can~only~have~two~columns.~
724 If~you~go~on,~you~may~have~an~incorrect~output.}

725 \msg_new:nnn {witharrows}

726 {The~option~"jump"~must~be~non~negativel}

727 {You~can't~use~a~strictly~negative~value~for~the~option~"jump"~of~command~
728 \token_to_str:N\Arrow.~ You~can-create~an~arrow~going~backwards~with~

729 the~option~"<-"~of~Tikz.}

720 \msg_new:nnn {witharrows}

731 {Too~few~lines~for~an~arrow}

732 {An~arrow~specified~in~line~\int_use:N \1_0@_initial_int\ can't~be~drawn~
733 because~it~arrives~after~the~last~line~of~the~environment~(remind~that~
734 the~command~\token_to_str:N\Arrow\ must~be~in~the~*start*~line~

735 of ~the~arrow) . ~If~you~go~on, ~this~arrow~will~be~ignored.}

73 \msg_new:nnn {witharrows}

737 {{WithArrows}~used~outside~math~mode}

738 {The~environment~\{WithArrows\}~should~be~used~only~in~math~mode. ~
739 Nevertheless, ~you~can~go~on.}

70 \msg_new:nnn {witharrows}

741 {{DispWithArrows}~used~in~math~mode}

742 {The~environment~\{DispWithArrows\}~should~be~used~only~outside~math~mode. ~
743 If~you~go~on,~you~will~have~other~errors.}

744 \msg_new:nnn {witharrows}
745 {Two~options~are~incompatible}

746 {You~try~to~use~the~option~"\tl_use:N\1_keys_key_tl"~but~
747 this~option~is~incompatible~or~redundant~with~the~option~"
748 \int_case:nn\1_Q@_previous_pos_arrows_int

749 "[0 {rr}

750 1 {11}

751 2 {rl}

752 3 {1r}

753 4 {v}

754 5 {i}

755 6 {group}

756 7 {groups}}"~

757 previously~set~in~the~same~

758 \int_case:nn\1_0@@_level_int

750 {1 {command~\token_to_str:N\WithArrowsOptions}

760 2 {declaration~of~options~of~the~environment~\{WithArrows\}}
761 3 {command~\token_to_str:N\Arrow}}.~

762 If~you~go~on,~I~will~overwrite~the~first~option.}

763 \msg_new:nnnn {witharrows}

764 {All~lines~must~have~an~ampersand}

765 {All~lines~of~an~environment~\{WithArrows\}~should~have~an~second~column~

766 (because~the~nodes~are~created~in~the~second~column) . ~However, ~you~can~go~but~you~will~
767 have~an~error~if~one~of~your~arrows~needs~an~PGF~node~absent~by~lack~of~ampersand.~

768 If~you~don't~want~to~see~this~message~again,~you~can~use~the~option~

769 AllowLineWithoutAmpersand.}

770 {Moreover, the~ampersand~can~be~implicit~

m (e.g.~if~you~use~\token_to_str:N\MoveEqLeft\ of~mathtools).}

772 \msg_new:nnn {witharrows}

43

773 {Option~incompatible~with~"group(s)"}

74 {You~try~to~use~the~option~"\tl_use:N\1_keys_key_tl"~while~
775 you~are~using~the~option~"

776 \int_compare:nNnTF \1_@@_pos_arrows_int = 5

777 {group}

778 {groups}".~

779 It's~incompatible.~You~can~go~on~ignoring~this~option~

780 "\t1l_use:N\1_keys_key_t1l"~but~you~should~correct~your~code.}

71 \msg_new:nnn {witharrows}

782 {Option~will~be~ignored}

783 {The~option~"\tl_use:N\1_keys_key_tl"~can't~be~used~here.~
784 If~you~go~on,~it~will~be~ignored.}

755 \msg_new:nnn {witharrows}

786 {Option~unknown}

787 {The~option~"\tl_use:N\1_keys_key_tl"~is~unknown~or-~

788 meaningless~in~the~context.~If~you~go~on,~it~will~be~ignored.>}

750 \msg_new:nnn {witharrows}

790 {Arrow~in~first~column}

701 {You~should~not~use~the~command~\token_to_str:N\Arrow\
792 \tl_if_eq:NNF \1_@@_CommandName_tl \1_tmpa_tl

703 {(renamed~in~\str_use:N \c_backslash_str

704 \tl_use:N \1_@@_CommandName_t1l)~}

795 ~in~the~first~column~but~only~in~the~second~column. ~

796 This~is~a~restriction~of~the~version~1.3~of~the~

797 package~witharrows~(in~the~aim~of~developping~further~
798 ~a~new~functionality~with~\token_to_str:N\Arrow\ in~the~
799 first~column).\\

800 However~you~can~go~on~for~this~time.}

s01 \msg_new:nnn {witharrows}

802 {Wrong~line~specification~in~Arrow}

803 {The~specification~of~line~"#1"~you~use~in~\token_to_str:N\Arrow\
804 ~doesn't~exist.\\

