ipshell.cc
Go to the documentation of this file.
1 /****************************************
2 * Computer Algebra System SINGULAR *
3 ****************************************/
4 /*
5 * ABSTRACT:
6 */
7 
8 #include <kernel/mod2.h>
9 
10 #include <omalloc/omalloc.h>
11 
12 #include <factory/factory.h>
13 
14 #include <misc/options.h>
15 #include <misc/mylimits.h>
16 #include <misc/intvec.h>
17 #include <misc/prime.h>
18 
19 #include <coeffs/numbers.h>
20 #include <coeffs/coeffs.h>
21 
22 #include <coeffs/rmodulon.h>
23 #include <coeffs/longrat.h>
24 
25 #include <polys/monomials/ring.h>
26 #include <polys/monomials/maps.h>
27 
28 #include <polys/prCopy.h>
29 #include <polys/matpol.h>
30 
31 #include <polys/weight.h>
32 #include <polys/clapsing.h>
33 
34 
37 
38 #include <kernel/polys.h>
39 #include <kernel/ideals.h>
40 
43 
44 #include <kernel/GBEngine/syz.h>
45 #include <kernel/GBEngine/kstd1.h>
46 #include <kernel/GBEngine/kutil.h> // denominator_list
47 
50 
51 #include <kernel/spectrum/semic.h>
52 #include <kernel/spectrum/splist.h>
54 
56 
57 #include <Singular/lists.h>
58 #include <Singular/attrib.h>
59 #include <Singular/ipconv.h>
60 #include <Singular/links/silink.h>
61 #include <Singular/ipshell.h>
62 #include <Singular/maps_ip.h>
63 #include <Singular/tok.h>
64 #include <Singular/ipid.h>
65 #include <Singular/subexpr.h>
66 #include <Singular/fevoices.h>
67 #include <Singular/sdb.h>
68 
69 #include <math.h>
70 #include <ctype.h>
71 
72 #include <kernel/maps/gen_maps.h>
73 
74 #ifdef SINGULAR_4_1
75 #include <Singular/number2.h>
76 #endif
77 #ifdef SINGULAR_4_2
78 #include <coeffs/bigintmat.h>
79 #endif
82 const char *lastreserved=NULL;
83 
85 
86 /*0 implementation*/
87 
88 const char * iiTwoOps(int t)
89 {
90  if (t<127)
91  {
92  static char ch[2];
93  switch (t)
94  {
95  case '&':
96  return "and";
97  case '|':
98  return "or";
99  default:
100  ch[0]=t;
101  ch[1]='\0';
102  return ch;
103  }
104  }
105  switch (t)
106  {
107  case COLONCOLON: return "::";
108  case DOTDOT: return "..";
109  //case PLUSEQUAL: return "+=";
110  //case MINUSEQUAL: return "-=";
111  case MINUSMINUS: return "--";
112  case PLUSPLUS: return "++";
113  case EQUAL_EQUAL: return "==";
114  case LE: return "<=";
115  case GE: return ">=";
116  case NOTEQUAL: return "<>";
117  default: return Tok2Cmdname(t);
118  }
119 }
120 
121 int iiOpsTwoChar(const char *s)
122 {
123 /* not handling: &&, ||, ** */
124  if (s[1]=='\0') return s[0];
125  else if (s[2]!='\0') return 0;
126  switch(s[0])
127  {
128  case '.': if (s[1]=='.') return DOTDOT;
129  else return 0;
130  case ':': if (s[1]==':') return COLONCOLON;
131  else return 0;
132  case '-': if (s[1]=='-') return MINUSMINUS;
133  else return 0;
134  case '+': if (s[1]=='+') return PLUSPLUS;
135  else return 0;
136  case '=': if (s[1]=='=') return EQUAL_EQUAL;
137  else return 0;
138  case '<': if (s[1]=='=') return LE;
139  else if (s[1]=='>') return NOTEQUAL;
140  else return 0;
141  case '>': if (s[1]=='=') return GE;
142  else return 0;
143  case '!': if (s[1]=='=') return NOTEQUAL;
144  else return 0;
145  }
146  return 0;
147 }
148 
149 static void list1(const char* s, idhdl h,BOOLEAN c, BOOLEAN fullname)
150 {
151  char buffer[22];
152  int l;
153  char buf2[128];
154 
155  if(fullname) sprintf(buf2, "%s::%s", "", IDID(h));
156  else sprintf(buf2, "%s", IDID(h));
157 
158  Print("%s%-30.30s [%d] ",s,buf2,IDLEV(h));
159  if (h == currRingHdl) PrintS("*");
160  PrintS(Tok2Cmdname((int)IDTYP(h)));
161 
162  ipListFlag(h);
163  switch(IDTYP(h))
164  {
165  case ALIAS_CMD: Print(" for %s",IDID((idhdl)IDDATA(h))); break;
166  case INT_CMD: Print(" %d",IDINT(h)); break;
167  case INTVEC_CMD:Print(" (%d)",IDINTVEC(h)->length()); break;
168  case INTMAT_CMD:Print(" %d x %d",IDINTVEC(h)->rows(),IDINTVEC(h)->cols());
169  break;
170  case POLY_CMD:
171  case VECTOR_CMD:if (c)
172  {
173  PrintS(" ");wrp(IDPOLY(h));
174  if(IDPOLY(h) != NULL)
175  {
176  Print(", %d monomial(s)",pLength(IDPOLY(h)));
177  }
178  }
179  break;
180  case MODUL_CMD: Print(", rk %d", (int)(IDIDEAL(h)->rank));
181  case IDEAL_CMD: Print(", %u generator(s)",
182  IDELEMS(IDIDEAL(h))); break;
183  case MAP_CMD:
184  Print(" from %s",IDMAP(h)->preimage); break;
185  case MATRIX_CMD:Print(" %u x %u"
186  ,MATROWS(IDMATRIX(h))
187  ,MATCOLS(IDMATRIX(h))
188  );
189  break;
190  case PACKAGE_CMD:
191  paPrint(IDID(h),IDPACKAGE(h));
192  break;
193  case PROC_CMD: if((IDPROC(h)->libname!=NULL)
194  && (strlen(IDPROC(h)->libname)>0))
195  Print(" from %s",IDPROC(h)->libname);
196  if(IDPROC(h)->language==LANG_C)
197  PrintS(" (C)");
198  if(IDPROC(h)->is_static)
199  PrintS(" (static)");
200  break;
201  case STRING_CMD:
202  {
203  char *s;
204  l=strlen(IDSTRING(h));
205  memset(buffer,0,22);
206  strncpy(buffer,IDSTRING(h),si_min(l,20));
207  if ((s=strchr(buffer,'\n'))!=NULL)
208  {
209  *s='\0';
210  }
211  PrintS(" ");
212  PrintS(buffer);
213  if((s!=NULL) ||(l>20))
214  {
215  Print("..., %d char(s)",l);
216  }
217  break;
218  }
219  case LIST_CMD: Print(", size: %d",IDLIST(h)->nr+1);
220  break;
221  case RING_CMD:
222  if ((IDRING(h)==currRing) && (currRingHdl!=h))
223  PrintS("(*)"); /* this is an alias to currRing */
224 #ifdef RDEBUG
226  Print(" <%lx>",(long)(IDRING(h)));
227 #endif
228  break;
229 #ifdef SINGULAR_4_2
230  case CNUMBER_CMD:
231  { number2 n=(number2)IDDATA(h);
232  Print(" (%s)",nCoeffName(n->cf));
233  break;
234  }
235  case CMATRIX_CMD:
236  { bigintmat *b=(bigintmat*)IDDATA(h);
237  Print(" %d x %d (%s)",
238  b->rows(),b->cols(),
239  nCoeffName(b->basecoeffs()));
240  break;
241  }
242 #endif
243  /*default: break;*/
244  }
245  PrintLn();
246 }
247 
249 {
250  BOOLEAN oldShortOut = FALSE;
251 
252  if (currRing != NULL)
253  {
254  oldShortOut = currRing->ShortOut;
255  currRing->ShortOut = 1;
256  }
257  int t=v->Typ();
258  Print("// %s %s ",v->Name(),Tok2Cmdname(t));
259  switch (t)
260  {
261  case MAP_CMD:Print(" from %s\n",((map)(v->Data()))->preimage); break;
262  case INTMAT_CMD: Print(" %d x %d\n",((intvec*)(v->Data()))->rows(),
263  ((intvec*)(v->Data()))->cols()); break;
264  case MATRIX_CMD:Print(" %u x %u\n" ,
265  MATROWS((matrix)(v->Data())),
266  MATCOLS((matrix)(v->Data())));break;
267  case MODUL_CMD: Print(", rk %d\n", (int)(((ideal)(v->Data()))->rank));break;
268  case LIST_CMD: Print(", size %d\n",((lists)(v->Data()))->nr+1); break;
269 
270  case PROC_CMD:
271  case RING_CMD:
272  case IDEAL_CMD: PrintLn(); break;
273 
274  //case INT_CMD:
275  //case STRING_CMD:
276  //case INTVEC_CMD:
277  //case POLY_CMD:
278  //case VECTOR_CMD:
279  //case PACKAGE_CMD:
280 
281  default:
282  break;
283  }
284  v->Print();
285  if (currRing != NULL)
286  currRing->ShortOut = oldShortOut;
287 }
288 
289 static void killlocals0(int v, idhdl * localhdl, const ring r)
290 {
291  idhdl h = *localhdl;
292  while (h!=NULL)
293  {
294  int vv;
295  //Print("consider %s, lev: %d:",IDID(h),IDLEV(h));
296  if ((vv=IDLEV(h))>0)
297  {
298  if (vv < v)
299  {
300  if (iiNoKeepRing)
301  {
302  //PrintS(" break\n");
303  return;
304  }
305  h = IDNEXT(h);
306  //PrintLn();
307  }
308  else //if (vv >= v)
309  {
310  idhdl nexth = IDNEXT(h);
311  killhdl2(h,localhdl,r);
312  h = nexth;
313  //PrintS("kill\n");
314  }
315  }
316  else
317  {
318  h = IDNEXT(h);
319  //PrintLn();
320  }
321  }
322 }
323 
324 void killlocals_rec(idhdl *root,int v, ring r)
325 {
326  idhdl h=*root;
327  while (h!=NULL)
328  {
329  if (IDLEV(h)>=v)
330  {
331 // Print("kill %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
332  idhdl n=IDNEXT(h);
333  killhdl2(h,root,r);
334  h=n;
335  }
336  else if (IDTYP(h)==PACKAGE_CMD)
337  {
338  // Print("into pack %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
339  if (IDPACKAGE(h)!=basePack)
340  killlocals_rec(&(IDRING(h)->idroot),v,r);
341  h=IDNEXT(h);
342  }
343  else if (IDTYP(h)==RING_CMD)
344  {
345  if ((IDRING(h)!=NULL) && (IDRING(h)->idroot!=NULL))
346  // we have to test IDRING(h)!=NULL: qring Q=groebner(...): killlocals
347  {
348  // Print("into ring %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
349  killlocals_rec(&(IDRING(h)->idroot),v,IDRING(h));
350  }
351  h=IDNEXT(h);
352  }
353  else
354  {
355 // Print("skip %s lev %d for lev %d\n",IDID(h),IDLEV(h),v);
356  h=IDNEXT(h);
357  }
358  }
359 }
361 {
362  if (L==NULL) return FALSE;
363  BOOLEAN changed=FALSE;
364  int n=L->nr;
365  for(;n>=0;n--)
366  {
367  leftv h=&(L->m[n]);
368  void *d=h->data;
369  if ((h->rtyp==RING_CMD)
370  && (((ring)d)->idroot!=NULL))
371  {
372  if (d!=currRing) {changed=TRUE;rChangeCurrRing((ring)d);}
373  killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
374  }
375  else if (h->rtyp==LIST_CMD)
376  changed|=killlocals_list(v,(lists)d);
377  }
378  return changed;
379 }
380 void killlocals(int v)
381 {
382  BOOLEAN changed=FALSE;
383  idhdl sh=currRingHdl;
384  ring cr=currRing;
385  if (sh!=NULL) changed=((IDLEV(sh)<v) || (IDRING(sh)->ref>0));
386  //if (changed) Print("currRing=%s(%x), lev=%d,ref=%d\n",IDID(sh),IDRING(sh),IDLEV(sh),IDRING(sh)->ref);
387 
388  killlocals_rec(&(basePack->idroot),v,currRing);
389 
391  {
392  int t=iiRETURNEXPR.Typ();
393  if (/*iiRETURNEXPR.Typ()*/ t==RING_CMD)
394  {
396  if (((ring)h->data)->idroot!=NULL)
397  killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
398  }
399  else if (/*iiRETURNEXPR.Typ()*/ t==LIST_CMD)
400  {
402  changed |=killlocals_list(v,(lists)h->data);
403  }
404  }
405  if (changed)
406  {
408  if (currRingHdl==NULL)
409  currRing=NULL;
410  else if(cr!=currRing)
411  rChangeCurrRing(cr);
412  }
413 
414  if (myynest<=1) iiNoKeepRing=TRUE;
415  //Print("end killlocals >= %d\n",v);
416  //listall();
417 }
418 
419 void list_cmd(int typ, const char* what, const char *prefix,BOOLEAN iterate, BOOLEAN fullname)
420 {
421  package savePack=currPack;
422  idhdl h,start;
423  BOOLEAN all = typ<0;
424  BOOLEAN really_all=FALSE;
425 
426  if ( typ==0 )
427  {
428  if (strcmp(what,"all")==0)
429  {
430  if (currPack!=basePack)
431  list_cmd(-1,NULL,prefix,iterate,fullname); // list current package
432  really_all=TRUE;
433  h=basePack->idroot;
434  }
435  else
436  {
437  h = ggetid(what);
438  if (h!=NULL)
439  {
440  if (iterate) list1(prefix,h,TRUE,fullname);
441  if (IDTYP(h)==ALIAS_CMD) PrintS("A");
442  if ((IDTYP(h)==RING_CMD)
443  //|| (IDTYP(h)==PACKE_CMD)
444  )
445  {
446  h=IDRING(h)->idroot;
447  }
448  else if(IDTYP(h)==PACKAGE_CMD)
449  {
450  currPack=IDPACKAGE(h);
451  //Print("list_cmd:package\n");
452  all=TRUE;typ=PROC_CMD;fullname=TRUE;really_all=TRUE;
453  h=IDPACKAGE(h)->idroot;
454  }
455  else
456  {
457  currPack=savePack;
458  return;
459  }
460  }
461  else
462  {
463  Werror("%s is undefined",what);
464  currPack=savePack;
465  return;
466  }
467  }
468  all=TRUE;
469  }
470  else if (RingDependend(typ))
471  {
472  h = currRing->idroot;
473  }
474  else
475  h = IDROOT;
476  start=h;
477  while (h!=NULL)
478  {
479  if ((all
480  && (IDTYP(h)!=PROC_CMD)
481  &&(IDTYP(h)!=PACKAGE_CMD)
482  #ifdef SINGULAR_4_1
483  &&(IDTYP(h)!=CRING_CMD)
484  #endif
485  )
486  || (typ == IDTYP(h))
487  #ifdef SINGULAR_4_1
488  || ((IDTYP(h)==CRING_CMD) && (typ==RING_CMD))
489  #endif
490  )
491  {
492  list1(prefix,h,start==currRingHdl, fullname);
493  if ((IDTYP(h)==RING_CMD)
494  && (really_all || (all && (h==currRingHdl)))
495  && ((IDLEV(h)==0)||(IDLEV(h)==myynest)))
496  {
497  list_cmd(0,IDID(h),"// ",FALSE);
498  }
499  if (IDTYP(h)==PACKAGE_CMD && really_all)
500  {
501  package save_p=currPack;
502  currPack=IDPACKAGE(h);
503  list_cmd(0,IDID(h),"// ",FALSE);
504  currPack=save_p;
505  }
506  }
507  h = IDNEXT(h);
508  }
509  currPack=savePack;
510 }
511 
512 void test_cmd(int i)
513 {
514  int ii;
515 
516  if (i<0)
517  {
518  ii= -i;
519  if (ii < 32)
520  {
521  si_opt_1 &= ~Sy_bit(ii);
522  }
523  else if (ii < 64)
524  {
525  si_opt_2 &= ~Sy_bit(ii-32);
526  }
527  else
528  WerrorS("out of bounds\n");
529  }
530  else if (i<32)
531  {
532  ii=i;
533  if (Sy_bit(ii) & kOptions)
534  {
535  Warn("Gerhard, use the option command");
536  si_opt_1 |= Sy_bit(ii);
537  }
538  else if (Sy_bit(ii) & validOpts)
539  si_opt_1 |= Sy_bit(ii);
540  }
541  else if (i<64)
542  {
543  ii=i-32;
544  si_opt_2 |= Sy_bit(ii);
545  }
546  else
547  WerrorS("out of bounds\n");
548 }
549 
551 {
552  int rc = 0;
553  while (v!=NULL)
554  {
555  switch (v->Typ())
556  {
557  case INT_CMD:
558  case POLY_CMD:
559  case VECTOR_CMD:
560  case NUMBER_CMD:
561  rc++;
562  break;
563  case INTVEC_CMD:
564  case INTMAT_CMD:
565  rc += ((intvec *)(v->Data()))->length();
566  break;
567  case MATRIX_CMD:
568  case IDEAL_CMD:
569  case MODUL_CMD:
570  {
571  matrix mm = (matrix)(v->Data());
572  rc += mm->rows() * mm->cols();
573  }
574  break;
575  case LIST_CMD:
576  rc+=((lists)v->Data())->nr+1;
577  break;
578  default:
579  rc++;
580  }
581  v = v->next;
582  }
583  return rc;
584 }
585 
587 {
588  sleftv vf;
589  if (iiConvert(v->Typ(),LINK_CMD,iiTestConvert(v->Typ(),LINK_CMD),v,&vf))
590  {
591  WerrorS("link expected");
592  return TRUE;
593  }
594  si_link l=(si_link)vf.Data();
595  if (vf.next == NULL)
596  {
597  WerrorS("write: need at least two arguments");
598  return TRUE;
599  }
600 
601  BOOLEAN b=slWrite(l,vf.next); /* iiConvert preserves next */
602  if (b)
603  {
604  const char *s;
605  if ((l!=NULL)&&(l->name!=NULL)) s=l->name;
606  else s=sNoName;
607  Werror("cannot write to %s",s);
608  }
609  vf.CleanUp();
610  return b;
611 }
612 
613 leftv iiMap(map theMap, const char * what)
614 {
615  idhdl w,r;
616  leftv v;
617  int i;
618  nMapFunc nMap;
619 
620  r=IDROOT->get(theMap->preimage,myynest);
621  if ((currPack!=basePack)
622  &&((r==NULL) || ((r->typ != RING_CMD) )))
623  r=basePack->idroot->get(theMap->preimage,myynest);
624  if ((r==NULL) && (currRingHdl!=NULL)
625  && (strcmp(theMap->preimage,IDID(currRingHdl))==0))
626  {
627  r=currRingHdl;
628  }
629  if ((r!=NULL) && (r->typ == RING_CMD))
630  {
631  ring src_ring=IDRING(r);
632  if ((nMap=n_SetMap(src_ring->cf, currRing->cf))==NULL)
633  {
634  Werror("can not map from ground field of %s to current ground field",
635  theMap->preimage);
636  return NULL;
637  }
638  if (IDELEMS(theMap)<src_ring->N)
639  {
640  theMap->m=(polyset)omReallocSize((ADDRESS)theMap->m,
641  IDELEMS(theMap)*sizeof(poly),
642  (src_ring->N)*sizeof(poly));
643  for(i=IDELEMS(theMap);i<src_ring->N;i++)
644  theMap->m[i]=NULL;
645  IDELEMS(theMap)=src_ring->N;
646  }
647  if (what==NULL)
648  {
649  WerrorS("argument of a map must have a name");
650  }
651  else if ((w=src_ring->idroot->get(what,myynest))!=NULL)
652  {
653  char *save_r=NULL;
655  sleftv tmpW;
656  memset(&tmpW,0,sizeof(sleftv));
657  tmpW.rtyp=IDTYP(w);
658  if (tmpW.rtyp==MAP_CMD)
659  {
660  tmpW.rtyp=IDEAL_CMD;
661  save_r=IDMAP(w)->preimage;
662  IDMAP(w)->preimage=0;
663  }
664  tmpW.data=IDDATA(w);
665  // check overflow
666  BOOLEAN overflow=FALSE;
667  if ((tmpW.rtyp==IDEAL_CMD)
668  || (tmpW.rtyp==MODUL_CMD)
669  || (tmpW.rtyp==MAP_CMD))
670  {
671  ideal id=(ideal)tmpW.data;
672  long *degs=(long*)omAlloc(IDELEMS(id)*sizeof(long));
673  for(int i=IDELEMS(id)-1;i>=0;i--)
674  {
675  poly p=id->m[i];
676  if (p!=NULL) degs[i]=p_Totaldegree(p,src_ring);
677  else degs[i]=0;
678  }
679  for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
680  {
681  if (theMap->m[j]!=NULL)
682  {
683  long deg_monexp=pTotaldegree(theMap->m[j]);
684 
685  for(int i=IDELEMS(id)-1;i>=0;i--)
686  {
687  poly p=id->m[i];
688  if ((p!=NULL) && (degs[i]!=0) &&
689  ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)degs[i])/2)))
690  {
691  overflow=TRUE;
692  break;
693  }
694  }
695  }
696  }
697  omFreeSize(degs,IDELEMS(id)*sizeof(long));
698  }
699  else if (tmpW.rtyp==POLY_CMD)
700  {
701  for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
702  {
703  if (theMap->m[j]!=NULL)
704  {
705  long deg_monexp=pTotaldegree(theMap->m[j]);
706  poly p=(poly)tmpW.data;
707  long deg=0;
708  if ((p!=NULL) && ((deg=p_Totaldegree(p,src_ring))!=0) &&
709  ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)deg)/2)))
710  {
711  overflow=TRUE;
712  break;
713  }
714  }
715  }
716  }
717  if (overflow)
718  Warn("possible OVERFLOW in map, max exponent is %ld",currRing->bitmask/2);
719 #if 0
720  if (((tmpW.rtyp==IDEAL_CMD)||(tmpW.rtyp==MODUL_CMD)) && idIs0(IDIDEAL(w)))
721  {
722  v->rtyp=tmpW.rtyp;
723  v->data=idInit(IDELEMS(IDIDEAL(w)),IDIDEAL(w)->rank);
724  }
725  else
726 #endif
727  {
728  if ((tmpW.rtyp==IDEAL_CMD)
729  ||(tmpW.rtyp==MODUL_CMD)
730  ||(tmpW.rtyp==MATRIX_CMD)
731  ||(tmpW.rtyp==MAP_CMD))
732  {
733  v->rtyp=tmpW.rtyp;
734  char *tmp = theMap->preimage;
735  theMap->preimage=(char*)1L;
736  // map gets 1 as its rank (as an ideal)
737  v->data=maMapIdeal(IDIDEAL(w), src_ring, (ideal)theMap, currRing,nMap);
738  theMap->preimage=tmp; // map gets its preimage back
739  }
740  if (v->data==NULL) /*i.e. not IDEAL_CMD/MODUL_CMD/MATRIX_CMD/MAP */
741  {
742  if (maApplyFetch(MAP_CMD,theMap,v,&tmpW,src_ring,NULL,NULL,0,nMap))
