My Project
Loading...
Searching...
No Matches
kstd1.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/*
5* ABSTRACT:
6*/
7
8// TODO: why the following is here instead of mod2.h???
9
10
11// define if buckets should be used
12#define MORA_USE_BUCKETS
13
14#define PRE_INTEGER_CHECK 0
15
16#include "kernel/mod2.h"
17
18#include "misc/options.h"
19#include "misc/intvec.h"
20
21#include "polys/weight.h"
22#include "kernel/polys.h"
23
28#include "kernel/ideals.h"
29
30//#include "ipprint.h"
31
32#ifdef HAVE_PLURAL
33#include "polys/nc/nc.h"
34#include "polys/nc/sca.h"
35#include "kernel/GBEngine/nc.h"
36#endif
37
39
40#ifdef HAVE_SHIFTBBA
41#include "polys/shiftop.h"
42#endif
43
44/* the list of all options which give a warning by test */
46 |Sy_bit(OPT_REDSB) /* 1 */
47 |Sy_bit(OPT_NOT_SUGAR) /* 3 */
48 |Sy_bit(OPT_INTERRUPT) /* 4 */
49 |Sy_bit(OPT_SUGARCRIT) /* 5 */
52 |Sy_bit(OPT_FASTHC) /* 10 */
53 |Sy_bit(OPT_INTSTRATEGY) /* 26 */
54 |Sy_bit(OPT_INFREDTAIL) /* 28 */
55 |Sy_bit(OPT_NOTREGULARITY) /* 30 */
56 |Sy_bit(OPT_WEIGHTM); /* 31 */
57
58/* the list of all options which may be used by option and test */
59/* definition of ALL options: libpolys/misc/options.h */
61 |Sy_bit(1)
62 |Sy_bit(2) // obachman 10/00: replaced by notBucket
63 |Sy_bit(3)
64 |Sy_bit(4)
65 |Sy_bit(5)
66 |Sy_bit(6)
67// |Sy_bit(7) obachman 11/00 tossed: 12/00 used for redThrough
68 |Sy_bit(7) // OPT_REDTHROUGH
69 |Sy_bit(8) // obachman 11/00 tossed -> motsak 2011 experimental: OPT_NO_SYZ_MINIM
70 |Sy_bit(9)
71 |Sy_bit(10)
72 |Sy_bit(11)
73 |Sy_bit(12)
74 |Sy_bit(13)
75 |Sy_bit(14)
76 |Sy_bit(15)
77 |Sy_bit(16)
78 |Sy_bit(17)
79 |Sy_bit(18)
80 |Sy_bit(19)
81// |Sy_bit(20) obachman 11/00 tossed: 12/00 used for redOldStd
83 |Sy_bit(21)
84 |Sy_bit(22)
85 /*|Sy_bit(23)*/
86 /*|Sy_bit(24)*/
89 |Sy_bit(27)
90 |Sy_bit(28)
91 |Sy_bit(29)
92 |Sy_bit(30)
93 |Sy_bit(31);
94
95//static BOOLEAN posInLOldFlag;
96 /*FALSE, if posInL == posInL10*/
97// returns TRUE if mora should use buckets, false otherwise
98static BOOLEAN kMoraUseBucket(kStrategy strat);
99
101{
102// if (strat->ak == 0 && !rIsSyzIndexRing(currRing))
103 strat->length_pLength = TRUE;
104// else
105// strat->length_pLength = FALSE;
106
107 if ((ldeg == pLDeg0c /*&& !rIsSyzIndexRing(currRing)*/) ||
108 (ldeg == pLDeg0 && strat->ak == 0))
109 {
110 strat->LDegLast = TRUE;
111 }
112 else
113 {
114 strat->LDegLast = FALSE;
115 }
116}
117
118
120{
121 int ret;
122#if KDEBUG > 0
123 kTest_L(h);
124 kTest_T(with);
125#endif
126 // Hmmm ... why do we do this -- polys from T should already be normalized
128 with->pNorm();
129#ifdef KDEBUG
130 if (TEST_OPT_DEBUG)
131 {
132 PrintS("reduce ");h->wrp();PrintS(" with ");with->wrp();PrintLn();
133 }
134#endif
135 if (intoT)
136 {
137 // need to do it exactly like this: otherwise
138 // we might get errors
139 LObject L= *h;
140 L.Copy();
141 h->GetP();
142 h->length=h->pLength=pLength(h->p);
143 ret = ksReducePoly(&L, with, strat->kNoetherTail(), NULL, NULL, strat);
144 if (ret)
145 {
146 if (ret < 0) return ret;
147 if (h->tailRing != strat->tailRing)
148 h->ShallowCopyDelete(strat->tailRing,
150 strat->tailRing));
151 }
153 enterT_strong(*h,strat);
154 else
155 enterT(*h,strat);
156 *h = L;
157 }
158 else
159 ret = ksReducePoly(h, with, strat->kNoetherTail(), NULL, NULL, strat);
160#ifdef KDEBUG
161 if (TEST_OPT_DEBUG)
162 {
163 PrintS("to ");h->wrp();PrintLn();
164 }
165#endif
166 return ret;
167}
168
170{
171 int i,at,ei,li,ii;
172 int j = 0;
173 int pass = 0;
174 long d,reddeg;
175
176 d = h->GetpFDeg()+ h->ecart;
177 reddeg = strat->LazyDegree+d;
178 h->SetShortExpVector();
179 loop
180 {
181 j = kFindDivisibleByInT(strat, h);
182 if (j < 0)
183 {
184 if (strat->honey) h->SetLength(strat->length_pLength);
185 return 1;
186 }
187
188 ei = strat->T[j].ecart;
189 ii = j;
190
191 if (ei > h->ecart && ii < strat->tl)
192 {
193 unsigned long not_sev=~h->sev;
194 poly h_t= h->GetLmTailRing();
195 li = strat->T[j].length;
196 if (li<=0) li=strat->T[j].GetpLength();
197 // the polynomial to reduce with (up to the moment) is;
198 // pi with ecart ei and length li
199 // look for one with smaller ecart
200 i = j;
201 loop
202 {
203 /*- takes the first possible with respect to ecart -*/
204 i++;
205#if 1
206 if (i > strat->tl) break;
207 if (strat->T[i].length<=0) strat->T[i].GetpLength();
208 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
209 strat->T[i].length < li))
210 &&
211 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h_t, not_sev, strat->tailRing))
212#else
213 j = kFindDivisibleByInT(strat, h, i);
214 if (j < 0) break;
215 i = j;
216 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
217 strat->T[i].length < li))
218#endif
219 {
220 // the polynomial to reduce with is now
221 ii = i;
222 ei = strat->T[i].ecart;
223 if (ei <= h->ecart) break;
224 li = strat->T[i].length;
225 }
226 }
227 }
228
229 // end of search: have to reduce with pi
230 if (ei > h->ecart)
231 {
232 // It is not possible to reduce h with smaller ecart;
233 // if possible h goes to the lazy-set L,i.e
234 // if its position in L would be not the last one
235 strat->fromT = TRUE;
236 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
237 {
238 h->SetLmCurrRing();
239 if (strat->honey && strat->posInLDependsOnLength)
240 h->SetLength(strat->length_pLength);
241 assume(h->FDeg == h->pFDeg());
242 at = strat->posInL(strat->L,strat->Ll,h,strat);
243 if (at <= strat->Ll)
244 {
245 /*- h will not become the next element to reduce -*/
246 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
247#ifdef KDEBUG
248 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
249#endif
250 h->Clear();
251 strat->fromT = FALSE;
252 return -1;
253 }
254 }
255 }
256
257 // now we finally can reduce
258 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
259 strat->fromT=FALSE;
260
261 // are we done ???
262 if (h->IsNull())
263 {
265 kDeleteLcm(h);
266 h->Clear();
267 return 0;
268 }
269 if (TEST_OPT_IDLIFT)
270 {
271 if (h->p!=NULL)
272 {
273 if(p_GetComp(h->p,currRing)>strat->syzComp)
274 {
275 h->Delete();
276 return 0;
277 }
278 }
279 else if (h->t_p!=NULL)
280 {
281 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
282 {
283 h->Delete();
284 return 0;
285 }
286 }
287 }
288 #if 0
289 else if ((strat->syzComp > 0)&&(!TEST_OPT_REDTAIL_SYZ))
290 {
291 if (h->p!=NULL)
292 {
293 if(p_GetComp(h->p,currRing)>strat->syzComp)
294 {
295 return 1;
296 }
297 }
298 else if (h->t_p!=NULL)
299 {
300 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
301 {
302 return 1;
303 }
304 }
305 }
306 #endif
307
308 // done ? NO!
309 h->SetShortExpVector();
310 h->SetpFDeg();
311 if (strat->honey)
312 {
313 if (ei <= h->ecart)
314 h->ecart = d-h->GetpFDeg();
315 else
316 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
317 }
318 else
319 // this has the side effect of setting h->length
320 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
321#if 0
322 if (strat->syzComp!=0)
323 {
324 if ((strat->syzComp>0) && (h->Comp() > strat->syzComp))
325 {
326 assume(h->MinComp() > strat->syzComp);
327 if (strat->honey) h->SetLength();
328#ifdef KDEBUG
329 if (TEST_OPT_DEBUG) PrintS(" > syzComp\n");
330#endif
331 return -2;
332 }
333 }
334#endif
335 /*- try to reduce the s-polynomial -*/
336 pass++;
337 d = h->GetpFDeg()+h->ecart;
338 /*
339 *test whether the polynomial should go to the lazyset L
340 *-if the degree jumps
341 *-if the number of pre-defined reductions jumps
342 */
343 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
344 && ((d >= reddeg) || (pass > strat->LazyPass)))
345 {
346 h->SetLmCurrRing();
347 if (strat->honey && strat->posInLDependsOnLength)
348 h->SetLength(strat->length_pLength);
349 assume(h->FDeg == h->pFDeg());
350 at = strat->posInL(strat->L,strat->Ll,h,strat);
351 if (at <= strat->Ll)
352 {
353 int dummy=strat->sl;
354 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
355 {
356 if (strat->honey && !strat->posInLDependsOnLength)
357 h->SetLength(strat->length_pLength);
358 return 1;
359 }
360 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
361#ifdef KDEBUG
362 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
363#endif
364 h->Clear();
365 return -1;
366 }
367 }
368 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
369 {
370 Print(".%ld",d);mflush();
371 reddeg = d+1;
372 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
373 {
374 strat->overflow=TRUE;
375 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
376 h->GetP();
377 at = strat->posInL(strat->L,strat->Ll,h,strat);
378 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
379 h->Clear();
380 return -1;
381 }
382 }
383 }
384}
385
386#ifdef HAVE_RINGS
388{
389 int i,at,ei,li,ii;
390 int j = 0;
391 int pass = 0;
392 long d,reddeg;
393
394 d = h->GetpFDeg()+ h->ecart;
395 reddeg = strat->LazyDegree+d;
396 h->SetShortExpVector();
397 loop
398 {
399 j = kFindDivisibleByInT(strat, h);
400 if (j < 0)
401 {
402 // over ZZ: cleanup coefficients by complete reduction with monomials
403 postReduceByMon(h, strat);
404 if(h->p == NULL)
405 {
406 kDeleteLcm(h);
407 h->Clear();
408 return 0;
409 }
410 if (strat->honey) h->SetLength(strat->length_pLength);
411 if(strat->tl >= 0)
412 h->i_r1 = strat->tl;
413 else
414 h->i_r1 = -1;
415 if (h->GetLmTailRing() == NULL)
416 {
417 kDeleteLcm(h);
418 h->Clear();
419 return 0;
420 }
421 return 1;
422 }
423
424 ei = strat->T[j].ecart;
425 ii = j;
426 if (ei > h->ecart && ii < strat->tl)
427 {
428 li = strat->T[j].length;
429 // the polynomial to reduce with (up to the moment) is;
430 // pi with ecart ei and length li
431 // look for one with smaller ecart
432 i = j;
433 loop
434 {
435 /*- takes the first possible with respect to ecart -*/
436 i++;
437#if 1
438 if (i > strat->tl) break;
439 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
440 strat->T[i].length < li))
441 &&
442 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h->GetLmTailRing(), ~h->sev, strat->tailRing)
443 &&
444 n_DivBy(h->p->coef,strat->T[i].p->coef,strat->tailRing->cf))
445#else
446 j = kFindDivisibleByInT(strat, h, i);
447 if (j < 0) break;
448 i = j;
449 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
450 strat->T[i].length < li))
451#endif
452 {
453 // the polynomial to reduce with is now
454 ii = i;
455 ei = strat->T[i].ecart;
456 if (ei <= h->ecart) break;
457 li = strat->T[i].length;
458 }
459 }
460 }
461
462 // end of search: have to reduce with pi
463 if (ei > h->ecart)
464 {
465 // It is not possible to reduce h with smaller ecart;
466 // if possible h goes to the lazy-set L,i.e
467 // if its position in L would be not the last one
468 strat->fromT = TRUE;
469 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
470 {
471 h->SetLmCurrRing();
472 if (strat->honey && strat->posInLDependsOnLength)
473 h->SetLength(strat->length_pLength);
474 assume(h->FDeg == h->pFDeg());
475 at = strat->posInL(strat->L,strat->Ll,h,strat);
476 if (at <= strat->Ll && pLmCmp(h->p, strat->L[strat->Ll].p) != 0 && !nEqual(h->p->coef, strat->L[strat->Ll].p->coef))
477 {
478 /*- h will not become the next element to reduce -*/
479 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
480 #ifdef KDEBUG
481 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
482 #endif
483 h->Clear();
484 strat->fromT = FALSE;
485 return -1;
486 }
487 }
488 doRed(h,&(strat->T[ii]),strat->fromT,strat,TRUE);
489 }
490 else
491 {
492 // now we finally can reduce
493 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
494 }
495 strat->fromT=FALSE;
496 // are we done ???
497 if (h->IsNull())
498 {
499 kDeleteLcm(h);
500 h->Clear();
501 return 0;
502 }
503
504 // NO!
505 h->SetShortExpVector();
506 h->SetpFDeg();
507 if (strat->honey)
508 {
509 if (ei <= h->ecart)
510 h->ecart = d-h->GetpFDeg();
511 else
512 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
513 }
514 else
515 // this has the side effect of setting h->length
516 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
517 /*- try to reduce the s-polynomial -*/
518 pass++;
519 d = h->GetpFDeg()+h->ecart;
520 /*
521 *test whether the polynomial should go to the lazyset L
522 *-if the degree jumps
523 *-if the number of pre-defined reductions jumps
524 */
525 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
526 && ((d >= reddeg) || (pass > strat->LazyPass)))
527 {
528 h->SetLmCurrRing();
529 if (strat->honey && strat->posInLDependsOnLength)
530 h->SetLength(strat->length_pLength);
531 assume(h->FDeg == h->pFDeg());
532 at = strat->posInL(strat->L,strat->Ll,h,strat);
533 if (at <= strat->Ll)
534 {
535 int dummy=strat->sl;
536 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
537 {
538 if (strat->honey && !strat->posInLDependsOnLength)
539 h->SetLength(strat->length_pLength);
540 return 1;
541 }
542 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
543#ifdef KDEBUG
544 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
545#endif
546 h->Clear();
547 return -1;
548 }
549 }
550 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
551 {
552 Print(".%ld",d);mflush();
553 reddeg = d+1;
554 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
555 {
556 strat->overflow=TRUE;
557 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
558 h->GetP();
559 at = strat->posInL(strat->L,strat->Ll,h,strat);
560 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
561 h->Clear();
562 return -1;
563 }
564 }
565 }
566}
567
569{
570 int i,at,ei,li,ii;
571 int j = 0;
572 int pass = 0;
573 long d,reddeg;
574 int docoeffred = 0;
575 poly T0p = strat->T[0].p;
576 int T0ecart = strat->T[0].ecart;
577
578
579 d = h->GetpFDeg()+ h->ecart;
580 reddeg = strat->LazyDegree+d;
581 h->SetShortExpVector();
582 if ((strat->tl>=0)
583 &&strat->T[0].GetpFDeg() == 0
584 && strat->T[0].length <= 2)
585 {
586 docoeffred = 1;
587 }
588 loop
589 {
590 /* cut down the lead coefficients, only possible if the degree of
591 * T[0] is 0 (constant). This is only efficient if T[0] is short, thus
592 * we ask for the length of T[0] to be <= 2 */
593 if (docoeffred)
594 {
595 j = kTestDivisibleByT0_Z(strat, h);
596 if (j == 0 && n_DivBy(pGetCoeff(h->p), pGetCoeff(T0p), currRing->cf) == FALSE
597 && T0ecart <= h->ecart)
598 {
599 /* not(lc(reducer) | lc(poly)) && not(lc(poly) | lc(reducer))
600 * => we try to cut down the lead coefficient at least */
601 /* first copy T[j] in order to multiply it with a coefficient later on */
603 TObject tj = strat->T[0];
604 tj.Copy();
605 /* compute division with remainder of lc(h) and lc(T[j]) */
607 &rest, currRing->cf);
608 /* set corresponding new lead coefficient already. we do not
609 * remove the lead term in ksReducePolyLC, but only apply
610 * a lead coefficient reduction */
611 tj.Mult_nn(mult);
612 ksReducePolyLC(h, &tj, NULL, &rest, strat);
613 tj.Delete();
614 tj.Clear();
615 if (n_IsZero(pGetCoeff(h->GetP()),currRing->cf))
616 {
617 h->LmDeleteAndIter();
618 }
619 }
620 }
621 j = kFindDivisibleByInT(strat, h);
622 if (j < 0)
623 {
624 // over ZZ: cleanup coefficients by complete reduction with monomials
625 postReduceByMon(h, strat);
626 if(h->p == NULL)
627 {
628 kDeleteLcm(h);
629 h->Clear();
630 return 0;
631 }
632 if (strat->honey) h->SetLength(strat->length_pLength);
633 if(strat->tl >= 0)
634 h->i_r1 = strat->tl;
635 else
636 h->i_r1 = -1;
637 if (h->GetLmTailRing() == NULL)
638 {
639 kDeleteLcm(h);
640 h->Clear();
641 return 0;
642 }
643 return 1;
644 }
645
646 ei = strat->T[j].ecart;
647 ii = j;
648#if 1
649 if (ei > h->ecart && ii < strat->tl)
650 {
651 li = strat->T[j].length;
652 // the polynomial to reduce with (up to the moment) is;
653 // pi with ecart ei and length li
654 // look for one with smaller ecart
655 i = j;
656 loop
657 {
658 /*- takes the first possible with respect to ecart -*/
659 i++;
660#if 1
661 if (i > strat->tl) break;
662 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
663 strat->T[i].length < li))
664 &&
665 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h->GetLmTailRing(), ~h->sev, strat->tailRing)
666 &&
667 n_DivBy(h->p->coef,strat->T[i].p->coef,strat->tailRing->cf))
668#else
669 j = kFindDivisibleByInT(strat, h, i);
670 if (j < 0) break;
671 i = j;
672 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
673 strat->T[i].length < li))
674#endif
675 {
676 // the polynomial to reduce with is now
677 ii = i;
678 ei = strat->T[i].ecart;
679 if (ei <= h->ecart) break;
680 li = strat->T[i].length;
681 }
682 }
683 }
684#endif
685
686 // end of search: have to reduce with pi
687 if (ei > h->ecart)
688 {
689 // It is not possible to reduce h with smaller ecart;
690 // if possible h goes to the lazy-set L,i.e
691 // if its position in L would be not the last one
692 strat->fromT = TRUE;
693 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
694 {
695 h->SetLmCurrRing();
696 if (strat->honey && strat->posInLDependsOnLength)
697 h->SetLength(strat->length_pLength);
698 assume(h->FDeg == h->pFDeg());
699 at = strat->posInL(strat->L,strat->Ll,h,strat);
700 if (at <= strat->Ll && pLmCmp(h->p, strat->L[strat->Ll].p) != 0 && !nEqual(h->p->coef, strat->L[strat->Ll].p->coef))
701 {
702 /*- h will not become the next element to reduce -*/
703 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
704#ifdef KDEBUG
705 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
706#endif
707 h->Clear();
708 strat->fromT = FALSE;
709 return -1;
710 }
711 }
712 doRed(h,&(strat->T[ii]),strat->fromT,strat,TRUE);
713 }
714 else
715 {
716 // now we finally can reduce
717 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
718 }
719 strat->fromT=FALSE;
720 // are we done ???
