Methods for Survival and Duration Analysis

statsmodels.duration implements several standard methods for working with censored data. These methods are most commonly used when the data consist of durations between an origin time point and the time at which some event of interest occurred. A typical example is a medical study in which the origin is the time at which a subject is diagnosed with some condition, and the event of interest is death (or disease progression, recovery, etc.).

Currently only right-censoring is handled. Right censoring occurs when we know that an event occurred after a given time t, but we do not know the exact event time.

Survival function estimation and inference

The statsmodels.api.SurvfuncRight class can be used to estimate a survival function using data that may be right censored. SurvfuncRight implements several inference procedures including confidence intervals for survival distribution quantiles, pointwise and simultaneous confidence bands for the survival function, and plotting procedures. The duration.survdiff function provides testing procedures for comparing survival distributions.

Here we create a SurvfuncRight object using data from the flchain study, which is available through the R datasets repository. We fit the survival distribution only for the female subjects.

In [1]: import statsmodels.api as sm

In [2]: data = sm.datasets.get_rdataset("flchain", "survival", cache=True).data
---------------------------------------------------------------------------
ConnectionRefusedError                    Traceback (most recent call last)
File /usr/lib/python3.11/urllib/request.py:1348, in AbstractHTTPHandler.do_open(self, http_class, req, **http_conn_args)
   1347 try:
-> 1348     h.request(req.get_method(), req.selector, req.data, headers,
   1349               encode_chunked=req.has_header('Transfer-encoding'))
   1350 except OSError as err: # timeout error

File /usr/lib/python3.11/http/client.py:1294, in HTTPConnection.request(self, method, url, body, headers, encode_chunked)
   1293 """Send a complete request to the server."""
-> 1294 self._send_request(method, url, body, headers, encode_chunked)

File /usr/lib/python3.11/http/client.py:1340, in HTTPConnection._send_request(self, method, url, body, headers, encode_chunked)
   1339     body = _encode(body, 'body')
-> 1340 self.endheaders(body, encode_chunked=encode_chunked)

File /usr/lib/python3.11/http/client.py:1289, in HTTPConnection.endheaders(self, message_body, encode_chunked)
   1288     raise CannotSendHeader()
-> 1289 self._send_output(message_body, encode_chunked=encode_chunked)

File /usr/lib/python3.11/http/client.py:1048, in HTTPConnection._send_output(self, message_body, encode_chunked)
   1047 del self._buffer[:]
-> 1048 self.send(msg)
   1050 if message_body is not None:
   1051 
   1052     # create a consistent interface to message_body

File /usr/lib/python3.11/http/client.py:986, in HTTPConnection.send(self, data)
    985 if self.auto_open:
--> 986     self.connect()
    987 else:

File /usr/lib/python3.11/http/client.py:1459, in HTTPSConnection.connect(self)
   1457 "Connect to a host on a given (SSL) port."
-> 1459 super().connect()
   1461 if self._tunnel_host:

File /usr/lib/python3.11/http/client.py:952, in HTTPConnection.connect(self)
    951 sys.audit("http.client.connect", self, self.host, self.port)
--> 952 self.sock = self._create_connection(
    953     (self.host,self.port), self.timeout, self.source_address)
    954 # Might fail in OSs that don't implement TCP_NODELAY

File /usr/lib/python3.11/socket.py:851, in create_connection(address, timeout, source_address, all_errors)
    850 if not all_errors:
--> 851     raise exceptions[0]
    852 raise ExceptionGroup("create_connection failed", exceptions)

File /usr/lib/python3.11/socket.py:836, in create_connection(address, timeout, source_address, all_errors)
    835     sock.bind(source_address)
--> 836 sock.connect(sa)
    837 # Break explicitly a reference cycle

ConnectionRefusedError: [Errno 111] Connection refused

During handling of the above exception, another exception occurred:

URLError                                  Traceback (most recent call last)
Cell In[2], line 1
----> 1 data = sm.datasets.get_rdataset("flchain", "survival", cache=True).data