743  {
744  Werror("cannot map %s(%d)",Tok2Cmdname(w->typ),w->typ);
746  if (save_r!=NULL) IDMAP(w)->preimage=save_r;
747  return NULL;
748  }
749  }
750  }
751  if (save_r!=NULL)
752  {
753  IDMAP(w)->preimage=save_r;
754  IDMAP((idhdl)v)->preimage=omStrDup(save_r);
755  v->rtyp=MAP_CMD;
756  }
757  return v;
758  }
759  else
760  {
761  Werror("%s undefined in %s",what,theMap->preimage);
762  }
763  }
764  else
765  {
766  Werror("cannot find preimage %s",theMap->preimage);
767  }
768  return NULL;
769 }
770 
771 #ifdef OLD_RES
772 void iiMakeResolv(resolvente r, int length, int rlen, char * name, int typ0,
773  intvec ** weights)
774 {
775  lists L=liMakeResolv(r,length,rlen,typ0,weights);
776  int i=0;
777  idhdl h;
778  char * s=(char *)omAlloc(strlen(name)+5);
779 
780  while (i<=L->nr)
781  {
782  sprintf(s,"%s(%d)",name,i+1);
783  if (i==0)
784  h=enterid(s,myynest,typ0,&(currRing->idroot), FALSE);
785  else
786  h=enterid(s,myynest,MODUL_CMD,&(currRing->idroot), FALSE);
787  if (h!=NULL)
788  {
789  h->data.uideal=(ideal)L->m[i].data;
790  h->attribute=L->m[i].attribute;
792  Print("//defining: %s as %d-th syzygy module\n",s,i+1);
793  }
794  else
795  {
796  idDelete((ideal *)&(L->m[i].data));
797  Warn("cannot define %s",s);
798  }
799  //L->m[i].data=NULL;
800  //L->m[i].rtyp=0;
801  //L->m[i].attribute=NULL;
802  i++;
803  }
804  omFreeSize((ADDRESS)L->m,(L->nr+1)*sizeof(sleftv));
806  omFreeSize((ADDRESS)s,strlen(name)+5);
807 }
808 #endif
809 
810 //resolvente iiFindRes(char * name, int * len, int *typ0)
811 //{
812 // char *s=(char *)omAlloc(strlen(name)+5);
813 // int i=-1;
814 // resolvente r;
815 // idhdl h;
816 //
817 // do
818 // {
819 // i++;
820 // sprintf(s,"%s(%d)",name,i+1);
821 // h=currRing->idroot->get(s,myynest);
822 // } while (h!=NULL);
823 // *len=i-1;
824 // if (*len<=0)
825 // {
826 // Werror("no objects %s(1),.. found",name);
827 // omFreeSize((ADDRESS)s,strlen(name)+5);
828 // return NULL;
829 // }
830 // r=(ideal *)omAlloc(/*(len+1)*/ i*sizeof(ideal));
831 // memset(r,0,(*len)*sizeof(ideal));
832 // i=-1;
833 // *typ0=MODUL_CMD;
834 // while (i<(*len))
835 // {
836 // i++;
837 // sprintf(s,"%s(%d)",name,i+1);
838 // h=currRing->idroot->get(s,myynest);
839 // if (h->typ != MODUL_CMD)
840 // {
841 // if ((i!=0) || (h->typ!=IDEAL_CMD))
842 // {
843 // Werror("%s is not of type module",s);
844 // omFreeSize((ADDRESS)r,(*len)*sizeof(ideal));
845 // omFreeSize((ADDRESS)s,strlen(name)+5);
846 // return NULL;
847 // }
848 // *typ0=IDEAL_CMD;
849 // }
850 // if ((i>0) && (idIs0(r[i-1])))
851 // {
852 // *len=i-1;
853 // break;
854 // }
855 // r[i]=IDIDEAL(h);
856 // }
857 // omFreeSize((ADDRESS)s,strlen(name)+5);
858 // return r;
859 //}
860 
862 {
863  int i;
864  resolvente res=(ideal *)omAlloc0((l+1)*sizeof(ideal));
865 
866  for (i=0; i<l; i++)
867  if (r[i]!=NULL) res[i]=idCopy(r[i]);
868  return res;
869 }
870 
872 {
873  int len=0;
874  int typ0;
875  lists L=(lists)v->Data();
876  intvec *weights=(intvec*)atGet(v,"isHomog",INTVEC_CMD);
877  int add_row_shift = 0;
878  if (weights==NULL)
879  weights=(intvec*)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
880  if (weights!=NULL) add_row_shift=weights->min_in();
881  resolvente rr=liFindRes(L,&len,&typ0);
882  if (rr==NULL) return TRUE;
883  resolvente r=iiCopyRes(rr,len);
884 
885  syMinimizeResolvente(r,len,0);
886  omFreeSize((ADDRESS)rr,len*sizeof(ideal));
887  len++;
888  res->data=(char *)liMakeResolv(r,len,-1,typ0,NULL,add_row_shift);
889  return FALSE;
890 }
891 
893 {
894  sleftv tmp;
895  memset(&tmp,0,sizeof(tmp));
896  tmp.rtyp=INT_CMD;
897  tmp.data=(void *)1;
898  if ((u->Typ()==IDEAL_CMD)
899  || (u->Typ()==MODUL_CMD))
900  return jjBETTI2_ID(res,u,&tmp);
901  else
902  return jjBETTI2(res,u,&tmp);
903 }
904 
906 {
908  l->Init(1);
909  l->m[0].rtyp=u->Typ();
910  l->m[0].data=u->Data();
911  attr *a=u->Attribute();
912  if (a!=NULL)
913  l->m[0].attribute=*a;
914  sleftv tmp2;
915  memset(&tmp2,0,sizeof(tmp2));
916  tmp2.rtyp=LIST_CMD;
917  tmp2.data=(void *)l;
918  BOOLEAN r=jjBETTI2(res,&tmp2,v);
919  l->m[0].data=NULL;
920  l->m[0].attribute=NULL;
921  l->m[0].rtyp=DEF_CMD;
922  l->Clean();
923  return r;
924 }
925 
927 {
928  resolvente r;
929  int len;
930  int reg,typ0;
931  lists l=(lists)u->Data();
932 
933  intvec *weights=NULL;
934  int add_row_shift=0;
935  intvec *ww=NULL;
936  if (l->nr>=0) ww=(intvec *)atGet(&(l->m[0]),"isHomog",INTVEC_CMD);
937  if (ww!=NULL)
938  {
939  weights=ivCopy(ww);
940  add_row_shift = ww->min_in();
941  (*weights) -= add_row_shift;
942  }
943  //Print("attr:%x\n",weights);
944 
945  r=liFindRes(l,&len,&typ0);
946  if (r==NULL) return TRUE;
947  intvec* res_im=syBetti(r,len,&reg,weights,(int)(long)v->Data());
948  res->data=(void*)res_im;
949  omFreeSize((ADDRESS)r,(len)*sizeof(ideal));
950  //Print("rowShift: %d ",add_row_shift);
951  for(int i=1;i<=res_im->rows();i++)
952  {
953  if (IMATELEM(*res_im,1,i)==0) { add_row_shift--; }
954  else break;
955  }
956  //Print(" %d\n",add_row_shift);
957  atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
958  if (weights!=NULL) delete weights;
959  return FALSE;
960 }
961 
963 {
964  int len,reg,typ0;
965 
966  resolvente r=liFindRes(L,&len,&typ0);
967 
968  if (r==NULL)
969  return -2;
970  intvec *weights=NULL;
971  int add_row_shift=0;
972  intvec *ww=(intvec *)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
973  if (ww!=NULL)
974  {
975  weights=ivCopy(ww);
976  add_row_shift = ww->min_in();
977  (*weights) -= add_row_shift;
978  }
979  //Print("attr:%x\n",weights);
980 
981  intvec *dummy=syBetti(r,len,&reg,weights);
982  if (weights!=NULL) delete weights;
983  delete dummy;
984  omFreeSize((ADDRESS)r,len*sizeof(ideal));
985  return reg+1+add_row_shift;
986 }
987 
989 #define BREAK_LINE_LENGTH 80
990 void iiDebug()
991 {
992 #ifdef HAVE_SDB
993  sdb_flags=1;
994 #endif
995  Print("\n-- break point in %s --\n",VoiceName());
996  if (iiDebugMarker) VoiceBackTrack();
997  char * s;
998  iiDebugMarker=FALSE;
999  s = (char *)omAlloc(BREAK_LINE_LENGTH+4);
1000  loop
1001  {
1002  memset(s,0,80);
1004  if (s[BREAK_LINE_LENGTH-1]!='\0')
1005  {
1006  Print("line too long, max is %d chars\n",BREAK_LINE_LENGTH);
1007  }
1008  else
1009  break;
1010  }
1011  if (*s=='\n')
1012  {
1013  iiDebugMarker=TRUE;
1014  }
1015 #if MDEBUG
1016  else if(strncmp(s,"cont;",5)==0)
1017  {
1018  iiDebugMarker=TRUE;
1019  }
1020 #endif /* MDEBUG */
1021  else
1022  {
1023  strcat( s, "\n;~\n");
1024  newBuffer(s,BT_execute);
1025  }
1026 }
1027 
1028 lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
1029 {
1030  int i;
1031  indset save;
1033 
1034  hexist = hInit(S, Q, &hNexist, currRing);
1035  if (hNexist == 0)
1036  {
1037  intvec *iv=new intvec(rVar(currRing));
1038  for(i=0; i<rVar(currRing); i++) (*iv)[i]=1;
1039  res->Init(1);
1040  res->m[0].rtyp=INTVEC_CMD;
1041  res->m[0].data=(intvec*)iv;
1042  return res;
1043  }
1044  else if (hisModule!=0)
1045  {
1046  res->Init(0);
1047  return res;
1048  }
1049  save = ISet = (indset)omAlloc0Bin(indlist_bin);
1050  hMu = 0;
1051  hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
1052  hvar = (varset)omAlloc((rVar(currRing) + 1) * sizeof(int));
1053  hpure = (scmon)omAlloc((1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1054  hrad = hexist;
1055  hNrad = hNexist;
1056  radmem = hCreate(rVar(currRing) - 1);
1057  hCo = rVar(currRing) + 1;
1058  hNvar = rVar(currRing);
1059  hRadical(hrad, &hNrad, hNvar);
1060  hSupp(hrad, hNrad, hvar, &hNvar);
1061  if (hNvar)
1062  {
1063  hCo = hNvar;
1064  memset(hpure, 0, (rVar(currRing) + 1) * sizeof(long));
1065  hPure(hrad, 0, &hNrad, hvar, hNvar, hpure, &hNpure);
1066  hLexR(hrad, hNrad, hvar, hNvar);
1068  }
1069  if (hCo && (hCo < rVar(currRing)))
1070  {
1072  }
1073  if (hMu!=0)
1074  {
1075  ISet = save;
1076  hMu2 = 0;
1077  if (all && (hCo+1 < rVar(currRing)))
1078  {
1081  i=hMu+hMu2;
1082  res->Init(i);
1083  if (hMu2 == 0)
1084  {
1086  }
1087  }
1088  else
1089  {
1090  res->Init(hMu);
1091  }
1092  for (i=0;i<hMu;i++)
1093  {
1094  res->m[i].data = (void *)save->set;
1095  res->m[i].rtyp = INTVEC_CMD;
1096  ISet = save;
1097  save = save->nx;
1099  }
1100  omFreeBin((ADDRESS)save, indlist_bin);
1101  if (hMu2 != 0)
1102  {
1103  save = JSet;
1104  for (i=hMu;i<hMu+hMu2;i++)
1105  {
1106  res->m[i].data = (void *)save->set;
1107  res->m[i].rtyp = INTVEC_CMD;
1108  JSet = save;
1109  save = save->nx;
1111  }
1112  omFreeBin((ADDRESS)save, indlist_bin);
1113  }
1114  }
1115  else
1116  {
1117  res->Init(0);
1119  }
1120  hKill(radmem, rVar(currRing) - 1);
1121  omFreeSize((ADDRESS)hpure, (1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1122  omFreeSize((ADDRESS)hvar, (rVar(currRing) + 1) * sizeof(int));
1123  omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
1125  return res;
1126 }
1127 
1128 int iiDeclCommand(leftv sy, leftv name, int lev,int t, idhdl* root,BOOLEAN isring, BOOLEAN init_b)
1129 {
1130  BOOLEAN res=FALSE;
1131  const char *id = name->name;
1132 
1133  memset(sy,0,sizeof(sleftv));
1134  if ((name->name==NULL)||(isdigit(name->name[0])))
1135  {
1136  WerrorS("object to declare is not a name");
1137  res=TRUE;
1138  }
1139  else
1140  {
1141  if (t==QRING_CMD) t=RING_CMD; // qring is always RING_CMD
1142 
1143  if (TEST_V_ALLWARN
1144  && (name->rtyp!=0)
1145  && (name->rtyp!=IDHDL)
1146  && (currRingHdl!=NULL) && (IDLEV(currRingHdl)==myynest))
1147  {
1148  Warn("`%s` is %s in %s:%d:%s",name->name,Tok2Cmdname(name->rtyp),
1150  }
1151  {
1152  sy->data = (char *)enterid(id,lev,t,root,init_b);
1153  }
1154  if (sy->data!=NULL)
1155  {
1156  sy->rtyp=IDHDL;
1157  currid=sy->name=IDID((idhdl)sy->data);
1158  // name->name=NULL; /* used in enterid */
1159  //sy->e = NULL;
1160  if (name->next!=NULL)
1161  {
1163  res=iiDeclCommand(sy->next,name->next,lev,t,root, isring);
1164  }
1165  }
1166  else res=TRUE;
1167  }
1168  name->CleanUp();
1169  return res;
1170 }
1171 
1173 {
1174  attr at=NULL;
1175  if (iiCurrProc!=NULL)
1176  at=iiCurrProc->attribute->get("default_arg");
1177  if (at==NULL)
1178  return FALSE;
1179  sleftv tmp;
1180  memset(&tmp,0,sizeof(sleftv));
1181  tmp.rtyp=at->atyp;
1182  tmp.data=at->CopyA();
1183  return iiAssign(p,&tmp);
1184 }
1186 {
1187  // <string1...stringN>,<proc>
1188  // known: args!=NULL, l>=1
1189  int l=args->listLength();
1190  int ll=0;
1191  if (iiCurrArgs!=NULL) ll=iiCurrArgs->listLength();
1192  if (ll!=(l-1)) return FALSE;
1193  leftv h=args;
1194  short *t=(short*)omAlloc(l*sizeof(short));
1195  t[0]=l-1;
1196  int b;
1197  int i;
1198  for(i=1;i<l;i++,h=h->next)
1199  {
1200  if (h->Typ()!=STRING_CMD)
1201  {
1202  omFree(t);
1203  Werror("arg %d is not a string",i);
1204  return TRUE;
1205  }
1206  int tt;
1207  b=IsCmd((char *)h->Data(),tt);
1208  if(b) t[i]=tt;
1209  else
1210  {
1211  omFree(t);
1212  Werror("arg %d is not a type name",i);
1213  return TRUE;
1214  }
1215  }
1216  if (h->Typ()!=PROC_CMD)
1217  {
1218  omFree(t);
1219  Werror("last arg (%d) is not a proc",i);
1220  return TRUE;
1221  }
1222  b=iiCheckTypes(iiCurrArgs,t,0);
1223  omFree(t);
1224  if (b && (h->rtyp==IDHDL) && (h->e==NULL))
1225  {
1226  BOOLEAN err;
1227  //Print("branchTo: %s\n",h->Name());
1228  iiCurrProc=(idhdl)h->data;
1229  procinfo * pi=IDPROC(iiCurrProc);
1230  if( pi->data.s.body==NULL )
1231  {
1233  if (pi->data.s.body==NULL) return TRUE;
1234  }
1235  if ((pi->pack!=NULL)&&(currPack!=pi->pack))
1236  {
1237  currPack=pi->pack;
1240  //Print("set pack=%s\n",IDID(currPackHdl));
1241  }
1242  err=iiAllStart(pi,pi->data.s.body,BT_proc,pi->data.s.body_lineno-(iiCurrArgs==NULL));
1244  if (iiCurrArgs!=NULL)
1245  {
1246  if (!err) Warn("too many arguments for %s",IDID(iiCurrProc));
1247  iiCurrArgs->CleanUp();
1248  omFreeBin((ADDRESS)iiCurrArgs, sleftv_bin);
1249  iiCurrArgs=NULL;
1250  }
1251  return 2-err;
1252  }
1253  return FALSE;
1254 }
1256 {
1257  if (iiCurrArgs==NULL)
1258  {
1259  if (strcmp(p->name,"#")==0)
1260  return iiDefaultParameter(p);
1261  Werror("not enough arguments for proc %s",VoiceName());
1262  p->CleanUp();
1263  return TRUE;
1264  }
1265  leftv h=iiCurrArgs;
1266  leftv rest=h->next; /*iiCurrArgs is not NULL here*/
1267  BOOLEAN is_default_list=FALSE;
1268  if (strcmp(p->name,"#")==0)
1269  {
1270  is_default_list=TRUE;
1271  rest=NULL;
1272  }
1273  else
1274  {
1275  h->next=NULL;
1276  }
1277  BOOLEAN res=iiAssign(p,h);
1278  if (is_default_list)
1279  {
1280  iiCurrArgs=NULL;
1281  }
1282  else
1283  {
1284  iiCurrArgs=rest;
1285  }
1286  h->CleanUp();
1288  return res;
1289 }
1290 
1291 static BOOLEAN iiInternalExport (leftv v, int toLev)
1292 {
1293  idhdl h=(idhdl)v->data;
1294  //Print("iiInternalExport('%s',%d)%s\n", v->name, toLev,"");
1295  if (IDLEV(h)==0)
1296  {
1297  if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(h));
1298  }
1299  else
1300  {
1301  h=IDROOT->get(v->name,toLev);
1302  idhdl *root=&IDROOT;
1303  if ((h==NULL)&&(currRing!=NULL))
1304  {
1305  h=currRing->idroot->get(v->name,toLev);
1306  root=&currRing->idroot;
1307  }
1308  BOOLEAN keepring=FALSE;
1309  if ((h!=NULL)&&(IDLEV(h)==toLev))
1310  {
1311  if (IDTYP(h)==v->Typ())
1312  {
1313  if ((IDTYP(h)==RING_CMD)
1314  && (v->Data()==IDDATA(h)))
1315  {
1316  IDRING(h)->ref++;
1317  keepring=TRUE;
1318  IDLEV(h)=toLev;
1319  //WarnS("keepring");
1320  return FALSE;
1321  }
1322  if (BVERBOSE(V_REDEFINE))
1323  {
1324  Warn("redefining %s (%s)",IDID(h),my_yylinebuf);
1325  }
1326  if (iiLocalRing[0]==IDRING(h) && (!keepring)) iiLocalRing[0]=NULL;
1327  killhdl2(h,root,currRing);
1328  }
1329  else
1330  {
1331  return TRUE;
1332  }
1333  }
1334  h=(idhdl)v->data;
1335  IDLEV(h)=toLev;
1336  if (keepring) IDRING(h)->ref--;
1338  //Print("export %s\n",IDID(h));
1339  }
1340  return FALSE;
1341 }
1342 
1343 BOOLEAN iiInternalExport (leftv v, int toLev, package rootpack)
1344 {
1345  idhdl h=(idhdl)v->data;
1346  if(h==NULL)
1347  {
1348  Warn("'%s': no such identifier\n", v->name);
1349  return FALSE;
1350  }
1351  package frompack=v->req_packhdl;
1352  if (frompack==NULL) frompack=currPack;
1353  if ((RingDependend(IDTYP(h)))
1354  || ((IDTYP(h)==LIST_CMD)
1355  && (lRingDependend(IDLIST(h)))
1356  )
1357  )
1358  {
1359  //Print("// ==> Ringdependent set nesting to 0\n");
1360  return (iiInternalExport(v, toLev));
1361  }
1362  else
1363  {
1364  IDLEV(h)=toLev;
1365  v->req_packhdl=rootpack;
1366  if (h==frompack->idroot)
1367  {
1368  frompack->idroot=h->next;
1369  }
1370  else
1371  {
1372  idhdl hh=frompack->idroot;
1373  while ((hh!=NULL) && (hh->next!=h))
1374  hh=hh->next;
1375  if ((hh!=NULL) && (hh->next==h))
1376  hh->next=h->next;
1377  else
1378  {
1379  Werror("`%s` not found",v->Name());
1380  return TRUE;
1381  }
1382  }
1383  h->next=rootpack->idroot;
1384  rootpack->idroot=h;
1385  }
1386  return FALSE;
1387 }
1388 
1389 BOOLEAN iiExport (leftv v, int toLev)
1390 {
1391  BOOLEAN nok=FALSE;
1392  leftv r=v;
1393  while (v!=NULL)
1394  {
1395  if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL))
1396  {
1397  Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1398  nok=TRUE;
1399  }
1400  else
1401  {
1402  if(iiInternalExport(v, toLev))
1403  {
1404  r->CleanUp();
1405  return TRUE;
1406  }
1407  }
1408  v=v->next;
1409  }
1410  r->CleanUp();
1411  return nok;
1412 }
1413 
1414 /*assume root!=idroot*/
1415 BOOLEAN iiExport (leftv v, int toLev, package pack)
1416 {
1417 #ifdef SINGULAR_4_1
1418 // if ((pack==basePack)&&(pack!=currPack))
1419 // { Warn("'exportto' to Top is depreciated in >>%s<<",my_yylinebuf);}
1420 #endif
1421  BOOLEAN nok=FALSE;
1422  leftv rv=v;
1423  while (v!=NULL)
1424  {
1425  if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL)
1426  )
1427  {
1428  Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1429  nok=TRUE;
1430  }
1431  else
1432  {
1433  idhdl old=pack->idroot->get( v->name,toLev);
1434  if (old!=NULL)
1435  {
1436  if ((pack==currPack) && (old==(idhdl)v->data))
1437  {
1438  if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(old));
1439  break;
1440  }
1441  else if (IDTYP(old)==v->Typ())
1442  {
1443  if (BVERBOSE(V_REDEFINE))
1444  {
1445  Warn("redefining %s (%s)",IDID(old),my_yylinebuf);
1446  }
1447  v->name=omStrDup(v->name);
1448  killhdl2(old,&(pack->idroot),currRing);
1449  }
1450  else
1451  {
1452  rv->CleanUp();
1453  return TRUE;
1454  }
1455  }
1456  //Print("iiExport: pack=%s\n",IDID(root));
1457  if(iiInternalExport(v, toLev, pack))
1458  {
1459  rv->CleanUp();
1460  return TRUE;
1461  }
1462  }
1463  v=v->next;
1464  }
1465  rv->CleanUp();
1466  return nok;
1467 }
1468 
1470 {
1471  if (currRing==NULL)
1472  {
1473  #ifdef SIQ
1474  if (siq<=0)
1475  {
1476  #endif
1477  if (RingDependend(i))
1478  {
1479  WerrorS("no ring active");
1480  return TRUE;
1481  }
1482  #ifdef SIQ
1483  }
1484  #endif
1485  }
1486  return FALSE;
1487 }
1488 
1489 poly iiHighCorner(ideal I, int ak)
1490 {
1491  int i;
1492  if(!idIsZeroDim(I)) return NULL; // not zero-dim.