721 if (h->IsNull())
722 {
723 kDeleteLcm(h);
724 h->Clear();
725 return 0;
726 }
727
728 // NO!
729 h->SetShortExpVector();
730 h->SetpFDeg();
731 if (strat->honey)
732 {
733 if (ei <= h->ecart)
734 h->ecart = d-h->GetpFDeg();
735 else
736 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
737 }
738 else
739 // this has the side effect of setting h->length
740 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
741 /*- try to reduce the s-polynomial -*/
742 pass++;
743 d = h->GetpFDeg()+h->ecart;
744 /*
745 *test whether the polynomial should go to the lazyset L
746 *-if the degree jumps
747 *-if the number of pre-defined reductions jumps
748 */
749 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
750 && ((d >= reddeg) || (pass > strat->LazyPass)))
751 {
752 h->SetLmCurrRing();
753 if (strat->honey && strat->posInLDependsOnLength)
754 h->SetLength(strat->length_pLength);
755 assume(h->FDeg == h->pFDeg());
756 at = strat->posInL(strat->L,strat->Ll,h,strat);
757 if (at <= strat->Ll)
758 {
759 int dummy=strat->sl;
760 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
761 {
762 if (strat->honey && !strat->posInLDependsOnLength)
763 h->SetLength(strat->length_pLength);
764 return 1;
765 }
766 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
767#ifdef KDEBUG
768 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
769#endif
770 h->Clear();
771 return -1;
772 }
773 }
774 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
775 {
776 Print(".%ld",d);mflush();
777 reddeg = d+1;
778 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
779 {
780 strat->overflow=TRUE;
781 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
782 h->GetP();
783 at = strat->posInL(strat->L,strat->Ll,h,strat);
784 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
785 h->Clear();
786 return -1;
787 }
788 }
789 }
790}
791#endif
792
793/*2
794*reduces h with elements from T choosing the first possible
795* element in t with respect to the given pDivisibleBy
796*/
798{
799 if (strat->tl<0) return 1;
800 if (h->IsNull()) return 0;
801
802 int at;
803 long reddeg,d;
804 int pass = 0;
805 int cnt = RED_CANONICALIZE;
806 int j = 0;
807
808 if (! strat->homog)
809 {
810 d = h->GetpFDeg() + h->ecart;
811 reddeg = strat->LazyDegree+d;
812 }
813 h->SetShortExpVector();
814 loop
815 {
816 j = kFindDivisibleByInT(strat, h);
817 if (j < 0)
818 {
819 h->SetDegStuffReturnLDeg(strat->LDegLast);
820 return 1;
821 }
822
824 strat->T[j].pNorm();
825#ifdef KDEBUG
826 if (TEST_OPT_DEBUG)
827 {
828 PrintS("reduce ");
829 h->wrp();
830 PrintS(" with ");
831 strat->T[j].wrp();
832 }
833#endif
834 ksReducePoly(h, &(strat->T[j]), strat->kNoetherTail(), NULL, NULL, strat);
835#ifdef KDEBUG
836 if (TEST_OPT_DEBUG)
837 {
838 PrintS(" to ");
839 wrp(h->p);
840 PrintLn();
841 }
842#endif
843 if (h->IsNull())
844 {
846 kDeleteLcm(h);
847 h->Clear();
848 return 0;
849 }
850 if (TEST_OPT_IDLIFT)
851 {
852 if (h->p!=NULL)
853 {
854 if(p_GetComp(h->p,currRing)>strat->syzComp)
855 {
856 h->Delete();
857 return 0;
858 }
859 }
860 else if (h->t_p!=NULL)
861 {
862 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
863 {
864 h->Delete();
865 return 0;
866 }
867 }
868 }
869 #if 0
870 else if ((strat->syzComp > 0)&&(!TEST_OPT_REDTAIL_SYZ))
871 {
872 if (h->p!=NULL)
873 {
874 if(p_GetComp(h->p,currRing)>strat->syzComp)
875 {
876 return 1;
877 }
878 }
879 else if (h->t_p!=NULL)
880 {
881 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
882 {
883 return 1;
884 }
885 }
886 }
887 #endif
888 h->SetShortExpVector();
889
890#if 0
891 if ((strat->syzComp!=0) && !strat->honey)
892 {
893 if ((strat->syzComp>0) &&
894 (h->Comp() > strat->syzComp))
895 {
896 assume(h->MinComp() > strat->syzComp);
897#ifdef KDEBUG
898 if (TEST_OPT_DEBUG) PrintS(" > syzComp\n");
899#endif
900 if (strat->homog)
901 h->SetDegStuffReturnLDeg(strat->LDegLast);
902 return -2;
903 }
904 }
905#endif
906 if (!strat->homog)
907 {
908 if (!TEST_OPT_OLDSTD && strat->honey)
909 {
910 h->SetpFDeg();
911 if (strat->T[j].ecart <= h->ecart)
912 h->ecart = d - h->GetpFDeg();
913 else
914 h->ecart = d - h->GetpFDeg() + strat->T[j].ecart - h->ecart;
915
916 d = h->GetpFDeg() + h->ecart;
917 }
918 else
919 d = h->SetDegStuffReturnLDeg(strat->LDegLast);
920 /*- try to reduce the s-polynomial -*/
921 cnt--;
922 pass++;
923 /*
924 *test whether the polynomial should go to the lazyset L
925 *-if the degree jumps
926 *-if the number of pre-defined reductions jumps
927 */
928 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
929 && ((d >= reddeg) || (pass > strat->LazyPass)))
930 {
931 h->SetLmCurrRing();
932 if (strat->posInLDependsOnLength)
933 h->SetLength(strat->length_pLength);
934 at = strat->posInL(strat->L,strat->Ll,h,strat);
935 if (at <= strat->Ll)
936 {
937 int dummy=strat->sl;
938 if (kFindDivisibleByInS(strat,&dummy, h) < 0)
939 return 1;
940 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
941#ifdef KDEBUG
942 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
943#endif
944 h->Clear();
945 return -1;
946 }
947 }
948 if (UNLIKELY(cnt==0))
949 {
950 h->CanonicalizeP();
952 //if (TEST_OPT_PROT) { PrintS("!");mflush(); }
953 }
954 if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
955 {
956 reddeg = d+1;
957 Print(".%ld",d);mflush();
958 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
959 {
960 strat->overflow=TRUE;
961 //Print("OVERFLOW in redFirst d=%ld, max=%ld",d,strat->tailRing->bitmask);
962 h->GetP();
963 at = strat->posInL(strat->L,strat->Ll,h,strat);
964 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
965 h->Clear();
966 return -1;
967 }
968 }
969 }
970 }
971}
972
973/*2
974* reduces h with elements from T choosing first possible
975* element in T with respect to the given ecart
976* used for computing normal forms outside kStd
977*/
978static poly redMoraNF (poly h,kStrategy strat, int flag)
979{
980 LObject H;
981 H.p = h;
982 int j = 0;
983 int z = 10;
984 int o = H.SetpFDeg();
985 H.ecart = currRing->pLDeg(H.p,&H.length,currRing)-o;
986 if ((flag & 2) == 0) cancelunit(&H,TRUE);
987 H.sev = pGetShortExpVector(H.p);
988 loop
989 {
990 if (j > strat->tl)
991 {
992 return H.p;
993 }
994 if (TEST_V_DEG_STOP)
995 {
996 if (kModDeg(H.p)>Kstd1_deg) pLmDelete(&H.p);
997 if (H.p==NULL) return NULL;
998 }
999 unsigned long not_sev = ~ H.sev;
1000 if (p_LmShortDivisibleBy(strat->T[j].GetLmTailRing(), strat->sevT[j], H.GetLmTailRing(), not_sev, strat->tailRing)
1001 )
1002 {
1003 /*- remember the found T-poly -*/
1004 // poly pi = strat->T[j].p;
1005 int ei = strat->T[j].ecart;
1006 int li = strat->T[j].length;
1007 int ii = j;
1008 /*
1009 * the polynomial to reduce with (up to the moment) is;
1010 * pi with ecart ei and length li
1011 */
1012 loop
1013 {
1014 /*- look for a better one with respect to ecart -*/
1015 /*- stop, if the ecart is small enough (<=ecart(H)) -*/
1016 j++;
1017 if (j > strat->tl) break;
1018 if (ei <= H.ecart) break;
1019 if (((strat->T[j].ecart < ei)
1020 || ((strat->T[j].ecart == ei)
1021 && (strat->T[j].length < li)))
1022 && pLmShortDivisibleBy(strat->T[j].p,strat->sevT[j], H.p, not_sev)
1023 )
1024 {
1025 /*
1026 * the polynomial to reduce with is now;
1027 */
1028 // pi = strat->T[j].p;
1029 ei = strat->T[j].ecart;
1030 li = strat->T[j].length;
1031 ii = j;
1032 }
1033 }
1034 /*
1035 * end of search: have to reduce with pi
1036 */
1037 z++;
1038 if (z>10)
1039 {
1040 pNormalize(H.p);
1041 z=0;
1042 }
1043 if ((ei > H.ecart) && (strat->kNoether==NULL))
1044 {
1045 /*
1046 * It is not possible to reduce h with smaller ecart;
1047 * we have to reduce with bad ecart: H has to enter in T
1048 */
1049 LObject L= H;
1050 L.Copy();
1051 H.GetP();
1052 H.length=H.pLength=pLength(H.p);
1053 ksReducePoly(&L, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1054 (flag & KSTD_NF_NONORM)==0);
1055 enterT(H,strat);
1056 H = L;
1057 }
1058 else
1059 {
1060 /*
1061 * we reduce with good ecart, h need not to be put to T
1062 */
1063 ksReducePoly(&H, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1064 (flag & KSTD_NF_NONORM)==0);
1065 }
1066 if (H.p == NULL)
1067 return NULL;
1068 /*- try to reduce the s-polynomial -*/
1069 o = H.SetpFDeg();
1070 if ((flag & KSTD_NF_ECART) == 0) cancelunit(&H,TRUE);
1071 H.ecart = currRing->pLDeg(H.p,&(H.length),currRing)-o;
1072 j = 0;
1073 H.sev = pGetShortExpVector(H.p);
1074 }
1075 else
1076 {
1077 j++;
1078 }
1079 }
1080}
1081
1082#ifdef HAVE_RINGS
1083static poly redMoraNFRing (poly h,kStrategy strat, int flag)
1084{
1085 LObject H;
1086 H.p = h;
1087 int j0, j = 0;
1088 int docoeffred = 0;
1089 poly T0p = strat->T[0].p;
1090 int T0ecart = strat->T[0].ecart;
1091 int o = H.SetpFDeg();
1092 H.ecart = currRing->pLDeg(H.p,&H.length,currRing)-o;
1093 if ((flag & KSTD_NF_ECART) == 0) cancelunit(&H,TRUE);
1094 H.sev = pGetShortExpVector(H.p);
1095 unsigned long not_sev = ~ H.sev;
1096 if (strat->T[0].GetpFDeg() == 0 && strat->T[0].length <= 2)
1097 {
1098 docoeffred = 1; // euclidean ring required: n_QuotRem
1099 if (currRing->cf->cfQuotRem==ndQuotRem)
1100 {
1101 docoeffred = 0;
1102 }
1103 }
1104 loop
1105 {
1106 /* cut down the lead coefficients, only possible if the degree of
1107 * T[0] is 0 (constant). This is only efficient if T[0] is short, thus
1108 * we ask for the length of T[0] to be <= 2 */
1109 if (docoeffred)
1110 {
1111 j0 = kTestDivisibleByT0_Z(strat, &H);
1112 if ((j0 == 0)
1113 && (n_DivBy(pGetCoeff(H.p), pGetCoeff(T0p), currRing->cf) == FALSE)
1114 && (T0ecart <= H.ecart))
1115 {
1116 /* not(lc(reducer) | lc(poly)) && not(lc(poly) | lc(reducer))
1117 * => we try to cut down the lead coefficient at least */
1118 /* first copy T[j0] in order to multiply it with a coefficient later on */
1119 number mult, rest;
1120 TObject tj = strat->T[0];
1121 tj.Copy();
1122 /* compute division with remainder of lc(h) and lc(T[j]) */
1124 &rest, currRing->cf);
1125 /* set corresponding new lead coefficient already. we do not
1126 * remove the lead term in ksReducePolyLC, but only apply
1127 * a lead coefficient reduction */
1128 tj.Mult_nn(mult);
1129 ksReducePolyLC(&H, &tj, NULL, &rest, strat);
1130 tj.Delete();
1131 tj.Clear();
1132 }
1133 }
1134 if (j > strat->tl)
1135 {
1136 return H.p;
1137 }
1138 if (TEST_V_DEG_STOP)
1139 {
1140 if (kModDeg(H.p)>Kstd1_deg) pLmDelete(&H.p);
1141 if (H.p==NULL) return NULL;
1142 }
1143 if (p_LmShortDivisibleBy(strat->T[j].GetLmTailRing(), strat->sevT[j], H.GetLmTailRing(), not_sev, strat->tailRing)
1144 && (n_DivBy(H.p->coef, strat->T[j].p->coef,strat->tailRing->cf))
1145 )
1146 {
1147 /*- remember the found T-poly -*/
1148 // poly pi = strat->T[j].p;
1149 int ei = strat->T[j].ecart;
1150 int li = strat->T[j].length;
1151 int ii = j;
1152 /*
1153 * the polynomial to reduce with (up to the moment) is;
1154 * pi with ecart ei and length li
1155 */
1156 loop
1157 {
1158 /*- look for a better one with respect to ecart -*/
1159 /*- stop, if the ecart is small enough (<=ecart(H)) -*/
1160 j++;
1161 if (j > strat->tl) break;
1162 if (ei <= H.ecart) break;
1163 if (((strat->T[j].ecart < ei)
1164 || ((strat->T[j].ecart == ei)
1165 && (strat->T[j].length < li)))
1166 && pLmShortDivisibleBy(strat->T[j].p,strat->sevT[j], H.p, not_sev)
1167 && (n_DivBy(H.p->coef, strat->T[j].p->coef,strat->tailRing->cf))
1168 )
1169 {
1170 /*
1171 * the polynomial to reduce with is now;
1172 */
1173 // pi = strat->T[j].p;
1174 ei = strat->T[j].ecart;
1175 li = strat->T[j].length;
1176 ii = j;
1177 }
1178 }
1179 /*
1180 * end of search: have to reduce with pi
1181 */
1182 if ((ei > H.ecart) && (strat->kNoether==NULL))
1183 {
1184 /*
1185 * It is not possible to reduce h with smaller ecart;
1186 * we have to reduce with bad ecart: H has to enter in T
1187 */
1188 LObject L= H;
1189 L.Copy();
1190 H.GetP();
1191 H.length=H.pLength=pLength(H.p);
1192 ksReducePoly(&L, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1193 (flag & KSTD_NF_NONORM)==0);
1194 enterT_strong(H,strat);
1195 H = L;
1196 }
1197 else
1198 {
1199 /*
1200 * we reduce with good ecart, h need not to be put to T
1201 */
1202 ksReducePoly(&H, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1203 (flag & KSTD_NF_NONORM)==0);
1204 }
1205 if (H.p == NULL)
1206 return NULL;
1207 /*- try to reduce the s-polynomial -*/
1208 o = H.SetpFDeg();
1209 if ((flag &2 ) == 0) cancelunit(&H,TRUE);
1210 H.ecart = currRing->pLDeg(H.p,&(H.length),currRing)-o;
1211 j = 0;
1212 H.sev = pGetShortExpVector(H.p);
1213 not_sev = ~ H.sev;
1214 }
1215 else
1216 {
1217 j++;
1218 }
1219 }
1220}
1221#endif
1222
1223/*2
1224*reorders L with respect to posInL
1225*/
1227{
1228 int i,j,at;
1229 LObject p;
1230
1231 for (i=1; i<=strat->Ll; i++)
1232 {
1233 at = strat->posInL(strat->L,i-1,&(strat->L[i]),strat);
1234 if (at != i)
1235 {
1236 p = strat->L[i];
1237 for (j=i-1; j>=at; j--) strat->L[j+1] = strat->L[j];
1238 strat->L[at] = p;
1239 }
1240 }
1241}
1242
1243/*2
1244*reorders T with respect to length
1245*/
1247{
1248 int i,j,at;
1249 TObject p;
1250 unsigned long sev;
1251
1252
1253 for (i=1; i<=strat->tl; i++)
1254 {
1255 if (strat->T[i-1].length > strat->T[i].length)
1256 {
1257 p = strat->T[i];
1258 sev = strat->sevT[i];
1259 at = i-1;
1260 loop
1261 {
1262 at--;