File /usr/lib/python3/dist-packages/statsmodels/datasets/utils.py:237, in get_rdataset(dataname, package, cache)
    234 docs_base_url = ("https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/"
    235                  "master/doc/"+package+"/rst/")
    236 cache = _get_cache(cache)
--> 237 data, from_cache = _get_data(data_base_url, dataname, cache)
    238 data = read_csv(data, index_col=0)
    239 data = _maybe_reset_index(data)

File /usr/lib/python3/dist-packages/statsmodels/datasets/utils.py:166, in _get_data(base_url, dataname, cache, extension)
    164 url = base_url + (dataname + ".%s") % extension
    165 try:
--> 166     data, from_cache = _urlopen_cached(url, cache)
    167 except HTTPError as err:
    168     if '404' in str(err):

File /usr/lib/python3/dist-packages/statsmodels/datasets/utils.py:157, in _urlopen_cached(url, cache)
    155 # not using the cache or did not find it in cache
    156 if not from_cache:
--> 157     data = urlopen(url, timeout=3).read()
    158     if cache is not None:  # then put it in the cache
    159         _cache_it(data, cache_path)

File /usr/lib/python3.11/urllib/request.py:216, in urlopen(url, data, timeout, cafile, capath, cadefault, context)
    214 else:
    215     opener = _opener
--> 216 return opener.open(url, data, timeout)

File /usr/lib/python3.11/urllib/request.py:519, in OpenerDirector.open(self, fullurl, data, timeout)
    516     req = meth(req)
    518 sys.audit('urllib.Request', req.full_url, req.data, req.headers, req.get_method())
--> 519 response = self._open(req, data)
    521 # post-process response
    522 meth_name = protocol+"_response"

File /usr/lib/python3.11/urllib/request.py:536, in OpenerDirector._open(self, req, data)
    533     return result
    535 protocol = req.type
--> 536 result = self._call_chain(self.handle_open, protocol, protocol +
    537                           '_open', req)
    538 if result:
    539     return result

File /usr/lib/python3.11/urllib/request.py:496, in OpenerDirector._call_chain(self, chain, kind, meth_name, *args)
    494 for handler in handlers:
    495     func = getattr(handler, meth_name)
--> 496     result = func(*args)
    497     if result is not None:
    498         return result

File /usr/lib/python3.11/urllib/request.py:1391, in HTTPSHandler.https_open(self, req)
   1390 def https_open(self, req):
-> 1391     return self.do_open(http.client.HTTPSConnection, req,
   1392         context=self._context, check_hostname=self._check_hostname)

File /usr/lib/python3.11/urllib/request.py:1351, in AbstractHTTPHandler.do_open(self, http_class, req, **http_conn_args)
   1348         h.request(req.get_method(), req.selector, req.data, headers,
   1349                   encode_chunked=req.has_header('Transfer-encoding'))
   1350     except OSError as err: # timeout error
-> 1351         raise URLError(err)
   1352     r = h.getresponse()
   1353 except:

URLError: <urlopen error [Errno 111] Connection refused>

In [3]: df = data.loc[data.sex == "F", :]
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[3], line 1
----> 1 df = data.loc[data.sex == "F", :]

AttributeError: 'Dataset' object has no attribute 'loc'

In [4]: sf = sm.SurvfuncRight(df["futime"], df["death"])
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
File /usr/lib/python3/dist-packages/pandas/core/indexes/base.py:3803, in Index.get_loc(self, key, method, tolerance)
   3802 try:
-> 3803     return self._engine.get_loc(casted_key)
   3804 except KeyError as err:

File /usr/lib/python3/dist-packages/pandas/_libs/index.pyx:138, in pandas._libs.index.IndexEngine.get_loc()

File /usr/lib/python3/dist-packages/pandas/_libs/index.pyx:165, in pandas._libs.index.IndexEngine.get_loc()

File pandas/_libs/hashtable_class_helper.pxi:5745, in pandas._libs.hashtable.PyObjectHashTable.get_item()

File pandas/_libs/hashtable_class_helper.pxi:5753, in pandas._libs.hashtable.PyObjectHashTable.get_item()

KeyError: 'futime'

The above exception was the direct cause of the following exception:

KeyError                                  Traceback (most recent call last)
Cell In[4], line 1
----> 1 sf = sm.SurvfuncRight(df["futime"], df["death"])