1493  poly po=NULL;
1495  {
1496  scComputeHC(I,currRing->qideal,ak,po);
1497  if (po!=NULL)
1498  {
1499  pGetCoeff(po)=nInit(1);
1500  for (i=rVar(currRing); i>0; i--)
1501  {
1502  if (pGetExp(po, i) > 0) pDecrExp(po,i);
1503  }
1504  pSetComp(po,ak);
1505  pSetm(po);
1506  }
1507  }
1508  else
1509  po=pOne();
1510  return po;
1511 }
1512 
1514 {
1515  if (p!=basePack)
1516  {
1517  idhdl t=basePack->idroot;
1518  while ((t!=NULL) && (IDTYP(t)!=PACKAGE_CMD) && (IDPACKAGE(t)!=p)) t=t->next;
1519  if (t==NULL)
1520  {
1521  WarnS("package not found\n");
1522  p=basePack;
1523  }
1524  }
1525 }
1526 
1527 idhdl rDefault(const char *s)
1528 {
1529  idhdl tmp=NULL;
1530 
1531  if (s!=NULL) tmp = enterid(s, myynest, RING_CMD, &IDROOT);
1532  if (tmp==NULL) return NULL;
1533 
1534 // if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
1536  {
1538  memset(&sLastPrinted,0,sizeof(sleftv));
1539  }
1540 
1541  ring r = IDRING(tmp) = (ring) omAlloc0Bin(sip_sring_bin);
1542 
1543  r->cf = nInitChar(n_Zp, (void*)32003); // r->cf->ch = 32003;
1544  r->N = 3;
1545  /*r->P = 0; Alloc0 in idhdl::set, ipid.cc*/
1546  /*names*/
1547  r->names = (char **) omAlloc0(3 * sizeof(char_ptr));
1548  r->names[0] = omStrDup("x");
1549  r->names[1] = omStrDup("y");
1550  r->names[2] = omStrDup("z");
1551  /*weights: entries for 3 blocks: NULL*/
1552  r->wvhdl = (int **)omAlloc0(3 * sizeof(int_ptr));
1553  /*order: dp,C,0*/
1554  r->order = (int *) omAlloc(3 * sizeof(int *));
1555  r->block0 = (int *)omAlloc0(3 * sizeof(int *));
1556  r->block1 = (int *)omAlloc0(3 * sizeof(int *));
1557  /* ringorder dp for the first block: var 1..3 */
1558  r->order[0] = ringorder_dp;
1559  r->block0[0] = 1;
1560  r->block1[0] = 3;
1561  /* ringorder C for the second block: no vars */
1562  r->order[1] = ringorder_C;
1563  /* the last block: everything is 0 */
1564  r->order[2] = 0;
1565 
1566  /* complete ring intializations */
1567  rComplete(r);
1568  rSetHdl(tmp);
1569  return currRingHdl;
1570 }
1571 
1573 {
1574  idhdl h=rSimpleFindHdl(r,IDROOT,n);
1575  if (h!=NULL) return h;
1576  if (IDROOT!=basePack->idroot) h=rSimpleFindHdl(r,basePack->idroot,n);
1577  if (h!=NULL) return h;
1579  while(p!=NULL)
1580  {
1581  if ((p->cPack!=basePack)
1582  && (p->cPack!=currPack))
1583  h=rSimpleFindHdl(r,p->cPack->idroot,n);
1584  if (h!=NULL) return h;
1585  p=p->next;
1586  }
1587  idhdl tmp=basePack->idroot;
1588  while (tmp!=NULL)
1589  {
1590  if (IDTYP(tmp)==PACKAGE_CMD)
1591  h=rSimpleFindHdl(r,IDPACKAGE(tmp)->idroot,n);
1592  if (h!=NULL) return h;
1593  tmp=IDNEXT(tmp);
1594  }
1595  return NULL;
1596 }
1597 
1598 void rDecomposeCF(leftv h,const ring r,const ring R)
1599 {
1601  L->Init(4);
1602  h->rtyp=LIST_CMD;
1603  h->data=(void *)L;
1604  // 0: char/ cf - ring
1605  // 1: list (var)
1606  // 2: list (ord)
1607  // 3: qideal
1608  // ----------------------------------------
1609  // 0: char/ cf - ring
1610  L->m[0].rtyp=INT_CMD;
1611  L->m[0].data=(void *)(long)r->cf->ch;
1612  // ----------------------------------------
1613  // 1: list (var)
1615  LL->Init(r->N);
1616  int i;
1617  for(i=0; i<r->N; i++)
1618  {
1619  LL->m[i].rtyp=STRING_CMD;
1620  LL->m[i].data=(void *)omStrDup(r->names[i]);
1621  }
1622  L->m[1].rtyp=LIST_CMD;
1623  L->m[1].data=(void *)LL;
1624  // ----------------------------------------
1625  // 2: list (ord)
1627  i=rBlocks(r)-1;
1628  LL->Init(i);
1629  i--;
1630  lists LLL;
1631  for(; i>=0; i--)
1632  {
1633  intvec *iv;
1634  int j;
1635  LL->m[i].rtyp=LIST_CMD;
1637  LLL->Init(2);
1638  LLL->m[0].rtyp=STRING_CMD;
1639  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1640  if (r->block1[i]-r->block0[i] >=0 )
1641  {
1642  j=r->block1[i]-r->block0[i];
1643  if(r->order[i]==ringorder_M) j=(j+1)*(j+1)-1;
1644  iv=new intvec(j+1);
1645  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
1646  {
1647  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j];
1648  }
1649  else switch (r->order[i])
1650  {
1651  case ringorder_dp:
1652  case ringorder_Dp:
1653  case ringorder_ds:
1654  case ringorder_Ds:
1655  case ringorder_lp:
1656  for(;j>=0; j--) (*iv)[j]=1;
1657  break;
1658  default: /* do nothing */;
1659  }
1660  }
1661  else
1662  {
1663  iv=new intvec(1);
1664  }
1665  LLL->m[1].rtyp=INTVEC_CMD;
1666  LLL->m[1].data=(void *)iv;
1667  LL->m[i].data=(void *)LLL;
1668  }
1669  L->m[2].rtyp=LIST_CMD;
1670  L->m[2].data=(void *)LL;
1671  // ----------------------------------------
1672  // 3: qideal
1673  L->m[3].rtyp=IDEAL_CMD;
1674  if (nCoeff_is_transExt(R->cf))
1675  L->m[3].data=(void *)idInit(1,1);
1676  else
1677  {
1678  ideal q=idInit(IDELEMS(r->qideal));
1679  q->m[0]=p_Init(R);
1680  pSetCoeff0(q->m[0],(number)(r->qideal->m[0]));
1681  L->m[3].data=(void *)q;
1682 // I->m[0] = pNSet(R->minpoly);
1683  }
1684  // ----------------------------------------
1685 }
1686 #ifdef SINGULAR_4_1
1687 static void rDecomposeC_41(leftv h,const coeffs C)
1688 /* field is R or C */
1689 {
1691  if (nCoeff_is_long_C(C)) L->Init(3);
1692  else L->Init(2);
1693  h->rtyp=LIST_CMD;
1694  h->data=(void *)L;
1695  // 0: char/ cf - ring
1696  // 1: list (var)
1697  // 2: list (ord)
1698  // ----------------------------------------
1699  // 0: char/ cf - ring
1700  L->m[0].rtyp=INT_CMD;
1701  L->m[0].data=(void *)0;
1702  // ----------------------------------------
1703  // 1:
1705  LL->Init(2);
1706  LL->m[0].rtyp=INT_CMD;
1707  LL->m[0].data=(void *)(long)si_max(C->float_len,SHORT_REAL_LENGTH/2);
1708  LL->m[1].rtyp=INT_CMD;
1709  LL->m[1].data=(void *)(long)si_max(C->float_len2,SHORT_REAL_LENGTH);
1710  L->m[1].rtyp=LIST_CMD;
1711  L->m[1].data=(void *)LL;
1712  // ----------------------------------------
1713  // 2: list (par)
1714  if (nCoeff_is_long_C(C))
1715  {
1716  L->m[2].rtyp=STRING_CMD;
1717  L->m[2].data=(void *)omStrDup(*n_ParameterNames(C));
1718  }
1719  // ----------------------------------------
1720 }
1721 #endif
1722 static void rDecomposeC(leftv h,const ring R)
1723 /* field is R or C */
1724 {
1726  if (rField_is_long_C(R)) L->Init(3);
1727  else L->Init(2);
1728  h->rtyp=LIST_CMD;
1729  h->data=(void *)L;
1730  // 0: char/ cf - ring
1731  // 1: list (var)
1732  // 2: list (ord)
1733  // ----------------------------------------
1734  // 0: char/ cf - ring
1735  L->m[0].rtyp=INT_CMD;
1736  L->m[0].data=(void *)0;
1737  // ----------------------------------------
1738  // 1:
1740  LL->Init(2);
1741  LL->m[0].rtyp=INT_CMD;
1742  LL->m[0].data=(void *)(long)si_max(R->cf->float_len,SHORT_REAL_LENGTH/2);
1743  LL->m[1].rtyp=INT_CMD;
1744  LL->m[1].data=(void *)(long)si_max(R->cf->float_len2,SHORT_REAL_LENGTH);
1745  L->m[1].rtyp=LIST_CMD;
1746  L->m[1].data=(void *)LL;
1747  // ----------------------------------------
1748  // 2: list (par)
1749  if (rField_is_long_C(R))
1750  {
1751  L->m[2].rtyp=STRING_CMD;
1752  L->m[2].data=(void *)omStrDup(*rParameter(R));
1753  }
1754  // ----------------------------------------
1755 }
1756 
1757 #ifdef SINGULAR_4_1
1758 #ifdef HAVE_RINGS
1760 /* field is R or C */
1761 {
1763  if (nCoeff_is_Ring(C)) L->Init(1);
1764  else L->Init(2);
1765  h->rtyp=LIST_CMD;
1766  h->data=(void *)L;
1767  // 0: char/ cf - ring
1768  // 1: list (module)
1769  // ----------------------------------------
1770  // 0: char/ cf - ring
1771  L->m[0].rtyp=STRING_CMD;
1772  L->m[0].data=(void *)omStrDup("integer");
1773  // ----------------------------------------
1774  // 1: modulo
1775  if (nCoeff_is_Ring_Z(C)) return;
1777  LL->Init(2);
1778  LL->m[0].rtyp=BIGINT_CMD;
1779  LL->m[0].data=nlMapGMP((number) C->modBase, C, coeffs_BIGINT);
1780  LL->m[1].rtyp=INT_CMD;
1781  LL->m[1].data=(void *) C->modExponent;
1782  L->m[1].rtyp=LIST_CMD;
1783  L->m[1].data=(void *)LL;
1784 }
1785 #endif
1786 #endif
1787 
1788 void rDecomposeRing(leftv h,const ring R)
1789 /* field is R or C */
1790 {
1791 #ifdef HAVE_RINGS
1793  if (rField_is_Ring_Z(R)) L->Init(1);
1794  else L->Init(2);
1795  h->rtyp=LIST_CMD;
1796  h->data=(void *)L;
1797  // 0: char/ cf - ring
1798  // 1: list (module)
1799  // ----------------------------------------
1800  // 0: char/ cf - ring
1801  L->m[0].rtyp=STRING_CMD;
1802  L->m[0].data=(void *)omStrDup("integer");
1803  // ----------------------------------------
1804  // 1: module
1805  if (rField_is_Ring_Z(R)) return;
1807  LL->Init(2);
1808  LL->m[0].rtyp=BIGINT_CMD;
1809  LL->m[0].data=nlMapGMP((number) R->cf->modBase, R->cf, R->cf); // TODO: what is this?? // extern number nlMapGMP(number from, const coeffs src, const coeffs dst); // FIXME: replace with n_InitMPZ(R->cf->modBase, coeffs_BIGINT); ?
1810  LL->m[1].rtyp=INT_CMD;
1811  LL->m[1].data=(void *) R->cf->modExponent;
1812  L->m[1].rtyp=LIST_CMD;
1813  L->m[1].data=(void *)LL;
1814 #else
1815  WerrorS("rDecomposeRing");
1816 #endif
1817 }
1818 
1819 
1820 #ifdef SINGULAR_4_1
1822 {
1823  assume( C != NULL );
1824 
1825  // sanity check: require currRing==r for rings with polynomial data
1826  if ( nCoeff_is_algExt(C) && (C != currRing->cf))
1827  {
1828  WerrorS("ring with polynomial data must be the base ring or compatible");
1829  return TRUE;
1830  }
1831  if (nCoeff_is_numeric(C))
1832  {
1833  rDecomposeC_41(res,C);
1834  }
1835 #ifdef HAVE_RINGS
1836  else if (nCoeff_is_Ring(C))
1837  {
1838  rDecomposeRing_41(res,C);
1839  }
1840 #endif
1841  else if ( C->extRing!=NULL )// nCoeff_is_algExt(r->cf))
1842  {
1843  rDecomposeCF(res, C->extRing, currRing);
1844  }
1845  else if(nCoeff_is_GF(C))
1846  {
1848  Lc->Init(4);
1849  // char:
1850  Lc->m[0].rtyp=INT_CMD;
1851  Lc->m[0].data=(void*)(long)C->m_nfCharQ;
1852  // var:
1854  Lv->Init(1);
1855  Lv->m[0].rtyp=STRING_CMD;
1856  Lv->m[0].data=(void *)omStrDup(*n_ParameterNames(C));
1857  Lc->m[1].rtyp=LIST_CMD;
1858  Lc->m[1].data=(void*)Lv;
1859  // ord:
1861  Lo->Init(1);
1863  Loo->Init(2);
1864  Loo->m[0].rtyp=STRING_CMD;
1865  Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
1866 
1867  intvec *iv=new intvec(1); (*iv)[0]=1;
1868  Loo->m[1].rtyp=INTVEC_CMD;
1869  Loo->m[1].data=(void *)iv;
1870 
1871  Lo->m[0].rtyp=LIST_CMD;
1872  Lo->m[0].data=(void*)Loo;
1873 
1874  Lc->m[2].rtyp=LIST_CMD;
1875  Lc->m[2].data=(void*)Lo;
1876  // q-ideal:
1877  Lc->m[3].rtyp=IDEAL_CMD;
1878  Lc->m[3].data=(void *)idInit(1,1);
1879  // ----------------------
1880  res->rtyp=LIST_CMD;
1881  res->data=(void*)Lc;
1882  }
1883  else
1884  {
1885  res->rtyp=INT_CMD;
1886  res->data=(void *)(long)C->ch;
1887  }
1888  // ----------------------------------------
1889  return FALSE;
1890 }
1891 #endif
1892 
1893 #ifdef SINGULAR_4_1
1895 {
1896  assume( r != NULL );
1897  const coeffs C = r->cf;
1898  assume( C != NULL );
1899 
1900  // sanity check: require currRing==r for rings with polynomial data
1901  if ( (r!=currRing) && (
1902  (nCoeff_is_algExt(C) && (C != currRing->cf))
1903  || (r->qideal != NULL)
1904 #ifdef HAVE_PLURAL
1905  || (rIsPluralRing(r))
1906 #endif
1907  )
1908  )
1909  {
1910  WerrorS("ring with polynomial data must be the base ring or compatible");
1911  return NULL;
1912  }
1913  // 0: char/ cf - ring
1914  // 1: list (var)
1915  // 2: list (ord)
1916  // 3: qideal
1917  // possibly:
1918  // 4: C
1919  // 5: D
1921  if (rIsPluralRing(r))
1922  L->Init(6);
1923  else
1924  L->Init(4);
1925  // ----------------------------------------
1926  // 0: char/ cf - ring
1927  L->m[0].rtyp=CRING_CMD;
1928  L->m[0].data=(char*)r->cf; r->cf->ref++;
1929  // ----------------------------------------
1930  // 1: list (var)
1932  LL->Init(r->N);
1933  int i;
1934  for(i=0; i<r->N; i++)
1935  {
1936  LL->m[i].rtyp=STRING_CMD;
1937  LL->m[i].data=(void *)omStrDup(r->names[i]);
1938  }
1939  L->m[1].rtyp=LIST_CMD;
1940  L->m[1].data=(void *)LL;
1941  // ----------------------------------------
1942  // 2: list (ord)
1944  i=rBlocks(r)-1;
1945  LL->Init(i);
1946  i--;
1947  lists LLL;
1948  for(; i>=0; i--)
1949  {
1950  intvec *iv;
1951  int j;
1952  LL->m[i].rtyp=LIST_CMD;
1954  LLL->Init(2);
1955  LLL->m[0].rtyp=STRING_CMD;
1956  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1957 
1958  if(r->order[i] == ringorder_IS) // || r->order[i] == ringorder_s || r->order[i] == ringorder_S)
1959  {
1960  assume( r->block0[i] == r->block1[i] );
1961  const int s = r->block0[i];
1962  assume( -2 < s && s < 2);
1963 
1964  iv=new intvec(1);
1965  (*iv)[0] = s;
1966  }
1967  else if (r->block1[i]-r->block0[i] >=0 )
1968  {
1969  int bl=j=r->block1[i]-r->block0[i];
1970  if (r->order[i]==ringorder_M)
1971  {
1972  j=(j+1)*(j+1)-1;
1973  bl=j+1;
1974  }
1975  else if (r->order[i]==ringorder_am)
1976  {
1977  j+=r->wvhdl[i][bl+1];
1978  }
1979  iv=new intvec(j+1);
1980  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
1981  {
1982  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
1983  }
1984  else switch (r->order[i])
1985  {
1986  case ringorder_dp:
1987  case ringorder_Dp:
1988  case ringorder_ds:
1989  case ringorder_Ds:
1990  case ringorder_lp:
1991  for(;j>=0; j--) (*iv)[j]=1;
1992  break;
1993  default: /* do nothing */;
1994  }
1995  }
1996  else
1997  {
1998  iv=new intvec(1);
1999  }
2000  LLL->m[1].rtyp=INTVEC_CMD;
2001  LLL->m[1].data=(void *)iv;
2002  LL->m[i].data=(void *)LLL;
2003  }
2004  L->m[2].rtyp=LIST_CMD;
2005  L->m[2].data=(void *)LL;
2006  // ----------------------------------------
2007  // 3: qideal
2008  L->m[3].rtyp=IDEAL_CMD;
2009  if (r->qideal==NULL)
2010  L->m[3].data=(void *)idInit(1,1);
2011  else
2012  L->m[3].data=(void *)idCopy(r->qideal);
2013  // ----------------------------------------
2014 #ifdef HAVE_PLURAL // NC! in rDecompose
2015  if (rIsPluralRing(r))
2016  {
2017  L->m[4].rtyp=MATRIX_CMD;
2018  L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2019  L->m[5].rtyp=MATRIX_CMD;
2020  L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2021  }
2022 #endif
2023  return L;
2024 }
2025 #endif
2026 
2027 lists rDecompose(const ring r)
2028 {
2029  assume( r != NULL );
2030  const coeffs C = r->cf;
2031  assume( C != NULL );
2032 
2033  // sanity check: require currRing==r for rings with polynomial data
2034  if ( (r!=currRing) && (
2035  (nCoeff_is_algExt(C) && (C != currRing->cf))
2036  || (r->qideal != NULL)
2037 #ifdef HAVE_PLURAL
2038  || (rIsPluralRing(r))
2039 #endif
2040  )
2041  )
2042  {
2043  WerrorS("ring with polynomial data must be the base ring or compatible");
2044  return NULL;
2045  }
2046  // 0: char/ cf - ring
2047  // 1: list (var)
2048  // 2: list (ord)
2049  // 3: qideal
2050  // possibly:
2051  // 4: C
2052  // 5: D
2054  if (rIsPluralRing(r))
2055  L->Init(6);
2056  else
2057  L->Init(4);
2058  // ----------------------------------------
2059  // 0: char/ cf - ring
2060  if (rField_is_numeric(r))
2061  {
2062  rDecomposeC(&(L->m[0]),r);
2063  }
2064  else if (rField_is_Ring(r))
2065  {
2066  rDecomposeRing(&(L->m[0]),r);
2067  }
2068  else if ( r->cf->extRing!=NULL )// nCoeff_is_algExt(r->cf))
2069  {
2070  rDecomposeCF(&(L->m[0]), r->cf->extRing, r);
2071  }
2072  else if(rField_is_GF(r))
2073  {
2075  Lc->Init(4);
2076  // char:
2077  Lc->m[0].rtyp=INT_CMD;
2078  Lc->m[0].data=(void*)(long)r->cf->m_nfCharQ;
2079  // var:
2081  Lv->Init(1);
2082  Lv->m[0].rtyp=STRING_CMD;
2083  Lv->m[0].data=(void *)omStrDup(*rParameter(r));
2084  Lc->m[1].rtyp=LIST_CMD;
2085  Lc->m[1].data=(void*)Lv;
2086  // ord:
2088  Lo->Init(1);
2090  Loo->Init(2);
2091  Loo->m[0].rtyp=STRING_CMD;
2092  Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
2093 
2094  intvec *iv=new intvec(1); (*iv)[0]=1;
2095  Loo->m[1].rtyp=INTVEC_CMD;
2096  Loo->m[1].data=(void *)iv;
2097 
2098  Lo->m[0].rtyp=LIST_CMD;
2099  Lo->m[0].data=(void*)Loo;
2100 
2101  Lc->m[2].rtyp=LIST_CMD;
2102  Lc->m[2].data=(void*)Lo;
2103  // q-ideal:
2104  Lc->m[3].rtyp=IDEAL_CMD;
2105  Lc->m[3].data=(void *)idInit(1,1);
2106  // ----------------------
2107  L->m[0].rtyp=LIST_CMD;
2108  L->m[0].data=(void*)Lc;
2109  }
2110  else
2111  {
2112  L->m[0].rtyp=INT_CMD;
2113  L->m[0].data=(void *)(long)r->cf->ch;
2114  }
2115  // ----------------------------------------
2116  // 1: list (var)
2118  LL->Init(r->N);
2119  int i;
2120  for(i=0; i<r->N; i++)
2121  {
2122  LL->m[i].rtyp=STRING_CMD;
2123  LL->m[i].data=(void *)omStrDup(r->names[i]);
2124  }
2125  L->m[1].rtyp=LIST_CMD;
2126  L->m[1].data=(void *)LL;
2127  // ----------------------------------------
2128  // 2: list (ord)
2130  i=rBlocks(r)-1;
2131  LL->Init(i);
2132  i--;
2133  lists LLL;
2134  for(; i>=0; i--)
2135  {
2136  intvec *iv;
2137  int j;
2138  LL->m[i].rtyp=LIST_CMD;
2140  LLL->Init(2);
2141  LLL->m[0].rtyp=STRING_CMD;
2142  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
2143 
2144  if(r->order[i] == ringorder_IS) // || r->order[i] == ringorder_s || r->order[i] == ringorder_S)
2145  {
2146  assume( r->block0[i] == r->block1[i] );
2147  const int s = r->block0[i];
2148  assume( -2 < s && s < 2);
2149 
2150  iv=new intvec(1);
2151  (*iv)[0] = s;
2152  }
2153  else if (r->block1[i]-r->block0[i] >=0 )
2154  {
2155  int bl=j=r->block1[i]-r->block0[i];
2156  if (r->order[i]==ringorder_M)
2157  {
2158  j=(j+1)*(j+1)-1;
2159  bl=j+1;
2160  }
2161  else if (r->order[i]==ringorder_am)
2162  {
2163  j+=r->wvhdl[i][bl+1];
2164  }
2165  iv=new intvec(j+1);
2166  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2167  {
2168  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2169  }
2170  else switch (r->order[i])
2171  {
2172  case ringorder_dp:
2173  case ringorder_Dp:
2174  case ringorder_ds:
2175  case ringorder_Ds:
2176  case ringorder_lp:
2177  for(;j>=0; j--) (*iv)[j]=1;
2178  break;
2179  default: /* do nothing */;
2180  }
2181  }
2182  else
2183  {
2184  iv=new intvec(1);
2185  }
2186  LLL->m[1].rtyp=INTVEC_CMD;
2187  LLL->m[1].data=(void *)iv;
2188  LL->m[i].data=(void *)LLL;
2189  }
2190  L->m[2].rtyp=LIST_CMD;
2191  L->m[2].data=(void *)LL;
2192  // ----------------------------------------
2193  // 3: qideal
2194  L->m[3].rtyp=IDEAL_CMD;
2195  if (r->qideal==NULL)
2196  L->m[3].data=(void *)idInit(1,1);
2197  else
2198  L->m[3].data=(void *)idCopy(r->qideal);
2199  // ----------------------------------------
2200 #ifdef HAVE_PLURAL // NC! in rDecompose
2201  if (rIsPluralRing(r))
2202  {
2203  L->m[4].rtyp=MATRIX_CMD;
2204  L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2205  L->m[5].rtyp=MATRIX_CMD;
2206  L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2207  }
2208 #endif
2209  return L;
2210 }
2211 
2212 void rComposeC(lists L, ring R)
2213 /* field is R or C */
2214 {
2215  // ----------------------------------------
2216  // 0: char/ cf - ring
2217  if ((L->m[0].rtyp!=INT_CMD) || (L->m[0].data!=(char *)0))
2218  {
2219  WerrorS("invalid coeff. field description, expecting 0");
2220  return;
2221  }
2222 // R->cf->ch=0;
2223  // ----------------------------------------
2224  // 1:
2225  if (L->m[1].rtyp!=LIST_CMD)
2226  {
2227  WerrorS("invalid coeff. field description, expecting precision list");
2228  return;
2229  }
2230  lists LL=(lists)L->m[1].data;
2231  if (((LL->nr!=2)
2232  || (LL->m[0].rtyp!=INT_CMD)
2233  || (LL->m[1].rtyp!=INT_CMD))
2234  && ((LL->nr!=1)
2235  || (LL->m[0].rtyp!=INT_CMD)))
2236  {
2237  WerrorS("invalid coeff. field description list");
2238  return;
2239  }
2240  int r1=(int)(long)LL->m[0].data;
2241  int r2=(int)(long)LL->m[1].data;
2242  if (L->nr==2) // complex
2243  R->cf = nInitChar(n_long_C, NULL);