1263 if (at < 0) break;
1264 if (strat->T[i].length > strat->T[at].length) break;
1265 }
1266 for (j = i-1; j>at; j--)
1267 {
1268 strat->T[j+1]=strat->T[j];
1269 strat->sevT[j+1]=strat->sevT[j];
1270 strat->R[strat->T[j+1].i_r] = &(strat->T[j+1]);
1271 }
1272 strat->T[at+1]=p;
1273 strat->sevT[at+1] = sev;
1274 strat->R[p.i_r] = &(strat->T[at+1]);
1275 }
1276 }
1277}
1278
1279/*2
1280*looks whether exactly (currRing->N)-1 axis are used
1281*returns last != 0 in this case
1282*last is the (first) unused axis
1283*/
1284void missingAxis (int* last,kStrategy strat)
1285{
1286 int i = 0;
1287 int k = 0;
1288
1289 *last = 0;
1291 {
1292 loop
1293 {
1294 i++;
1295 if (i > (currRing->N)) break;
1296 if (strat->NotUsedAxis[i])
1297 {
1298 *last = i;
1299 k++;
1300 }
1301 if (k>1)
1302 {
1303 *last = 0;
1304 break;
1305 }
1306 }
1307 }
1308}
1309
1310/*2
1311*last is the only non used axis, it looks
1312*for a monomial in p being a pure power of this
1313*variable and returns TRUE in this case
1314*(*length) gives the length between the pure power and the leading term
1315*(should be minimal)
1316*/
1317BOOLEAN hasPurePower (const poly p,int last, int *length,kStrategy strat)
1318{
1319 poly h;
1320 int i;
1321
1322 if (pNext(p) == strat->tail)
1323 return FALSE;
1324 pp_Test(p, currRing, strat->tailRing);
1325 if (strat->ak <= 0 || p_MinComp(p, currRing, strat->tailRing) == strat->ak)
1326 {
1328 if (rField_is_Ring(currRing) && (!n_IsUnit(pGetCoeff(p), currRing->cf))) i=0;
1329 if (i == last)
1330 {
1331 *length = 0;
1332 return TRUE;
1333 }
1334 *length = 1;
1335 h = pNext(p);
1336 while (h != NULL)
1337 {
1338 i = p_IsPurePower(h, strat->tailRing);
1339 if (rField_is_Ring(currRing) && (!n_IsUnit(pGetCoeff(h), currRing->cf))) i=0;
1340 if (i==last) return TRUE;
1341 (*length)++;
1342 pIter(h);
1343 }
1344 }
1345 return FALSE;
1346}
1347
1349{
1350 if (L->bucket != NULL)
1351 {
1352 poly p = L->GetP();
1353 return hasPurePower(p, last, length, strat);
1354 }
1355 else
1356 {
1357 return hasPurePower(L->p, last, length, strat);
1358 }
1359}
1360
1361/*2
1362* looks up the position of polynomial p in L
1363* in the case of looking for the pure powers
1364*/
1365int posInL10 (const LSet set,const int length, LObject* p,const kStrategy strat)
1366{
1367 int j,dp,dL;
1368
1369 if (length<0) return 0;
1370 if (hasPurePower(p,strat->lastAxis,&dp,strat))
1371 {
1372 int op= p->GetpFDeg() +p->ecart;
1373 for (j=length; j>=0; j--)
1374 {
1375 if (!hasPurePower(&(set[j]),strat->lastAxis,&dL,strat))
1376 return j+1;
1377 if (dp < dL)
1378 return j+1;
1379 if ((dp == dL)
1380 && (set[j].GetpFDeg()+set[j].ecart >= op))
1381 return j+1;
1382 }
1383 }
1384 j=length;
1385 loop
1386 {
1387 if (j<0) break;
1388 if (!hasPurePower(&(set[j]),strat->lastAxis,&dL,strat)) break;
1389 j--;
1390 }
1391 return strat->posInLOld(set,j,p,strat);
1392}
1393
1394
1395/*2
1396* computes the s-polynomials L[ ].p in L
1397*/
1399{
1400 LObject p;
1401 int dL;
1402 int j=strat->Ll;
1403 loop
1404 {
1405 if (j<0) break;
1406 if (hasPurePower(&(strat->L[j]),strat->lastAxis,&dL,strat))
1407 {
1408 p=strat->L[strat->Ll];
1409 strat->L[strat->Ll]=strat->L[j];
1410 strat->L[j]=p;
1411 break;
1412 }
1413 j--;
1414 }
1415 if (j<0)
1416 {
1417 j=strat->Ll;
1418 loop
1419 {
1420 if (j<0) break;
1421 if (pNext(strat->L[j].p) == strat->tail)
1422 {
1424 pLmDelete(strat->L[j].p); /*deletes the short spoly and computes*/
1425 else
1426 pLmFree(strat->L[j].p); /*deletes the short spoly and computes*/
1427 strat->L[j].p = NULL;
1428 poly m1 = NULL, m2 = NULL;
1429 // check that spoly creation is ok
1430 while (strat->tailRing != currRing &&
1431 !kCheckSpolyCreation(&(strat->L[j]), strat, m1, m2))
1432 {
1433 assume(m1 == NULL && m2 == NULL);
1434 // if not, change to a ring where exponents are at least
1435 // large enough
1436 kStratChangeTailRing(strat);
1437 }
1438 /* create the real one */
1439 ksCreateSpoly(&(strat->L[j]), strat->kNoetherTail(), FALSE,
1440 strat->tailRing, m1, m2, strat->R);
1441
1442 strat->L[j].SetLmCurrRing();
1443 if (!strat->honey)
1444 strat->initEcart(&strat->L[j]);
1445 else
1446 strat->L[j].SetLength(strat->length_pLength);
1447
1448 BOOLEAN pp = hasPurePower(&(strat->L[j]),strat->lastAxis,&dL,strat);
1449
1450 if (strat->use_buckets) strat->L[j].PrepareRed(TRUE);
1451
1452 if (pp)
1453 {
1454 p=strat->L[strat->Ll];
1455 strat->L[strat->Ll]=strat->L[j];
1456 strat->L[j]=p;
1457 break;
1458 }
1459 }
1460 j--;
1461 }
1462 }
1463}
1464
1465/*2
1466* computes the s-polynomials L[ ].p in L and
1467* cuts elements in L above noether
1468*/
1470{
1471
1472 int i = 0;
1473 kTest_TS(strat);
1474 while (i <= strat->Ll)
1475 {
1476 if (pNext(strat->L[i].p) == strat->tail)
1477 {
1478 /*- deletes the int spoly and computes -*/
1479 if (pLmCmp(strat->L[i].p,strat->kNoether) == -1)
1480 {
1482 pLmDelete(strat->L[i].p);
1483 else
1484 pLmFree(strat->L[i].p);
1485 strat->L[i].p = NULL;
1486 }
1487 else
1488 {
1490 pLmDelete(strat->L[i].p);
1491 else
1492 pLmFree(strat->L[i].p);
1493 strat->L[i].p = NULL;
1494 poly m1 = NULL, m2 = NULL;
1495 // check that spoly creation is ok
1496 while (strat->tailRing != currRing &&
1497 !kCheckSpolyCreation(&(strat->L[i]), strat, m1, m2))
1498 {
1499 assume(m1 == NULL && m2 == NULL);
1500 // if not, change to a ring where exponents are at least
1501 // large enough
1502 kStratChangeTailRing(strat);
1503 }
1504 /* create the real one */
1505 ksCreateSpoly(&(strat->L[i]), strat->kNoetherTail(), FALSE,
1506 strat->tailRing, m1, m2, strat->R);
1507 if (! strat->L[i].IsNull())
1508 {
1509 strat->L[i].SetLmCurrRing();
1510 strat->L[i].SetpFDeg();
1511 strat->L[i].ecart
1512 = strat->L[i].pLDeg(strat->LDegLast) - strat->L[i].GetpFDeg();
1513 if (strat->use_buckets) strat->L[i].PrepareRed(TRUE);
1514 }
1515 }
1516 }
1517 deleteHC(&(strat->L[i]), strat);
1518 if (strat->L[i].IsNull())
1519 deleteInL(strat->L,&strat->Ll,i,strat);
1520 else
1521 {
1522#ifdef KDEBUG
1523 kTest_L(&(strat->L[i]), strat, TRUE, i, strat->T, strat->tl);
1524#endif
1525 i++;
1526 }
1527 }
1528 kTest_TS(strat);
1529}
1530
1531/*2
1532* cuts in T above strat->kNoether and tries to cancel a unit
1533* changes also S as S is a subset of T
1534*/
1536{
1537 int i = 0;
1538 LObject p;
1539
1540 while (i <= strat->tl)
1541 {
1542 p = strat->T[i];
1543 deleteHC(&p,strat, TRUE);
1544 /*- tries to cancel a unit: -*/
1545 cancelunit(&p);
1546 if (TEST_OPT_INTSTRATEGY) /* deleteHC and/or cancelunit may have changed p*/
1547 p.pCleardenom();
1548 if (p.p != strat->T[i].p)
1549 {
1550 strat->sevT[i] = pGetShortExpVector(p.p);
1551 p.SetpFDeg();
1552 }
1553 strat->T[i] = p;
1554 i++;
1555 }
1556}
1557
1558/*2
1559* arranges red, pos and T if strat->kAllAxis (first time)
1560*/
1562{
1563 if (strat->update)
1564 {
1565 kTest_TS(strat);
1566 strat->update = (strat->tl == -1);
1567 if (TEST_OPT_WEIGHTM)
1568 {
1570 if (strat->tailRing != currRing)
1571 {
1572 strat->tailRing->pFDeg = strat->pOrigFDeg_TailRing;
1573 strat->tailRing->pLDeg = strat->pOrigLDeg_TailRing;
1574 }
1575 int i;
1576 for (i=strat->Ll; i>=0; i--)
1577 {
1578 strat->L[i].SetpFDeg();
1579 }
1580 for (i=strat->tl; i>=0; i--)
1581 {
1582 strat->T[i].SetpFDeg();
1583 }
1584 if (ecartWeights)
1585 {
1586 omFreeSize((ADDRESS)ecartWeights,(rVar(currRing)+1)*sizeof(short));
1588 }
1589 }
1590 if (TEST_OPT_FASTHC)
1591 {
1592 strat->posInL = strat->posInLOld;
1593 strat->lastAxis = 0;
1594 }
1595 if (TEST_OPT_FINDET)
1596 return;
1597
1599 {
1600 strat->red = redFirst;
1601 strat->use_buckets = kMoraUseBucket(strat);
1602 }
1603 updateT(strat);
1604
1606 {
1607 strat->posInT = posInT2;
1608 reorderT(strat);
1609 }
1610 }
1611 kTest_TS(strat);
1612}
1613
1614/*2
1615*-puts p to the standardbasis s at position at
1616*-reduces the tail of p if TEST_OPT_REDTAIL
1617*-tries to cancel a unit
1618*-HEckeTest
1619* if TRUE
1620* - decides about reduction-strategies
1621* - computes noether
1622* - stops computation if TEST_OPT_FINDET
1623* - cuts the tails of the polynomials
1624* in s,t and the elements in L above noether
1625* and cancels units if possible
1626* - reorders s,L
1627*/
1628void enterSMora (LObject &p,int atS,kStrategy strat, int atR = -1)
1629{
1630 enterSBba(p, atS, strat, atR);
1631 #ifdef KDEBUG
1632 if (TEST_OPT_DEBUG)
1633 {
1634 Print("new s%d:",atS);
1635 p_wrp(p.p,currRing,strat->tailRing);
1636 PrintLn();
1637 }
1638 #endif
1639 HEckeTest(p.p,strat);
1640 if (strat->kAllAxis)
1641 {
1642 if (newHEdge(strat))
1643 {
1644 firstUpdate(strat);
1645 if (TEST_OPT_FINDET)
1646 return;
1647
1648 /*- cuts elements in L above noether and reorders L -*/
1649 updateLHC(strat);
1650 /*- reorders L with respect to posInL -*/
1651 reorderL(strat);
1652 }
1653 }
1654 else if ((strat->kNoether==NULL)
1655 && (TEST_OPT_FASTHC))
1656 {
1657 if (strat->posInLOldFlag)
1658 {
1659 missingAxis(&strat->lastAxis,strat);
1660 if (strat->lastAxis)
1661 {
1662 strat->posInLOld = strat->posInL;
1663 strat->posInLOldFlag = FALSE;
1664 strat->posInL = posInL10;
1665 strat->posInLDependsOnLength = TRUE;
1666 updateL(strat);
1667 reorderL(strat);
1668 }
1669 }
1670 else if (strat->lastAxis)
1671 updateL(strat);
1672 }
1673}
1674
1675/*2
1676*-puts p to the standardbasis s at position at
1677*-HEckeTest
1678* if TRUE
1679* - computes noether
1680*/
1681void enterSMoraNF (LObject &p, int atS,kStrategy strat, int atR = -1)
1682{
1683 enterSBba(p, atS, strat, atR);
1684 if ((!strat->kAllAxis) || (strat->kNoether!=NULL)) HEckeTest(p.p,strat);
1685 if (strat->kAllAxis)
1686 newHEdge(strat);
1687}
1688
1690{
1691 /* setting global variables ------------------- */
1692 strat->enterS = enterSBba;
1693 strat->red = redHoney;
1694 if (strat->honey)
1695 strat->red = redHoney;
1696 else if (currRing->pLexOrder && !strat->homog)
1697 strat->red = redLazy;
1698 else
1699 {
1700 strat->LazyPass *=4;
1701 strat->red = redHomog;
1702 }
1704 {
1705 if (rField_is_Z(currRing))
1706 strat->red = redRing_Z;
1707 else
1708 strat->red = redRing;
1709 }
1710 if (TEST_OPT_IDLIFT
1711 && (!rIsNCRing(currRing))
1712 && (!rField_is_Ring(currRing)))
1713 strat->red=redLiftstd;
1714 if (currRing->pLexOrder && strat->honey)
1715 strat->initEcart = initEcartNormal;
1716 else
1717 strat->initEcart = initEcartBBA;
1718 if (strat->honey)
1720 else
1722// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1723// {
1724// //interred machen Aenderung
1725// strat->pOrigFDeg=pFDeg;
1726// strat->pOrigLDeg=pLDeg;
1727// //h=ggetid("ecart");
1728// //if ((h!=NULL) /*&& (IDTYP(h)==INTVEC_CMD)*/)
1729// //{
1730// // ecartWeights=iv2array(IDINTVEC(h));
1731// //}
1732// //else
1733// {
1734// ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1735// /*uses automatic computation of the ecartWeights to set them*/
1736// kEcartWeights(F->m,IDELEMS(F)-1,ecartWeights);
1737// }
1738// pRestoreDegProcs(currRing,totaldegreeWecart, maxdegreeWecart);
1739// if (TEST_OPT_PROT)
1740// {
1741// for(i=1; i<=(currRing->N); i++)
1742// Print(" %d",ecartWeights[i]);
1743// PrintLn();
1744// mflush();
1745// }
1746// }
1747}
1748
1750{
1751 int i;
1752 //idhdl h;
1753 /* setting global variables ------------------- */
1754 strat->enterS = enterSSba;
1755 strat->red2 = redHoney;
1756 if (strat->honey)
1757 strat->red2 = redHoney;
1758 else if (currRing->pLexOrder && !strat->homog)
1759 strat->red2 = redLazy;
1760 else
1761 {
1762 strat->LazyPass *=4;
1763 strat->red2 = redHomog;
1764 }
1766 {
1768 {strat->red2 = redRiloc;}
1769 else
1770 {strat->red2 = redRing;}
1771 }
1772 if (currRing->pLexOrder && strat->honey)
1773 strat->initEcart = initEcartNormal;
1774 else
1775 strat->initEcart = initEcartBBA;
1776 if (strat->honey)
1778 else
1780 //strat->kIdeal = NULL;
1781 //if (strat->ak==0) strat->kIdeal->rtyp=IDEAL_CMD;
1782 //else strat->kIdeal->rtyp=MODUL_CMD;
1783 //strat->kIdeal->data=(void *)strat->Shdl;
1784 if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1785 {
1786 //interred machen Aenderung
1787 strat->pOrigFDeg = currRing->pFDeg;
1788 strat->pOrigLDeg = currRing->pLDeg;
1789 //h=ggetid("ecart");
1790 //if ((h!=NULL) /*&& (IDTYP(h)==INTVEC_CMD)*/)
1791 //{
1792 // ecartWeights=iv2array(IDINTVEC(h));
1793 //}
1794 //else
1795 {
1796 ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1797 /*uses automatic computation of the ecartWeights to set them*/
1799 }
1801 if (TEST_OPT_PROT)
1802 {
1803 for(i=1; i<=(currRing->N); i++)
1804 Print(" %d",ecartWeights[i]);
1805 PrintLn();
1806 mflush();
1807 }
1808 }
1809 // for sig-safe reductions in signature-based
1810 // standard basis computations
1812 strat->red = redSigRing;
1813 else
1814 strat->red = redSig;
1815 //strat->sbaOrder = 1;
1816 strat->currIdx = 1;
1817}
1818
1820{
1821 int i,j;
1822
1823 strat->NotUsedAxis = (BOOLEAN *)omAlloc(((currRing->N)+1)*sizeof(BOOLEAN));
1824 for (j=(currRing->N); j>0; j--) strat->NotUsedAxis[j] = TRUE;
1825 strat->enterS = enterSMora;
1826 strat->initEcartPair = initEcartPairMora; /*- ecart approximation -*/
1827 strat->posInLOld = strat->posInL;
1828 strat->posInLOldFlag = TRUE;
1829 strat->initEcart = initEcartNormal;
1830 strat->kAllAxis = (currRing->ppNoether) != NULL; //!!