File /usr/lib/python3/dist-packages/pandas/core/frame.py:3807, in DataFrame.__getitem__(self, key)
   3805 if self.columns.nlevels > 1:
   3806     return self._getitem_multilevel(key)
-> 3807 indexer = self.columns.get_loc(key)
   3808 if is_integer(indexer):
   3809     indexer = [indexer]

File /usr/lib/python3/dist-packages/pandas/core/indexes/base.py:3810, in Index.get_loc(self, key, method, tolerance)
   3805     if isinstance(casted_key, slice) or (
   3806         isinstance(casted_key, abc.Iterable)
   3807         and any(isinstance(x, slice) for x in casted_key)
   3808     ):
   3809         raise InvalidIndexError(key)
-> 3810     raise KeyError(key) from err
   3811 except TypeError:
   3812     # If we have a listlike key, _check_indexing_error will raise
   3813     #  InvalidIndexError. Otherwise we fall through and re-raise
   3814     #  the TypeError.
   3815     self._check_indexing_error(key)

KeyError: 'futime'

The main features of the fitted survival distribution can be seen by calling the summary method:

In [5]: sf.summary().head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[5], line 1
----> 1 sf.summary().head()

NameError: name 'sf' is not defined

We can obtain point estimates and confidence intervals for quantiles of the survival distribution. Since only around 30% of the subjects died during this study, we can only estimate quantiles below the 0.3 probability point:

In [6]: sf.quantile(0.25)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[6], line 1
----> 1 sf.quantile(0.25)

NameError: name 'sf' is not defined

In [7]: sf.quantile_ci(0.25)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[7], line 1
----> 1 sf.quantile_ci(0.25)

NameError: name 'sf' is not defined

To plot a single survival function, call the plot method:

In [8]: sf.plot()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[8], line 1
----> 1 sf.plot()

NameError: name 'sf' is not defined
_images/duration_survival_plot1.png

Since this is a large dataset with a lot of censoring, we may wish to not plot the censoring symbols:

In [9]: fig = sf.plot()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[9], line 1
----> 1 fig = sf.plot()

NameError: name 'sf' is not defined

In [10]: ax = fig.get_axes()[0]
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
Cell In[10], line 1
----> 1 ax = fig.get_axes()[0]

IndexError: list index out of range

In [11]: pt = ax.get_lines()[1]
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[11], line 1
----> 1 pt = ax.get_lines()[1]

NameError: name 'ax' is not defined

In [12]: pt.set_visible(False)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[12], line 1
----> 1 pt.set_visible(False)

NameError: name 'pt' is not defined
_images/duration_survival_nocensor_plot.png

We can also add a 95% simultaneous confidence band to the plot. Typically these bands only plotted for central part of the distribution.

In [13]: fig = sf.plot()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[13], line 1
----> 1 fig = sf.plot()

NameError: name 'sf' is not defined

In [14]: lcb, ucb = sf.simultaneous_cb()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[14], line 1
----> 1 lcb, ucb = sf.simultaneous_cb()

NameError: name 'sf' is not defined

In [15]: ax = fig.get_axes()[0]
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
Cell In[15], line 1
----> 1 ax = fig.get_axes()[0]

IndexError: list index out of range

In [16]: ax.fill_between(sf.surv_times, lcb, ucb, color='lightgrey')
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[16], line 1
----> 1 ax.fill_between(sf.surv_times, lcb, ucb, color='lightgrey')

NameError: name 'ax' is not defined

In [17]: ax.set_xlim(365, 365*10)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[17], line 1
----> 1 ax.set_xlim(365, 365*10)

NameError: name 'ax' is not defined

In [18]: ax.set_ylim(0.7, 1)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[18], line 1
----> 1 ax.set_ylim(0.7, 1)

NameError: name 'ax' is not defined

In [19]: ax.set_ylabel("Proportion alive")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[19], line 1
----> 1 ax.set_ylabel("Proportion alive")

NameError: name 'ax' is not defined

In [20]: ax.set_xlabel("Days since enrollment")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[20], line 1
----> 1 ax.set_xlabel("Days since enrollment")

NameError: name 'ax' is not defined
_images/duration_survival_95ci_plot.png

Here we plot survival functions for two groups (females and males) on the same axes:

