|
D.15.4.7 inVar
Procedure from library classify_aeq.lib (see classify_aeq_lib).
- Usage:
- inVar(I); I=ideal, I=<x(t),y(t)>, ord(x(t))=n<ord(y(t))=m,
n does not divide m
- Compute:
- for the parametrization defined by I semi group, semi module
of differentials, Zariski number and moduli
- Return:
- a list L with 5 entries
L[1] the semi group Gamma
L[2] the semi module Lambda
L[3] 0 if Lambda=Gamma or lambda=min(Lambda-Gamma) -n, the Zariski number
L[4] the integers i, i>lambda, i+n not in Lambda, 0 if this set is empty
L[5] 0 or the smallest integer i, i not in Gamma, i+m-n not in Gamma
i-lambda not in Gamma but i+n in Lambda
Example:
| LIB "classify_aeq.lib";
ring r=0,t,Ds;
ideal I=t6+3t7,t8+t13+t19;
inVar(I);
==> [1]:
==> 0,6,8,12,14,16,18,20,22,24,25,26,28,30,31,32,33,34,36
==> [2]:
==> 0,6,8,12,14,15,16,18,20
==> [3]:
==> 9
==> [4]:
==> 11,13
==> [5]:
==> 0
|
|