1831 if ( currRing->ppNoether != NULL )
1832 {
1833 strat->kNoether = pCopy((currRing->ppNoether));
1834 strat->red = redFirst; /*take the first possible in T*/
1835 if (TEST_OPT_PROT)
1836 {
1837 Print("H(%ld)",p_FDeg(currRing->ppNoether,currRing)+1);
1838 mflush();
1839 }
1840 }
1841 else if (strat->homog)
1842 strat->red = redFirst; /*take the first possible in T*/
1843 else
1844 strat->red = redEcart;/*take the first possible in under ecart-restriction*/
1845 if (currRing->ppNoether != NULL)
1846 {
1847 HCord = currRing->pFDeg((currRing->ppNoether),currRing)+1;
1848 }
1849 else
1850 {
1851 HCord = 32000;/*- very large -*/
1852 }
1853
1855 {
1856 if (rField_is_Z(currRing))
1857 strat->red = redRiloc_Z;
1858 else
1859 strat->red = redRiloc;
1860 }
1861
1862 /*reads the ecartWeights used for Graebes method from the
1863 *intvec ecart and set ecartWeights
1864 */
1865 if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1866 {
1867 //interred machen Aenderung
1868 strat->pOrigFDeg=currRing->pFDeg;
1869 strat->pOrigLDeg=currRing->pLDeg;
1870 ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1871 /*uses automatic computation of the ecartWeights to set them*/
1873
1875 if (TEST_OPT_PROT)
1876 {
1877 for(i=1; i<=(currRing->N); i++)
1878 Print(" %d",ecartWeights[i]);
1879 PrintLn();
1880 mflush();
1881 }
1882 }
1883 kOptimizeLDeg(currRing->pLDeg, strat);
1884}
1885
1886void kDebugPrint(kStrategy strat);
1887
1889{
1890 int olddeg = 0;
1891 int reduc = 0;
1892 int red_result = 1;
1893 int hilbeledeg=1,hilbcount=0;
1894 BITSET save1;
1897 {
1898 si_opt_1 &= ~Sy_bit(OPT_REDSB);
1899 si_opt_1 &= ~Sy_bit(OPT_REDTAIL);
1900 }
1901
1902 strat->update = TRUE;
1903 /*- setting global variables ------------------- -*/
1904 initBuchMoraCrit(strat);
1905 initHilbCrit(F,Q,&hilb,strat);
1906 initMora(F,strat);
1908 initBuchMoraPosRing(strat);
1909 else
1910 initBuchMoraPos(strat);
1911 /*Shdl=*/initBuchMora(F,Q,strat);
1912 if (TEST_OPT_FASTHC) missingAxis(&strat->lastAxis,strat);
1913 /*updateS in initBuchMora has Hecketest
1914 * and could have put strat->kHEdgdeFound FALSE*/
1915 if (TEST_OPT_FASTHC && (strat->lastAxis) && strat->posInLOldFlag)
1916 {
1917 strat->posInLOld = strat->posInL;
1918 strat->posInLOldFlag = FALSE;
1919 strat->posInL = posInL10;
1920 updateL(strat);
1921 reorderL(strat);
1922 }
1923 kTest_TS(strat);
1924 strat->use_buckets = kMoraUseBucket(strat);
1925
1926#ifdef HAVE_TAIL_RING
1927 if (strat->homog && strat->red == redFirst)
1928 if(!idIs0(F) &&(!rField_is_Ring(currRing)))
1930#endif
1931
1932 if (BVERBOSE(23))
1933 {
1934 kDebugPrint(strat);
1935 }
1936//deleteInL(strat->L,&strat->Ll,1,strat);
1937//deleteInL(strat->L,&strat->Ll,0,strat);
1938
1939 /*- compute-------------------------------------------*/
1940 while (strat->Ll >= 0)
1941 {
1942 #ifdef KDEBUG
1943 if (TEST_OPT_DEBUG) messageSets(strat);
1944 #endif
1945 if (siCntrlc)
1946 {
1947 while (strat->Ll >= 0)
1948 deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1949 strat->noClearS=TRUE;
1950 }
1952 && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg))
1953 {
1954 /*
1955 * stops computation if
1956 * - 24 (degBound)
1957 * && upper degree is bigger than Kstd1_deg
1958 */
1959 while ((strat->Ll >= 0)
1960 && (strat->L[strat->Ll].p1!=NULL) && (strat->L[strat->Ll].p2!=NULL)
1961 && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg)
1962 )
1963 {
1964 deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1965 //if (TEST_OPT_PROT)
1966 //{
1967 // PrintS("D"); mflush();
1968 //}
1969 }
1970 if (strat->Ll<0) break;
1971 else strat->noClearS=TRUE;
1972 }
1973 strat->P = strat->L[strat->Ll];/*- picks the last element from the lazyset L -*/
1974 if (strat->Ll==0) strat->interpt=TRUE;
1975 strat->Ll--;
1976 // create the real Spoly
1977 if (pNext(strat->P.p) == strat->tail)
1978 {
1979 /*- deletes the short spoly and computes -*/
1981 pLmDelete(strat->P.p);
1982 else
1983 pLmFree(strat->P.p);
1984 strat->P.p = NULL;
1985 poly m1 = NULL, m2 = NULL;
1986 // check that spoly creation is ok
1987 while (strat->tailRing != currRing &&
1988 !kCheckSpolyCreation(&(strat->P), strat, m1, m2))
1989 {
1990 assume(m1 == NULL && m2 == NULL);
1991 // if not, change to a ring where exponents are large enough
1992 kStratChangeTailRing(strat);
1993 }
1994 /* create the real one */
1995 ksCreateSpoly(&(strat->P), strat->kNoetherTail(), strat->use_buckets,
1996 strat->tailRing, m1, m2, strat->R);
1997 if (!strat->use_buckets)
1998 strat->P.SetLength(strat->length_pLength);
1999 }
2000 else if (strat->P.p1 == NULL)
2001 {
2002 // for input polys, prepare reduction (buckets !)
2003 strat->P.SetLength(strat->length_pLength);
2004 strat->P.PrepareRed(strat->use_buckets);
2005 }
2006
2007 // the s-poly
2008 if (!strat->P.IsNull())
2009 {
2010 // might be NULL from noether !!!
2011 if (TEST_OPT_PROT)
2012 message(strat->P.ecart+strat->P.GetpFDeg(),&olddeg,&reduc,strat, red_result);
2013 // reduce
2014 red_result = strat->red(&strat->P,strat);
2015 }
2016
2017 // the reduced s-poly
2018 if (! strat->P.IsNull())
2019 {
2020 strat->P.GetP();
2021 // statistics
2022 if (TEST_OPT_PROT) PrintS("s");
2023 // normalization
2025 strat->P.pCleardenom();
2026 else
2027 strat->P.pNorm();
2028 // tailreduction
2029 strat->P.p = redtail(&(strat->P),strat->sl,strat);
2030 if (strat->P.p==NULL)
2031 {
2032 WerrorS("exponent overflow - wrong ordering");
2033 return(idInit(1,1));
2034 }
2035 // set ecart -- might have changed because of tail reductions
2036 if ((!strat->noTailReduction) && (!strat->honey))
2037 strat->initEcart(&strat->P);
2038 // cancel unit
2039 cancelunit(&strat->P);
2040 // for char 0, clear denominators
2041 if ((strat->P.p->next==NULL) /* i.e. cancelunit did something*/
2043 strat->P.pCleardenom();
2044
2045 strat->P.SetShortExpVector();
2046 enterT(strat->P,strat);
2047 // build new pairs
2049 superenterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl);
2050 else
2051 enterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl);
2052 // put in S
2053 strat->enterS(strat->P,
2054 posInS(strat,strat->sl,strat->P.p, strat->P.ecart),
2055 strat, strat->tl);
2056 // apply hilbert criterion
2057 if (hilb!=NULL)
2058 {
2059 if (strat->homog==isHomog)
2061 else
2063 }
2064
2065 // clear strat->P
2066 kDeleteLcm(&strat->P);
2067
2068#ifdef KDEBUG
2069 // make sure kTest_TS does not complain about strat->P
2070 strat->P.Clear();
2071#endif
2072 }
2073 if (strat->kAllAxis)
2074 {
2075 if ((TEST_OPT_FINDET)
2076 || ((TEST_OPT_MULTBOUND) && (scMult0Int(strat->Shdl,NULL) < Kstd1_mu)))
2077 {
2078 // obachman: is this still used ???
2079 /*
2080 * stops computation if strat->kAllAxis and
2081 * - 27 (finiteDeterminacyTest)
2082 * or
2083 * - 23
2084 * (multBound)
2085 * && multiplicity of the ideal is smaller then a predefined number mu
2086 */
2087 while (strat->Ll >= 0) deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
2088 }
2089 }
2090 kTest_TS(strat);
2091 }
2092 /*- complete reduction of the standard basis------------------------ -*/
2093 if (TEST_OPT_REDSB) completeReduce(strat);
2094 else if (TEST_OPT_PROT) PrintLn();
2095 /*- release temp data------------------------------- -*/
2096 exitBuchMora(strat);
2097 /*- polynomials used for HECKE: HC, noether -*/
2098 if (TEST_OPT_FINDET)
2099 {
2100 if (strat->kNoether!=NULL)
2101 Kstd1_mu=currRing->pFDeg(strat->kNoether,currRing);
2102 else
2103 Kstd1_mu=-1;
2104 }
2105 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2106 if (strat->kNoether!=NULL) pLmDelete(&strat->kNoether);
2107 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2109// if (TEST_OPT_WEIGHTM)
2110// {
2111// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
2112// if (ecartWeights)
2113// {
2114// omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
2115// ecartWeights=NULL;
2116// }
2117// }
2118 if(nCoeff_is_Z(currRing->cf))
2119 finalReduceByMon(strat);
2120 if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
2122 idTest(strat->Shdl);
2123 return (strat->Shdl);
2124}
2125
2126poly kNF1 (ideal F,ideal Q,poly q, kStrategy strat, int lazyReduce)
2127{
2128 assume(q!=NULL);
2129 assume(!(idIs0(F)&&(Q==NULL)));
2130
2131// lazy_reduce flags: can be combined by |
2132//#define KSTD_NF_LAZY 1
2133 // do only a reduction of the leading term
2134//#define KSTD_NF_ECART 2
2135 // only local: reduce even with bad ecart
2136 poly p;
2137 int i;
2138 int j;
2139 int o;
2140 LObject h;
2141 BITSET save1;
2143
2144 //if ((idIs0(F))&&(Q==NULL))
2145 // return pCopy(q); /*F=0*/
2146 //strat->ak = si_max(idRankFreeModule(F),pMaxComp(q));
2147 /*- creating temp data structures------------------- -*/
2148 //strat->kAllAxis = (currRing->ppNoether) != NULL;
2149 strat->kNoether = pCopy((currRing->ppNoether));
2152 si_opt_1&=~Sy_bit(OPT_INTSTRATEGY);
2154 && (! TEST_V_DEG_STOP)
2155 && (0<Kstd1_deg)
2156 && ((strat->kNoether==NULL)
2158 {
2159 pLmDelete(&strat->kNoether);
2160 strat->kNoether=pOne();
2161 pSetExp(strat->kNoether,1, Kstd1_deg+1);
2162 pSetm(strat->kNoether);
2163 // strat->kAllAxis=TRUE;
2164 }
2165 initBuchMoraCrit(strat);
2167 initBuchMoraPosRing(strat);
2168 else
2169 initBuchMoraPos(strat);
2170 initMora(F,strat);
2171 strat->enterS = enterSMoraNF;
2172 /*- set T -*/
2173 strat->tl = -1;
2174 strat->tmax = setmaxT;
2175 strat->T = initT();
2176 strat->R = initR();
2177 strat->sevT = initsevT();
2178 /*- set S -*/
2179 strat->sl = -1;
2180 /*- init local data struct.-------------------------- -*/
2181 /*Shdl=*/initS(F,Q,strat);
2182 if ((strat->ak!=0)
2183 && (strat->kAllAxis)) /*never true for ring-cf*/
2184 {
2185 if (strat->ak!=1)
2186 {
2187 pSetComp(strat->kNoether,1);
2188 pSetmComp(strat->kNoether);
2189 poly p=pHead(strat->kNoether);
2190 pSetComp(p,strat->ak);
2191 pSetmComp(p);
2192 p=pAdd(strat->kNoether,p);
2193 strat->kNoether=pNext(p);
2195 }
2196 }
2197 if (((lazyReduce & KSTD_NF_LAZY)==0)
2198 && (!rField_is_Ring(currRing)))
2199 {
2200 for (i=strat->sl; i>=0; i--)
2201 pNorm(strat->S[i]);
2202 }
2203 /*- puts the elements of S also to T -*/
2204 for (i=0; i<=strat->sl; i++)
2205 {
2206 h.p = strat->S[i];
2207 h.ecart = strat->ecartS[i];
2208 if (strat->sevS[i] == 0) strat->sevS[i] = pGetShortExpVector(h.p);
2209 else assume(strat->sevS[i] == pGetShortExpVector(h.p));
2210 h.length = pLength(h.p);
2211 h.sev = strat->sevS[i];
2212 h.SetpFDeg();
2213 enterT(h,strat);
2214 }
2215#ifdef KDEBUG
2216// kDebugPrint(strat);
2217#endif
2218 /*- compute------------------------------------------- -*/
2219 p = pCopy(q);
2220 deleteHC(&p,&o,&j,strat);
2221 kTest(strat);
2222 if (TEST_OPT_PROT) { PrintS("r"); mflush(); }
2223 if (BVERBOSE(23)) kDebugPrint(strat);
2225 {
2226 if (p!=NULL) p = redMoraNFRing(p,strat, lazyReduce & KSTD_NF_ECART);
2227 }
2228 else
2229 {
2230 if (p!=NULL) p = redMoraNF(p,strat, lazyReduce & KSTD_NF_ECART);
2231 }
2232 if ((p!=NULL)&&((lazyReduce & KSTD_NF_LAZY)==0))
2233 {
2234 if (TEST_OPT_PROT) { PrintS("t"); mflush(); }
2235 p = redtail(p,strat->sl,strat);
2236 }
2237 /*- release temp data------------------------------- -*/
2238 cleanT(strat);
2239 assume(strat->L==NULL); /*strat->L unused */
2240 assume(strat->B==NULL); /*strat->B unused */
2241 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
2242 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
2243 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
2244 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2245 omFree(strat->sevT);
2246 omFree(strat->S_2_R);
2247 omFree(strat->R);
2248
2249 if ((Q!=NULL)&&(strat->fromQ!=NULL))
2250 {
2251 i=((IDELEMS(Q)+IDELEMS(F)+15)/16)*16;
2252 omFreeSize((ADDRESS)strat->fromQ,i*sizeof(int));
2253 strat->fromQ=NULL;
2254 }
2255 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2256// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
2257// {
2258// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
2259// if (ecartWeights)
2260// {
2261// omFreeSize((ADDRESS *)&ecartWeights,((currRing->N)+1)*sizeof(short));
2262// ecartWeights=NULL;
2263// }
2264// }
2265 idDelete(&strat->Shdl);
2267 if (TEST_OPT_PROT) PrintLn();
2268 return p;
2269}
2270
2272{
2273 assume(!idIs0(q));
2274 assume(!(idIs0(F)&&(Q==NULL)));
2275
2276// lazy_reduce flags: can be combined by |
2277//#define KSTD_NF_LAZY 1
2278 // do only a reduction of the leading term
2279//#define KSTD_NF_ECART 2
2280 // only local: reduce even with bad ecart
2281 poly p;
2282 int i;
2283 int j;
2284 int o;
2285 LObject h;
2286 ideal res;
2287 BITSET save1;
2289
2290 //if (idIs0(q)) return idInit(IDELEMS(q),si_max(q->rank,F->rank));
2291 //if ((idIs0(F))&&(Q==NULL))
2292 // return idCopy(q); /*F=0*/
2293 //strat->ak = si_max(idRankFreeModule(F),idRankFreeModule(q));
2294 /*- creating temp data structures------------------- -*/
2295 //strat->kAllAxis = (currRing->ppNoether) != NULL;
2296 strat->kNoether=pCopy((currRing->ppNoether));
2299 && (0<Kstd1_deg)
2300 && ((strat->kNoether==NULL)
2302 {
2303 pLmDelete(&strat->kNoether);
2304 strat->kNoether=pOne();
2305 pSetExp(strat->kNoether,1, Kstd1_deg+1);
2306 pSetm(strat->kNoether);
2307 //strat->kAllAxis=TRUE;
2308 }
2309 initBuchMoraCrit(strat);
2311 initBuchMoraPosRing(strat);
2312 else
2313 initBuchMoraPos(strat);
2314 initMora(F,strat);
2315 strat->enterS = enterSMoraNF;
2316 /*- set T -*/
2317 strat->tl = -1;
2318 strat->tmax = setmaxT;
2319 strat->T = initT();
2320 strat->R = initR();
2321 strat->sevT = initsevT();
2322 /*- set S -*/
2323 strat->sl = -1;
2324 /*- init local data struct.-------------------------- -*/
2325 /*Shdl=*/initS(F,Q,strat);
2326 if ((strat->ak!=0)
2327 && (strat->kNoether!=NULL))
2328 {
2329 if (strat->ak!=1)
2330 {
2331 pSetComp(strat->kNoether,1);
2332 pSetmComp(strat->kNoether);
2333 poly p=pHead(strat->kNoether);
2334 pSetComp(p,strat->ak);
2335 pSetmComp(p);
2336 p=pAdd(strat->kNoether,p);
2337 strat->kNoether=pNext(p);
2339 }
2340 }
2341 if (((lazyReduce & KSTD_NF_LAZY)==0)
2342 && (!rField_is_Ring(currRing)))
2343 {
2344 for (i=strat->sl; i>=0; i--)
2345 pNorm(strat->S[i]);
2346 }
2347 /*- compute------------------------------------------- -*/
2348 res=idInit(IDELEMS(q),strat->ak);
2349 for (i=0; i<IDELEMS(q); i++)
2350 {
2351 if (q->m[i]!=NULL)
2352 {
2353 p = pCopy(q->m[i]);
2354 deleteHC(&p,&o,&j,strat);
2355 if (p!=NULL)
2356 {
2357 /*- puts the elements of S also to T -*/
2358 for (j=0; j<=strat->sl; j++)
2359 {
2360 h.p = strat->S[j];
2361 h.ecart = strat->ecartS[j];
2362 h.pLength = h.length = pLength(h.p);
2363 if (strat->sevS[j] == 0) strat->sevS[j] = pGetShortExpVector(h.p);
2364 else assume(strat->sevS[j] == pGetShortExpVector(h.p));
2365 h.sev = strat->sevS[j];