In [21]: import matplotlib.pyplot as plt

In [22]: gb = data.groupby("sex")
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[22], line 1
----> 1 gb = data.groupby("sex")

AttributeError: 'Dataset' object has no attribute 'groupby'

In [23]: ax = plt.axes()

In [24]: sexes = []

In [25]: for g in gb:
   ....:     sexes.append(g[0])
   ....:     sf = sm.SurvfuncRight(g[1]["futime"], g[1]["death"])
   ....:     sf.plot(ax)
   ....: 
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[25], line 1
----> 1 for g in gb:
      2     sexes.append(g[0])
      3     sf = sm.SurvfuncRight(g[1]["futime"], g[1]["death"])

NameError: name 'gb' is not defined

In [26]: li = ax.get_lines()

In [27]: li[1].set_visible(False)
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
Cell In[27], line 1
----> 1 li[1].set_visible(False)

IndexError: list index out of range

In [28]: li[3].set_visible(False)
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
Cell In[28], line 1
----> 1 li[3].set_visible(False)

IndexError: list index out of range

In [29]: plt.figlegend((li[0], li[2]), sexes, loc="center right")
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
Cell In[29], line 1
----> 1 plt.figlegend((li[0], li[2]), sexes, loc="center right")

IndexError: list index out of range

In [30]: plt.ylim(0.6, 1)
Out[30]: (0.6, 1.0)

In [31]: ax.set_ylabel("Proportion alive")
Out[31]: Text(0, 0.5, 'Proportion alive')

In [32]: ax.set_xlabel("Days since enrollment")
Out[32]: Text(0.5, 0, 'Days since enrollment')
_images/duration_survival_bysex_plot.png

We can formally compare two survival distributions with survdiff, which implements several standard nonparametric procedures. The default procedure is the logrank test:

In [33]: stat, pv = sm.duration.survdiff(data.futime, data.death, data.sex)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[33], line 1
----> 1 stat, pv = sm.duration.survdiff(data.futime, data.death, data.sex)

AttributeError: 'Dataset' object has no attribute 'futime'

Here are some of the other testing procedures implemented by survdiff:

 # Fleming-Harrington with p=1, i.e. weight by pooled survival time
In [34]: stat, pv = sm.duration.survdiff(data.futime, data.death, data.sex, weight_type='fh', fh_p=1)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[34], line 1
----> 1 stat, pv = sm.duration.survdiff(data.futime, data.death, data.sex, weight_type='fh', fh_p=1)

AttributeError: 'Dataset' object has no attribute 'futime'

 # Gehan-Breslow, weight by number at risk
In [35]: stat, pv = sm.duration.survdiff(data.futime, data.death, data.sex, weight_type='gb')
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[35], line 1
----> 1 stat, pv = sm.duration.survdiff(data.futime, data.death, data.sex, weight_type='gb')

AttributeError: 'Dataset' object has no attribute 'futime'

 # Tarone-Ware, weight by the square root of the number at risk
In [36]: stat, pv = sm.duration.survdiff(data.futime, data.death, data.sex, weight_type='tw')
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[36], line 1
----> 1 stat, pv = sm.duration.survdiff(data.futime, data.death, data.sex, weight_type='tw')

AttributeError: 'Dataset' object has no attribute 'futime'

Regression methods

Proportional hazard regression models (“Cox models”) are a regression technique for censored data. They allow variation in the time to an event to be explained in terms of covariates, similar to what is done in a linear or generalized linear regression model. These models express the covariate effects in terms of “hazard ratios”, meaning the the hazard (instantaneous event rate) is multiplied by a given factor depending on the value of the covariates.

In [37]: import statsmodels.api as sm

In [38]: import statsmodels.formula.api as smf

In [39]: data = sm.datasets.get_rdataset("flchain", "survival", cache=True).data
---------------------------------------------------------------------------
ConnectionRefusedError                    Traceback (most recent call last)
File /usr/lib/python3.11/urllib/request.py:1348, in AbstractHTTPHandler.do_open(self, http_class, req, **http_conn_args)
   1347 try:
-> 1348     h.request(req.get_method(), req.selector, req.data, headers,
   1349               encode_chunked=req.has_header('Transfer-encoding'))
   1350 except OSError as err: # timeout error