2244  else if ((r1<=SHORT_REAL_LENGTH)
2245  && (r2=SHORT_REAL_LENGTH))
2246  R->cf = nInitChar(n_R, NULL);
2247  else
2248  {
2250  p->float_len=r1;
2251  p->float_len2=r2;
2252  R->cf = nInitChar(n_long_R, NULL);
2253  }
2254 
2255  if ((r1<=SHORT_REAL_LENGTH) // should go into nInitChar
2256  && (r2=SHORT_REAL_LENGTH))
2257  {
2258  R->cf->float_len=SHORT_REAL_LENGTH/2;
2259  R->cf->float_len2=SHORT_REAL_LENGTH;
2260  }
2261  else
2262  {
2263  R->cf->float_len=si_min(r1,32767);
2264  R->cf->float_len2=si_min(r2,32767);
2265  }
2266  // ----------------------------------------
2267  // 2: list (par)
2268  if (L->nr==2)
2269  {
2270  //R->cf->extRing->N=1;
2271  if (L->m[2].rtyp!=STRING_CMD)
2272  {
2273  WerrorS("invalid coeff. field description, expecting parameter name");
2274  return;
2275  }
2276  //(rParameter(R))=(char**)omAlloc0(rPar(R)*sizeof(char_ptr));
2277  rParameter(R)[0]=omStrDup((char *)L->m[2].data);
2278  }
2279  // ----------------------------------------
2280 }
2281 
2282 #ifdef HAVE_RINGS
2283 void rComposeRing(lists L, ring R)
2284 /* field is R or C */
2285 {
2286  // ----------------------------------------
2287  // 0: string: integer
2288  // no further entries --> Z
2289  mpz_ptr modBase = NULL;
2290  unsigned int modExponent = 1;
2291 
2292  modBase = (mpz_ptr) omAlloc(sizeof(mpz_t));
2293  if (L->nr == 0)
2294  {
2295  mpz_init_set_ui(modBase,0);
2296  modExponent = 1;
2297  }
2298  // ----------------------------------------
2299  // 1:
2300  else
2301  {
2302  if (L->m[1].rtyp!=LIST_CMD) WerrorS("invalid data, expecting list of numbers");
2303  lists LL=(lists)L->m[1].data;
2304  if ((LL->nr >= 0) && LL->m[0].rtyp == BIGINT_CMD)
2305  {
2306  number tmp= (number) LL->m[0].data; // never use CopyD() on list elements
2307  // assume that tmp is integer, not rational
2308  n_MPZ (modBase, tmp, coeffs_BIGINT);
2309  }
2310  else if (LL->nr >= 0 && LL->m[0].rtyp == INT_CMD)
2311  {
2312  mpz_init_set_ui(modBase,(unsigned long) LL->m[0].data);
2313  }
2314  else
2315  {
2316  mpz_init_set_ui(modBase,0);
2317  }
2318  if (LL->nr >= 1)
2319  {
2320  modExponent = (unsigned long) LL->m[1].data;
2321  }
2322  else
2323  {
2324  modExponent = 1;
2325  }
2326  }
2327  // ----------------------------------------
2328  if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_cmp_ui(modBase, 0) < 0))
2329  {
2330  WerrorS("Wrong ground ring specification (module is 1)");
2331  return;
2332  }
2333  if (modExponent < 1)
2334  {
2335  WerrorS("Wrong ground ring specification (exponent smaller than 1)");
2336  return;
2337  }
2338  // module is 0 ---> integers
2339  if (mpz_cmp_ui(modBase, 0) == 0)
2340  {
2341  R->cf=nInitChar(n_Z,NULL);
2342  }
2343  // we have an exponent
2344  else if (modExponent > 1)
2345  {
2346  //R->cf->ch = R->cf->modExponent;
2347  if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
2348  {
2349  /* this branch should be active for modExponent = 2..32 resp. 2..64,
2350  depending on the size of a long on the respective platform */
2351  R->cf=nInitChar(n_Z2m,(void*)(long)modExponent); // Use Z/2^ch
2352  omFreeSize (modBase, sizeof(mpz_t));
2353  }
2354  else
2355  {
2356  //ringtype 3
2357  ZnmInfo info;
2358  info.base= modBase;
2359  info.exp= modExponent;
2360  R->cf=nInitChar(n_Znm,(void*) &info);
2361  }
2362  }
2363  // just a module m > 1
2364  else
2365  {
2366  //ringtype = 2;
2367  //const int ch = mpz_get_ui(modBase);
2368  ZnmInfo info;
2369  info.base= modBase;
2370  info.exp= modExponent;
2371  R->cf=nInitChar(n_Zn,(void*) &info);
2372  }
2373 }
2374 #endif
2375 
2376 static void rRenameVars(ring R)
2377 {
2378  int i,j;
2379  BOOLEAN ch;
2380  do
2381  {
2382  ch=0;
2383  for(i=0;i<R->N-1;i++)
2384  {
2385  for(j=i+1;j<R->N;j++)
2386  {
2387  if (strcmp(R->names[i],R->names[j])==0)
2388  {
2389  ch=TRUE;
2390  Warn("name conflict var(%d) and var(%d): `%s`, rename to `@%s`",i+1,j+1,R->names[i],R->names[i]);
2391  omFree(R->names[j]);
2392  R->names[j]=(char *)omAlloc(2+strlen(R->names[i]));
2393  sprintf(R->names[j],"@%s",R->names[i]);
2394  }
2395  }
2396  }
2397  }
2398  while (ch);
2399  for(i=0;i<rPar(R); i++)
2400  {
2401  for(j=0;j<R->N;j++)
2402  {
2403  if (strcmp(rParameter(R)[i],R->names[j])==0)
2404  {
2405  Warn("name conflict par(%d) and var(%d): `%s`, renaming the VARIABLE to `@@(%d)`",i+1,j+1,R->names[j],i+1);
2406 // omFree(rParameter(R)[i]);
2407 // rParameter(R)[i]=(char *)omAlloc(10);
2408 // sprintf(rParameter(R)[i],"@@(%d)",i+1);
2409  omFree(R->names[j]);
2410  R->names[j]=(char *)omAlloc(10);
2411  sprintf(R->names[j],"@@(%d)",i+1);
2412  }
2413  }
2414  }
2415 }
2416 
2417 static inline BOOLEAN rComposeVar(const lists L, ring R)
2418 {
2419  assume(R!=NULL);
2420  if (L->m[1].Typ()==LIST_CMD)
2421  {
2422  lists v=(lists)L->m[1].Data();
2423  R->N = v->nr+1;
2424  if (R->N<=0)
2425  {
2426  WerrorS("no ring variables");
2427  return TRUE;
2428  }
2429  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
2430  int i;
2431  for(i=0;i<R->N;i++)
2432  {
2433  if (v->m[i].Typ()==STRING_CMD)
2434  R->names[i]=omStrDup((char *)v->m[i].Data());
2435  else if (v->m[i].Typ()==POLY_CMD)
2436  {
2437  poly p=(poly)v->m[i].Data();
2438  int nr=pIsPurePower(p);
2439  if (nr>0)
2440  R->names[i]=omStrDup(currRing->names[nr-1]);
2441  else
2442  {
2443  Werror("var name %d must be a string or a ring variable",i+1);
2444  return TRUE;
2445  }
2446  }
2447  else
2448  {
2449  Werror("var name %d must be `string`",i+1);
2450  return TRUE;
2451  }
2452  }
2453  }
2454  else
2455  {
2456  WerrorS("variable must be given as `list`");
2457  return TRUE;
2458  }
2459  return FALSE;
2460 }
2461 
2462 static inline BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
2463 {
2464  assume(R!=NULL);
2465  long bitmask=0L;
2466  if (L->m[2].Typ()==LIST_CMD)
2467  {
2468  lists v=(lists)L->m[2].Data();
2469  int n= v->nr+2;
2470  int j_in_R,j_in_L;
2471  // do we have an entry "L",... ?: set bitmask
2472  for (int j=0; j < n-1; j++)
2473  {
2474  if (v->m[j].Typ()==LIST_CMD)
2475  {
2476  lists vv=(lists)v->m[j].Data();
2477  if ((vv->nr==1)
2478  &&(vv->m[0].Typ()==STRING_CMD)
2479  &&(strcmp((char*)vv->m[0].Data(),"L")==0))
2480  {
2481  number nn=(number)vv->m[1].Data();
2482  if (vv->m[1].Typ()==BIGINT_CMD)
2483  bitmask=n_Int(nn,coeffs_BIGINT);
2484  else if (vv->m[1].Typ()==INT_CMD)
2485  bitmask=(long)nn;
2486  else
2487  {
2488  Werror("illegal argument for pseudo ordering L: %d",vv->m[1].Typ());
2489  return TRUE;
2490  }
2491  break;
2492  }
2493  }
2494  }
2495  if (bitmask!=0) n--;
2496 
2497  // initialize fields of R
2498  R->order=(int *)omAlloc0(n*sizeof(int));
2499  R->block0=(int *)omAlloc0(n*sizeof(int));
2500  R->block1=(int *)omAlloc0(n*sizeof(int));
2501  R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
2502  // init order, so that rBlocks works correctly
2503  for (j_in_R= n-2; j_in_R>=0; j_in_R--)
2504  R->order[j_in_R] = (int) ringorder_unspec;
2505  // orderings
2506  for(j_in_R=0,j_in_L=0;j_in_R<n-1;j_in_R++,j_in_L++)
2507  {
2508  // todo: a(..), M
2509  if (v->m[j_in_L].Typ()!=LIST_CMD)
2510  {
2511  WerrorS("ordering must be list of lists");
2512  return TRUE;
2513  }
2514  lists vv=(lists)v->m[j_in_L].Data();
2515  if ((vv->nr==1)
2516  && (vv->m[0].Typ()==STRING_CMD))
2517  {
2518  if (strcmp((char*)vv->m[0].Data(),"L")==0)
2519  {
2520  j_in_R--;
2521  continue;
2522  }
2523  if ((vv->m[1].Typ()!=INTVEC_CMD) && (vv->m[1].Typ()!=INT_CMD))
2524  {
2525  PrintS(lString(vv));
2526  WerrorS("ordering name must be a (string,intvec)(1)");
2527  return TRUE;
2528  }
2529  R->order[j_in_R]=rOrderName(omStrDup((char*)vv->m[0].Data())); // assume STRING
2530 
2531  if (j_in_R==0) R->block0[0]=1;
2532  else
2533  {
2534  int jj=j_in_R-1;
2535  while((jj>=0)
2536  && ((R->order[jj]== ringorder_a)
2537  || (R->order[jj]== ringorder_aa)
2538  || (R->order[jj]== ringorder_am)
2539  || (R->order[jj]== ringorder_c)
2540  || (R->order[jj]== ringorder_C)
2541  || (R->order[jj]== ringorder_s)
2542  || (R->order[jj]== ringorder_S)
2543  ))
2544  {
2545  //Print("jj=%, skip %s\n",rSimpleOrdStr(R->order[jj]));
2546  jj--;
2547  }
2548  if (jj<0) R->block0[j_in_R]=1;
2549  else R->block0[j_in_R]=R->block1[jj]+1;
2550  }
2551  intvec *iv;
2552  if (vv->m[1].Typ()==INT_CMD)
2553  iv=new intvec((int)(long)vv->m[1].Data(),(int)(long)vv->m[1].Data());
2554  else
2555  iv=ivCopy((intvec*)vv->m[1].Data()); //assume INTVEC
2556  int iv_len=iv->length();
2557  R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+iv_len-1);
2558  if (R->block1[j_in_R]>R->N)
2559  {
2560  R->block1[j_in_R]=R->N;
2561  iv_len=R->block1[j_in_R]-R->block0[j_in_R]+1;
2562  }
2563  //Print("block %d from %d to %d\n",j,R->block0[j], R->block1[j]);
2564  int i;
2565  switch (R->order[j_in_R])
2566  {
2567  case ringorder_ws:
2568  case ringorder_Ws:
2569  R->OrdSgn=-1;
2570  case ringorder_aa:
2571  case ringorder_a:
2572  case ringorder_wp:
2573  case ringorder_Wp:
2574  R->wvhdl[j_in_R] =( int *)omAlloc(iv_len*sizeof(int));
2575  for (i=0; i<iv_len;i++)
2576  {
2577  R->wvhdl[j_in_R][i]=(*iv)[i];
2578  }
2579  break;
2580  case ringorder_am:
2581  R->wvhdl[j_in_R] =( int *)omAlloc((iv->length()+1)*sizeof(int));
2582  for (i=0; i<iv_len;i++)
2583  {
2584  R->wvhdl[j_in_R][i]=(*iv)[i];
2585  }
2586  R->wvhdl[j_in_R][i]=iv->length() - iv_len;
2587  //printf("ivlen:%d,iv->len:%d,mod:%d\n",iv_len,iv->length(),R->wvhdl[j][i]);
2588  for (; i<iv->length(); i++)
2589  {
2590  R->wvhdl[j_in_R][i+1]=(*iv)[i];
2591  }
2592  break;
2593  case ringorder_M:
2594  R->wvhdl[j_in_R] =( int *)omAlloc((iv->length())*sizeof(int));
2595  for (i=0; i<iv->length();i++) R->wvhdl[j_in_R][i]=(*iv)[i];
2596  R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+(int)sqrt((double)(iv->length()-1)));
2597  if (R->block1[j_in_R]>R->N)
2598  {
2599  WerrorS("ordering matrix too big");
2600  return TRUE;
2601  }
2602  break;
2603  case ringorder_ls:
2604  case ringorder_ds:
2605  case ringorder_Ds:
2606  case ringorder_rs:
2607  R->OrdSgn=-1;
2608  case ringorder_lp:
2609  case ringorder_dp:
2610  case ringorder_Dp:
2611  case ringorder_rp:
2612  break;
2613  case ringorder_S:
2614  break;
2615  case ringorder_c:
2616  case ringorder_C:
2617  R->block1[j_in_R]=R->block0[j_in_R]=0;
2618  break;
2619 
2620  case ringorder_s:
2621  break;
2622 
2623  case ringorder_IS:
2624  {
2625  R->block1[j_in_R] = R->block0[j_in_R] = 0;
2626  if( iv->length() > 0 )
2627  {
2628  const int s = (*iv)[0];
2629  assume( -2 < s && s < 2 );
2630  R->block1[j_in_R] = R->block0[j_in_R] = s;
2631  }
2632  break;
2633  }
2634  case 0:
2635  case ringorder_unspec:
2636  break;
2637  }
2638  delete iv;
2639  }
2640  else
2641  {
2642  PrintS(lString(vv));
2643  WerrorS("ordering name must be a (string,intvec)");
2644  return TRUE;
2645  }
2646  }
2647  // sanity check
2648  j_in_R=n-2;
2649  if ((R->order[j_in_R]==ringorder_c)
2650  || (R->order[j_in_R]==ringorder_C)
2651  || (R->order[j_in_R]==ringorder_unspec)) j_in_R--;
2652  if (R->block1[j_in_R] != R->N)
2653  {
2654  if (((R->order[j_in_R]==ringorder_dp) ||
2655  (R->order[j_in_R]==ringorder_ds) ||
2656  (R->order[j_in_R]==ringorder_Dp) ||
2657  (R->order[j_in_R]==ringorder_Ds) ||
2658  (R->order[j_in_R]==ringorder_rp) ||
2659  (R->order[j_in_R]==ringorder_rs) ||
2660  (R->order[j_in_R]==ringorder_lp) ||
2661  (R->order[j_in_R]==ringorder_ls))
2662  &&
2663  R->block0[j_in_R] <= R->N)
2664  {
2665  R->block1[j_in_R] = R->N;
2666  }
2667  else
2668  {
2669  Werror("ordering incomplete: size (%d) should be %d",R->block1[j_in_R],R->N);
2670  return TRUE;
2671  }
2672  }
2673  if (R->block0[j_in_R]>R->N)
2674  {
2675  Werror("not enough variables (%d) for ordering block %d, scanned so far:",R->N,j_in_R+1);
2676  for(int ii=0;ii<=j_in_R;ii++)
2677  Werror("ord[%d]: %s from v%d to v%d",ii+1,rSimpleOrdStr(R->order[ii]),R->block0[ii],R->block1[ii]);
2678  return TRUE;
2679  }
2680  if (check_comp)
2681  {
2682  BOOLEAN comp_order=FALSE;
2683  int jj;
2684  for(jj=0;jj<n;jj++)
2685  {
2686  if ((R->order[jj]==ringorder_c) ||
2687  (R->order[jj]==ringorder_C)) { comp_order=TRUE; break; }
2688  }
2689  if (!comp_order)
2690  {
2691  R->order=(int*)omRealloc0Size(R->order,n*sizeof(int),(n+1)*sizeof(int));
2692  R->block0=(int*)omRealloc0Size(R->block0,n*sizeof(int),(n+1)*sizeof(int));
2693  R->block1=(int*)omRealloc0Size(R->block1,n*sizeof(int),(n+1)*sizeof(int));
2694  R->wvhdl=(int**)omRealloc0Size(R->wvhdl,n*sizeof(int_ptr),(n+1)*sizeof(int_ptr));
2695  R->order[n-1]=ringorder_C;
2696  R->block0[n-1]=0;
2697  R->block1[n-1]=0;
2698  R->wvhdl[n-1]=NULL;
2699  n++;
2700  }
2701  }
2702  }
2703  else
2704  {
2705  WerrorS("ordering must be given as `list`");
2706  return TRUE;
2707  }
2708  if (bitmask!=0) R->bitmask=bitmask*2;
2709  return FALSE;
2710 }
2711 
2712 ring rCompose(const lists L, const BOOLEAN check_comp)
2713 {
2714  if ((L->nr!=3)
2715 #ifdef HAVE_PLURAL
2716  &&(L->nr!=5)
2717 #endif
2718  )
2719  return NULL;
2720  int is_gf_char=0;
2721  // 0: char/ cf - ring
2722  // 1: list (var)
2723  // 2: list (ord)
2724  // 3: qideal
2725  // possibly:
2726  // 4: C
2727  // 5: D
2728 
2729  ring R = (ring) omAlloc0Bin(sip_sring_bin);
2730 
2731  // ------------------------------------------------------------------
2732  // 0: char:
2733 #ifdef SINGULAR_4_1
2734  if (L->m[0].Typ()==CRING_CMD)
2735  {
2736  R->cf=(coeffs)L->m[0].Data();
2737  R->cf->ref++;
2738  }
2739  else
2740 #endif
2741  if (L->m[0].Typ()==INT_CMD)
2742  {
2743  int ch = (int)(long)L->m[0].Data();
2744  assume( ch >= 0 );
2745 
2746  if (ch == 0) // Q?
2747  R->cf = nInitChar(n_Q, NULL);
2748  else
2749  {
2750  int l = IsPrime(ch); // Zp?
2751  if( l != ch )
2752  {
2753  Warn("%d is invalid characteristic of ground field. %d is used.", ch, l);
2754  ch = l;
2755  }
2756  R->cf = nInitChar(n_Zp, (void*)(long)ch);
2757  }
2758  }
2759  else if (L->m[0].Typ()==LIST_CMD) // something complicated...
2760  {
2761  lists LL=(lists)L->m[0].Data();
2762 
2763 #ifdef HAVE_RINGS
2764  if (LL->m[0].Typ() == STRING_CMD) // 1st comes a string?
2765  {
2766  rComposeRing(LL, R); // Ring!?
2767  }
2768  else
2769 #endif
2770  if (LL->nr < 3)
2771  rComposeC(LL,R); // R, long_R, long_C
2772  else
2773  {
2774  if (LL->m[0].Typ()==INT_CMD)
2775  {
2776  int ch = (int)(long)LL->m[0].Data();
2777  while ((ch!=fftable[is_gf_char]) && (fftable[is_gf_char])) is_gf_char++;
2778  if (fftable[is_gf_char]==0) is_gf_char=-1;
2779 
2780  if(is_gf_char!= -1)
2781  {
2782  GFInfo param;
2783 
2784  param.GFChar = ch;
2785  param.GFDegree = 1;
2786  param.GFPar_name = (const char*)(((lists)(LL->m[1].Data()))->m[0].Data());
2787 
2788  // nfInitChar should be able to handle the case when ch is in fftables!
2789  R->cf = nInitChar(n_GF, (void*)&param);
2790  }
2791  }
2792 
2793  if( R->cf == NULL )
2794  {
2795  ring extRing = rCompose((lists)L->m[0].Data(),FALSE);
2796 
2797  if (extRing==NULL)
2798  {
2799  WerrorS("could not create the specified coefficient field");
2800  goto rCompose_err;
2801  }
2802 
2803  if( extRing->qideal != NULL ) // Algebraic extension
2804  {
2805  AlgExtInfo extParam;
2806 
2807  extParam.r = extRing;
2808 
2809  R->cf = nInitChar(n_algExt, (void*)&extParam);
2810  }
2811  else // Transcendental extension
2812  {
2813  TransExtInfo extParam;
2814  extParam.r = extRing;
2815  assume( extRing->qideal == NULL );
2816 
2817  R->cf = nInitChar(n_transExt, &extParam);
2818  }
2819  }
2820  }
2821  }
2822  else
2823  {
2824  WerrorS("coefficient field must be described by `int` or `list`");
2825  goto rCompose_err;
2826  }
2827 
2828  if( R->cf == NULL )
2829  {
2830  WerrorS("could not create coefficient field described by the input!");
2831  goto rCompose_err;
2832  }
2833 
2834  // ------------------------- VARS ---------------------------
2835  if (rComposeVar(L,R)) goto rCompose_err;
2836  // ------------------------ ORDER ------------------------------
2837  if (rComposeOrder(L,check_comp,R)) goto rCompose_err;
2838 
2839  // ------------------------ ??????? --------------------
2840 
2841  rRenameVars(R);
2842  rComplete(R);
2843 
2844  // ------------------------ Q-IDEAL ------------------------
2845 
2846  if (L->m[3].Typ()==IDEAL_CMD)
2847  {
2848  ideal q=(ideal)L->m[3].Data();
2849  if (q->m[0]!=NULL)
2850  {
2851  if (R->cf != currRing->cf) //->cf->ch!=currRing->cf->ch)
2852  {
2853  #if 0
2854  WerrorS("coefficient fields must be equal if q-ideal !=0");
2855  goto rCompose_err;
2856  #else
2857  ring orig_ring=currRing;
2858  rChangeCurrRing(R);
2859  int *perm=NULL;
2860  int *par_perm=NULL;
2861  int par_perm_size=0;
2862  nMapFunc nMap;
2863 
2864  if ((nMap=nSetMap(orig_ring->cf))==NULL)
2865  {
2866  if (rEqual(orig_ring,currRing))
2867  {
2868  nMap=n_SetMap(currRing->cf, currRing->cf);
2869  }
2870  else
2871  // Allow imap/fetch to be make an exception only for:
2872  if ( (rField_is_Q_a(orig_ring) && // Q(a..) -> Q(a..) || Q || Zp || Zp(a)
2875  ||
2876  (rField_is_Zp_a(orig_ring) && // Zp(a..) -> Zp(a..) || Zp
2877  (rField_is_Zp(currRing, rInternalChar(orig_ring)) ||
2878  rField_is_Zp_a(currRing, rInternalChar(orig_ring)))) )
2879  {
2880  par_perm_size=rPar(orig_ring);
2881 
2882 // if ((orig_ring->minpoly != NULL) || (orig_ring->qideal != NULL))
2883 // naSetChar(rInternalChar(orig_ring),orig_ring);
2884 // else ntSetChar(rInternalChar(orig_ring),orig_ring);
2885 
2886  nSetChar(currRing->cf);
2887  }
2888  else
2889  {
2890  WerrorS("coefficient fields must be equal if q-ideal !=0");
2891  goto rCompose_err;
2892  }
2893  }
2894  perm=(int *)omAlloc0((orig_ring->N+1)*sizeof(int));
2895  if (par_perm_size!=0)
2896  par_perm=(int *)omAlloc0(par_perm_size*sizeof(int));
2897  int i;
2898  #if 0
2899  // use imap:
2900  maFindPerm(orig_ring->names,orig_ring->N,orig_ring->parameter,orig_ring->P,
2901  currRing->names,currRing->N,currRing->parameter, currRing->P,
2902  perm,par_perm, currRing->ch);
2903  #else
2904  // use fetch
2905  if ((rPar(orig_ring)>0) && (rPar(currRing)==0))
2906  {
2907  for(i=si_min(rPar(orig_ring),rVar(currRing))-1;i>=0;i--) par_perm[i]=i+1;
2908  }
2909  else if (par_perm_size!=0)
2910  for(i=si_min(rPar(orig_ring),rPar(currRing))-1;i>=0;i--) par_perm[i]=-(i+1);
2911  for(i=si_min(orig_ring->N,rVar(currRing));i>0;i--) perm[i]=i;
2912  #endif
2913  ideal dest_id=idInit(IDELEMS(q),1);
2914  for(i=IDELEMS(q)-1; i>=0; i--)
2915  {
2916  dest_id->m[i]=p_PermPoly(q->m[i],perm,orig_ring, currRing,nMap,
2917  par_perm,par_perm_size);
2918  // PrintS("map:");pWrite(dest_id->m[i]);PrintLn();
2919  pTest(dest_id->m[i]);
2920  }
2921  R->qideal=dest_id;
2922  if (perm!=NULL)
2923  omFreeSize((ADDRESS)perm,(orig_ring->N+1)*sizeof(int));
2924  if (par_perm!=NULL)
2925  omFreeSize((ADDRESS)par_perm,par_perm_size*sizeof(int));
2926  rChangeCurrRing(orig_ring);
2927  #endif
2928  }
2929  else
2930  R->qideal=idrCopyR(q,currRing,R);
2931  }
2932  }
2933  else
2934  {
2935  WerrorS("q-ideal must be given as `ideal`");
2936  goto rCompose_err;
2937  }
2938 
2939 
2940  // ---------------------------------------------------------------
2941  #ifdef HAVE_PLURAL
2942  if (L->nr==5)
2943  {
2944  if (nc_CallPlural((matrix)L->m[4].Data(),
2945  (matrix)L->m[5].Data(),
2946  NULL,NULL,
2947  R,
2948  true, // !!!