2366 h.SetpFDeg();
2368 enterT_strong(h,strat);
2369 else
2370 enterT(h,strat);
2371 }
2372 if (TEST_OPT_PROT) { PrintS("r"); mflush(); }
2374 {
2375 p = redMoraNFRing(p,strat, lazyReduce);
2376 }
2377 else
2378 p = redMoraNF(p,strat, lazyReduce);
2379 if ((p!=NULL)&&((lazyReduce & KSTD_NF_LAZY)==0))
2380 {
2381 if (TEST_OPT_PROT) { PrintS("t"); mflush(); }
2382 p = redtail(p,strat->sl,strat);
2383 }
2384 cleanT(strat);
2385 }
2386 res->m[i]=p;
2387 }
2388 //else
2389 // res->m[i]=NULL;
2390 }
2391 /*- release temp data------------------------------- -*/
2392 assume(strat->L==NULL); /*strat->L unused */
2393 assume(strat->B==NULL); /*strat->B unused */
2394 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
2395 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
2396 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
2397 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2398 omFree(strat->sevT);
2399 omFree(strat->S_2_R);
2400 omFree(strat->R);
2401 if ((Q!=NULL)&&(strat->fromQ!=NULL))
2402 {
2404 omFreeSize((ADDRESS)strat->fromQ,i*sizeof(int));
2405 strat->fromQ=NULL;
2406 }
2407 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2408// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
2409// {
2410// pFDeg=strat->pOrigFDeg;
2411// pLDeg=strat->pOrigLDeg;
2412// if (ecartWeights)
2413// {
2414// omFreeSize((ADDRESS *)&ecartWeights,((currRing->N)+1)*sizeof(short));
2415// ecartWeights=NULL;
2416// }
2417// }
2418 idDelete(&strat->Shdl);
2420 if (TEST_OPT_PROT) PrintLn();
2421 return res;
2422}
2423
2425
2426long kModDeg(poly p,const ring r)
2427{
2428 long o=p_WDegree(p, r);
2429 long i=__p_GetComp(p, r);
2430 if (i==0) return o;
2431 //assume((i>0) && (i<=kModW->length()));
2432 if (i<=kModW->length())
2433 return o+(*kModW)[i-1];
2434 return o;
2435}
2436long kHomModDeg(poly p,const ring r)
2437{
2438 int i;
2439 long j=0;
2440
2441 for (i=r->N;i>0;i--)
2442 j+=p_GetExp(p,i,r)*(*kHomW)[i-1];
2443 if (kModW == NULL) return j;
2444 i = __p_GetComp(p,r);
2445 if (i==0) return j;
2446 return j+(*kModW)[i-1];
2447}
2448
2449static poly kTryHC(ideal F, ideal Q)
2450{
2451 if (TEST_OPT_PROT) PrintS("try HC in Zp ring\n");
2452 // create Zp_ring
2455 nKillChar(Zp_ring->cf);
2456 Zp_ring->cf=nInitChar(n_Zp, (void*)(long)32003);
2458 // map data
2462 ideal QQ=NULL;
2464 // call std
2466 // clean
2467 idDelete(&FF);
2468 if (QQ!=NULL) idDelete(&QQ);
2469 idDelete(&res);
2470 // map back
2472 poly p=NULL;
2473 if (Zp_ring->ppNoether!=NULL)
2474 {
2476 Zp_ring->ppNoether=NULL;
2477 if (TEST_OPT_PROT) PrintS("HC found in Zp ring\n");
2478 }
2480 return p;
2481}
2482
2484 int newIdeal, intvec *vw, s_poly_proc_t sp)
2485{
2486 if(idIs0(F))
2487 return idInit(1,F->rank);
2488
2489 if((Q!=NULL)&&(idIs0(Q))) Q=NULL;
2490#ifdef HAVE_SHIFTBBA
2491 if(rIsLPRing(currRing)) return kStdShift(F, Q, h, w, hilb, syzComp, newIdeal, vw, FALSE);
2492#endif
2493
2494 /* test HC precomputation*/
2495 poly save_noether=currRing->ppNoether;
2496 int ak = id_RankFreeModule(F,currRing);
2497 if((ak==0)
2498 && (h!=isHomog)
2499 && (w==NULL)
2500 && (hilb==NULL)
2501 && (vw==NULL)
2502 && (newIdeal==0)
2503 && (sp==NULL)
2507 currRing->ppNoether=kTryHC(F,Q);
2508
2509 ideal r;
2510 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2512 kStrategy strat=new skStrategy;
2513
2514 strat->s_poly=sp;
2516 strat->syzComp = syzComp;
2517 if (TEST_OPT_SB_1
2519 )
2520 strat->newIdeal = newIdeal;
2522 strat->LazyPass=20;
2523 else
2524 strat->LazyPass=2;
2525 strat->LazyDegree = 1;
2526 strat->ak = ak;
2527 strat->kModW=kModW=NULL;
2528 strat->kHomW=kHomW=NULL;
2529 if (vw != NULL)
2530 {
2531 currRing->pLexOrder=FALSE;
2532 strat->kHomW=kHomW=vw;
2533 strat->pOrigFDeg = currRing->pFDeg;
2534 strat->pOrigLDeg = currRing->pLDeg;
2536 toReset = TRUE;
2537 }
2538 if (h==testHomog)
2539 {
2540 if (strat->ak == 0)
2541 {
2542 h = (tHomog)idHomIdeal(F,Q);
2543 w=NULL;
2544 }
2545 else if (!TEST_OPT_DEGBOUND)
2546 {
2547 if (w!=NULL)
2548 h = (tHomog)idHomModule(F,Q,w);
2549 else
2550 h = (tHomog)idHomIdeal(F,Q);
2551 }
2552 }
2553 currRing->pLexOrder=b;
2554 if (h==isHomog)
2555 {
2556 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2557 {
2558 strat->kModW = kModW = *w;
2559 if (vw == NULL)
2560 {
2561 strat->pOrigFDeg = currRing->pFDeg;
2562 strat->pOrigLDeg = currRing->pLDeg;
2564 toReset = TRUE;
2565 }
2566 }
2567 currRing->pLexOrder = TRUE;
2568 if (hilb==NULL) strat->LazyPass*=2;
2569 }
2570 strat->homog=h;
2571#ifdef KDEBUG
2572 idTest(F);
2573 if (Q!=NULL) idTest(Q);
2574#endif
2575#ifdef HAVE_PLURAL
2577 {
2578 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2579 strat->no_prod_crit = ! bIsSCA;
2580 if (w!=NULL)
2581 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2582 else
2583 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2584 }
2585 else
2586#endif
2587 {
2588 #if PRE_INTEGER_CHECK
2589 //the preinteger check strategy is not for modules
2590 if(nCoeff_is_Z(currRing->cf) && strat->ak <= 0)
2591 {
2592 ideal FCopy = idCopy(F);
2593 poly pFmon = preIntegerCheck(FCopy, Q);
2594 if(pFmon != NULL)
2595 {
2597 strat->kModW=kModW=NULL;
2598 if (h==testHomog)
2599 {
2600 if (strat->ak == 0)
2601 {
2603 w=NULL;
2604 }
2605 else if (!TEST_OPT_DEGBOUND)
2606 {
2607 if (w!=NULL)
2609 else
2611 }
2612 }
2613 currRing->pLexOrder=b;
2614 if (h==isHomog)
2615 {
2616 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2617 {
2618 strat->kModW = kModW = *w;
2619 if (vw == NULL)
2620 {
2621 strat->pOrigFDeg = currRing->pFDeg;
2622 strat->pOrigLDeg = currRing->pLDeg;
2624 toReset = TRUE;
2625 }
2626 }
2627 currRing->pLexOrder = TRUE;
2628 if (hilb==NULL) strat->LazyPass*=2;
2629 }
2630 strat->homog=h;
2631 }
2632 omTestMemory(1);
2633 if(w == NULL)
2634 {
2636 r=mora(FCopy,Q,NULL,hilb,strat);
2637 else
2638 r=bba(FCopy,Q,NULL,hilb,strat);
2639 }
2640 else
2641 {
2643 r=mora(FCopy,Q,*w,hilb,strat);
2644 else
2645 r=bba(FCopy,Q,*w,hilb,strat);
2646 }
2647 idDelete(&FCopy);
2648 }
2649 else
2650 #endif
2651 {
2652 if(w==NULL)
2653 {
2655 r=mora(F,Q,NULL,hilb,strat);
2656 else
2657 r=bba(F,Q,NULL,hilb,strat);
2658 }
2659 else
2660 {
2662 r=mora(F,Q,*w,hilb,strat);
2663 else
2664 r=bba(F,Q,*w,hilb,strat);
2665 }
2666 }
2667 }
2668#ifdef KDEBUG
2669 idTest(r);
2670#endif
2671 if (toReset)
2672 {
2673 kModW = NULL;
2675 }
2676 currRing->pLexOrder = b;
2677//Print("%d reductions canceled \n",strat->cel);
2678 delete(strat);
2679 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2680 currRing->ppNoether=save_noether;
2681 return r;
2682}
2683
2684ideal kSba(ideal F, ideal Q, tHomog h,intvec ** w, int sbaOrder, int arri, intvec *hilb,int syzComp,
2685 int newIdeal, intvec *vw)
2686{
2687 if(idIs0(F))
2688 return idInit(1,F->rank);
2690 {
2691 ideal r;
2692 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2694 kStrategy strat=new skStrategy;
2695 strat->sbaOrder = sbaOrder;
2696 if (arri!=0)
2697 {
2698 strat->rewCrit1 = arriRewDummy;
2699 strat->rewCrit2 = arriRewCriterion;
2701 }
2702 else
2703 {
2707 }
2708
2710 strat->syzComp = syzComp;
2711 if (TEST_OPT_SB_1)
2712 //if(!rField_is_Ring(currRing)) // always true here
2713 strat->newIdeal = newIdeal;
2715 strat->LazyPass=20;
2716 else
2717 strat->LazyPass=2;
2718 strat->LazyDegree = 1;
2722 strat->ak = id_RankFreeModule(F,currRing);
2723 strat->kModW=kModW=NULL;
2724 strat->kHomW=kHomW=NULL;
2725 if (vw != NULL)
2726 {
2727 currRing->pLexOrder=FALSE;
2728 strat->kHomW=kHomW=vw;
2729 strat->pOrigFDeg = currRing->pFDeg;
2730 strat->pOrigLDeg = currRing->pLDeg;
2732 toReset = TRUE;
2733 }
2734 if (h==testHomog)
2735 {
2736 if (strat->ak == 0)
2737 {
2738 h = (tHomog)idHomIdeal(F,Q);
2739 w=NULL;
2740 }
2741 else if (!TEST_OPT_DEGBOUND)
2742 {
2743 if (w!=NULL)
2744 h = (tHomog)idHomModule(F,Q,w);
2745 else
2746 h = (tHomog)idHomIdeal(F,Q);
2747 }
2748 }
2749 currRing->pLexOrder=b;
2750 if (h==isHomog)
2751 {
2752 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2753 {
2754 strat->kModW = kModW = *w;
2755 if (vw == NULL)
2756 {
2757 strat->pOrigFDeg = currRing->pFDeg;
2758 strat->pOrigLDeg = currRing->pLDeg;
2760 toReset = TRUE;
2761 }
2762 }
2763 currRing->pLexOrder = TRUE;
2764 if (hilb==NULL) strat->LazyPass*=2;
2765 }
2766 strat->homog=h;
2767 #ifdef KDEBUG
2768 idTest(F);
2769 if(Q != NULL)
2770 idTest(Q);
2771 #endif
2772 #ifdef HAVE_PLURAL
2774 {
2775 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2776 strat->no_prod_crit = ! bIsSCA;
2777 if (w!=NULL)
2778 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2779 else
2780 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2781 }
2782 else
2783 #endif
2784 {
2786 {
2787 if (w!=NULL)
2788 r=mora(F,Q,*w,hilb,strat);
2789 else
2790 r=mora(F,Q,NULL,hilb,strat);
2791 }
2792 else
2793 {
2794 strat->sigdrop = FALSE;
2795 if (w!=NULL)
2796 r=sba(F,Q,*w,hilb,strat);
2797 else
2798 r=sba(F,Q,NULL,hilb,strat);
2799 }
2800 }
2801 #ifdef KDEBUG
2802 idTest(r);
2803 #endif
2804 if (toReset)
2805 {
2806 kModW = NULL;
2808 }
2809 currRing->pLexOrder = b;
2810 //Print("%d reductions canceled \n",strat->cel);
2811 //delete(strat);
2812 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2813 return r;
2814 }
2815 else
2816 {
2817 //--------------------------RING CASE-------------------------
2818 assume(sbaOrder == 1);
2819 assume(arri == 0);
2820 ideal r;
2821 r = idCopy(F);
2822 int sbaEnterS = -1;
2823 bool sigdrop = TRUE;
2824 //This is how we set the SBA algorithm;
2825 int totalsbaruns = 1,blockedreductions = 20,blockred = 0,loops = 0;
2826 while(sigdrop && (loops < totalsbaruns || totalsbaruns == -1)
2827 && (blockred <= blockedreductions))
2828 {
2829 loops++;
2830 if(loops == 1)
2831 sigdrop = FALSE;
2832 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2834 kStrategy strat=new skStrategy;
2835 strat->sbaEnterS = sbaEnterS;
2836 strat->sigdrop = sigdrop;
2837 #if 0
2838 strat->blockred = blockred;
2839 #else
2840 strat->blockred = 0;
2841 #endif
2843 //printf("\nsbaEnterS beginning = %i\n",strat->sbaEnterS);
2844 //printf("\nsigdrop beginning = %i\n",strat->sigdrop);
2845 strat->sbaOrder = sbaOrder;
2846 if (arri!=0)
2847 {
2848 strat->rewCrit1 = arriRewDummy;
2849 strat->rewCrit2 = arriRewCriterion;
2851 }
2852 else
2853 {
2857 }
2858
2860 strat->syzComp = syzComp;
2861 if (TEST_OPT_SB_1)
2863 strat->newIdeal = newIdeal;
2865 strat->LazyPass=20;
2866 else
2867 strat->LazyPass=2;
2868 strat->LazyDegree = 1;
2872 strat->ak = id_RankFreeModule(F,currRing);
2873 strat->kModW=kModW=NULL;
2874 strat->kHomW=kHomW=NULL;
2875 if (vw != NULL)
2876 {
2877 currRing->pLexOrder=FALSE;
2878 strat->kHomW=kHomW=vw;
2879 strat->pOrigFDeg = currRing->pFDeg;
2880 strat->pOrigLDeg = currRing->pLDeg;
2882 toReset = TRUE;
2883 }
2884 if (h==testHomog)
2885 {
2886 if (strat->ak == 0)
2887 {
2888 h = (tHomog)idHomIdeal(F,Q);
2889 w=NULL;
2890 }
2891 else if (!TEST_OPT_DEGBOUND)
2892 {
2893 if (w!=NULL)
2894 h = (tHomog)idHomModule(F,Q,w);
2895 else
2896 h = (tHomog)idHomIdeal(F,Q);
2897 }
2898 }
2899 currRing->pLexOrder=b;
2900 if (h==isHomog)
2901 {
2902 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2903 {
2904 strat->kModW = kModW = *w;
2905 if (vw == NULL)
2906 {
2907 strat->pOrigFDeg = currRing->pFDeg;
2908 strat->pOrigLDeg = currRing->pLDeg;
2910 toReset = TRUE;
2911 }
2912 }
2913 currRing->pLexOrder = TRUE;
2914 if (hilb==NULL) strat->LazyPass*=2;
2915 }
2916 strat->homog=h;
2917 #ifdef KDEBUG
2918 idTest(F);
2919 if(Q != NULL)
2920 idTest(Q);
2921 #endif
2922 #ifdef HAVE_PLURAL
2924 {
2925 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2926 strat->no_prod_crit = ! bIsSCA;
2927 if (w!=NULL)
2928 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2929 else
2930 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2931 }
2932 else
2933 #endif
2934 {
2936 {
2937 if (w!=NULL)
2938 r=mora(F,Q,*w,hilb,strat);
2939 else
2940 r=mora(F,Q,NULL,hilb,strat);
2941 }
2942 else
2943 {
2944 if (w!=NULL)
2945 r=sba(r,Q,*w,hilb,strat);
2946 else
2947 {
2948 r=sba(r,Q,NULL,hilb,strat);
2949 }
2950 }
2951 }
2952 #ifdef KDEBUG
2953 idTest(r);
2954 #endif
2955 if (toReset)
2956 {
2957 kModW = NULL;
2959 }
2960 currRing->pLexOrder = b;
2961 //Print("%d reductions canceled \n",strat->cel);
2962 sigdrop = strat->sigdrop;
2963 sbaEnterS = strat->sbaEnterS;
2964 blockred = strat->blockred;
2965 delete(strat);
2966 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2967 }
2968 // Go to std
2969 if(sigdrop || blockred > blockedreductions)
2970 {
2971 r = kStd(r, Q, h, w, hilb, syzComp, newIdeal, vw);
2972 }
2973 return r;
2974 }
2975}
2976
2977#ifdef HAVE_SHIFTBBA
2979 int newIdeal, intvec *vw, BOOLEAN rightGB)
2980{
2982 assume(idIsInV(F));
2983 ideal r;
2984 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2986 kStrategy strat=new skStrategy;
2987
2988 strat->rightGB = rightGB;
2989
2991 strat->syzComp = syzComp;
2992 if (TEST_OPT_SB_1)
2994 strat->newIdeal = newIdeal;
2996 strat->LazyPass=20;
2997 else
2998 strat->LazyPass=2;
2999 strat->LazyDegree = 1;
3000 strat->ak = id_RankFreeModule(F,currRing);
3001 strat->kModW=kModW=NULL;
3002 strat->kHomW=kHomW=NULL;
3003 if (vw != NULL)
3004 {
3005 currRing->pLexOrder=FALSE;
3006 strat->kHomW=kHomW=vw;
3007 strat->pOrigFDeg = currRing->pFDeg;
3008 strat->pOrigLDeg = currRing->pLDeg;
3010 toReset = TRUE;
3011 }
3012 if (h==testHomog)
3013 {
3014 if (strat->ak == 0)
3015 {
3016 h = (tHomog)idHomIdeal(F,Q);
3017 w=NULL;
3018 }
3019 else if (!TEST_OPT_DEGBOUND)
3020 {
3021 if (w!=NULL)
3022 h = (tHomog)idHomModule(F,Q,w);
3023 else
3024 h = (tHomog)idHomIdeal(F,Q);
3025 }
3026 }
3027 currRing->pLexOrder=b;
3028 if (h==isHomog)
3029 {
3030 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
3031 {
3032 strat->kModW = kModW = *w;
3033 if (vw == NULL)
3034 {
3035 strat->pOrigFDeg = currRing->pFDeg;
3036 strat->pOrigLDeg = currRing->pLDeg;
3038 toReset = TRUE;
3039 }
3040 }
3041 currRing->pLexOrder = TRUE;
3042 if (hilb==NULL) strat->LazyPass*=2;
3043 }
3044 strat->homog=h;
3045#ifdef KDEBUG
3046 idTest(F);
3047#endif
3049 {
3050 /* error: no local ord yet with shifts */
3051 WerrorS("No local ordering possible for shift algebra");
3052 return(NULL);
3053 }
3054 else
3055 {
3056 /* global ordering */
3057 if (w!=NULL)
3058 r=bbaShift(F,Q,*w,hilb,strat);
3059 else
3060 r=bbaShift(F,Q,NULL,hilb,strat);
3061 }
3062#ifdef KDEBUG
3063 idTest(r);
3064#endif
3065 if (toReset)
3066 {
3067 kModW = NULL;
3069 }
3070 currRing->pLexOrder = b;
3071//Print("%d reductions canceled \n",strat->cel);
3072 delete(strat);
3073 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
3074 assume(idIsInV(r));
3075 return r;
3076}
3077#endif