805 If~you~go~on,~the~arrow~will~be~ignored.}

506 \msg_new:nnn {witharrows}

807 {Wrong~line~specification~in~MultiArrow}

808 {The~specification~of~line~"#1"~doesn't~exist.\\

809 If~you~go~on,~it~will~be~ignored~for~\token_to_str:N \MultiArrow.}

s0 \msg_new:nnn {witharrows}
811 {Too~small~specification~for~MultiArrow}

812 {The~specification~of~lines~you~gave~to~\token_to_str:N \MultiArrow\
813 is~too~small:~we~need~at~least~two~lines.~If~you~go~on,~the~
814 command~\token_to_str:N\MultiArrow\ ~will~be~ignored.}

s15 \msg_new:nnn {witharrows}

816 {A~PGF~node~doesn't~exist}

817 {A~PGF~node~necessary~to~draw~an~arrow~doesn't~exist~

818 because~you~didn't~put~an~ampersand~in~the~corresponding~line.~
819 If~you~go~on,~the~arrow~will~be~ignored.}

e20 \msg_new:nnn {witharrows}

821 {tag*~without~amsmath}

822 {We~can't~use~\token_to_str:N\tag*~because~you~haven't~load~amsmath~
823 (or~mathtools) .~If~you~go~on, ~the~command~\token_to_str:N\tag\

824 will~be~used~instead.}

s \msg_new:nnn {witharrows}

826 {Command~not~allowed~in~{DispWithArrows}}

827 {The~command~\token_to_str:N #1

828 is~not~allowed~in~the~first~column~of~\{DispWithArrows\}~but~
829 only~in~the~second~column~(and, ~of~course,~in~the~

830 environments~of~amsmath) . ~If~you~go~on, ~this~command~will~be~ignored.}

s31 \msg_new:nnn {witharrows}

44

832 {Command~not~allowed~in~{WithArrows}}

833 {The~command~\token_to_str:N #1

834 is~not~allowed~in~\{WithArrows\}~but~is~allowed~in~the~second~

835 column~of~\{DispWithArrows\}~(and, ~of~course,~in~the~

836 environments~of~amsmath) . ~If~you~go~on, ~this~command~will~be~ignored.}

10 History

10.1 Changes between versions 1.0 and 1.1

Option for the command \\ and option interline
Compatibility with \usetikzlibrary{babel}
Possibility of nested environments {WithArrows}
Better error messages

Creation of a DTX file

10.2 Changes between versions 1.1 and 1.2

The package witharrows can now be loaded without having loaded previously tikz and the libraries
arrow.meta and bending (this extension and these libraries are loaded silently by witharrows).

New option groups (with a s)

Better error messages

10.3 Changes between versions 1.2 and 1.3

New options ygap and ystart for fine tuning.

Minor bugs.

10.4 Changes between versions 1.3 and 1.4

The package footnote is no longer loaded by default. Instead, two options footnote and
footnotehyper have been added. In particular, witharrows becomes compatible with beamer.

10.5 Changes between versions 1.4 and 1.5

The Tikz code used to draw the arrows can be changed with the option TikzCode.

Two new options CodeBefore and CodeAfter have been added at the environment level.

A special version of \Arrow is available in CodeAfter in order to draw arrows in nested environments.
A command \MultiArrow is available in CodeAfter to draw arrows of other shapes.

10.6 Changes between versions 1.5 and 1.6

The code has been improved to be faster and the Tikz library calc is no longer required.

A new option name is available for the environments {WithArrows}.

10.6.1 Changes between 1.6 and 1.6.1

Correction of a bug that leads to incompatibility with \usetikzlibrary{babel}.

10.7 Changes between 1.6.1 and 1.7

New environment {DispWithArrows}.

45

	1 Options for the shape of the arrows
	2 Precise positioning of the arrows
	3 Comparison with the environment {aligned}
	4 Arrows in nested environments
	5 Arrows from outside environments {WithArrows}
	6 The environment {DispWithArrows}
	7 Advanced features
	7.1 The option TikzCode : how to change the shape of the arrows
	7.2 Footnotes in the environments of witharrows

	8 Examples
	8.1 With only one column
	8.2 MoveEqLeft
	8.3 Modifying the shape of the nodes
	8.4 Examples with the option TikzCode
	8.4.1 Example 1
	8.4.2 Example 2

	8.5 Automatic numbered loop

	9 Implementation
	9.1 Declaration of the package and extensions loaded
	9.2 The packages footnote and footnotehyper
	9.3 Some technical definitions
	9.4 Variables
	9.5 The definition of the options
	9.6 The command Arrow
	9.7 The environment {WithArrows}
	9.8 The environment {DispWithArrows}
	9.9 We draw the arrows
	9.10 The command Arrow in CodeAfter
	9.11 MultiArrow
	9.12 The error messages of the package

	10 History
	10.1 Changes between versions 1.0 and 1.1
	10.2 Changes between versions 1.1 and 1.2
	10.3 Changes between versions 1.2 and 1.3
	10.4 Changes between versions 1.3 and 1.4
	10.5 Changes between versions 1.4 and 1.5
	10.6 Changes between versions 1.5 and 1.6
	10.6.1 Changes between 1.6 and 1.6.1

	10.7 Changes between 1.6.1 and 1.7