2949  true, false,
2950  currRing, FALSE)) goto rCompose_err;
2951  // takes care about non-comm. quotient! i.e. calls "nc_SetupQuotient" due to last true
2952  }
2953  #endif
2954  return R;
2955 
2956 rCompose_err:
2957  if (R->N>0)
2958  {
2959  int i;
2960  if (R->names!=NULL)
2961  {
2962  i=R->N-1;
2963  while (i>=0) { if (R->names[i]!=NULL) omFree(R->names[i]); i--; }
2964  omFree(R->names);
2965  }
2966  }
2967  if (R->order!=NULL) omFree(R->order);
2968  if (R->block0!=NULL) omFree(R->block0);
2969  if (R->block1!=NULL) omFree(R->block1);
2970  if (R->wvhdl!=NULL) omFree(R->wvhdl);
2971  omFree(R);
2972  return NULL;
2973 }
2974 
2975 // from matpol.cc
2976 
2977 /*2
2978 * compute the jacobi matrix of an ideal
2979 */
2981 {
2982  int i,j;
2983  matrix result;
2984  ideal id=(ideal)a->Data();
2985 
2986  result =mpNew(IDELEMS(id),rVar(currRing));
2987  for (i=1; i<=IDELEMS(id); i++)
2988  {
2989  for (j=1; j<=rVar(currRing); j++)
2990  {
2991  MATELEM(result,i,j) = pDiff(id->m[i-1],j);
2992  }
2993  }
2994  res->data=(char *)result;
2995  return FALSE;
2996 }
2997 
2998 /*2
2999 * returns the Koszul-matrix of degree d of a vectorspace with dimension n
3000 * uses the first n entrees of id, if id <> NULL
3001 */
3003 {
3004  int n=(int)(long)b->Data();
3005  int d=(int)(long)c->Data();
3006  int k,l,sign,row,col;
3007  matrix result;
3008  ideal temp;
3009  BOOLEAN bo;
3010  poly p;
3011 
3012  if ((d>n) || (d<1) || (n<1))
3013  {
3014  res->data=(char *)mpNew(1,1);
3015  return FALSE;
3016  }
3017  int *choise = (int*)omAlloc(d*sizeof(int));
3018  if (id==NULL)
3019  temp=idMaxIdeal(1);
3020  else
3021  temp=(ideal)id->Data();
3022 
3023  k = binom(n,d);
3024  l = k*d;
3025  l /= n-d+1;
3026  result =mpNew(l,k);
3027  col = 1;
3028  idInitChoise(d,1,n,&bo,choise);
3029  while (!bo)
3030  {
3031  sign = 1;
3032  for (l=1;l<=d;l++)
3033  {
3034  if (choise[l-1]<=IDELEMS(temp))
3035  {
3036  p = pCopy(temp->m[choise[l-1]-1]);
3037  if (sign == -1) p = pNeg(p);
3038  sign *= -1;
3039  row = idGetNumberOfChoise(l-1,d,1,n,choise);
3040  MATELEM(result,row,col) = p;
3041  }
3042  }
3043  col++;
3044  idGetNextChoise(d,n,&bo,choise);
3045  }
3046  if (id==NULL) idDelete(&temp);
3047 
3048  res->data=(char *)result;
3049  return FALSE;
3050 }
3051 
3052 // from syz1.cc
3053 /*2
3054 * read out the Betti numbers from resolution
3055 * (interpreter interface)
3056 */
3058 {
3059  syStrategy syzstr=(syStrategy)u->Data();
3060 
3061  BOOLEAN minim=(int)(long)w->Data();
3062  int row_shift=0;
3063  int add_row_shift=0;
3064  intvec *weights=NULL;
3065  intvec *ww=(intvec *)atGet(u,"isHomog",INTVEC_CMD);
3066  if (ww!=NULL)
3067  {
3068  weights=ivCopy(ww);
3069  add_row_shift = ww->min_in();
3070  (*weights) -= add_row_shift;
3071  }
3072 
3073  res->data=(void *)syBettiOfComputation(syzstr,minim,&row_shift,weights);
3074  //row_shift += add_row_shift;
3075  //Print("row_shift=%d, add_row_shift=%d\n",row_shift,add_row_shift);
3076  atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
3077 
3078  return FALSE;
3079 }
3081 {
3082  sleftv tmp;
3083  memset(&tmp,0,sizeof(tmp));
3084  tmp.rtyp=INT_CMD;
3085  tmp.data=(void *)1;
3086  return syBetti2(res,u,&tmp);
3087 }
3088 
3089 /*3
3090 * converts a resolution into a list of modules
3091 */
3092 lists syConvRes(syStrategy syzstr,BOOLEAN toDel,int add_row_shift)
3093 {
3094  resolvente fullres = syzstr->fullres;
3095  resolvente minres = syzstr->minres;
3096 
3097  const int length = syzstr->length;
3098 
3099  if ((fullres==NULL) && (minres==NULL))
3100  {
3101  if (syzstr->hilb_coeffs==NULL)
3102  { // La Scala
3103  fullres = syReorder(syzstr->res, length, syzstr);
3104  }
3105  else
3106  { // HRES
3107  minres = syReorder(syzstr->orderedRes, length, syzstr);
3108  syKillEmptyEntres(minres, length);
3109  }
3110  }
3111 
3112  resolvente tr;
3113  int typ0=IDEAL_CMD;
3114 
3115  if (minres!=NULL)
3116  tr = minres;
3117  else
3118  tr = fullres;
3119 
3120  resolvente trueres=NULL; intvec ** w=NULL;
3121 
3122  if (length>0)
3123  {
3124  trueres = (resolvente)omAlloc0((length)*sizeof(ideal));
3125  for (int i=(length)-1;i>=0;i--)
3126  {
3127  if (tr[i]!=NULL)
3128  {
3129  trueres[i] = idCopy(tr[i]);
3130  }
3131  }
3132  if ( id_RankFreeModule(trueres[0], currRing) > 0)
3133  typ0 = MODUL_CMD;
3134  if (syzstr->weights!=NULL)
3135  {
3136  w = (intvec**)omAlloc0(length*sizeof(intvec*));
3137  for (int i=length-1;i>=0;i--)
3138  {
3139  if (syzstr->weights[i]!=NULL) w[i] = ivCopy(syzstr->weights[i]);
3140  }
3141  }
3142  }
3143 
3144  lists li = liMakeResolv(trueres, length, syzstr->list_length,typ0,
3145  w, add_row_shift);
3146 
3147  if (w != NULL) omFreeSize(w, length*sizeof(intvec*));
3148 
3149  if (toDel)
3150  syKillComputation(syzstr);
3151  else
3152  {
3153  if( fullres != NULL && syzstr->fullres == NULL )
3154  syzstr->fullres = fullres;
3155 
3156  if( minres != NULL && syzstr->minres == NULL )
3157  syzstr->minres = minres;
3158  }
3159  return li;
3160 }
3161 
3162 /*3
3163 * converts a list of modules into a resolution
3164 */
3166 {
3167  int typ0;
3169 
3170  resolvente fr = liFindRes(li,&(result->length),&typ0,&(result->weights));
3171  if (fr != NULL)
3172  {
3173 
3174  result->fullres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3175  for (int i=result->length-1;i>=0;i--)
3176  {
3177  if (fr[i]!=NULL)
3178  result->fullres[i] = idCopy(fr[i]);
3179  }
3180  result->list_length=result->length;
3181  omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3182  }
3183  else
3184  {
3185  omFreeSize(result, sizeof(ssyStrategy));
3186  result = NULL;
3187  }
3188  return result;
3189 }
3190 
3191 /*3
3192 * converts a list of modules into a minimal resolution
3193 */
3195 {
3196  int typ0;
3198 
3199  resolvente fr = liFindRes(li,&(result->length),&typ0);
3200  result->minres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3201  for (int i=result->length-1;i>=0;i--)
3202  {
3203  if (fr[i]!=NULL)
3204  result->minres[i] = idCopy(fr[i]);
3205  }
3206  omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3207  return result;
3208 }
3209 // from weight.cc
3211 {
3212  ideal F=(ideal)id->Data();
3213  intvec * iv = new intvec(rVar(currRing));
3214  polyset s;
3215  int sl, n, i;
3216  int *x;
3217 
3218  res->data=(char *)iv;
3219  s = F->m;
3220  sl = IDELEMS(F) - 1;
3221  n = rVar(currRing);
3222  double wNsqr = (double)2.0 / (double)n;
3224  x = (int * )omAlloc(2 * (n + 1) * sizeof(int));
3225  wCall(s, sl, x, wNsqr, currRing);
3226  for (i = n; i!=0; i--)
3227  (*iv)[i-1] = x[i + n + 1];
3228  omFreeSize((ADDRESS)x, 2 * (n + 1) * sizeof(int));
3229  return FALSE;
3230 }
3231 
3233 {
3234  res->data=(char *)id_QHomWeight((ideal)v->Data(), currRing);
3235  if (res->data==NULL)
3236  res->data=(char *)new intvec(rVar(currRing));
3237  return FALSE;
3238 }
3239 /*==============================================================*/
3240 // from clapsing.cc
3241 #if 0
3242 BOOLEAN jjIS_SQR_FREE(leftv res, leftv u)
3243 {
3244  BOOLEAN b=singclap_factorize((poly)(u->CopyD()), &v, 0);
3245  res->data=(void *)b;
3246 }
3247 #endif
3248 
3250 {
3251  res->data=singclap_resultant((poly)u->CopyD(),(poly)v->CopyD(),
3252  (poly)w->CopyD(), currRing);
3253  return errorreported;
3254 }
3255 
3257 {
3258  res->data=singclap_irrCharSeries((ideal)u->Data(), currRing);
3259  return (res->data==NULL);
3260 }
3261 
3262 // from semic.cc
3263 #ifdef HAVE_SPECTRUM
3264 
3265 // ----------------------------------------------------------------------------
3266 // Initialize a spectrum deep from a singular lists
3267 // ----------------------------------------------------------------------------
3268 
3269 void copy_deep( spectrum& spec, lists l )
3270 {
3271  spec.mu = (int)(long)(l->m[0].Data( ));
3272  spec.pg = (int)(long)(l->m[1].Data( ));
3273  spec.n = (int)(long)(l->m[2].Data( ));
3274 
3275  spec.copy_new( spec.n );
3276 
3277  intvec *num = (intvec*)l->m[3].Data( );
3278  intvec *den = (intvec*)l->m[4].Data( );
3279  intvec *mul = (intvec*)l->m[5].Data( );
3280 
3281  for( int i=0; i<spec.n; i++ )
3282  {
3283  spec.s[i] = (Rational)((*num)[i])/(Rational)((*den)[i]);
3284  spec.w[i] = (*mul)[i];
3285  }
3286 }
3287 
3288 // ----------------------------------------------------------------------------
3289 // singular lists constructor for spectrum
3290 // ----------------------------------------------------------------------------
3291 
3292 spectrum /*former spectrum::spectrum ( lists l )*/
3294 {
3295  spectrum result;
3296  copy_deep( result, l );
3297  return result;
3298 }
3299 
3300 // ----------------------------------------------------------------------------
3301 // generate a Singular lists from a spectrum
3302 // ----------------------------------------------------------------------------
3303 
3304 /* former spectrum::thelist ( void )*/
3306 {
3308 
3309  L->Init( 6 );
3310 
3311  intvec *num = new intvec( spec.n );
3312  intvec *den = new intvec( spec.n );
3313  intvec *mult = new intvec( spec.n );
3314 
3315  for( int i=0; i<spec.n; i++ )
3316  {
3317  (*num) [i] = spec.s[i].get_num_si( );
3318  (*den) [i] = spec.s[i].get_den_si( );
3319  (*mult)[i] = spec.w[i];
3320  }
3321 
3322  L->m[0].rtyp = INT_CMD; // milnor number
3323  L->m[1].rtyp = INT_CMD; // geometrical genus
3324  L->m[2].rtyp = INT_CMD; // # of spectrum numbers
3325  L->m[3].rtyp = INTVEC_CMD; // numerators
3326  L->m[4].rtyp = INTVEC_CMD; // denomiantors
3327  L->m[5].rtyp = INTVEC_CMD; // multiplicities
3328 
3329  L->m[0].data = (void*)(long)spec.mu;
3330  L->m[1].data = (void*)(long)spec.pg;
3331  L->m[2].data = (void*)(long)spec.n;
3332  L->m[3].data = (void*)num;
3333  L->m[4].data = (void*)den;
3334  L->m[5].data = (void*)mult;
3335 
3336  return L;
3337 }
3338 // from spectrum.cc
3339 // ----------------------------------------------------------------------------
3340 // print out an error message for a spectrum list
3341 // ----------------------------------------------------------------------------
3342 
3343 typedef enum
3344 {
3347 
3350 
3357 
3362 
3368 
3371 
3374 
3375 } semicState;
3376 
3377 void list_error( semicState state )
3378 {
3379  switch( state )
3380  {
3381  case semicListTooShort:
3382  WerrorS( "the list is too short" );
3383  break;
3384  case semicListTooLong:
3385  WerrorS( "the list is too long" );
3386  break;
3387 
3389  WerrorS( "first element of the list should be int" );
3390  break;
3392  WerrorS( "second element of the list should be int" );
3393  break;
3395  WerrorS( "third element of the list should be int" );
3396  break;
3398  WerrorS( "fourth element of the list should be intvec" );
3399  break;
3401  WerrorS( "fifth element of the list should be intvec" );
3402  break;
3404  WerrorS( "sixth element of the list should be intvec" );
3405  break;
3406 
3407  case semicListNNegative:
3408  WerrorS( "first element of the list should be positive" );
3409  break;
3411  WerrorS( "wrong number of numerators" );
3412  break;
3414  WerrorS( "wrong number of denominators" );
3415  break;
3417  WerrorS( "wrong number of multiplicities" );
3418  break;
3419 
3420  case semicListMuNegative:
3421  WerrorS( "the Milnor number should be positive" );
3422  break;
3423  case semicListPgNegative:
3424  WerrorS( "the geometrical genus should be nonnegative" );
3425  break;
3426  case semicListNumNegative:
3427  WerrorS( "all numerators should be positive" );
3428  break;
3429  case semicListDenNegative:
3430  WerrorS( "all denominators should be positive" );
3431  break;
3432  case semicListMulNegative:
3433  WerrorS( "all multiplicities should be positive" );
3434  break;
3435 
3436  case semicListNotSymmetric:
3437  WerrorS( "it is not symmetric" );
3438  break;
3440  WerrorS( "it is not monotonous" );
3441  break;
3442 
3443  case semicListMilnorWrong:
3444  WerrorS( "the Milnor number is wrong" );
3445  break;
3446  case semicListPGWrong:
3447  WerrorS( "the geometrical genus is wrong" );
3448  break;
3449 
3450  default:
3451  WerrorS( "unspecific error" );
3452  break;
3453  }
3454 }
3455 // ----------------------------------------------------------------------------
3456 // this is the main spectrum computation function
3457 // ----------------------------------------------------------------------------
3458 
3460 {
3470 };
3471 
3472 // from splist.cc
3473 // ----------------------------------------------------------------------------
3474 // Compute the spectrum of a spectrumPolyList
3475 // ----------------------------------------------------------------------------
3476 
3477 /* former spectrumPolyList::spectrum ( lists*, int) */
3479 {
3480  spectrumPolyNode **node = &speclist.root;
3482 
3483  poly f,tmp;
3484  int found,cmp;
3485 
3486  Rational smax( ( fast==0 ? 0 : rVar(currRing) ),
3487  ( fast==2 ? 2 : 1 ) );
3488 
3489  Rational weight_prev( 0,1 );
3490 
3491  int mu = 0; // the milnor number
3492  int pg = 0; // the geometrical genus
3493  int n = 0; // number of different spectral numbers
3494  int z = 0; // number of spectral number equal to smax
3495 
3496  while( (*node)!=(spectrumPolyNode*)NULL &&
3497  ( fast==0 || (*node)->weight<=smax ) )
3498  {
3499  // ---------------------------------------
3500  // determine the first normal form which
3501  // contains the monomial node->mon
3502  // ---------------------------------------
3503 
3504  found = FALSE;
3505  search = *node;
3506 
3507  while( search!=(spectrumPolyNode*)NULL && found==FALSE )
3508  {
3509  if( search->nf!=(poly)NULL )
3510  {
3511  f = search->nf;
3512 
3513  do
3514  {
3515  // --------------------------------
3516  // look for (*node)->mon in f
3517  // --------------------------------
3518 
3519  cmp = pCmp( (*node)->mon,f );
3520 
3521  if( cmp<0 )
3522  {
3523  f = pNext( f );
3524  }
3525  else if( cmp==0 )
3526  {
3527  // -----------------------------
3528  // we have found a normal form
3529  // -----------------------------
3530 
3531  found = TRUE;
3532 
3533  // normalize coefficient
3534 
3535  number inv = nInvers( pGetCoeff( f ) );
3536  pMult_nn( search->nf,inv );
3537  nDelete( &inv );
3538 
3539  // exchange normal forms
3540 
3541  tmp = (*node)->nf;
3542  (*node)->nf = search->nf;
3543  search->nf = tmp;
3544  }
3545  }
3546  while( cmp<0 && f!=(poly)NULL );
3547  }
3548  search = search->next;
3549  }
3550 
3551  if( found==FALSE )
3552  {
3553  // ------------------------------------------------
3554  // the weight of node->mon is a spectrum number
3555  // ------------------------------------------------
3556 
3557  mu++;
3558 
3559  if( (*node)->weight<=(Rational)1 ) pg++;
3560  if( (*node)->weight==smax ) z++;
3561  if( (*node)->weight>weight_prev ) n++;
3562 
3563  weight_prev = (*node)->weight;
3564  node = &((*node)->next);
3565  }
3566  else
3567  {
3568  // -----------------------------------------------
3569  // determine all other normal form which contain
3570  // the monomial node->mon
3571  // replace for node->mon its normal form
3572  // -----------------------------------------------
3573 
3574  while( search!=(spectrumPolyNode*)NULL )
3575  {
3576  if( search->nf!=(poly)NULL )
3577  {
3578  f = search->nf;
3579 
3580  do
3581  {
3582  // --------------------------------
3583  // look for (*node)->mon in f
3584  // --------------------------------
3585 
3586  cmp = pCmp( (*node)->mon,f );
3587 
3588  if( cmp<0 )
3589  {
3590  f = pNext( f );
3591  }
3592  else if( cmp==0 )
3593  {
3594  search->nf = pSub( search->nf,
3595  ppMult_nn( (*node)->nf,pGetCoeff( f ) ) );
3596  pNorm( search->nf );
3597  }
3598  }
3599  while( cmp<0 && f!=(poly)NULL );
3600  }
3601  search = search->next;
3602  }
3603  speclist.delete_node( node );
3604  }
3605 
3606  }
3607 
3608  // --------------------------------------------------------
3609  // fast computation exploits the symmetry of the spectrum
3610  // --------------------------------------------------------
3611 
3612  if( fast==2 )
3613  {
3614  mu = 2*mu - z;
3615  n = ( z > 0 ? 2*n - 1 : 2*n );
3616  }
3617 
3618  // --------------------------------------------------------
3619  // compute the spectrum numbers with their multiplicities
3620  // --------------------------------------------------------
3621 
3622  intvec *nom = new intvec( n );
3623  intvec *den = new intvec( n );
3624  intvec *mult = new intvec( n );
3625 
3626  int count = 0;
3627  int multiplicity = 1;
3628 
3629  for( search=speclist.root; search!=(spectrumPolyNode*)NULL &&
3630  ( fast==0 || search->weight<=smax );
3631  search=search->next )
3632  {
3633  if( search->next==(spectrumPolyNode*)NULL ||
3634  search->weight<search->next->weight )
3635  {
3636  (*nom) [count] = search->weight.get_num_si( );
3637  (*den) [count] = search->weight.get_den_si( );
3638  (*mult)[count] = multiplicity;
3639 
3640  multiplicity=1;
3641  count++;
3642  }
3643  else
3644  {
3645  multiplicity++;
3646  }
3647  }
3648 
3649  // --------------------------------------------------------
3650  // fast computation exploits the symmetry of the spectrum
3651  // --------------------------------------------------------
3652 
3653  if( fast==2 )
3654  {
3655  int n1,n2;
3656  for( n1=0, n2=n-1; n1<n2; n1++, n2-- )
3657  {
3658  (*nom) [n2] = rVar(currRing)*(*den)[n1]-(*nom)[n1];
3659  (*den) [n2] = (*den)[n1];
3660  (*mult)[n2] = (*mult)[n1];
3661  }
3662  }
3663 
3664  // -----------------------------------
3665  // test if the spectrum is symmetric
3666  // -----------------------------------
3667 
3668  if( fast==0 || fast==1 )
3669  {
3670  int symmetric=TRUE;
3671 
3672  for( int n1=0, n2=n-1 ; n1<n2 && symmetric==TRUE; n1++, n2-- )
3673  {
3674  if( (*mult)[n1]!=(*mult)[n2] ||
3675  (*den) [n1]!= (*den)[n2] ||
3676  (*nom)[n1]+(*nom)[n2]!=rVar(currRing)*(*den) [n1] )
3677  {
3678  symmetric = FALSE;
3679  }
3680  }
3681 
3682  if( symmetric==FALSE )
3683  {
3684  // ---------------------------------------------
3685  // the spectrum is not symmetric => degenerate
3686  // principal part
3687  // ---------------------------------------------
3688 
3689  *L = (lists)omAllocBin( slists_bin);
3690  (*L)->Init( 1 );
3691  (*L)->m[0].rtyp = INT_CMD; // milnor number
3692  (*L)->m[0].data = (void*)(long)mu;
3693 
3694  return spectrumDegenerate;
3695  }
3696  }
3697 
3698  *L = (lists)omAllocBin( slists_bin);
3699 
3700  (*L)->Init( 6 );
3701 
3702  (*L)->m[0].rtyp = INT_CMD; // milnor number
3703  (*L)->m[1].rtyp = INT_CMD; // geometrical genus
3704  (*L)->m[2].rtyp = INT_CMD; // number of spectrum values
3705  (*L)->m[3].rtyp = INTVEC_CMD; // nominators
3706  (*L)->m[4].rtyp = INTVEC_CMD; // denomiantors
3707  (*L)->m[5].rtyp = INTVEC_CMD; // multiplicities
3708 
3709  (*L)->m[0].data = (void*)(long)mu;
3710  (*L)->m[1].data = (void*)(long)pg;
3711  (*L)->m[2].data = (void*)(long)n;
3712  (*L)->m[3].data = (void*)nom;
3713  (*L)->m[4].data = (void*)den;
3714  (*L)->m[5].data = (void*)mult;
3715 
3716  return spectrumOK;
3717 }
3718 
3720 {
3721  int i;
3722 
3723  #ifdef SPECTRUM_DEBUG
3724  #ifdef SPECTRUM_PRINT
3725  #ifdef SPECTRUM_IOSTREAM
3726  cout << "spectrumCompute\n";
3727  if( fast==0 ) cout << " no optimization" << endl;
3728  if( fast==1 ) cout << " weight optimization" << endl;
3729  if( fast==2 ) cout << " symmetry optimization" << endl;
3730  #else
3731  fprintf( stdout,"spectrumCompute\n" );
3732  if( fast==0 ) fprintf( stdout," no optimization\n" );
3733  if( fast==1 ) fprintf( stdout," weight optimization\n" );
3734  if( fast==2 ) fprintf( stdout," symmetry optimization\n" );
3735  #endif
3736  #endif
3737  #endif
3738 
3739  // ----------------------
3740  // check if h is zero
3741  // ----------------------
3742 
3743  if( h==(poly)NULL )