3078
3079//##############################################################
3080//##############################################################
3081//##############################################################
3082//##############################################################
3083//##############################################################
3084
3086 int syzComp, int reduced)
3087{
3088 if(idIs0(F))
3089 {
3090 M=idInit(1,F->rank);
3091 return idInit(1,F->rank);
3092 }
3094 {
3095 ideal sb;
3096 sb = kStd(F, Q, h, w, hilb);
3098 if(IDELEMS(sb) <= IDELEMS(F))
3099 {
3100 M = idCopy(sb);
3101 idSkipZeroes(M);
3102 return(sb);
3103 }
3104 else
3105 {
3106 M = idCopy(F);
3107 idSkipZeroes(M);
3108 return(sb);
3109 }
3110 }
3111 ideal r=NULL;
3112 int Kstd1_OldDeg = Kstd1_deg,i;
3114 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
3117 kStrategy strat=new skStrategy;
3118
3120 strat->syzComp = syzComp;
3122 strat->LazyPass=20;
3123 else
3124 strat->LazyPass=2;
3125 strat->LazyDegree = 1;
3126 strat->minim=(reduced % 2)+1;
3127 strat->ak = id_RankFreeModule(F,currRing);
3128 if (delete_w)
3129 {
3130 temp_w=new intvec((strat->ak)+1);
3131 w = &temp_w;
3132 }
3133 if (h==testHomog)
3134 {
3135 if (strat->ak == 0)
3136 {
3137 h = (tHomog)idHomIdeal(F,Q);
3138 w=NULL;
3139 }
3140 else
3141 {
3142 h = (tHomog)idHomModule(F,Q,w);
3143 }
3144 }
3145 if (h==isHomog)
3146 {
3147 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
3148 {
3149 kModW = *w;
3150 strat->kModW = *w;
3151 assume(currRing->pFDeg != NULL && currRing->pLDeg != NULL);
3152 strat->pOrigFDeg = currRing->pFDeg;
3153 strat->pOrigLDeg = currRing->pLDeg;
3155
3156 toReset = TRUE;
3157 if (reduced>1)
3158 {
3160 Kstd1_deg = -1;
3161 for (i=IDELEMS(F)-1;i>=0;i--)
3162 {
3163 if ((F->m[i]!=NULL) && (currRing->pFDeg(F->m[i],currRing)>=Kstd1_deg))
3164 Kstd1_deg = currRing->pFDeg(F->m[i],currRing)+1;
3165 }
3166 }
3167 }
3168 currRing->pLexOrder = TRUE;
3169 strat->LazyPass*=2;
3170 }
3171 strat->homog=h;
3172 ideal SB=NULL;
3174 {
3175 r=idMinBase(F,&SB); // SB and M via minbase
3176 strat->M=r;
3177 r=SB;
3178 }
3179 else
3180 {
3181 if (w!=NULL)
3182 r=bba(F,Q,*w,hilb,strat);
3183 else
3184 r=bba(F,Q,NULL,hilb,strat);
3185 }
3186#ifdef KDEBUG
3187 {
3188 int i;
3189 for (i=IDELEMS(r)-1; i>=0; i--) pTest(r->m[i]);
3190 }
3191#endif
3192 idSkipZeroes(r);
3193 if (toReset)
3194 {
3196 kModW = NULL;
3197 }
3198 currRing->pLexOrder = b;
3199 if ((delete_w)&&(temp_w!=NULL)) delete temp_w;
3200 if ((IDELEMS(r)==1) && (r->m[0]!=NULL) && pIsConstant(r->m[0]) && (strat->ak==0))
3201 {
3202 M=idInit(1,F->rank);
3203 M->m[0]=pOne();
3204 //if (strat->ak!=0) { pSetComp(M->m[0],strat->ak); pSetmComp(M->m[0]); }
3205 if (strat->M!=NULL) idDelete(&strat->M);
3206 }
3207 else if (strat->M==NULL)
3208 {
3209 M=idInit(1,F->rank);
3210 WarnS("no minimal generating set computed");
3211 }
3212 else
3213 {
3214 idSkipZeroes(strat->M);
3215 M=strat->M;
3216 }
3217 delete(strat);
3218 if (reduced>2)
3219 {
3221 if (!oldDegBound)
3222 si_opt_1 &= ~Sy_bit(OPT_DEGBOUND);
3223 }
3224 else
3225 {
3226 if (IDELEMS(M)>IDELEMS(r))
3227 {
3228 idDelete(&M);
3229 M=idCopy(r);
3230 }
3231 }
3232 return r;
3233}
3234
3235poly kNF(ideal F, ideal Q, poly p,int syzComp, int lazyReduce)
3236{
3237 if (p==NULL)
3238 return NULL;
3239
3240 poly pp = p;
3241
3242#ifdef HAVE_PLURAL
3243 if(rIsSCA(currRing))
3244 {
3245 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3246 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3248
3249 if(Q == currRing->qideal)
3251 }
3252#endif
3253 if((Q!=NULL) &&(idIs0(Q))) Q=NULL;
3254
3255 if ((idIs0(F))&&(Q==NULL))
3256 {
3257#ifdef HAVE_PLURAL
3258 if(p != pp)
3259 return pp;
3260#endif
3261 return pCopy(p); /*F+Q=0*/
3262 }
3263
3264 kStrategy strat=new skStrategy;
3265 strat->syzComp = syzComp;
3267 poly res;
3268
3270 {
3271#ifdef HAVE_SHIFTBBA
3272 if (currRing->isLPring)
3273 {
3274 WerrorS("No local ordering possible for shift algebra");
3275 return(NULL);
3276 }
3277#endif
3278 res=kNF1(F,Q,pp,strat,lazyReduce);
3279 }
3280 else
3281 res=kNF2(F,Q,pp,strat,lazyReduce);
3282 delete(strat);
3283
3284#ifdef HAVE_PLURAL
3285 if(pp != p)
3286 p_Delete(&pp, currRing);
3287#endif
3288 return res;
3289}
3290
3291poly kNFBound(ideal F, ideal Q, poly p,int bound,int syzComp, int lazyReduce)
3292{
3293 if (p==NULL)
3294 return NULL;
3295
3296 poly pp = p;
3297
3298#ifdef HAVE_PLURAL
3299 if(rIsSCA(currRing))
3300 {
3301 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3302 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3304
3305 if(Q == currRing->qideal)
3307 }
3308#endif
3309
3310 if ((idIs0(F))&&(Q==NULL))
3311 {
3312#ifdef HAVE_PLURAL
3313 if(p != pp)
3314 return pp;
3315#endif
3316 return pCopy(p); /*F+Q=0*/
3317 }
3318
3319 kStrategy strat=new skStrategy;
3320 strat->syzComp = syzComp;
3322 poly res;
3323 res=kNF2Bound(F,Q,pp,bound,strat,lazyReduce);
3324 delete(strat);
3325
3326#ifdef HAVE_PLURAL
3327 if(pp != p)
3328 p_Delete(&pp, currRing);
3329#endif
3330 return res;
3331}
3332
3333ideal kNF(ideal F, ideal Q, ideal p,int syzComp,int lazyReduce)
3334{
3335 ideal res;
3336 if (TEST_OPT_PROT)
3337 {
3338 Print("(S:%d)",IDELEMS(p));mflush();
3339 }
3340 if (idIs0(p))
3341 return idInit(IDELEMS(p),si_max(p->rank,F->rank));
3342
3343 ideal pp = p;
3344#ifdef HAVE_PLURAL
3345 if(rIsSCA(currRing))
3346 {
3347 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3348 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3350
3351 if(Q == currRing->qideal)
3353 }
3354#endif
3355
3356 if ((Q!=NULL)&&(idIs0(Q))) Q=NULL;
3357
3358 if ((idIs0(F))&&(Q==NULL))
3359 {
3360#ifdef HAVE_PLURAL
3361 if(p != pp)
3362 return pp;
3363#endif
3364 return idCopy(p); /*F+Q=0*/
3365 }
3366
3367 kStrategy strat=new skStrategy;
3368 strat->syzComp = syzComp;
3370 if (strat->ak>0) // only for module case, see Tst/Short/bug_reduce.tst
3371 {
3372 strat->ak = si_max(strat->ak,(int)F->rank);
3373 }
3374
3376 {
3377#ifdef HAVE_SHIFTBBA
3378 if (currRing->isLPring)
3379 {
3380 WerrorS("No local ordering possible for shift algebra");
3381 return(NULL);
3382 }
3383#endif
3384 res=kNF1(F,Q,pp,strat,lazyReduce);
3385 }
3386 else
3387 res=kNF2(F,Q,pp,strat,lazyReduce);
3388 delete(strat);
3389
3390#ifdef HAVE_PLURAL
3391 if(pp != p)
3393#endif
3394
3395 return res;
3396}
3397
3399{
3400 ideal res;
3401 if (TEST_OPT_PROT)
3402 {
3403 Print("(S:%d)",IDELEMS(p));mflush();
3404 }
3405 if (idIs0(p))
3406 return idInit(IDELEMS(p),si_max(p->rank,F->rank));
3407
3408 ideal pp = p;
3409#ifdef HAVE_PLURAL
3410 if(rIsSCA(currRing))
3411 {
3412 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3413 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3415
3416 if(Q == currRing->qideal)
3418 }
3419#endif
3420
3421 if ((idIs0(F))&&(Q==NULL))
3422 {
3423#ifdef HAVE_PLURAL
3424 if(p != pp)
3425 return pp;
3426#endif
3427 return idCopy(p); /*F+Q=0*/
3428 }
3429
3430 kStrategy strat=new skStrategy;
3431 strat->syzComp = syzComp;
3433 if (strat->ak>0) // only for module case, see Tst/Short/bug_reduce.tst
3434 {
3435 strat->ak = si_max(strat->ak,(int)F->rank);
3436 }
3437
3438 res=kNF2Bound(F,Q,pp,bound,strat,lazyReduce);
3439 delete(strat);
3440
3441#ifdef HAVE_PLURAL
3442 if(pp != p)
3444#endif
3445
3446 return res;
3447}
3448
3449poly k_NF (ideal F, ideal Q, poly p,int syzComp, int lazyReduce, const ring _currRing)
3450{
3451 const ring save = currRing;
3453 poly ret = kNF(F, Q, p, syzComp, lazyReduce);
3455 return ret;
3456}
3457
3458/*2
3459*interreduces F
3460*/
3461// old version
3463{
3464 int j;
3465 kStrategy strat = new skStrategy;
3466
3467 ideal tempF = F;
3468 ideal tempQ = Q;
3469
3470#ifdef HAVE_PLURAL
3471 if(rIsSCA(currRing))
3472 {
3473 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3474 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3476
3477 // this should be done on the upper level!!! :
3478 // tempQ = SCAQuotient(currRing);
3479
3480 if(Q == currRing->qideal)
3482 }
3483#endif
3484
3485// if (TEST_OPT_PROT)
3486// {
3487// writeTime("start InterRed:");
3488// mflush();
3489// }
3490 //strat->syzComp = 0;
3491 strat->kAllAxis = (currRing->ppNoether) != NULL;
3492 strat->kNoether=pCopy((currRing->ppNoether));
3494 initBuchMoraCrit(strat);
3495 strat->NotUsedAxis = (BOOLEAN *)omAlloc(((currRing->N)+1)*sizeof(BOOLEAN));
3496 for (j=(currRing->N); j>0; j--) strat->NotUsedAxis[j] = TRUE;
3497 strat->enterS = enterSBba;
3498 strat->posInT = posInT17;
3499 strat->initEcart = initEcartNormal;
3500 strat->sl = -1;
3501 strat->tl = -1;
3502 strat->tmax = setmaxT;
3503 strat->T = initT();
3504 strat->R = initR();
3505 strat->sevT = initsevT();
3507 initS(tempF, tempQ, strat);
3508 if (TEST_OPT_REDSB)
3509 strat->noTailReduction=FALSE;
3510 updateS(TRUE,strat);
3512 completeReduce(strat);
3513 //else if (TEST_OPT_PROT) PrintLn();
3514 cleanT(strat);
3515 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
3516 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
3517 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
3518 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
3519 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
3520 omfree(strat->sevT);
3521 omfree(strat->S_2_R);
3522 omfree(strat->R);
3523
3524 if (strat->fromQ)
3525 {
3526 for (j=IDELEMS(strat->Shdl)-1;j>=0;j--)
3527 {
3528 if(strat->fromQ[j]) pDelete(&strat->Shdl->m[j]);
3529 }
3530 omFreeSize((ADDRESS)strat->fromQ,IDELEMS(strat->Shdl)*sizeof(int));
3531 }
3532// if (TEST_OPT_PROT)
3533// {
3534// writeTime("end Interred:");
3535// mflush();
3536// }
3537 ideal shdl=strat->Shdl;
3539 if (strat->fromQ)
3540 {
3541 strat->fromQ=NULL;
3543 idDelete(&shdl);
3544 shdl=res;
3545 }
3546 delete(strat);
3547#ifdef HAVE_PLURAL
3548 if( tempF != F )
3550#endif
3551 return shdl;
3552}
3553// new version
3555{
3556 need_retry=0;
3557 int red_result = 1;
3558 int olddeg,reduc;
3560 // BOOLEAN toReset=FALSE;
3561 kStrategy strat=new skStrategy;
3562 tHomog h;
3563
3565 strat->LazyPass=20;
3566 else
3567 strat->LazyPass=2;
3568 strat->LazyDegree = 1;
3569 strat->ak = id_RankFreeModule(F,currRing);
3570 strat->syzComp = strat->ak;
3571 strat->kModW=kModW=NULL;
3572 strat->kHomW=kHomW=NULL;
3573 if (strat->ak == 0)
3574 {
3575 h = (tHomog)idHomIdeal(F,Q);
3576 }
3577 else if (!TEST_OPT_DEGBOUND)
3578 {
3579 h = (tHomog)idHomIdeal(F,Q);
3580 }
3581 else
3582 h = isNotHomog;
3583 if (h==isHomog)
3584 {
3585 strat->LazyPass*=2;
3586 }
3587 strat->homog=h;
3588#ifdef KDEBUG
3589 idTest(F);
3590#endif
3591
3592 initBuchMoraCrit(strat); /*set Gebauer, honey, sugarCrit*/
3594 initBuchMoraPosRing(strat);
3595 else
3596 initBuchMoraPos(strat);
3597 initBba(strat);
3598 /*set enterS, spSpolyShort, reduce, red, initEcart, initEcartPair*/
3599 strat->posInL=posInL0; /* ord according pComp */
3600
3601 /*Shdl=*/initBuchMora(F, Q, strat);
3602 reduc = olddeg = 0;
3603
3604#ifndef NO_BUCKETS
3606 strat->use_buckets = 1;
3607#endif
3608
3609 // redtailBBa against T for inhomogeneous input
3610 if (!TEST_OPT_OLDSTD)
3611 withT = ! strat->homog;
3612
3613 // strat->posInT = posInT_pLength;
3614 kTest_TS(strat);
3615
3616#ifdef HAVE_TAIL_RING
3618#endif
3619
3620 /* compute------------------------------------------------------- */
3621 while (strat->Ll >= 0)
3622 {
3623 #ifdef KDEBUG
3624 if (TEST_OPT_DEBUG) messageSets(strat);
3625 #endif
3626 if (strat->Ll== 0) strat->interpt=TRUE;
3627 /* picks the last element from the lazyset L */
3628 strat->P = strat->L[strat->Ll];
3629 strat->Ll--;
3630
3631 if (strat->P.p1 == NULL)
3632 {
3633 // for input polys, prepare reduction
3634 strat->P.PrepareRed(strat->use_buckets);
3635 }
3636
3637 if (strat->P.p == NULL && strat->P.t_p == NULL)
3638 {
3639 red_result = 0;
3640 }
3641 else
3642 {
3643 if (TEST_OPT_PROT)
3644 message(strat->P.pFDeg(),
3645 &olddeg,&reduc,strat, red_result);
3646
3647 /* reduction of the element chosen from L */
3648 red_result = strat->red(&strat->P,strat);
3649 }
3650
3651 // reduction to non-zero new poly
3652 if (red_result == 1)
3653 {
3654 /* statistic */
3655 if (TEST_OPT_PROT) PrintS("s");
3656
3657 // get the polynomial (canonicalize bucket, make sure P.p is set)
3658 strat->P.GetP(strat->lmBin);
3659
3660 int pos=posInS(strat,strat->sl,strat->P.p,strat->P.ecart);
3661
3662 // reduce the tail and normalize poly
3663 // in the ring case we cannot expect LC(f) = 1,
3664 // therefore we call pCleardenom instead of pNorm
3666 {
3667 strat->P.pCleardenom();
3668 if (0)
3669 //if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL))
3670 {
3671 strat->P.p = redtailBba(&(strat->P),pos-1,strat, withT);
3672 strat->P.pCleardenom();
3673 }
3674 }
3675 else
3676 {
3677 strat->P.pNorm();
3678 if (0)
3679 //if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL))
3680 strat->P.p = redtailBba(&(strat->P),pos-1,strat, withT);
3681 }
3682
3683#ifdef KDEBUG
3684 if (TEST_OPT_DEBUG){PrintS("new s:");strat->P.wrp();PrintLn();}
3685#endif
3686
3687 // enter into S, L, and T
3688 if ((!TEST_OPT_IDLIFT) || (pGetComp(strat->P.p) <= strat->syzComp))
3689 {
3690 enterT(strat->P, strat);
3691 // posInS only depends on the leading term
3692 strat->enterS(strat->P, pos, strat, strat->tl);
3693
3694 if (pos<strat->sl)
3695 {
3696 need_retry++;
3697 // move all "larger" elements fromS to L
3698 // remove them from T
3699 int ii=pos+1;
3700 for(;ii<=strat->sl;ii++)
3701 {
3702 LObject h;
3703 h.Clear();
3704 h.tailRing=strat->tailRing;
3705 h.p=strat->S[ii]; strat->S[ii]=NULL;
3706 strat->initEcart(&h);
3707 h.sev=strat->sevS[ii];
3708 int jj=strat->tl;
3709 while (jj>=0)
3710 {
3711 if (strat->T[jj].p==h.p)
3712 {
3713 strat->T[jj].p=NULL;
3714 if (jj<strat->tl)
3715 {
3716 memmove(&(strat->T[jj]),&(strat->T[jj+1]),
3717 (strat->tl-jj)*sizeof(strat->T[jj]));
3718 memmove(&(strat->sevT[jj]),&(strat->sevT[jj+1]),
3719 (strat->tl-jj)*sizeof(strat->sevT[jj]));
3720 }
3721 strat->tl--;
3722 break;
3723 }
3724 jj--;
3725 }
3726 int lpos=strat->posInL(strat->L,strat->Ll,&h,strat);
3727 enterL(&strat->L,&strat->Ll,&strat->Lmax,h,lpos);
3728 #ifdef KDEBUG
3729 if (TEST_OPT_DEBUG)
3730 {
3731 Print("move S[%d] -> L[%d]: ",ii,pos);
3732 p_wrp(h.p,currRing, strat->tailRing);
3733 PrintLn();
3734 }
3735 #endif
3736 }
3737 if (strat->fromQ!=NULL)
3738 {
3739 for(ii=pos+1;ii<=strat->sl;ii++) strat->fromQ[ii]=0;
3740 }
3741 strat->sl=pos;
3742 }
3743 }
3744 else
3745 {
3746 // clean P
3747 }
3748 kDeleteLcm(&strat->P);
3749 }
3750
3751#ifdef KDEBUG
3752 if (TEST_OPT_DEBUG)
3753 {
3754 messageSets(strat);
3755 }
3756 strat->P.Clear();
3757#endif
3758 //kTest_TS(strat);: i_r out of sync in kInterRedBba, but not used!
