Robust Linear Models

In [1]:
%matplotlib inline
In [2]:
from __future__ import print_function
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.sandbox.regression.predstd import wls_prediction_std

Estimation

Load data:

In [3]:
data = sm.datasets.stackloss.load(as_pandas=False)
data.exog = sm.add_constant(data.exog)

Huber's T norm with the (default) median absolute deviation scaling

In [4]:
huber_t = sm.RLM(data.endog, data.exog, M=sm.robust.norms.HuberT())
hub_results = huber_t.fit()
print(hub_results.params)
print(hub_results.bse)
print(hub_results.summary(yname='y',
            xname=['var_%d' % i for i in range(len(hub_results.params))]))
[-41.02649835   0.82938433   0.92606597  -0.12784672]
[9.79189854 0.11100521 0.30293016 0.12864961]
                    Robust linear Model Regression Results                    
==============================================================================
Dep. Variable:                      y   No. Observations:                   21
Model:                            RLM   Df Residuals:                       17
Method:                          IRLS   Df Model:                            3
Norm:                          HuberT                                         
Scale Est.:                       mad                                         
Cov Type:                          H1                                         
Date:                Sun, 10 Nov 2019                                         
Time:                        16:32:41                                         
No. Iterations:                    19                                         
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
var_0        -41.0265      9.792     -4.190      0.000     -60.218     -21.835
var_1          0.8294      0.111      7.472      0.000       0.612       1.047
var_2          0.9261      0.303      3.057      0.002       0.332       1.520
var_3         -0.1278      0.129     -0.994      0.320      -0.380       0.124
==============================================================================

If the model instance has been used for another fit with different fit
parameters, then the fit options might not be the correct ones anymore .

Huber's T norm with 'H2' covariance matrix

In [5]:
hub_results2 = huber_t.fit(cov="H2")
print(hub_results2.params)
print(hub_results2.bse)
[-41.02649835   0.82938433   0.92606597  -0.12784672]
[9.08950419 0.11945975 0.32235497 0.11796313]

Andrew's Wave norm with Huber's Proposal 2 scaling and 'H3' covariance matrix

In [6]:
andrew_mod = sm.RLM(data.endog, data.exog, M=sm.robust.norms.AndrewWave())
andrew_results = andrew_mod.fit(scale_est=sm.robust.scale.HuberScale(), cov="H3")
print('Parameters: ', andrew_results.params)
Parameters:  [-40.8817957    0.79276138   1.04857556  -0.13360865]

See help(sm.RLM.fit) for more options and module sm.robust.scale for scale options

Comparing OLS and RLM

Artificial data with outliers:

In [7]:
nsample = 50
x1 = np.linspace(0, 20, nsample)
X = np.column_stack((x1, (x1-5)**2))
X = sm.add_constant(X)
sig = 0.3   # smaller error variance makes OLS<->RLM contrast bigger
beta = [5, 0.5, -0.0]
y_true2 = np.dot(X, beta)
y2 = y_true2 + sig*1. * np.random.normal(size=nsample)
y2[[39,41,43,45,48]] -= 5   # add some outliers (10% of nsample)

Example 1: quadratic function with linear truth

Note that the quadratic term in OLS regression will capture outlier effects.

In [8]:
res = sm.OLS(y2, X).fit()
print(res.params)
print(res.bse)
print(res.predict())
[ 4.96453447  0.53360807 -0.01479293]
[0.45174229 0.06974291 0.00617117]
[ 4.59471125  4.8704253   5.14121043  5.40706664  5.66799393  5.92399229
  6.17506173  6.42120225  6.66241384  6.89869651  7.13005026  7.35647509
  7.577971    7.79453798  8.00617604  8.21288518  8.41466539  8.61151669
  8.80343906  8.9904325   9.17249703  9.34963263  9.52183931  9.68911707
  9.85146591 10.00888582 10.16137681 10.30893888 10.45157202 10.58927624
 10.72205154 10.84989792 10.97281538 11.09080391 11.20386352 11.31199421
 11.41519597 11.51346882 11.60681274 11.69522774 11.77871381 11.85727096
 11.9308992  11.9995985  12.06336889 12.12221035 12.17612289 12.22510651
 12.26916121 12.30828698]

Estimate RLM:

In [9]:
resrlm = sm.RLM(y2, X).fit()
print(resrlm.params)
print(resrlm.bse)
[ 4.92055357e+00  5.17142630e-01 -3.79493955e-03]
[0.09568664 0.01477273 0.00130716]

Draw a plot to compare OLS estimates to the robust estimates:

In [10]:
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(x1, y2, 'o',label="data")
ax.plot(x1, y_true2, 'b-', label="True")
prstd, iv_l, iv_u = wls_prediction_std(res)
ax.plot(x1, res.fittedvalues, 'r-', label="OLS")
ax.plot(x1, iv_u, 'r--')
ax.plot(x1, iv_l, 'r--')
ax.plot(x1, resrlm.fittedvalues, 'g.-', label="RLM")
ax.legend(loc="best")
Out[10]:
<matplotlib.legend.Legend at 0x7f42a3673a90>

Example 2: linear function with linear truth

Fit a new OLS model using only the linear term and the constant:

In [11]:
X2 = X[:,[0,1]]
res2 = sm.OLS(y2, X2).fit()
print(res2.params)
print(res2.bse)
[5.56078006 0.38567879]
[0.39529985 0.03406063]

Estimate RLM:

In [12]:
resrlm2 = sm.RLM(y2, X2).fit()
print(resrlm2.params)
print(resrlm2.bse)
[5.0436059  0.48335955]
[0.07844829 0.00675942]

Draw a plot to compare OLS estimates to the robust estimates:

In [13]:
prstd, iv_l, iv_u = wls_prediction_std(res2)

fig, ax = plt.subplots(figsize=(8,6))
ax.plot(x1, y2, 'o', label="data")
ax.plot(x1, y_true2, 'b-', label="True")
ax.plot(x1, res2.fittedvalues, 'r-', label="OLS")
ax.plot(x1, iv_u, 'r--')
ax.plot(x1, iv_l, 'r--')
ax.plot(x1, resrlm2.fittedvalues, 'g.-', label="RLM")
legend = ax.legend(loc="best")