3744  {
3745  return spectrumZero;
3746  }
3747 
3748  // ----------------------------------
3749  // check if h has a constant term
3750  // ----------------------------------
3751 
3752  if( hasConstTerm( h, currRing ) )
3753  {
3754  return spectrumBadPoly;
3755  }
3756 
3757  // --------------------------------
3758  // check if h has a linear term
3759  // --------------------------------
3760 
3761  if( hasLinearTerm( h, currRing ) )
3762  {
3763  *L = (lists)omAllocBin( slists_bin);
3764  (*L)->Init( 1 );
3765  (*L)->m[0].rtyp = INT_CMD; // milnor number
3766  /* (*L)->m[0].data = (void*)0;a -- done by Init */
3767 
3768  return spectrumNoSingularity;
3769  }
3770 
3771  // ----------------------------------
3772  // compute the jacobi ideal of (h)
3773  // ----------------------------------
3774 
3775  ideal J = NULL;
3776  J = idInit( rVar(currRing),1 );
3777 
3778  #ifdef SPECTRUM_DEBUG
3779  #ifdef SPECTRUM_PRINT
3780  #ifdef SPECTRUM_IOSTREAM
3781  cout << "\n computing the Jacobi ideal...\n";
3782  #else
3783  fprintf( stdout,"\n computing the Jacobi ideal...\n" );
3784  #endif
3785  #endif
3786  #endif
3787 
3788  for( i=0; i<rVar(currRing); i++ )
3789  {
3790  J->m[i] = pDiff( h,i+1); //j );
3791 
3792  #ifdef SPECTRUM_DEBUG
3793  #ifdef SPECTRUM_PRINT
3794  #ifdef SPECTRUM_IOSTREAM
3795  cout << " ";
3796  #else
3797  fprintf( stdout," " );
3798  #endif
3799  pWrite( J->m[i] );
3800  #endif
3801  #endif
3802  }
3803 
3804  // --------------------------------------------
3805  // compute a standard basis stdJ of jac(h)
3806  // --------------------------------------------
3807 
3808  #ifdef SPECTRUM_DEBUG
3809  #ifdef SPECTRUM_PRINT
3810  #ifdef SPECTRUM_IOSTREAM
3811  cout << endl;
3812  cout << " computing a standard basis..." << endl;
3813  #else
3814  fprintf( stdout,"\n" );
3815  fprintf( stdout," computing a standard basis...\n" );
3816  #endif
3817  #endif
3818  #endif
3819 
3820  ideal stdJ = kStd(J,currRing->qideal,isNotHomog,NULL);
3821  idSkipZeroes( stdJ );
3822 
3823  #ifdef SPECTRUM_DEBUG
3824  #ifdef SPECTRUM_PRINT
3825  for( i=0; i<IDELEMS(stdJ); i++ )
3826  {
3827  #ifdef SPECTRUM_IOSTREAM
3828  cout << " ";
3829  #else
3830  fprintf( stdout," " );
3831  #endif
3832 
3833  pWrite( stdJ->m[i] );
3834  }
3835  #endif
3836  #endif
3837 
3838  idDelete( &J );
3839 
3840  // ------------------------------------------
3841  // check if the h has a singularity
3842  // ------------------------------------------
3843 
3844  if( hasOne( stdJ, currRing ) )
3845  {
3846  // -------------------------------
3847  // h is smooth in the origin
3848  // return only the Milnor number
3849  // -------------------------------
3850 
3851  *L = (lists)omAllocBin( slists_bin);
3852  (*L)->Init( 1 );
3853  (*L)->m[0].rtyp = INT_CMD; // milnor number
3854  /* (*L)->m[0].data = (void*)0;a -- done by Init */
3855 
3856  return spectrumNoSingularity;
3857  }
3858 
3859  // ------------------------------------------
3860  // check if the singularity h is isolated
3861  // ------------------------------------------
3862 
3863  for( i=rVar(currRing); i>0; i-- )
3864  {
3865  if( hasAxis( stdJ,i, currRing )==FALSE )
3866  {
3867  return spectrumNotIsolated;
3868  }
3869  }
3870 
3871  // ------------------------------------------
3872  // compute the highest corner hc of stdJ
3873  // ------------------------------------------
3874 
3875  #ifdef SPECTRUM_DEBUG
3876  #ifdef SPECTRUM_PRINT
3877  #ifdef SPECTRUM_IOSTREAM
3878  cout << "\n computing the highest corner...\n";
3879  #else
3880  fprintf( stdout,"\n computing the highest corner...\n" );
3881  #endif
3882  #endif
3883  #endif
3884 
3885  poly hc = (poly)NULL;
3886 
3887  scComputeHC( stdJ,currRing->qideal, 0,hc );
3888 
3889  if( hc!=(poly)NULL )
3890  {
3891  pGetCoeff(hc) = nInit(1);
3892 
3893  for( i=rVar(currRing); i>0; i-- )
3894  {
3895  if( pGetExp( hc,i )>0 ) pDecrExp( hc,i );
3896  }
3897  pSetm( hc );
3898  }
3899  else
3900  {
3901  return spectrumNoHC;
3902  }
3903 
3904  #ifdef SPECTRUM_DEBUG
3905  #ifdef SPECTRUM_PRINT
3906  #ifdef SPECTRUM_IOSTREAM
3907  cout << " ";
3908  #else
3909  fprintf( stdout," " );
3910  #endif
3911  pWrite( hc );
3912  #endif
3913  #endif
3914 
3915  // ----------------------------------------
3916  // compute the Newton polygon nph of h
3917  // ----------------------------------------
3918 
3919  #ifdef SPECTRUM_DEBUG
3920  #ifdef SPECTRUM_PRINT
3921  #ifdef SPECTRUM_IOSTREAM
3922  cout << "\n computing the newton polygon...\n";
3923  #else
3924  fprintf( stdout,"\n computing the newton polygon...\n" );
3925  #endif
3926  #endif
3927  #endif
3928 
3929  newtonPolygon nph( h, currRing );
3930 
3931  #ifdef SPECTRUM_DEBUG
3932  #ifdef SPECTRUM_PRINT
3933  cout << nph;
3934  #endif
3935  #endif
3936 
3937  // -----------------------------------------------
3938  // compute the weight corner wc of (stdj,nph)
3939  // -----------------------------------------------
3940 
3941  #ifdef SPECTRUM_DEBUG
3942  #ifdef SPECTRUM_PRINT
3943  #ifdef SPECTRUM_IOSTREAM
3944  cout << "\n computing the weight corner...\n";
3945  #else
3946  fprintf( stdout,"\n computing the weight corner...\n" );
3947  #endif
3948  #endif
3949  #endif
3950 
3951  poly wc = ( fast==0 ? pCopy( hc ) :
3952  ( fast==1 ? computeWC( nph,(Rational)rVar(currRing), currRing ) :
3953  /* fast==2 */computeWC( nph,
3954  ((Rational)rVar(currRing))/(Rational)2, currRing ) ) );
3955 
3956  #ifdef SPECTRUM_DEBUG
3957  #ifdef SPECTRUM_PRINT
3958  #ifdef SPECTRUM_IOSTREAM
3959  cout << " ";
3960  #else
3961  fprintf( stdout," " );
3962  #endif
3963  pWrite( wc );
3964  #endif
3965  #endif
3966 
3967  // -------------
3968  // compute NF
3969  // -------------
3970 
3971  #ifdef SPECTRUM_DEBUG
3972  #ifdef SPECTRUM_PRINT
3973  #ifdef SPECTRUM_IOSTREAM
3974  cout << "\n computing NF...\n" << endl;
3975  #else
3976  fprintf( stdout,"\n computing NF...\n" );
3977  #endif
3978  #endif
3979  #endif
3980 
3981  spectrumPolyList NF( &nph );
3982 
3983  computeNF( stdJ,hc,wc,&NF, currRing );
3984 
3985  #ifdef SPECTRUM_DEBUG
3986  #ifdef SPECTRUM_PRINT
3987  cout << NF;
3988  #ifdef SPECTRUM_IOSTREAM
3989  cout << endl;
3990  #else
3991  fprintf( stdout,"\n" );
3992  #endif
3993  #endif
3994  #endif
3995 
3996  // ----------------------------
3997  // compute the spectrum of h
3998  // ----------------------------
3999 // spectrumState spectrumStateFromList( spectrumPolyList& speclist, lists *L, int fast );
4000 
4001  return spectrumStateFromList(NF, L, fast );
4002 }
4003 
4004 // ----------------------------------------------------------------------------
4005 // this procedure is called from the interpreter
4006 // ----------------------------------------------------------------------------
4007 // first = polynomial
4008 // result = list of spectrum numbers
4009 // ----------------------------------------------------------------------------
4010 
4012 {
4013  switch( state )
4014  {
4015  case spectrumZero:
4016  WerrorS( "polynomial is zero" );
4017  break;
4018  case spectrumBadPoly:
4019  WerrorS( "polynomial has constant term" );
4020  break;
4021  case spectrumNoSingularity:
4022  WerrorS( "not a singularity" );
4023  break;
4024  case spectrumNotIsolated:
4025  WerrorS( "the singularity is not isolated" );
4026  break;
4027  case spectrumNoHC:
4028  WerrorS( "highest corner cannot be computed" );
4029  break;
4030  case spectrumDegenerate:
4031  WerrorS( "principal part is degenerate" );
4032  break;
4033  case spectrumOK:
4034  break;
4035 
4036  default:
4037  WerrorS( "unknown error occurred" );
4038  break;
4039  }
4040 }
4041 
4043 {
4044  spectrumState state = spectrumOK;
4045 
4046  // -------------------
4047  // check consistency
4048  // -------------------
4049 
4050  // check for a local ring
4051 
4052  if( !ringIsLocal(currRing ) )
4053  {
4054  WerrorS( "only works for local orderings" );
4055  state = spectrumWrongRing;
4056  }
4057 
4058  // no quotient rings are allowed
4059 
4060  else if( currRing->qideal != NULL )
4061  {
4062  WerrorS( "does not work in quotient rings" );
4063  state = spectrumWrongRing;
4064  }
4065  else
4066  {
4067  lists L = (lists)NULL;
4068  int flag = 1; // weight corner optimization is safe
4069 
4070  state = spectrumCompute( (poly)first->Data( ),&L,flag );
4071 
4072  if( state==spectrumOK )
4073  {
4074  result->rtyp = LIST_CMD;
4075  result->data = (char*)L;
4076  }
4077  else
4078  {
4079  spectrumPrintError(state);
4080  }
4081  }
4082 
4083  return (state!=spectrumOK);
4084 }
4085 
4086 // ----------------------------------------------------------------------------
4087 // this procedure is called from the interpreter
4088 // ----------------------------------------------------------------------------
4089 // first = polynomial
4090 // result = list of spectrum numbers
4091 // ----------------------------------------------------------------------------
4092 
4094 {
4095  spectrumState state = spectrumOK;
4096 
4097  // -------------------
4098  // check consistency
4099  // -------------------
4100 
4101  // check for a local polynomial ring
4102 
4103  if( currRing->OrdSgn != -1 )
4104  // ?? HS: the test above is also true for k[x][[y]], k[[x]][y]
4105  // or should we use:
4106  //if( !ringIsLocal( ) )
4107  {
4108  WerrorS( "only works for local orderings" );
4109  state = spectrumWrongRing;
4110  }
4111  else if( currRing->qideal != NULL )
4112  {
4113  WerrorS( "does not work in quotient rings" );
4114  state = spectrumWrongRing;
4115  }
4116  else
4117  {
4118  lists L = (lists)NULL;
4119  int flag = 2; // symmetric optimization
4120 
4121  state = spectrumCompute( (poly)first->Data( ),&L,flag );
4122 
4123  if( state==spectrumOK )
4124  {
4125  result->rtyp = LIST_CMD;
4126  result->data = (char*)L;
4127  }
4128  else
4129  {
4130  spectrumPrintError(state);
4131  }
4132  }
4133 
4134  return (state!=spectrumOK);
4135 }
4136 
4137 // ----------------------------------------------------------------------------
4138 // check if a list is a spectrum
4139 // check for:
4140 // list has 6 elements
4141 // 1st element is int (mu=Milnor number)
4142 // 2nd element is int (pg=geometrical genus)
4143 // 3rd element is int (n =number of different spectrum numbers)
4144 // 4th element is intvec (num=numerators)
4145 // 5th element is intvec (den=denomiantors)
4146 // 6th element is intvec (mul=multiplicities)
4147 // exactly n numerators
4148 // exactly n denominators
4149 // exactly n multiplicities
4150 // mu>0
4151 // pg>=0
4152 // n>0
4153 // num>0
4154 // den>0
4155 // mul>0
4156 // symmetriy with respect to numberofvariables/2
4157 // monotony
4158 // mu = sum of all multiplicities
4159 // pg = sum of all multiplicities where num/den<=1
4160 // ----------------------------------------------------------------------------
4161 
4162 semicState list_is_spectrum( lists l )
4163 {
4164  // -------------------
4165  // check list length
4166  // -------------------
4167 
4168  if( l->nr < 5 )
4169  {
4170  return semicListTooShort;
4171  }
4172  else if( l->nr > 5 )
4173  {
4174  return semicListTooLong;
4175  }
4176 
4177  // -------------
4178  // check types
4179  // -------------
4180 
4181  if( l->m[0].rtyp != INT_CMD )
4182  {
4184  }
4185  else if( l->m[1].rtyp != INT_CMD )
4186  {
4188  }
4189  else if( l->m[2].rtyp != INT_CMD )
4190  {
4192  }
4193  else if( l->m[3].rtyp != INTVEC_CMD )
4194  {
4196  }
4197  else if( l->m[4].rtyp != INTVEC_CMD )
4198  {
4200  }
4201  else if( l->m[5].rtyp != INTVEC_CMD )
4202  {
4204  }
4205 
4206  // -------------------------
4207  // check number of entries
4208  // -------------------------
4209 
4210  int mu = (int)(long)(l->m[0].Data( ));
4211  int pg = (int)(long)(l->m[1].Data( ));
4212  int n = (int)(long)(l->m[2].Data( ));
4213 
4214  if( n <= 0 )
4215  {
4216  return semicListNNegative;
4217  }
4218 
4219  intvec *num = (intvec*)l->m[3].Data( );
4220  intvec *den = (intvec*)l->m[4].Data( );
4221  intvec *mul = (intvec*)l->m[5].Data( );
4222 
4223  if( n != num->length( ) )
4224  {
4226  }
4227  else if( n != den->length( ) )
4228  {
4230  }
4231  else if( n != mul->length( ) )
4232  {
4234  }
4235 
4236  // --------
4237  // values
4238  // --------
4239 
4240  if( mu <= 0 )
4241  {
4242  return semicListMuNegative;
4243  }
4244  if( pg < 0 )
4245  {
4246  return semicListPgNegative;
4247  }
4248 
4249  int i;
4250 
4251  for( i=0; i<n; i++ )
4252  {
4253  if( (*num)[i] <= 0 )
4254  {
4255  return semicListNumNegative;
4256  }
4257  if( (*den)[i] <= 0 )
4258  {
4259  return semicListDenNegative;
4260  }
4261  if( (*mul)[i] <= 0 )
4262  {
4263  return semicListMulNegative;
4264  }
4265  }
4266 
4267  // ----------------
4268  // check symmetry
4269  // ----------------
4270 
4271  int j;
4272 
4273  for( i=0, j=n-1; i<=j; i++,j-- )
4274  {
4275  if( (*num)[i] != rVar(currRing)*((*den)[i]) - (*num)[j] ||
4276  (*den)[i] != (*den)[j] ||
4277  (*mul)[i] != (*mul)[j] )
4278  {
4279  return semicListNotSymmetric;
4280  }
4281  }
4282 
4283  // ----------------
4284  // check monotony
4285  // ----------------
4286 
4287  for( i=0, j=1; i<n/2; i++,j++ )
4288  {
4289  if( (*num)[i]*(*den)[j] >= (*num)[j]*(*den)[i] )
4290  {
4291  return semicListNotMonotonous;
4292  }
4293  }
4294 
4295  // ---------------------
4296  // check Milnor number
4297  // ---------------------
4298 
4299  for( mu=0, i=0; i<n; i++ )
4300  {
4301  mu += (*mul)[i];
4302  }
4303 
4304  if( mu != (int)(long)(l->m[0].Data( )) )
4305  {
4306  return semicListMilnorWrong;
4307  }
4308 
4309  // -------------------------
4310  // check geometrical genus
4311  // -------------------------
4312 
4313  for( pg=0, i=0; i<n; i++ )
4314  {
4315  if( (*num)[i]<=(*den)[i] )
4316  {
4317  pg += (*mul)[i];
4318  }
4319  }
4320 
4321  if( pg != (int)(long)(l->m[1].Data( )) )
4322  {
4323  return semicListPGWrong;
4324  }
4325 
4326  return semicOK;
4327 }
4328 
4329 // ----------------------------------------------------------------------------
4330 // this procedure is called from the interpreter
4331 // ----------------------------------------------------------------------------
4332 // first = list of spectrum numbers
4333 // second = list of spectrum numbers
4334 // result = sum of the two lists
4335 // ----------------------------------------------------------------------------
4336 
4338 {
4339  semicState state;
4340 
4341  // -----------------
4342  // check arguments
4343  // -----------------
4344 
4345  lists l1 = (lists)first->Data( );
4346  lists l2 = (lists)second->Data( );
4347 
4348  if( (state=list_is_spectrum( l1 )) != semicOK )
4349  {
4350  WerrorS( "first argument is not a spectrum:" );
4351  list_error( state );
4352  }
4353  else if( (state=list_is_spectrum( l2 )) != semicOK )
4354  {
4355  WerrorS( "second argument is not a spectrum:" );
4356  list_error( state );
4357  }
4358  else
4359  {
4360  spectrum s1= spectrumFromList ( l1 );
4361  spectrum s2= spectrumFromList ( l2 );
4362  spectrum sum( s1+s2 );
4363 
4364  result->rtyp = LIST_CMD;
4365  result->data = (char*)(getList(sum));
4366  }
4367 
4368  return (state!=semicOK);
4369 }
4370 
4371 // ----------------------------------------------------------------------------
4372 // this procedure is called from the interpreter
4373 // ----------------------------------------------------------------------------
4374 // first = list of spectrum numbers
4375 // second = integer
4376 // result = the multiple of the first list by the second factor
4377 // ----------------------------------------------------------------------------
4378 
4380 {
4381  semicState state;
4382 
4383  // -----------------
4384  // check arguments
4385  // -----------------
4386 
4387  lists l = (lists)first->Data( );
4388  int k = (int)(long)second->Data( );
4389 
4390  if( (state=list_is_spectrum( l ))!=semicOK )
4391  {
4392  WerrorS( "first argument is not a spectrum" );
4393  list_error( state );
4394  }
4395  else if( k < 0 )
4396  {
4397  WerrorS( "second argument should be positive" );
4398  state = semicMulNegative;
4399  }
4400  else
4401  {
4402  spectrum s= spectrumFromList( l );
4403  spectrum product( k*s );
4404 
4405  result->rtyp = LIST_CMD;
4406  result->data = (char*)getList(product);
4407  }
4408 
4409  return (state!=semicOK);
4410 }
4411 
4412 // ----------------------------------------------------------------------------
4413 // this procedure is called from the interpreter
4414 // ----------------------------------------------------------------------------
4415 // first = list of spectrum numbers
4416 // second = list of spectrum numbers
4417 // result = semicontinuity index
4418 // ----------------------------------------------------------------------------
4419 
4421 {
4422  semicState state;
4423  BOOLEAN qh=(((int)(long)w->Data())==1);
4424 
4425  // -----------------
4426  // check arguments
4427  // -----------------
4428 
4429  lists l1 = (lists)u->Data( );
4430  lists l2 = (lists)v->Data( );
4431 
4432  if( (state=list_is_spectrum( l1 ))!=semicOK )
4433  {
4434  WerrorS( "first argument is not a spectrum" );
4435  list_error( state );
4436  }
4437  else if( (state=list_is_spectrum( l2 ))!=semicOK )
4438  {
4439  WerrorS( "second argument is not a spectrum" );
4440  list_error( state );
4441  }
4442  else
4443  {
4444  spectrum s1= spectrumFromList( l1 );
4445  spectrum s2= spectrumFromList( l2 );
4446 
4447  res->rtyp = INT_CMD;
4448  if (qh)
4449  res->data = (void*)(long)(s1.mult_spectrumh( s2 ));
4450  else
4451  res->data = (void*)(long)(s1.mult_spectrum( s2 ));
4452  }
4453 
4454  // -----------------
4455  // check status
4456  // -----------------
4457 
4458  return (state!=semicOK);
4459 }
4461 {
4462  sleftv tmp;
4463  memset(&tmp,0,sizeof(tmp));
4464  tmp.rtyp=INT_CMD;
4465  /* tmp.data = (void *)0; -- done by memset */
4466 
4467  return semicProc3(res,u,v,&tmp);
4468 }
4469 
4470 #endif
4471 
4473 {
4474  res->data= (void*)loNewtonPolytope( (ideal)arg1->Data() );
4475  return FALSE;
4476 }
4477 
4479 {
4480  if ( !(rField_is_long_R(currRing)) )
4481  {
4482  WerrorS("Ground field not implemented!");
4483  return TRUE;
4484  }
4485 
4486  simplex * LP;
4487  matrix m;
4488 
4489  leftv v= args;
4490  if ( v->Typ() != MATRIX_CMD ) // 1: matrix
4491  return TRUE;
4492  else
4493  m= (matrix)(v->CopyD());
4494 
4495  LP = new simplex(MATROWS(m),MATCOLS(m));
4496  LP->mapFromMatrix(m);
4497 
4498  v= v->next;
4499  if ( v->Typ() != INT_CMD ) // 2: m = number of constraints
4500  return TRUE;
4501  else
4502  LP->m= (int)(long)(v->Data());
4503 
4504  v= v->next;
4505  if ( v->Typ() != INT_CMD ) // 3: n = number of variables
4506  return TRUE;
4507  else
4508  LP->n= (int)(long)(v->Data());
4509 
4510  v= v->next;
4511  if ( v->Typ() != INT_CMD ) // 4: m1 = number of <= constraints
4512  return TRUE;
4513  else
4514  LP->m1= (int)(long)(v->Data());
4515 
4516  v= v->next;
4517  if ( v->Typ() != INT_CMD ) // 5: m2 = number of >= constraints
4518  return TRUE;
4519  else
4520  LP->m2= (int)(long)(v->Data());
4521 
4522  v= v->next;
4523  if ( v->Typ() != INT_CMD ) // 6: m3 = number of == constraints
4524  return TRUE;
4525  else
4526  LP->m3= (int)(long)(v->Data());
4527 
4528 #ifdef mprDEBUG_PROT
4529  Print("m (constraints) %d\n",LP->m);
4530  Print("n (columns) %d\n",LP->n);
4531  Print("m1 (<=) %d\n",LP->m1);
4532  Print("m2 (>=) %d\n",LP->m2);
4533  Print("m3 (==) %d\n",LP->m3);
4534 #endif
4535 
4536  LP->compute();
4537 
4538  lists lres= (lists)omAlloc( sizeof(slists) );
4539  lres->Init( 6 );
4540 
4541  lres->m[0].rtyp= MATRIX_CMD; // output matrix
4542  lres->m[0].data=(void*)LP->mapToMatrix(m);
4543 
4544  lres->m[1].rtyp= INT_CMD; // found a solution?