3759 }
3760#ifdef KDEBUG
3761 //if (TEST_OPT_DEBUG) messageSets(strat);
3762#endif
3763 /* complete reduction of the standard basis--------- */
3764
3765 if((need_retry<=0) && (TEST_OPT_REDSB))
3766 {
3767 completeReduce(strat);
3768 if (strat->completeReduce_retry)
3769 {
3770 // completeReduce needed larger exponents, retry
3771 // hopefully: kStratChangeTailRing already provided a larger tailRing
3772 // (otherwise: it will fail again)
3774 completeReduce(strat);
3775 if (strat->completeReduce_retry)
3776 {
3777#ifdef HAVE_TAIL_RING
3778 if(currRing->bitmask>strat->tailRing->bitmask)
3779 {
3780 // retry without T
3782 cleanT(strat);strat->tailRing=currRing;
3783 int i;
3784 for(i=strat->sl;i>=0;i--) strat->S_2_R[i]=-1;
3785 completeReduce(strat);
3786 }
3787 if (strat->completeReduce_retry)
3788#endif
3789 Werror("exponent bound is %ld",currRing->bitmask);
3790 }
3791 }
3792 }
3793 else if (TEST_OPT_PROT) PrintLn();
3794
3795
3796 /* release temp data-------------------------------- */
3797 exitBuchMora(strat);
3798// if (TEST_OPT_WEIGHTM)
3799// {
3800// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
3801// if (ecartWeights)
3802// {
3803// omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
3804// ecartWeights=NULL;
3805// }
3806// }
3807 //if (TEST_OPT_PROT) messageStat(0/*hilbcount*/,strat);
3808 if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
3809 ideal res=strat->Shdl;
3810 strat->Shdl=NULL;
3811 delete strat;
3812 return res;
3813}
3815{
3816#ifdef HAVE_PLURAL
3817 if(rIsPluralRing(currRing)) return kInterRedOld(F,Q);
3818#endif
3821 )
3822 return kInterRedOld(F,Q);
3823
3824 //return kInterRedOld(F,Q);
3825
3826 BITSET save1;
3828 //si_opt_1|=Sy_bit(OPT_NOT_SUGAR);
3830 //si_opt_1&= ~Sy_bit(OPT_REDTAIL);
3831 //si_opt_1&= ~Sy_bit(OPT_REDSB);
3832 //extern char * showOption() ;
3833 //Print("%s\n",showOption());
3834
3835 int need_retry;
3836 int counter=3;
3837 ideal res, res1;
3838 int elems;
3839 ideal null=NULL;
3840 if ((Q==NULL) || (!TEST_OPT_REDSB))
3841 {
3842 elems=idElem(F);
3844 }
3845 else
3846 {
3847 ideal FF=idSimpleAdd(F,Q);
3849 idDelete(&FF);
3850 null=idInit(1,1);
3851 if (need_retry)
3853 else
3854 res1=kNF(null,Q,res);
3855 idDelete(&res);
3856 res=res1;
3857 need_retry=1;
3858 }
3859 if (idElem(res)<=1) need_retry=0;
3860 while (need_retry && (counter>0))
3861 {
3862 #ifdef KDEBUG
3863 if (TEST_OPT_DEBUG) { Print("retry counter %d\n",counter); }
3864 #endif
3866 int new_elems=idElem(res1);
3867 counter -= (new_elems >= elems);
3868 elems = new_elems;
3869 idDelete(&res);
3870 if (idElem(res1)<=1) need_retry=0;
3871 if ((Q!=NULL) && (TEST_OPT_REDSB))
3872 {
3873 if (need_retry)
3875 else
3876 res=kNF(null,Q,res1);
3877 idDelete(&res1);
3878 }
3879 else
3880 res = res1;
3881 if (idElem(res)<=1) need_retry=0;
3882 }
3883 if (null!=NULL) idDelete(&null);
3886 return res;
3887}
3888
3889// returns TRUE if mora should use buckets, false otherwise
3891{
3892#ifdef MORA_USE_BUCKETS
3894 return FALSE;
3895 if (strat->red == redFirst)
3896 {
3897#ifdef NO_LDEG
3898 if (strat->syzComp==0)
3899 return TRUE;
3900#else
3901 if ((strat->homog || strat->honey) && (strat->syzComp==0))
3902 return TRUE;
3903#endif
3904 }
3905 else
3906 {
3907 #ifdef HAVE_RINGS
3908 assume(strat->red == redEcart || strat->red == redRiloc || strat->red == redRiloc_Z);
3909 #else
3910 assume(strat->red == redEcart);
3911 #endif
3912 if (strat->honey && (strat->syzComp==0))
3913 return TRUE;
3914 }
3915#endif
3916 return FALSE;
3917}
static int si_max(const int a, const int b)
Definition auxiliary.h:124
#define UNLIKELY(X)
Definition auxiliary.h:404
int BOOLEAN
Definition auxiliary.h:87
#define TRUE
Definition auxiliary.h:100
#define FALSE
Definition auxiliary.h:96
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition cf_gcd.cc:676
int i
Definition cfEzgcd.cc:132
int k
Definition cfEzgcd.cc:99
int p
Definition cfModGcd.cc:4078
CanonicalForm b
Definition cfModGcd.cc:4103
static CanonicalForm bound(const CFMatrix &M)
Definition cf_linsys.cc:460
int length() const
KINLINE poly kNoetherTail()
Definition kInline.h:66
intvec * kModW
Definition kutil.h:335
bool sigdrop
Definition kutil.h:359
int syzComp
Definition kutil.h:354
int * S_2_R
Definition kutil.h:342
ring tailRing
Definition kutil.h:343
void(* chainCrit)(poly p, int ecart, kStrategy strat)
Definition kutil.h:291
char noTailReduction
Definition kutil.h:378
int currIdx
Definition kutil.h:317
char posInLOldFlag
Definition kutil.h:382
pFDegProc pOrigFDeg_TailRing
Definition kutil.h:298
int Ll
Definition kutil.h:351
TSet T
Definition kutil.h:326
BOOLEAN(* rewCrit1)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:293
omBin lmBin
Definition kutil.h:344
intset ecartS
Definition kutil.h:309
char honey
Definition kutil.h:377
char rightGB
Definition kutil.h:369
polyset S
Definition kutil.h:306
int minim
Definition kutil.h:357
poly kNoether
Definition kutil.h:329
BOOLEAN * NotUsedAxis
Definition kutil.h:332
LSet B
Definition kutil.h:328
int ak
Definition kutil.h:353
TObject ** R
Definition kutil.h:340
BOOLEAN(* rewCrit3)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:295
int lastAxis
Definition kutil.h:355
ideal M
Definition kutil.h:305
int tl
Definition kutil.h:350
int(* red2)(LObject *L, kStrategy strat)
Definition kutil.h:279
unsigned long * sevT
Definition kutil.h:325
intvec * kHomW
Definition kutil.h:336
poly tail
Definition kutil.h:334
int(* posInL)(const LSet set, const int length, LObject *L, const kStrategy strat)
Definition kutil.h:284
int blockred
Definition kutil.h:364
ideal Shdl
Definition kutil.h:303
unsigned sbaOrder
Definition kutil.h:316
pFDegProc pOrigFDeg
Definition kutil.h:296
int blockredmax
Definition kutil.h:365
int tmax
Definition kutil.h:350
int(* posInLOld)(const LSet Ls, const int Ll, LObject *Lo, const kStrategy strat)
Definition kutil.h:288
char LDegLast
Definition kutil.h:385
void(* initEcartPair)(LObject *h, poly f, poly g, int ecartF, int ecartG)
Definition kutil.h:287
char kAllAxis
Definition kutil.h:376
intset fromQ
Definition kutil.h:321
void(* enterS)(LObject &h, int pos, kStrategy strat, int atR)
Definition kutil.h:286
char use_buckets
Definition kutil.h:383
char interpt
Definition kutil.h:371
int newIdeal
Definition kutil.h:356
char fromT
Definition kutil.h:379
char completeReduce_retry
Definition kutil.h:403
void(* initEcart)(TObject *L)
Definition kutil.h:280
LObject P
Definition kutil.h:302
char noClearS
Definition kutil.h:402
int Lmax
Definition kutil.h:351
char z2homog
Definition kutil.h:374
int LazyPass
Definition kutil.h:353
char no_prod_crit
Definition kutil.h:394
char overflow
Definition kutil.h:404
void(* enterOnePair)(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR)
Definition kutil.h:290
LSet L
Definition kutil.h:327
char length_pLength
Definition kutil.h:387
int(* posInT)(const TSet T, const int tl, LObject &h)
Definition kutil.h:281
int(* red)(LObject *L, kStrategy strat)
Definition kutil.h:278
BOOLEAN(* rewCrit2)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:294
int sl
Definition kutil.h:348
int sbaEnterS
Definition kutil.h:362
int LazyDegree
Definition kutil.h:353
char posInLDependsOnLength
Definition kutil.h:389
unsigned long * sevS
Definition kutil.h:322
char homog
Definition kutil.h:372
pLDegProc pOrigLDeg
Definition kutil.h:297
char update
Definition kutil.h:381
s_poly_proc_t s_poly
Definition kutil.h:300
pLDegProc pOrigLDeg_TailRing
Definition kutil.h:299
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition coeffs.h:813
@ n_Zp
\F{p < 2^31}
Definition coeffs.h:29
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition coeffs.h:512
static FORCE_INLINE number n_QuotRem(number a, number b, number *q, const coeffs r)
Definition coeffs.h:678
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition coeffs.h:697
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition numbers.cc:414
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition coeffs.h:461
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition coeffs.h:750
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition coeffs.h:73
void nKillChar(coeffs r)
undo all initialisations
Definition numbers.cc:569
#define Print
Definition emacs.cc:80
#define WarnS
Definition emacs.cc:78
CanonicalForm res
Definition facAbsFact.cc:60
const CanonicalForm & w
Definition facAbsFact.cc:51
CanonicalForm H
Definition facAbsFact.cc:60
int j
Definition facHensel.cc:110
void WerrorS(const char *s)
Definition feFopen.cc:24
#define VAR
Definition globaldefs.h:5
long scMult0Int(ideal S, ideal Q)
Definition hdegree.cc:950
STATIC_VAR poly last
Definition hdegree.cc:1172
ideal idMinBase(ideal h1, ideal *SB)
Definition ideals.cc:51
#define idDelete(H)
delete an ideal
Definition ideals.h:29
#define idSimpleAdd(A, B)
Definition ideals.h:42
BOOLEAN idInsertPoly(ideal h1, poly h2)
insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
static BOOLEAN idHomModule(ideal m, ideal Q, intvec **w)
Definition ideals.h:96
#define idTest(id)
Definition ideals.h:47
static BOOLEAN idHomIdeal(ideal id, ideal Q=NULL)
Definition ideals.h:91
ideal idCopy(ideal A)
Definition ideals.h:60
static BOOLEAN length(leftv result, leftv arg)
Definition interval.cc:257
STATIC_VAR Poly * h
Definition janet.cc:971
KINLINE TSet initT()
Definition kInline.h:84
KINLINE poly redtailBba(poly p, int pos, kStrategy strat, BOOLEAN normalize)
Definition kInline.h:1213
KINLINE TObject ** initR()
Definition kInline.h:95
KINLINE BOOLEAN arriRewDummy(poly, unsigned long, poly, kStrategy, int)
Definition kInline.h:1263
KINLINE unsigned long * initsevT()
Definition kInline.h:100
int redLiftstd(LObject *h, kStrategy strat)
Definition kLiftstd.cc:167
static ideal nc_GB(const ideal F, const ideal Q, const intvec *w, const intvec *hilb, kStrategy strat, const ring r)
Definition nc.h:27
void khCheckLocInhom(ideal Q, intvec *w, intvec *hilb, int &count, kStrategy strat)
Definition khstd.cc:244
void khCheck(ideal Q, intvec *w, intvec *hilb, int &eledeg, int &count, kStrategy strat)
Definition khstd.cc:28
int ksReducePolyLC(LObject *PR, TObject *PW, poly spNoether, number *coef, kStrategy strat)
Definition kspoly.cc:481
void ksCreateSpoly(LObject *Pair, poly spNoether, int use_buckets, ring tailRing, poly m1, poly m2, TObject **R)
Definition kspoly.cc:1208
int ksReducePoly(LObject *PR, TObject *PW, poly spNoether, number *coef, poly *mon, kStrategy strat, BOOLEAN reduce)
Definition kspoly.cc:189
long kHomModDeg(poly p, const ring r)
Definition kstd1.cc:2436
void reorderT(kStrategy strat)
Definition kstd1.cc:1246
poly kNFBound(ideal F, ideal Q, poly p, int bound, int syzComp, int lazyReduce)
Definition kstd1.cc:3291
ideal mora(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd1.cc:1888
void initMora(ideal F, kStrategy strat)
Definition kstd1.cc:1819
int redFirst(LObject *h, kStrategy strat)
Definition kstd1.cc:797
void firstUpdate(kStrategy strat)
Definition kstd1.cc:1561
long kModDeg(poly p, const ring r)
Definition kstd1.cc:2426
poly k_NF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce, const ring _currRing)
NOTE: this is just a wrapper which sets currRing for the actual kNF call.