File /usr/lib/python3.11/http/client.py:1294, in HTTPConnection.request(self, method, url, body, headers, encode_chunked)
   1293 """Send a complete request to the server."""
-> 1294 self._send_request(method, url, body, headers, encode_chunked)

File /usr/lib/python3.11/http/client.py:1340, in HTTPConnection._send_request(self, method, url, body, headers, encode_chunked)
   1339     body = _encode(body, 'body')
-> 1340 self.endheaders(body, encode_chunked=encode_chunked)

File /usr/lib/python3.11/http/client.py:1289, in HTTPConnection.endheaders(self, message_body, encode_chunked)
   1288     raise CannotSendHeader()
-> 1289 self._send_output(message_body, encode_chunked=encode_chunked)

File /usr/lib/python3.11/http/client.py:1048, in HTTPConnection._send_output(self, message_body, encode_chunked)
   1047 del self._buffer[:]
-> 1048 self.send(msg)
   1050 if message_body is not None:
   1051 
   1052     # create a consistent interface to message_body

File /usr/lib/python3.11/http/client.py:986, in HTTPConnection.send(self, data)
    985 if self.auto_open:
--> 986     self.connect()
    987 else:

File /usr/lib/python3.11/http/client.py:1459, in HTTPSConnection.connect(self)
   1457 "Connect to a host on a given (SSL) port."
-> 1459 super().connect()
   1461 if self._tunnel_host:

File /usr/lib/python3.11/http/client.py:952, in HTTPConnection.connect(self)
    951 sys.audit("http.client.connect", self, self.host, self.port)
--> 952 self.sock = self._create_connection(
    953     (self.host,self.port), self.timeout, self.source_address)
    954 # Might fail in OSs that don't implement TCP_NODELAY

File /usr/lib/python3.11/socket.py:851, in create_connection(address, timeout, source_address, all_errors)
    850 if not all_errors:
--> 851     raise exceptions[0]
    852 raise ExceptionGroup("create_connection failed", exceptions)

File /usr/lib/python3.11/socket.py:836, in create_connection(address, timeout, source_address, all_errors)
    835     sock.bind(source_address)
--> 836 sock.connect(sa)
    837 # Break explicitly a reference cycle

ConnectionRefusedError: [Errno 111] Connection refused

During handling of the above exception, another exception occurred:

URLError                                  Traceback (most recent call last)
Cell In[39], line 1
----> 1 data = sm.datasets.get_rdataset("flchain", "survival", cache=True).data

File /usr/lib/python3/dist-packages/statsmodels/datasets/utils.py:237, in get_rdataset(dataname, package, cache)
    234 docs_base_url = ("https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/"
    235                  "master/doc/"+package+"/rst/")
    236 cache = _get_cache(cache)
--> 237 data, from_cache = _get_data(data_base_url, dataname, cache)
    238 data = read_csv(data, index_col=0)
    239 data = _maybe_reset_index(data)

File /usr/lib/python3/dist-packages/statsmodels/datasets/utils.py:166, in _get_data(base_url, dataname, cache, extension)
    164 url = base_url + (dataname + ".%s") % extension
    165 try:
--> 166     data, from_cache = _urlopen_cached(url, cache)
    167 except HTTPError as err:
    168     if '404' in str(err):

File /usr/lib/python3/dist-packages/statsmodels/datasets/utils.py:157, in _urlopen_cached(url, cache)
    155 # not using the cache or did not find it in cache
    156 if not from_cache:
--> 157     data = urlopen(url, timeout=3).read()
    158     if cache is not None:  # then put it in the cache
    159         _cache_it(data, cache_path)

File /usr/lib/python3.11/urllib/request.py:216, in urlopen(url, data, timeout, cafile, capath, cadefault, context)
    214 else:
    215     opener = _opener
--> 216 return opener.open(url, data, timeout)

File /usr/lib/python3.11/urllib/request.py:519, in OpenerDirector.open(self, fullurl, data, timeout)
    516     req = meth(req)
    518 sys.audit('urllib.Request', req.full_url, req.data, req.headers, req.get_method())
--> 519 response = self._open(req, data)
    521 # post-process response
    522 meth_name = protocol+"_response"