4545  lres->m[1].data=(void*)(long)LP->icase;
4546 
4547  lres->m[2].rtyp= INTVEC_CMD;
4548  lres->m[2].data=(void*)LP->posvToIV();
4549 
4550  lres->m[3].rtyp= INTVEC_CMD;
4551  lres->m[3].data=(void*)LP->zrovToIV();
4552 
4553  lres->m[4].rtyp= INT_CMD;
4554  lres->m[4].data=(void*)(long)LP->m;
4555 
4556  lres->m[5].rtyp= INT_CMD;
4557  lres->m[5].data=(void*)(long)LP->n;
4558 
4559  res->data= (void*)lres;
4560 
4561  return FALSE;
4562 }
4563 
4564 BOOLEAN nuMPResMat( leftv res, leftv arg1, leftv arg2 )
4565 {
4566  ideal gls = (ideal)(arg1->Data());
4567  int imtype= (int)(long)arg2->Data();
4568 
4569  uResultant::resMatType mtype= determineMType( imtype );
4570 
4571  // check input ideal ( = polynomial system )
4572  if ( mprIdealCheck( gls, arg1->Name(), mtype, true ) != mprOk )
4573  {
4574  return TRUE;
4575  }
4576 
4577  uResultant *resMat= new uResultant( gls, mtype, false );
4578  if (resMat!=NULL)
4579  {
4580  res->rtyp = MODUL_CMD;
4581  res->data= (void*)resMat->accessResMat()->getMatrix();
4582  if (!errorreported) delete resMat;
4583  }
4584  return errorreported;
4585 }
4586 
4587 BOOLEAN nuLagSolve( leftv res, leftv arg1, leftv arg2, leftv arg3 )
4588 {
4589 
4590  poly gls;
4591  gls= (poly)(arg1->Data());
4592  int howclean= (int)(long)arg3->Data();
4593 
4594  if ( !(rField_is_R(currRing) ||
4595  rField_is_Q(currRing) ||
4598  {
4599  WerrorS("Ground field not implemented!");
4600  return TRUE;
4601  }
4602 
4605  {
4606  unsigned long int ii = (unsigned long int)arg2->Data();
4607  setGMPFloatDigits( ii, ii );
4608  }
4609 
4610  if ( gls == NULL || pIsConstant( gls ) )
4611  {
4612  WerrorS("Input polynomial is constant!");
4613  return TRUE;
4614  }
4615 
4616  int ldummy;
4617  int deg= currRing->pLDeg( gls, &ldummy, currRing );
4618  int i,vpos=0;
4619  poly piter;
4620  lists elist;
4621  lists rlist;
4622 
4623  elist= (lists)omAlloc( sizeof(slists) );
4624  elist->Init( 0 );
4625 
4626  if ( rVar(currRing) > 1 )
4627  {
4628  piter= gls;
4629  for ( i= 1; i <= rVar(currRing); i++ )
4630  if ( pGetExp( piter, i ) )
4631  {
4632  vpos= i;
4633  break;
4634  }
4635  while ( piter )
4636  {
4637  for ( i= 1; i <= rVar(currRing); i++ )
4638  if ( (vpos != i) && (pGetExp( piter, i ) != 0) )
4639  {
4640  WerrorS("The input polynomial must be univariate!");
4641  return TRUE;
4642  }
4643  pIter( piter );
4644  }
4645  }
4646 
4647  rootContainer * roots= new rootContainer();
4648  number * pcoeffs= (number *)omAlloc( (deg+1) * sizeof( number ) );
4649  piter= gls;
4650  for ( i= deg; i >= 0; i-- )
4651  {
4652  if ( piter && pTotaldegree(piter) == i )
4653  {
4654  pcoeffs[i]= nCopy( pGetCoeff( piter ) );
4655  //nPrint( pcoeffs[i] );PrintS(" ");
4656  pIter( piter );
4657  }
4658  else
4659  {
4660  pcoeffs[i]= nInit(0);
4661  }
4662  }
4663 
4664 #ifdef mprDEBUG_PROT
4665  for (i=deg; i >= 0; i--)
4666  {
4667  nPrint( pcoeffs[i] );PrintS(" ");
4668  }
4669  PrintLn();
4670 #endif
4671 
4672  roots->fillContainer( pcoeffs, NULL, 1, deg, rootContainer::onepoly, 1 );
4673  roots->solver( howclean );
4674 
4675  int elem= roots->getAnzRoots();
4676  char *dummy;
4677  int j;
4678 
4679  rlist= (lists)omAlloc( sizeof(slists) );
4680  rlist->Init( elem );
4681 
4683  {
4684  for ( j= 0; j < elem; j++ )
4685  {
4686  rlist->m[j].rtyp=NUMBER_CMD;
4687  rlist->m[j].data=(void *)nCopy((number)(roots->getRoot(j)));
4688  //rlist->m[j].data=(void *)(number)(roots->getRoot(j));
4689  }
4690  }
4691  else
4692  {
4693  for ( j= 0; j < elem; j++ )
4694  {
4695  dummy = complexToStr( (*roots)[j], gmp_output_digits, currRing->cf );
4696  rlist->m[j].rtyp=STRING_CMD;
4697  rlist->m[j].data=(void *)dummy;
4698  }
4699  }
4700 
4701  elist->Clean();
4702  //omFreeSize( (ADDRESS) elist, sizeof(slists) );
4703 
4704  // this is (via fillContainer) the same data as in root
4705  //for ( i= deg; i >= 0; i-- ) nDelete( &pcoeffs[i] );
4706  //omFreeSize( (ADDRESS) pcoeffs, (deg+1) * sizeof( number ) );
4707 
4708  delete roots;
4709 
4710  res->rtyp= LIST_CMD;
4711  res->data= (void*)rlist;
4712 
4713  return FALSE;
4714 }
4715 
4716 BOOLEAN nuVanderSys( leftv res, leftv arg1, leftv arg2, leftv arg3)
4717 {
4718  int i;
4719  ideal p,w;
4720  p= (ideal)arg1->Data();
4721  w= (ideal)arg2->Data();
4722 
4723  // w[0] = f(p^0)
4724  // w[1] = f(p^1)
4725  // ...
4726  // p can be a vector of numbers (multivariate polynom)
4727  // or one number (univariate polynom)
4728  // tdg = deg(f)
4729 
4730  int n= IDELEMS( p );
4731  int m= IDELEMS( w );
4732  int tdg= (int)(long)arg3->Data();
4733 
4734  res->data= (void*)NULL;
4735 
4736  // check the input
4737  if ( tdg < 1 )
4738  {
4739  WerrorS("Last input parameter must be > 0!");
4740  return TRUE;
4741  }
4742  if ( n != rVar(currRing) )
4743  {
4744  Werror("Size of first input ideal must be equal to %d!",rVar(currRing));
4745  return TRUE;
4746  }
4747  if ( m != (int)pow((double)tdg+1,(double)n) )
4748  {
4749  Werror("Size of second input ideal must be equal to %d!",
4750  (int)pow((double)tdg+1,(double)n));
4751  return TRUE;
4752  }
4753  if ( !(rField_is_Q(currRing) /* ||
4754  rField_is_R() || rField_is_long_R() ||
4755  rField_is_long_C()*/ ) )
4756  {
4757  WerrorS("Ground field not implemented!");
4758  return TRUE;
4759  }
4760 
4761  number tmp;
4762  number *pevpoint= (number *)omAlloc( n * sizeof( number ) );
4763  for ( i= 0; i < n; i++ )
4764  {
4765  pevpoint[i]=nInit(0);
4766  if ( (p->m)[i] )
4767  {
4768  tmp = pGetCoeff( (p->m)[i] );
4769  if ( nIsZero(tmp) || nIsOne(tmp) || nIsMOne(tmp) )
4770  {
4771  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4772  WerrorS("Elements of first input ideal must not be equal to -1, 0, 1!");
4773  return TRUE;
4774  }
4775  } else tmp= NULL;
4776  if ( !nIsZero(tmp) )
4777  {
4778  if ( !pIsConstant((p->m)[i]))
4779  {
4780  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4781  WerrorS("Elements of first input ideal must be numbers!");
4782  return TRUE;
4783  }
4784  pevpoint[i]= nCopy( tmp );
4785  }
4786  }
4787 
4788  number *wresults= (number *)omAlloc( m * sizeof( number ) );
4789  for ( i= 0; i < m; i++ )
4790  {
4791  wresults[i]= nInit(0);
4792  if ( (w->m)[i] && !nIsZero(pGetCoeff((w->m)[i])) )
4793  {
4794  if ( !pIsConstant((w->m)[i]))
4795  {
4796  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4797  omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4798  WerrorS("Elements of second input ideal must be numbers!");
4799  return TRUE;
4800  }
4801  wresults[i]= nCopy(pGetCoeff((w->m)[i]));
4802  }
4803  }
4804 
4805  vandermonde vm( m, n, tdg, pevpoint, FALSE );
4806  number *ncpoly= vm.interpolateDense( wresults );
4807  // do not free ncpoly[]!!
4808  poly rpoly= vm.numvec2poly( ncpoly );
4809 
4810  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4811  omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4812 
4813  res->data= (void*)rpoly;
4814  return FALSE;
4815 }
4816 
4818 {
4819  leftv v= args;
4820 
4821  ideal gls;
4822  int imtype;
4823  int howclean;
4824 
4825  // get ideal
4826  if ( v->Typ() != IDEAL_CMD )
4827  return TRUE;
4828  else gls= (ideal)(v->Data());
4829  v= v->next;
4830 
4831  // get resultant matrix type to use (0,1)
4832  if ( v->Typ() != INT_CMD )
4833  return TRUE;
4834  else imtype= (int)(long)v->Data();
4835  v= v->next;
4836 
4837  if (imtype==0)
4838  {
4839  ideal test_id=idInit(1,1);
4840  int j;
4841  for(j=IDELEMS(gls)-1;j>=0;j--)
4842  {
4843  if (gls->m[j]!=NULL)
4844  {
4845  test_id->m[0]=gls->m[j];
4846  intvec *dummy_w=id_QHomWeight(test_id, currRing);
4847  if (dummy_w!=NULL)
4848  {
4849  WerrorS("Newton polytope not of expected dimension");
4850  delete dummy_w;
4851  return TRUE;
4852  }
4853  }
4854  }
4855  }
4856 
4857  // get and set precision in digits ( > 0 )
4858  if ( v->Typ() != INT_CMD )
4859  return TRUE;
4860  else if ( !(rField_is_R(currRing) || rField_is_long_R(currRing) || \
4862  {
4863  unsigned long int ii=(unsigned long int)v->Data();
4864  setGMPFloatDigits( ii, ii );
4865  }
4866  v= v->next;
4867 
4868  // get interpolation steps (0,1,2)
4869  if ( v->Typ() != INT_CMD )
4870  return TRUE;
4871  else howclean= (int)(long)v->Data();
4872 
4873  uResultant::resMatType mtype= determineMType( imtype );
4874  int i,count;
4875  lists listofroots= NULL;
4876  number smv= NULL;
4877  BOOLEAN interpolate_det= (mtype==uResultant::denseResMat)?TRUE:FALSE;
4878 
4879  //emptylist= (lists)omAlloc( sizeof(slists) );
4880  //emptylist->Init( 0 );
4881 
4882  //res->rtyp = LIST_CMD;
4883  //res->data= (void *)emptylist;
4884 
4885  // check input ideal ( = polynomial system )
4886  if ( mprIdealCheck( gls, args->Name(), mtype ) != mprOk )
4887  {
4888  return TRUE;
4889  }
4890 
4891  uResultant * ures;
4892  rootContainer ** iproots;
4893  rootContainer ** muiproots;
4894  rootArranger * arranger;
4895 
4896  // main task 1: setup of resultant matrix
4897  ures= new uResultant( gls, mtype );
4898  if ( ures->accessResMat()->initState() != resMatrixBase::ready )
4899  {
4900  WerrorS("Error occurred during matrix setup!");
4901  return TRUE;
4902  }
4903 
4904  // if dense resultant, check if minor nonsingular
4905  if ( mtype == uResultant::denseResMat )
4906  {
4907  smv= ures->accessResMat()->getSubDet();
4908 #ifdef mprDEBUG_PROT
4909  PrintS("// Determinant of submatrix: ");nPrint(smv);PrintLn();
4910 #endif
4911  if ( nIsZero(smv) )
4912  {
4913  WerrorS("Unsuitable input ideal: Minor of resultant matrix is singular!");
4914  return TRUE;
4915  }
4916  }
4917 
4918  // main task 2: Interpolate specialized resultant polynomials
4919  if ( interpolate_det )
4920  iproots= ures->interpolateDenseSP( false, smv );
4921  else
4922  iproots= ures->specializeInU( false, smv );
4923 
4924  // main task 3: Interpolate specialized resultant polynomials
4925  if ( interpolate_det )
4926  muiproots= ures->interpolateDenseSP( true, smv );
4927  else
4928  muiproots= ures->specializeInU( true, smv );
4929 
4930 #ifdef mprDEBUG_PROT
4931  int c= iproots[0]->getAnzElems();
4932  for (i=0; i < c; i++) pWrite(iproots[i]->getPoly());
4933  c= muiproots[0]->getAnzElems();
4934  for (i=0; i < c; i++) pWrite(muiproots[i]->getPoly());
4935 #endif
4936 
4937  // main task 4: Compute roots of specialized polys and match them up
4938  arranger= new rootArranger( iproots, muiproots, howclean );
4939  arranger->solve_all();
4940 
4941  // get list of roots
4942  if ( arranger->success() )
4943  {
4944  arranger->arrange();
4945  listofroots= listOfRoots(arranger, gmp_output_digits );
4946  }
4947  else
4948  {
4949  WerrorS("Solver was unable to find any roots!");
4950  return TRUE;
4951  }
4952 
4953  // free everything
4954  count= iproots[0]->getAnzElems();
4955  for (i=0; i < count; i++) delete iproots[i];
4956  omFreeSize( (ADDRESS) iproots, count * sizeof(rootContainer*) );
4957  count= muiproots[0]->getAnzElems();
4958  for (i=0; i < count; i++) delete muiproots[i];
4959  omFreeSize( (ADDRESS) muiproots, count * sizeof(rootContainer*) );
4960 
4961  delete ures;
4962  delete arranger;
4963  nDelete( &smv );
4964 
4965  res->data= (void *)listofroots;
4966 
4967  //emptylist->Clean();
4968  // omFreeSize( (ADDRESS) emptylist, sizeof(slists) );
4969 
4970  return FALSE;
4971 }
4972 
4973 // from mpr_numeric.cc
4974 lists listOfRoots( rootArranger* self, const unsigned int oprec )
4975 {
4976  int i,j;
4977  int count= self->roots[0]->getAnzRoots(); // number of roots
4978  int elem= self->roots[0]->getAnzElems(); // number of koordinates per root
4979 
4980  lists listofroots= (lists)omAlloc( sizeof(slists) ); // must be done this way!
4981 
4982  if ( self->found_roots )
4983  {
4984  listofroots->Init( count );
4985 
4986  for (i=0; i < count; i++)
4987  {
4988  lists onepoint= (lists)omAlloc(sizeof(slists)); // must be done this way!
4989  onepoint->Init(elem);
4990  for ( j= 0; j < elem; j++ )
4991  {
4992  if ( !rField_is_long_C(currRing) )
4993  {
4994  onepoint->m[j].rtyp=STRING_CMD;
4995  onepoint->m[j].data=(void *)complexToStr((*self->roots[j])[i],oprec, currRing->cf);
4996  }
4997  else
4998  {
4999  onepoint->m[j].rtyp=NUMBER_CMD;
5000  onepoint->m[j].data=(void *)n_Copy((number)(self->roots[j]->getRoot(i)), currRing->cf);
5001  }
5002  onepoint->m[j].next= NULL;
5003  onepoint->m[j].name= NULL;
5004  }
5005  listofroots->m[i].rtyp=LIST_CMD;
5006  listofroots->m[i].data=(void *)onepoint;
5007  listofroots->m[j].next= NULL;
5008  listofroots->m[j].name= NULL;
5009  }
5010 
5011  }
5012  else
5013  {
5014  listofroots->Init( 0 );
5015  }
5016 
5017  return listofroots;
5018 }
5019 
5020 // from ring.cc
5022 {
5023  ring rg = NULL;
5024  if (h!=NULL)
5025  {
5026 // Print(" new ring:%s (l:%d)\n",IDID(h),IDLEV(h));
5027  rg = IDRING(h);
5028  if (rg==NULL) return; //id <>NULL, ring==NULL
5029  omCheckAddrSize((ADDRESS)h,sizeof(idrec));
5030  if (IDID(h)) // OB: ????
5031  omCheckAddr((ADDRESS)IDID(h));
5032  rTest(rg);
5033  }
5034 
5035  // clean up history
5037  {
5039  memset(&sLastPrinted,0,sizeof(sleftv));
5040  }
5041 
5042  if ((rg!=currRing)&&(currRing!=NULL))
5043  {
5045  if (DENOMINATOR_LIST!=NULL)
5046  {
5047  if (TEST_V_ALLWARN)
5048  Warn("deleting denom_list for ring change to %s",IDID(h));
5049  do
5050  {
5051  n_Delete(&(dd->n),currRing->cf);
5052  dd=dd->next;
5054  DENOMINATOR_LIST=dd;
5055  } while(DENOMINATOR_LIST!=NULL);
5056  }
5057  }
5058 
5059  // test for valid "currRing":
5060  if ((rg!=NULL) && (rg->idroot==NULL))
5061  {
5062  ring old=rg;
5063  rg=rAssure_HasComp(rg);
5064  if (old!=rg)
5065  {
5066  rKill(old);
5067  IDRING(h)=rg;
5068  }
5069  }
5070  /*------------ change the global ring -----------------------*/
5071  rChangeCurrRing(rg);
5072  currRingHdl = h;
5073 }
5074 
5076 {
5077  // change some bad orderings/combination into better ones
5078  leftv h=ord;
5079  while(h!=NULL)
5080  {
5081  BOOLEAN change=FALSE;
5082  intvec *iv = (intvec *)(h->data);
5083  // ws(-i) -> wp(i)
5084  if ((*iv)[1]==ringorder_ws)
5085  {
5086  BOOLEAN neg=TRUE;
5087  for(int i=2;i<iv->length();i++)
5088  if((*iv)[i]>=0) { neg=FALSE; break; }
5089  if (neg)
5090  {
5091  (*iv)[1]=ringorder_wp;
5092  for(int i=2;i<iv->length();i++)
5093  (*iv)[i]= - (*iv)[i];
5094  change=TRUE;
5095  }
5096  }
5097  // Ws(-i) -> Wp(i)
5098  if ((*iv)[1]==ringorder_Ws)
5099  {
5100  BOOLEAN neg=TRUE;
5101  for(int i=2;i<iv->length();i++)
5102  if((*iv)[i]>=0) { neg=FALSE; break; }
5103  if (neg)
5104  {
5105  (*iv)[1]=ringorder_Wp;
5106  for(int i=2;i<iv->length();i++)
5107  (*iv)[i]= -(*iv)[i];
5108  change=TRUE;
5109  }
5110  }
5111  // wp(1) -> dp
5112  if ((*iv)[1]==ringorder_wp)
5113  {
5114  BOOLEAN all_one=TRUE;
5115  for(int i=2;i<iv->length();i++)
5116  if((*iv)[i]!=1) { all_one=FALSE; break; }
5117  if (all_one)
5118  {
5119  intvec *iv2=new intvec(3);
5120  (*iv2)[0]=1;
5121  (*iv2)[1]=ringorder_dp;
5122  (*iv2)[2]=iv->length()-2;
5123  delete iv;
5124  iv=iv2;
5125  h->data=iv2;
5126  change=TRUE;
5127  }
5128  }
5129  // Wp(1) -> Dp
5130  if ((*iv)[1]==ringorder_Wp)
5131  {
5132  BOOLEAN all_one=TRUE;
5133  for(int i=2;i<iv->length();i++)
5134  if((*iv)[i]!=1) { all_one=FALSE; break; }
5135  if (all_one)
5136  {
5137  intvec *iv2=new intvec(3);
5138  (*iv2)[0]=1;
5139  (*iv2)[1]=ringorder_Dp;
5140  (*iv2)[2]=iv->length()-2;
5141  delete iv;
5142  iv=iv2;
5143  h->data=iv2;
5144  change=TRUE;
5145  }
5146  }
5147  // dp(1)/Dp(1)/rp(1) -> lp(1)
5148  if (((*iv)[1]==ringorder_dp)
5149  || ((*iv)[1]==ringorder_Dp)
5150  || ((*iv)[1]==ringorder_rp))
5151  {
5152  if (iv->length()==3)
5153  {
5154  if ((*iv)[2]==1)
5155  {
5156  (*iv)[1]=ringorder_lp;
5157  change=TRUE;
5158  }
5159  }
5160  }
5161  // lp(i),lp(j) -> lp(i+j)
5162  if(((*iv)[1]==ringorder_lp)
5163  && (h->next!=NULL))
5164  {
5165  intvec *iv2 = (intvec *)(h->next->data);
5166  if ((*iv2)[1]==ringorder_lp)
5167  {
5168  leftv hh=h->next;
5169  h->next=hh->next;
5170  hh->next=NULL;
5171  if ((*iv2)[0]==1)
5172  (*iv)[2] += 1; // last block unspecified, at least 1
5173  else
5174  (*iv)[2] += (*iv2)[2];
5175  hh->CleanUp();
5176  omFree(hh);
5177  change=TRUE;
5178  }
5179  }
5180  // -------------------
5181  if (!change) h=h->next;
5182  }
5183  return ord;
5184 }
5185 
5186 
5188 {
5189  int last = 0, o=0, n = 1, i=0, typ = 1, j;
5190  ord=rOptimizeOrdAsSleftv(ord);
5191  sleftv *sl = ord;
5192 
5193  // determine nBlocks
5194  while (sl!=NULL)
5195  {
5196  intvec *iv = (intvec *)(sl->data);
5197  if (((*iv)[1]==ringorder_c)||((*iv)[1]==ringorder_C))
5198  i++;
5199  else if ((*iv)[1]==ringorder_L)
5200  {
5201  R->bitmask=(*iv)[2];
5202  n--;
5203  }
5204  else if (((*iv)[1]!=ringorder_a)
5205  && ((*iv)[1]!=ringorder_a64)
5206  && ((*iv)[1]!=ringorder_am))
5207  o++;
5208  n++;
5209  sl=sl->next;
5210  }
5211  // check whether at least one real ordering
5212  if (o==0)
5213  {
5214  WerrorS("invalid combination of orderings");
5215  return TRUE;
5216  }
5217  // if no c/C ordering is given, increment n
5218  if (i==0) n++;
5219  else if (i != 1)
5220  {
5221  // throw error if more than one is given
5222  WerrorS("more than one ordering c/C specified");
5223  return TRUE;
5224  }
5225 
5226  // initialize fields of R
5227  R->order=(int *)omAlloc0(n*sizeof(int));
5228  R->block0=(int *)omAlloc0(n*sizeof(int));
5229  R->block1=(int *)omAlloc0(n*sizeof(int));
5230  R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
5231 
5232  int *weights=(int*)omAlloc0((R->N+1)*sizeof(int));
5233 
5234  // init order, so that rBlocks works correctly
5235  for (j=0; j < n-1; j++)
5236  R->order[j] = (int) ringorder_unspec;
5237  // set last _C order, if no c/C order was given
5238  if (i == 0) R->order[n-2] = ringorder_C;
5239 
5240  /* init orders */
5241  sl=ord;
5242  n=-1;
5243  while (sl!=NULL)
5244  {
5245  intvec *iv;
5246  iv = (intvec *)(sl->data);
5247  if ((*iv)[1]!=ringorder_L)
5248  {
5249  n++;
5250 
5251  /* the format of an ordering:
5252  * iv[0]: factor
5253  * iv[1]: ordering
5254  * iv[2..end]: weights
5255  */
5256  R->order[n] = (*iv)[1];
5257  typ=1;
5258  switch ((*iv)[1])
5259  {
5260  case ringorder_ws:
5261  case ringorder_Ws:
5262  typ=-1;
5263  case ringorder_wp:
5264  case ringorder_Wp:
5265  R->wvhdl[n]=(int*)omAlloc((iv->length()-1)*sizeof(int));
5266  R->block0[n] = last+1;
5267  for (i=2; i<iv->length(); i++)
5268  {
5269  R->wvhdl[n][i-2] = (*iv)[i];
5270  last++;
5271  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5272  }
5273  R->block1[n] = si_min(last,R->N);
5274  break;
5275  case ringorder_ls:
5276  case ringorder_ds:
5277  case ringorder_Ds:
5278  case ringorder_rs:
5279  typ=-1;
5280  case ringorder_lp:
5281  case ringorder_dp:
5282  case ringorder_Dp:
5283  case ringorder_rp:
5284  R->block0[n] = last+1;
5285  if (iv->length() == 3) last+=(*iv)[2];
5286  else last += (*iv)[0];
5287  R->block1[n] = si_min(last,R->N);
5288  if (rCheckIV(iv)) return TRUE;
5289  for(i=si_min(rVar(R),R->block1[n]);i>=R->block0[n];i--)
5290  {
5291  if (weights[i]==0) weights[i]=typ;
5292  }
5293  break;
5294 
5295  case ringorder_s: // no 'rank' params!