Definition kstd1.cc:3449
int redEcart(LObject *h, kStrategy strat)
Definition kstd1.cc:169
void enterSMoraNF(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition kstd1.cc:1681
static int doRed(LObject *h, TObject *with, BOOLEAN intoT, kStrategy strat, bool redMoraNF)
Definition kstd1.cc:119
ideal kMin_std(ideal F, ideal Q, tHomog h, intvec **w, ideal &M, intvec *hilb, int syzComp, int reduced)
Definition kstd1.cc:3085
void updateLHC(kStrategy strat)
Definition kstd1.cc:1469
ideal kStdShift(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, BOOLEAN rightGB)
Definition kstd1.cc:2978
void missingAxis(int *last, kStrategy strat)
Definition kstd1.cc:1284
void reorderL(kStrategy strat)
Definition kstd1.cc:1226
int posInL10(const LSet set, const int length, LObject *p, const kStrategy strat)
Definition kstd1.cc:1365
ideal kInterRedBba(ideal F, ideal Q, int &need_retry)
Definition kstd1.cc:3554
static BOOLEAN kMoraUseBucket(kStrategy strat)
Definition kstd1.cc:3890
poly kNF1(ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
Definition kstd1.cc:2126
ideal kInterRed(ideal F, const ideal Q)
Definition kstd1.cc:3814
static void kOptimizeLDeg(pLDegProc ldeg, kStrategy strat)
Definition kstd1.cc:100
void initBba(kStrategy strat)
Definition kstd1.cc:1689
int redRiloc(LObject *h, kStrategy strat)
Definition kstd1.cc:387
void initSba(ideal F, kStrategy strat)
Definition kstd1.cc:1749
static poly redMoraNFRing(poly h, kStrategy strat, int flag)
Definition kstd1.cc:1083
void kDebugPrint(kStrategy strat)
Definition kutil.cc:11559
void enterSMora(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition kstd1.cc:1628
VAR intvec * kHomW
Definition kstd1.cc:2424
VAR intvec * kModW
Definition kstd1.cc:2424
ideal kInterRedOld(ideal F, const ideal Q)
Definition kstd1.cc:3462
void updateL(kStrategy strat)
Definition kstd1.cc:1398
VAR BITSET validOpts
Definition kstd1.cc:60
void updateT(kStrategy strat)
Definition kstd1.cc:1535
BOOLEAN hasPurePower(const poly p, int last, int *length, kStrategy strat)
Definition kstd1.cc:1317
static poly kTryHC(ideal F, ideal Q)
Definition kstd1.cc:2449
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
Definition kstd1.cc:3235
static poly redMoraNF(poly h, kStrategy strat, int flag)
Definition kstd1.cc:978
VAR BITSET kOptions
Definition kstd1.cc:45
int redRiloc_Z(LObject *h, kStrategy strat)
Definition kstd1.cc:568
ideal kSba(ideal F, ideal Q, tHomog h, intvec **w, int sbaOrder, int arri, intvec *hilb, int syzComp, int newIdeal, intvec *vw)
Definition kstd1.cc:2684
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition kstd1.cc:2483
#define KSTD_NF_LAZY
Definition kstd1.h:17
EXTERN_VAR int Kstd1_deg
Definition kstd1.h:50
#define KSTD_NF_NONORM
Definition kstd1.h:21
BOOLEAN(* s_poly_proc_t)(kStrategy strat)
Definition kstd1.h:14
#define KSTD_NF_ECART
Definition kstd1.h:19
EXTERN_VAR int Kstd1_mu
Definition kstd1.h:50
int redRing_Z(LObject *h, kStrategy strat)
Definition kstd2.cc:683
int kFindDivisibleByInS(const kStrategy strat, int *max_ind, LObject *L)
return -1 if no divisor is found number of first divisor in S, otherwise
Definition kstd2.cc:421
int kTestDivisibleByT0_Z(const kStrategy strat, const LObject *L)
tests if T[0] divides the leading monomial of L, returns -1 if not
Definition kstd2.cc:146
poly kNF2(ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
Definition kstd2.cc:3950
int redHoney(LObject *h, kStrategy strat)
Definition kstd2.cc:2074
int redHomog(LObject *h, kStrategy strat)
Definition kstd2.cc:1114
ideal sba(ideal F0, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd2.cc:2984
ideal bba(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd2.cc:2626
int redLazy(LObject *h, kStrategy strat)
Definition kstd2.cc:1869
int redSigRing(LObject *h, kStrategy strat)
Definition kstd2.cc:1500
int redSig(LObject *h, kStrategy strat)
Definition kstd2.cc:1333
poly kNF2Bound(ideal F, ideal Q, poly q, int bound, kStrategy strat, int lazyReduce)
Definition kstd2.cc:4032
int redRing(LObject *h, kStrategy strat)
Definition kstd2.cc:951
int kFindDivisibleByInT(const kStrategy strat, const LObject *L, const int start)
return -1 if no divisor is found number of first divisor in T, otherwise
Definition kstd2.cc:321
ideal bbaShift(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd2.cc:4591
void message(int i, int *reduc, int *olddeg, kStrategy strat, int red_result)
Definition kutil.cc:7511
poly redtail(LObject *L, int end_pos, kStrategy strat)
Definition kutil.cc:6882
int posInT17(const TSet set, const int length, LObject &p)
Definition kutil.cc:5305
void initBuchMora(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:9799
VAR int HCord
Definition kutil.cc:246
BOOLEAN arriRewCriterionPre(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int)
Definition kutil.cc:6688
void enterT(LObject &p, kStrategy strat, int atT)
Definition kutil.cc:9177
BOOLEAN arriRewCriterion(poly, unsigned long, poly, kStrategy strat, int start=0)
Definition kutil.cc:6663
void enterSSba(LObject &p, int atS, kStrategy strat, int atR)
Definition kutil.cc:8951
BOOLEAN kTest(kStrategy strat)
Definition kutil.cc:1011
BOOLEAN kTest_TS(kStrategy strat)
Definition kutil.cc:1072
void enterOnePairNormal(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:1951
void enterL(LSet *set, int *length, int *LSetmax, LObject p, int at)
Definition kutil.cc:1279
BOOLEAN faugereRewCriterion(poly sig, unsigned long not_sevSig, poly, kStrategy strat, int start=0)
Definition kutil.cc:6604
int posInT2(const TSet set, const int length, LObject &p)
Definition kutil.cc:4946
void enterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:4508
void initHilbCrit(ideal, ideal, intvec **hilb, kStrategy strat)
Definition kutil.cc:9457
void initEcartPairMora(LObject *Lp, poly, poly, int ecartF, int ecartG)
Definition kutil.cc:1325
void initBuchMoraPos(kStrategy strat)
Definition kutil.cc:9626
void initS(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:7634
BOOLEAN kStratChangeTailRing(kStrategy strat, LObject *L, TObject *T, unsigned long expbound)
Definition kutil.cc:11020
int posInL0(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5642
void chainCritOpt_1(poly, int, kStrategy strat)
Definition kutil.cc:3457
void enterT_strong(LObject &p, kStrategy strat, int atT)
Definition kutil.cc:9277
void postReduceByMon(LObject *h, kStrategy strat)
used for GB over ZZ: intermediate reduction by monomial elements background: any known constant eleme...
Definition kutil.cc:10762
void HEckeTest(poly pp, kStrategy strat)
Definition kutil.cc:500
BOOLEAN kTest_L(LObject *L, kStrategy strat, BOOLEAN testp, int lpos, TSet T, int tlength)
Definition kutil.cc:925
void exitBuchMora(kStrategy strat)
Definition kutil.cc:9884
void initEcartNormal(TObject *h)
Definition kutil.cc:1303
int posInS(const kStrategy strat, const int length, const poly p, const int ecart_p)
Definition kutil.cc:4684
void updateS(BOOLEAN toT, kStrategy strat)
Definition kutil.cc:8593
BOOLEAN kCheckSpolyCreation(LObject *L, kStrategy strat, poly &m1, poly &m2)
Definition kutil.cc:10533
void cleanT(kStrategy strat)
Definition kutil.cc:564
BOOLEAN kTest_T(TObject *T, kStrategy strat, int i, char TN)
Definition kutil.cc:800
void deleteHC(LObject *L, kStrategy strat, BOOLEAN fromNext)
Definition kutil.cc:293
void updateResult(ideal r, ideal Q, kStrategy strat)
Definition kutil.cc:10127
void superenterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:4477
void deleteInL(LSet set, int *length, int j, kStrategy strat)
Definition kutil.cc:1214
void kStratInitChangeTailRing(kStrategy strat)
Definition kutil.cc:11113
void initBuchMoraCrit(kStrategy strat)
Definition kutil.cc:9475
void completeReduce(kStrategy strat, BOOLEAN withT)
Definition kutil.cc:10339
void initBuchMoraPosRing(kStrategy strat)
Definition kutil.cc:9712
void messageSets(kStrategy strat)
Definition kutil.cc:7584
poly preIntegerCheck(const ideal Forig, const ideal Q)
used for GB over ZZ: look for constant and monomial elements in the ideal background: any known const...
Definition kutil.cc:10595
void chainCritNormal(poly p, int ecart, kStrategy strat)
Definition kutil.cc:3216
void initEcartBBA(TObject *h)
Definition kutil.cc:1311
void initEcartPairBba(LObject *Lp, poly, poly, int, int)
Definition kutil.cc:1318
void messageStat(int hilbcount, kStrategy strat)
Definition kutil.cc:7552
void finalReduceByMon(kStrategy strat)
used for GB over ZZ: final reduction by constant elements background: any known constant element of i...
Definition kutil.cc:10927
void enterSBba(LObject &p, int atS, kStrategy strat, int atR)
Definition kutil.cc:8828
BOOLEAN newHEdge(kStrategy strat)
Definition kutil.cc:10461
void cancelunit(LObject *L, BOOLEAN inNF)
Definition kutil.cc:372
#define setmaxTinc
Definition kutil.h:34
LObject * LSet
Definition kutil.h:60
static void kDeleteLcm(LObject *P)
Definition kutil.h:880
#define setmaxT
Definition kutil.h:33
#define RED_CANONICALIZE
Definition kutil.h:36
class sTObject TObject
Definition kutil.h:57
class sLObject LObject
Definition kutil.h:58
static bool rIsSCA(const ring r)
Definition nc.h:190
ideal id_KillSquares(const ideal id, const short iFirstAltVar, const short iLastAltVar, const ring r, const bool bSkipZeroes)
Definition sca.cc:1518
poly p_KillSquares(const poly p, const short iFirstAltVar, const short iLastAltVar, const ring r)
Definition sca.cc:1463
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition minpoly.cc:647
#define assume(x)
Definition mod2.h:389
#define p_GetComp(p, r)
Definition monomials.h:64
#define pIter(p)
Definition monomials.h:37
#define pNext(p)
Definition monomials.h:36
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition monomials.h:44
#define __p_GetComp(p, r)
Definition monomials.h:63
number ndQuotRem(number a, number b, number *r, const coeffs R)
Definition numbers.cc:358
#define nEqual(n1, n2)
Definition numbers.h:20
#define omfree(addr)
#define omFreeSize(addr, size)
omError_t omTestMemory(int check_level)
Definition omDebug.c:94
#define omAlloc(size)
#define omFree(addr)
#define NULL
Definition omList.c:12
VAR BOOLEAN siCntrlc
Definition options.c:14
VAR unsigned si_opt_1
Definition options.c:5
#define TEST_OPT_WEIGHTM
Definition options.h:121
#define OPT_SUGARCRIT
Definition options.h:80
#define OPT_PROT
Definition options.h:75
#define OPT_INFREDTAIL
Definition options.h:94
#define OPT_INTSTRATEGY
Definition options.h:92
#define TEST_OPT_IDLIFT
Definition options.h:129
#define TEST_OPT_INTSTRATEGY
Definition options.h:110
#define BVERBOSE(a)
Definition options.h:35
#define OPT_WEIGHTM
Definition options.h:97
#define TEST_OPT_FINDET
Definition options.h:111
#define OPT_REDTAIL
Definition options.h:91
#define SI_SAVE_OPT1(A)
Definition options.h:21
#define SI_RESTORE_OPT1(A)
Definition options.h:24
#define OPT_NOT_SUGAR
Definition options.h:78
#define TEST_OPT_OLDSTD
Definition options.h:123
#define OPT_REDTHROUGH
Definition options.h:82
#define OPT_REDSB
Definition options.h:76
#define Sy_bit(x)
Definition options.h:31
#define TEST_OPT_REDSB
Definition options.h:104
#define OPT_NOTREGULARITY
Definition options.h:96
#define TEST_OPT_DEGBOUND
Definition options.h:113
#define TEST_OPT_SB_1
Definition options.h:119
#define TEST_OPT_RETURN_SB
Definition options.h:112
#define TEST_OPT_MULTBOUND
Definition options.h:114
#define TEST_OPT_PROT
Definition options.h:103
#define TEST_OPT_REDTHROUGH
Definition options.h:122
#define OPT_INTERRUPT
Definition options.h:79
#define OPT_DEGBOUND
Definition options.h:90
#define TEST_V_DEG_STOP
Definition options.h:137
#define TEST_OPT_FASTHC
Definition options.h:109
#define TEST_OPT_DEBUG
Definition options.h:108
#define OPT_FASTHC
Definition options.h:85
#define TEST_OPT_REDTAIL_SYZ
Definition options.h:117
#define OPT_OLDSTD
Definition options.h:86
#define TEST_OPT_STAIRCASEBOUND
Definition options.h:115
#define TEST_OPT_NOT_BUCKETS
Definition options.h:105
pShallowCopyDeleteProc pGetShallowCopyDeleteProc(ring, ring)
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition p_polys.cc:1226
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition p_polys.cc:3649
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition p_polys.cc:4130
long pLDeg0c(poly p, int *l, const ring r)
Definition p_polys.cc:770
long pLDeg0(poly p, int *l, const ring r)
Definition p_polys.cc:739
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition p_polys.cc:3637
long p_WDegree(poly p, const ring r)
Definition p_polys.cc:714
static int pLength(poly a)
Definition p_polys.h:190
static void p_LmDelete(poly p, const ring r)
Definition p_polys.h:723
static long p_FDeg(const poly p, const ring r)
Definition p_polys.h:380
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition p_polys.h:313
#define pp_Test(p, lmRing, tailRing)
Definition p_polys.h:163
static BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
Definition p_polys.h:1910
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition p_polys.h:469
static void p_Delete(poly *p, const ring r)
Definition p_polys.h:901
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:373
void rChangeCurrRing(ring r)
Definition polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition polys.cc:13
Compatibility layer for legacy polynomial operations (over currRing)
#define pAdd(p, q)
Definition polys.h:203
#define pTest(p)
Definition polys.h:414
#define pDelete(p_ptr)
Definition polys.h:186
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition polys.h:67
#define pSetm(p)
Definition polys.h:271
#define pIsConstant(p)
like above, except that Comp must be 0
Definition polys.h:238
#define pGetComp(p)
Component.
Definition polys.h:37
void pNorm(poly p)
Definition polys.h:362
#define pLmShortDivisibleBy(a, sev_a, b, not_sev_b)
Divisibility tests based on Short Exponent vectors sev_a == pGetShortExpVector(a) not_sev_b == ~ pGet...
Definition polys.h:146
#define pMaxComp(p)
Definition polys.h:299
#define pSetComp(p, v)
Definition polys.h:38
#define pLmDelete(p)
assume p != NULL, deletes Lm(p)->coef and Lm(p)
Definition polys.h:76
#define pGetShortExpVector(a)
returns the "Short Exponent Vector" – used to speed up divisibility tests (see polys-impl....
Definition polys.h:152
void wrp(poly p)
Definition polys.h:310
static void pLmFree(poly p)
frees the space of the monomial m, assumes m != NULL coef is not freed, m is not advanced
Definition polys.h:70
#define pSetmComp(p)
TODO:
Definition polys.h:273
#define pNormalize(p)
Definition polys.h:317
#define pSetExp(p, i, v)
Definition polys.h:42
#define pLmCmp(p, q)
returns 0|1|-1 if p=q|p>q|p<q w.r.t monomial ordering
Definition polys.h:105
#define pCopy(p)
return a copy of the poly
Definition polys.h:185
#define pOne()
Definition polys.h:315
#define pWTotaldegree(p)
Definition polys.h:283
void PrintS(const char *s)
Definition reporter.cc:284
void PrintLn()
Definition reporter.cc:310
void Werror(const char *fmt,...)
Definition reporter.cc:189
#define mflush()
Definition reporter.h:58
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition ring.cc:3464
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition ring.cc:1421
void rDelete(ring r)
unconditionally deletes fields in r
Definition ring.cc:450
BOOLEAN rOrd_is_ds(const ring r)
Definition ring.cc:2033
static BOOLEAN rField_is_Z(const ring r)
Definition ring.h:509
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition ring.h:400
long(* pLDegProc)(poly p, int *length, ring r)
Definition ring.h:37
static BOOLEAN rIsLPRing(const ring r)
Definition ring.h:411
static BOOLEAN rField_is_Q(const ring r)
Definition ring.h:506
static BOOLEAN rIsNCRing(const ring r)
Definition ring.h:421
static BOOLEAN rField_is_numeric(const ring r)
Definition ring.h:515
BOOLEAN rHasMixedOrdering(const ring r)
Definition ring.h:763
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition ring.h:592
BOOLEAN rHasGlobalOrdering(const ring r)
Definition ring.h:761
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition ring.h:762
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition ring.h:548
#define rField_is_Ring(R)
Definition ring.h:485
ideal SCAQuotient(const ring r)
Definition sca.h:10
static short scaLastAltVar(ring r)
Definition sca.h:25
static short scaFirstAltVar(ring r)
Definition sca.h:18
#define idIsInV(I)
Definition shiftop.h:49
ideal idInit(int idsize, int rank)
initialise an ideal / module
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
ideal id_PermIdeal(ideal I, int R, int C, const int *perm, const ring src, const ring dst, nMapFunc nMap, const int *par_perm, int P, BOOLEAN use_mult)
mapping ideals/matrices to other rings
#define IDELEMS(i)
static int idElem(const ideal F)
number of non-zero polys in F
#define M
Definition sirandom.c:25
#define Q
Definition sirandom.c:26
tHomog
Definition structs.h:35
@ isHomog
Definition structs.h:37
@ testHomog
Definition structs.h:38
@ isNotHomog
Definition structs.h:36
#define BITSET
Definition structs.h:16
#define loop
Definition structs.h:75
long totaldegreeWecart(poly p, ring r)
Definition weight.cc:217
long maxdegreeWecart(poly p, int *l, ring r)
Definition weight.cc:247
void kEcartWeights(poly *s, int sl, short *eweight, const ring R)
Definition weight.cc:182
EXTERN_VAR short * ecartWeights
Definition weight.h:12