File /usr/lib/python3.11/urllib/request.py:536, in OpenerDirector._open(self, req, data)
    533     return result
    535 protocol = req.type
--> 536 result = self._call_chain(self.handle_open, protocol, protocol +
    537                           '_open', req)
    538 if result:
    539     return result

File /usr/lib/python3.11/urllib/request.py:496, in OpenerDirector._call_chain(self, chain, kind, meth_name, *args)
    494 for handler in handlers:
    495     func = getattr(handler, meth_name)
--> 496     result = func(*args)
    497     if result is not None:
    498         return result

File /usr/lib/python3.11/urllib/request.py:1391, in HTTPSHandler.https_open(self, req)
   1390 def https_open(self, req):
-> 1391     return self.do_open(http.client.HTTPSConnection, req,
   1392         context=self._context, check_hostname=self._check_hostname)

File /usr/lib/python3.11/urllib/request.py:1351, in AbstractHTTPHandler.do_open(self, http_class, req, **http_conn_args)
   1348         h.request(req.get_method(), req.selector, req.data, headers,
   1349                   encode_chunked=req.has_header('Transfer-encoding'))
   1350     except OSError as err: # timeout error
-> 1351         raise URLError(err)
   1352     r = h.getresponse()
   1353 except:

URLError: <urlopen error [Errno 111] Connection refused>

In [40]: del data["chapter"]
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
Cell In[40], line 1
----> 1 del data["chapter"]

KeyError: 'chapter'

In [41]: data = data.dropna()
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[41], line 1
----> 1 data = data.dropna()

AttributeError: 'Dataset' object has no attribute 'dropna'

In [42]: data["lam"] = data["lambda"]
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
Cell In[42], line 1
----> 1 data["lam"] = data["lambda"]

KeyError: 'lambda'

In [43]: data["female"] = (data["sex"] == "F").astype(int)
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
Cell In[43], line 1
----> 1 data["female"] = (data["sex"] == "F").astype(int)

KeyError: 'sex'

In [44]: data["year"] = data["sample.yr"] - min(data["sample.yr"])
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
Cell In[44], line 1
----> 1 data["year"] = data["sample.yr"] - min(data["sample.yr"])

KeyError: 'sample.yr'

In [45]: status = data["death"].values
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
Cell In[45], line 1
----> 1 status = data["death"].values

KeyError: 'death'

In [46]: mod = smf.phreg("futime ~ 0 + age + female + creatinine + np.sqrt(kappa) + np.sqrt(lam) + year + mgus", data, status=status, ties="efron")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[46], line 1
----> 1 mod = smf.phreg("futime ~ 0 + age + female + creatinine + np.sqrt(kappa) + np.sqrt(lam) + year + mgus", data, status=status, ties="efron")

NameError: name 'status' is not defined

In [47]: rslt = mod.fit()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[47], line 1
----> 1 rslt = mod.fit()

NameError: name 'mod' is not defined

In [48]: print(rslt.summary())
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[48], line 1
----> 1 print(rslt.summary())

AttributeError: '_Bunch' object has no attribute 'summary'

See Examples for more detailed examples.

There are some notebook examples on the Wiki: Wiki notebooks for PHReg and Survival Analysis

References

References for Cox proportional hazards regression model:

T Therneau (1996). Extending the Cox model. Technical report.
http://www.mayo.edu/research/documents/biostat-58pdf/DOC-10027288

G Rodriguez (2005). Non-parametric estimation in survival models.
http://data.princeton.edu/pop509/NonParametricSurvival.pdf

B Gillespie (2006). Checking the assumptions in the Cox proportional
hazards model.
http://www.mwsug.org/proceedings/2006/stats/MWSUG-2006-SD08.pdf

Module Reference

The class for working with survival distributions is:

SurvfuncRight(time, status[, entry, title, ...])

Estimation and inference for a survival function.

The proportional hazards regression model class is:

PHReg(endog, exog[, status, entry, strata, ...])

Cox Proportional Hazards Regression Model

The proportional hazards regression result class is:

PHRegResults(model, params, cov_params[, ...])

Class to contain results of fitting a Cox proportional hazards survival model.

The primary helper class is:

rv_discrete_float(xk, pk)

A class representing a collection of discrete distributions.