5296  {
5297 
5298  if(iv->length() > 3)
5299  return TRUE;
5300 
5301  if(iv->length() == 3)
5302  {
5303  const int s = (*iv)[2];
5304  R->block0[n] = s;
5305  R->block1[n] = s;
5306  }
5307  break;
5308  }
5309  case ringorder_IS:
5310  {
5311  if(iv->length() != 3) return TRUE;
5312 
5313  const int s = (*iv)[2];
5314 
5315  if( 1 < s || s < -1 ) return TRUE;
5316 
5317  R->block0[n] = s;
5318  R->block1[n] = s;
5319  break;
5320  }
5321  case ringorder_S:
5322  case ringorder_c:
5323  case ringorder_C:
5324  {
5325  if (rCheckIV(iv)) return TRUE;
5326  break;
5327  }
5328  case ringorder_aa:
5329  case ringorder_a:
5330  {
5331  R->block0[n] = last+1;
5332  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5333  R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int));
5334  for (i=2; i<iv->length(); i++)
5335  {
5336  R->wvhdl[n][i-2]=(*iv)[i];
5337  last++;
5338  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5339  }
5340  last=R->block0[n]-1;
5341  break;
5342  }
5343  case ringorder_am:
5344  {
5345  R->block0[n] = last+1;
5346  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5347  R->wvhdl[n] = (int*)omAlloc(iv->length()*sizeof(int));
5348  if (R->block1[n]- R->block0[n]+2>=iv->length())
5349  WarnS("missing module weights");
5350  for (i=2; i<=(R->block1[n]-R->block0[n]+2); i++)
5351  {
5352  R->wvhdl[n][i-2]=(*iv)[i];
5353  last++;
5354  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5355  }
5356  R->wvhdl[n][i-2]=iv->length() -3 -(R->block1[n]- R->block0[n]);
5357  for (; i<iv->length(); i++)
5358  {
5359  R->wvhdl[n][i-1]=(*iv)[i];
5360  }
5361  last=R->block0[n]-1;
5362  break;
5363  }
5364  case ringorder_a64:
5365  {
5366  R->block0[n] = last+1;
5367  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5368  R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int64));
5369  int64 *w=(int64 *)R->wvhdl[n];
5370  for (i=2; i<iv->length(); i++)
5371  {
5372  w[i-2]=(*iv)[i];
5373  last++;
5374  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5375  }
5376  last=R->block0[n]-1;
5377  break;
5378  }
5379  case ringorder_M:
5380  {
5381  int Mtyp=rTypeOfMatrixOrder(iv);
5382  if (Mtyp==0) return TRUE;
5383  if (Mtyp==-1) typ = -1;
5384 
5385  R->wvhdl[n] =( int *)omAlloc((iv->length()-1)*sizeof(int));
5386  for (i=2; i<iv->length();i++)
5387  R->wvhdl[n][i-2]=(*iv)[i];
5388 
5389  R->block0[n] = last+1;
5390  last += (int)sqrt((double)(iv->length()-2));
5391  R->block1[n] = si_min(last,R->N);
5392  for(i=R->block1[n];i>=R->block0[n];i--)
5393  {
5394  if (weights[i]==0) weights[i]=typ;
5395  }
5396  break;
5397  }
5398 
5399  case ringorder_no:
5400  R->order[n] = ringorder_unspec;
5401  return TRUE;
5402 
5403  default:
5404  Werror("Internal Error: Unknown ordering %d", (*iv)[1]);
5405  R->order[n] = ringorder_unspec;
5406  return TRUE;
5407  }
5408  }
5409  if (last>R->N)
5410  {
5411  Werror("mismatch of number of vars (%d) and ordering (>=%d vars)",
5412  R->N,last);
5413  return TRUE;
5414  }
5415  sl=sl->next;
5416  }
5417  // find OrdSgn:
5418  R->OrdSgn = 1;
5419  for(i=1;i<=R->N;i++)
5420  { if (weights[i]<0) { R->OrdSgn=-1;break; }}
5421  omFree(weights);
5422 
5423  // check for complete coverage
5424  while ( n >= 0 && (
5425  (R->order[n]==ringorder_c)
5426  || (R->order[n]==ringorder_C)
5427  || (R->order[n]==ringorder_s)
5428  || (R->order[n]==ringorder_S)
5429  || (R->order[n]==ringorder_IS)
5430  )) n--;
5431 
5432  assume( n >= 0 );
5433 
5434  if (R->block1[n] != R->N)
5435  {
5436  if (((R->order[n]==ringorder_dp) ||
5437  (R->order[n]==ringorder_ds) ||
5438  (R->order[n]==ringorder_Dp) ||
5439  (R->order[n]==ringorder_Ds) ||
5440  (R->order[n]==ringorder_rp) ||
5441  (R->order[n]==ringorder_rs) ||
5442  (R->order[n]==ringorder_lp) ||
5443  (R->order[n]==ringorder_ls))
5444  &&
5445  R->block0[n] <= R->N)
5446  {
5447  R->block1[n] = R->N;
5448  }
5449  else
5450  {
5451  Werror("mismatch of number of vars (%d) and ordering (%d vars)",
5452  R->N,R->block1[n]);
5453  return TRUE;
5454  }
5455  }
5456  return FALSE;
5457 }
5458 
5460 {
5461 
5462  while(sl!=NULL)
5463  {
5464  if ((sl->rtyp == IDHDL)||(sl->rtyp==ALIAS_CMD))
5465  {
5466  *p = omStrDup(sl->Name());
5467  }
5468  else if (sl->name!=NULL)
5469  {
5470  *p = (char*)sl->name;
5471  sl->name=NULL;
5472  }
5473  else if (sl->rtyp==POLY_CMD)
5474  {
5475  sleftv s_sl;
5476  iiConvert(POLY_CMD,ANY_TYPE,-1,sl,&s_sl);
5477  if (s_sl.name != NULL)
5478  {
5479  *p = (char*)s_sl.name; s_sl.name=NULL;
5480  }
5481  else
5482  *p = NULL;
5483  sl->next = s_sl.next;
5484  s_sl.next = NULL;
5485  s_sl.CleanUp();
5486  if (*p == NULL) return TRUE;
5487  }
5488  else return TRUE;
5489  p++;
5490  sl=sl->next;
5491  }
5492  return FALSE;
5493 }
5494 
5495 const short MAX_SHORT = 32767; // (1 << (sizeof(short)*8)) - 1;
5496 
5497 ////////////////////
5498 //
5499 // rInit itself:
5500 //
5501 // INPUT: pn: ch & parameter (names), rv: variable (names)
5502 // ord: ordering (all !=NULL)
5503 // RETURN: currRingHdl on success
5504 // NULL on error
5505 // NOTE: * makes new ring to current ring, on success
5506 // * considers input sleftv's as read-only
5507 ring rInit(leftv pn, leftv rv, leftv ord)
5508 {
5509 #ifdef HAVE_RINGS
5510  //unsigned int ringtype = 0;
5511  mpz_ptr modBase = NULL;
5512  unsigned int modExponent = 1;
5513 #endif
5514  int float_len=0;
5515  int float_len2=0;
5516  ring R = NULL;
5517  //BOOLEAN ffChar=FALSE;
5518 
5519  /* ch -------------------------------------------------------*/
5520  // get ch of ground field
5521 
5522  // allocated ring
5523  R = (ring) omAlloc0Bin(sip_sring_bin);
5524 
5525  coeffs cf = NULL;
5526 
5527  assume( pn != NULL );
5528  const int P = pn->listLength();
5529 
5530  #ifdef SINGULAR_4_1
5531  if (pn->Typ()==CRING_CMD)
5532  {
5533  cf=(coeffs)pn->CopyD();
5534  leftv pnn=pn;
5535  if(P>1) /*parameter*/
5536  {
5537  pnn = pnn->next;
5538  const int pars = pnn->listLength();
5539  assume( pars > 0 );
5540  char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5541 
5542  if (rSleftvList2StringArray(pnn, names))
5543  {
5544  WerrorS("parameter expected");
5545  goto rInitError;
5546  }
5547 
5548  TransExtInfo extParam;
5549 
5550  extParam.r = rDefault( cf, pars, names); // Q/Zp [ p_1, ... p_pars ]
5551  for(int i=pars-1; i>=0;i--)
5552  {
5553  omFree(names[i]);
5554  }
5555  omFree(names);
5556 
5557  cf = nInitChar(n_transExt, &extParam);
5558  }
5559  assume( cf != NULL );
5560  }
5561  else
5562  #endif
5563  if (pn->Typ()==INT_CMD)
5564  {
5565  int ch = (int)(long)pn->Data();
5566  leftv pnn=pn;
5567 
5568  /* parameter? -------------------------------------------------------*/
5569  pnn = pnn->next;
5570 
5571  if (pnn == NULL) // no params!?
5572  {
5573  if (ch!=0)
5574  {
5575  int ch2=IsPrime(ch);
5576  if ((ch<2)||(ch!=ch2))
5577  {
5578  Warn("%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5579  ch=32003;
5580  }
5581  cf = nInitChar(n_Zp, (void*)(long)ch);
5582  }
5583  else
5584  cf = nInitChar(n_Q, (void*)(long)ch);
5585  }
5586  else
5587  {
5588  const int pars = pnn->listLength();
5589 
5590  assume( pars > 0 );
5591 
5592  // predefined finite field: (p^k, a)
5593  if ((ch!=0) && (ch!=IsPrime(ch)) && (pars == 1))
5594  {
5595  GFInfo param;
5596 
5597  param.GFChar = ch;
5598  param.GFDegree = 1;
5599  param.GFPar_name = pnn->name;
5600 
5601  cf = nInitChar(n_GF, &param);
5602  }
5603  else // (0/p, a, b, ..., z)
5604  {
5605  if ((ch!=0) && (ch!=IsPrime(ch)))
5606  {
5607  WerrorS("too many parameters");
5608  goto rInitError;
5609  }
5610 
5611  char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5612 
5613  if (rSleftvList2StringArray(pnn, names))
5614  {
5615  WerrorS("parameter expected");
5616  goto rInitError;
5617  }
5618 
5619  TransExtInfo extParam;
5620 
5621  extParam.r = rDefault( ch, pars, names); // Q/Zp [ p_1, ... p_pars ]
5622  for(int i=pars-1; i>=0;i--)
5623  {
5624  omFree(names[i]);
5625  }
5626  omFree(names);
5627 
5628  cf = nInitChar(n_transExt, &extParam);
5629  }
5630  }
5631 
5632  //if (cf==NULL) ->Error: Invalid ground field specification
5633  }
5634  else if ((pn->name != NULL)
5635  && ((strcmp(pn->name,"real")==0) || (strcmp(pn->name,"complex")==0)))
5636  {
5637  leftv pnn=pn->next;
5638  BOOLEAN complex_flag=(strcmp(pn->name,"complex")==0);
5639  if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5640  {
5641  float_len=(int)(long)pnn->Data();
5642  float_len2=float_len;
5643  pnn=pnn->next;
5644  if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5645  {
5646  float_len2=(int)(long)pnn->Data();
5647  pnn=pnn->next;
5648  }
5649  }
5650 
5651  if (!complex_flag)
5652  complex_flag= (pnn!=NULL) && (pnn->name!=NULL);
5653  if( !complex_flag && (float_len2 <= (short)SHORT_REAL_LENGTH))
5654  cf=nInitChar(n_R, NULL);
5655  else // longR or longC?
5656  {
5657  LongComplexInfo param;
5658 
5659  param.float_len = si_min (float_len, 32767);
5660  param.float_len2 = si_min (float_len2, 32767);
5661 
5662  // set the parameter name
5663  if (complex_flag)
5664  {
5665  if (param.float_len < SHORT_REAL_LENGTH)
5666  {
5669  }
5670  if ((pnn == NULL) || (pnn->name == NULL))
5671  param.par_name=(const char*)"i"; //default to i
5672  else
5673  param.par_name = (const char*)pnn->name;
5674  }
5675 
5676  cf = nInitChar(complex_flag ? n_long_C: n_long_R, (void*)&param);
5677  }
5678  assume( cf != NULL );
5679  }
5680 #ifdef HAVE_RINGS
5681  else if ((pn->name != NULL) && (strcmp(pn->name, "integer") == 0))
5682  {
5683  // TODO: change to use coeffs_BIGINT!?
5684  modBase = (mpz_ptr) omAlloc(sizeof(mpz_t));
5685  mpz_init_set_si(modBase, 0);
5686  if (pn->next!=NULL)
5687  {
5688  leftv pnn=pn;
5689  if (pnn->next->Typ()==INT_CMD)
5690  {
5691  pnn=pnn->next;
5692  mpz_set_ui(modBase, (int)(long) pnn->Data());
5693  if ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5694  {
5695  pnn=pnn->next;
5696  modExponent = (long) pnn->Data();
5697  }
5698  while ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5699  {
5700  pnn=pnn->next;
5701  mpz_mul_ui(modBase, modBase, (int)(long) pnn->Data());
5702  }
5703  }
5704  else if (pnn->next->Typ()==BIGINT_CMD)
5705  {
5706  number p=(number)pnn->next->CopyD();
5707  nlGMP(p,(number)modBase,coeffs_BIGINT); // TODO? // extern void nlGMP(number &i, number n, const coeffs r); // FIXME: n_MPZ( modBase, p, coeffs_BIGINT); ?
5708  n_Delete(&p,coeffs_BIGINT);
5709  }
5710  }
5711  else
5712  cf=nInitChar(n_Z,NULL);
5713 
5714  if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_cmp_ui(modBase, 0) < 0))
5715  {
5716  WerrorS("Wrong ground ring specification (module is 1)");
5717  goto rInitError;
5718  }
5719  if (modExponent < 1)
5720  {
5721  WerrorS("Wrong ground ring specification (exponent smaller than 1");
5722  goto rInitError;
5723  }
5724  // module is 0 ---> integers ringtype = 4;
5725  // we have an exponent
5726  if (modExponent > 1 && cf == NULL)
5727  {
5728  if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
5729  {
5730  /* this branch should be active for modExponent = 2..32 resp. 2..64,
5731  depending on the size of a long on the respective platform */
5732  //ringtype = 1; // Use Z/2^ch
5733  cf=nInitChar(n_Z2m,(void*)(long)modExponent);
5734  mpz_clear(modBase);
5735  omFreeSize (modBase, sizeof (mpz_t));
5736  }
5737  else
5738  {
5739  if (mpz_cmp_ui(modBase,0)==0)
5740  {
5741  WerrorS("modulus must not be 0 or parameter not allowed");
5742  goto rInitError;
5743  }
5744  //ringtype = 3;
5745  ZnmInfo info;
5746  info.base= modBase;
5747  info.exp= modExponent;
5748  cf=nInitChar(n_Znm,(void*) &info); //exponent is missing
5749  }
5750  }
5751  // just a module m > 1
5752  else if (cf == NULL)
5753  {
5754  if (mpz_cmp_ui(modBase,0)==0)
5755  {
5756  WerrorS("modulus must not be 0 or parameter not allowed");
5757  goto rInitError;
5758  }
5759  //ringtype = 2;
5760  ZnmInfo info;
5761  info.base= modBase;
5762  info.exp= modExponent;
5763  cf=nInitChar(n_Zn,(void*) &info);
5764  }
5765  assume( cf != NULL );
5766  }
5767 #endif
5768  // ring NEW = OLD, (), (); where OLD is a polynomial ring...
5769  else if ((pn->Typ()==RING_CMD) && (P == 1))
5770  {
5771  TransExtInfo extParam;
5772  extParam.r = (ring)pn->Data();
5773  cf = nInitChar(n_transExt, &extParam);
5774  }
5775  //else if ((pn->Typ()==QRING_CMD) && (P == 1)) // same for qrings - which should be fields!?
5776  //{
5777  // AlgExtInfo extParam;
5778  // extParam.r = (ring)pn->Data();
5779 
5780  // cf = nInitChar(n_algExt, &extParam); // Q[a]/<minideal>
5781  //}
5782  else
5783  {
5784  WerrorS("Wrong or unknown ground field specification");
5785 #if 0
5786 // debug stuff for unknown cf descriptions:
5787  sleftv* p = pn;
5788  while (p != NULL)
5789  {
5790  Print( "pn[%p]: type: %d [%s]: %p, name: %s", (void*)p, p->Typ(), Tok2Cmdname(p->Typ()), p->Data(), (p->name == NULL? "NULL" : p->name) );
5791  PrintLn();
5792  p = p->next;
5793  }
5794 #endif
5795  goto rInitError;
5796  }
5797 
5798  /*every entry in the new ring is initialized to 0*/
5799 
5800  /* characteristic -----------------------------------------------*/
5801  /* input: 0 ch=0 : Q parameter=NULL ffChar=FALSE float_len
5802  * 0 1 : Q(a,...) *names FALSE
5803  * 0 -1 : R NULL FALSE 0
5804  * 0 -1 : R NULL FALSE prec. >6
5805  * 0 -1 : C *names FALSE prec. 0..?
5806  * p p : Fp NULL FALSE
5807  * p -p : Fp(a) *names FALSE
5808  * q q : GF(q=p^n) *names TRUE
5809  */
5810  if (cf==NULL)
5811  {
5812  WerrorS("Invalid ground field specification");
5813  goto rInitError;
5814 // const int ch=32003;
5815 // cf=nInitChar(n_Zp, (void*)(long)ch);
5816  }
5817 
5818  assume( R != NULL );
5819 
5820  R->cf = cf;
5821 
5822  /* names and number of variables-------------------------------------*/
5823  {
5824  int l=rv->listLength();
5825 
5826  if (l>MAX_SHORT)
5827  {
5828  Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
5829  goto rInitError;
5830  }
5831  R->N = l; /*rv->listLength();*/
5832  }
5833  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
5834  if (rSleftvList2StringArray(rv, R->names))
5835  {
5836  WerrorS("name of ring variable expected");
5837  goto rInitError;
5838  }
5839 
5840  /* check names and parameters for conflicts ------------------------- */
5841  rRenameVars(R); // conflicting variables will be renamed
5842  /* ordering -------------------------------------------------------------*/
5843  if (rSleftvOrdering2Ordering(ord, R))
5844  goto rInitError;
5845 
5846  // Complete the initialization
5847  if (rComplete(R,1))
5848  goto rInitError;
5849 
5850 /*#ifdef HAVE_RINGS
5851 // currently, coefficients which are ring elements require a global ordering:
5852  if (rField_is_Ring(R) && (R->OrdSgn==-1))
5853  {
5854  WerrorS("global ordering required for these coefficients");
5855  goto rInitError;
5856  }
5857 #endif*/
5858 
5859  rTest(R);
5860 
5861  // try to enter the ring into the name list
5862  // need to clean up sleftv here, before this ring can be set to
5863  // new currRing or currRing can be killed beacuse new ring has
5864  // same name
5865  pn->CleanUp();
5866  rv->CleanUp();
5867  ord->CleanUp();
5868  //if ((tmp = enterid(s, myynest, RING_CMD, &IDROOT))==NULL)
5869  // goto rInitError;
5870 
5871  //memcpy(IDRING(tmp),R,sizeof(*R));
5872  // set current ring
5873  //omFreeBin(R, ip_sring_bin);
5874  //return tmp;
5875  return R;
5876 
5877  // error case:
5878  rInitError:
5879  if ((R != NULL)&&(R->cf!=NULL)) rDelete(R);
5880  pn->CleanUp();
5881  rv->CleanUp();
5882  ord->CleanUp();
5883  return NULL;
5884 }
5885 
5886 ring rSubring(ring org_ring, sleftv* rv)
5887 {
5888  ring R = rCopy0(org_ring);
5889  int *perm=(int *)omAlloc0((org_ring->N+1)*sizeof(int));
5890  int n = rBlocks(org_ring), i=0, j;
5891 
5892  /* names and number of variables-------------------------------------*/
5893  {
5894  int l=rv->listLength();
5895  if (l>MAX_SHORT)
5896  {
5897  Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
5898  goto rInitError;
5899  }
5900  R->N = l; /*rv->listLength();*/
5901  }
5902  omFree(R->names);
5903  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
5904  if (rSleftvList2StringArray(rv, R->names))
5905  {
5906  WerrorS("name of ring variable expected");
5907  goto rInitError;
5908  }
5909 
5910  /* check names for subring in org_ring ------------------------- */
5911  {
5912  i=0;
5913 
5914  for(j=0;j<R->N;j++)
5915  {
5916  for(;i<org_ring->N;i++)
5917  {
5918  if (strcmp(org_ring->names[i],R->names[j])==0)
5919  {
5920  perm[i+1]=j+1;
5921  break;
5922  }
5923  }
5924  if (i>org_ring->N)
5925  {
5926  Werror("variable %d (%s) not in basering",j+1,R->names[j]);
5927  break;
5928  }
5929  }
5930  }
5931  //Print("perm=");
5932  //for(i=1;i<org_ring->N;i++) Print("v%d -> v%d\n",i,perm[i]);
5933  /* ordering -------------------------------------------------------------*/
5934 
5935  for(i=0;i<n;i++)
5936  {
5937  int min_var=-1;
5938  int max_var=-1;
5939  for(j=R->block0[i];j<=R->block1[i];j++)
5940  {
5941  if (perm[j]>0)
5942  {
5943  if (min_var==-1) min_var=perm[j];
5944  max_var=perm[j];
5945  }
5946  }
5947  if (min_var!=-1)
5948  {
5949  //Print("block %d: old %d..%d, now:%d..%d\n",
5950  // i,R->block0[i],R->block1[i],min_var,max_var);
5951  R->block0[i]=min_var;
5952  R->block1[i]=max_var;
5953  if (R->wvhdl[i]!=NULL)
5954  {
5955  omFree(R->wvhdl[i]);
5956  R->wvhdl[i]=(int*)omAlloc0((max_var-min_var+1)*sizeof(int));
5957  for(j=org_ring->block0[i];j<=org_ring->block1[i];j++)
5958  {
5959  if (perm[j]>0)
5960  {
5961  R->wvhdl[i][perm[j]-R->block0[i]]=
5962  org_ring->wvhdl[i][j-org_ring->block0[i]];
5963  //Print("w%d=%d (orig_w%d)\n",perm[j],R->wvhdl[i][perm[j]-R->block0[i]],j);
5964  }
5965  }
5966  }
5967  }
5968  else
5969  {
5970  if(R->block0[i]>0)
5971  {
5972  //Print("skip block %d\n",i);
5973  R->order[i]=ringorder_unspec;
5974  if (R->wvhdl[i] !=NULL) omFree(R->wvhdl[i]);
5975  R->wvhdl[i]=NULL;
5976  }
5977  //else Print("keep block %d\n",i);
5978  }
5979  }
5980  i=n-1;
5981  while(i>0)
5982  {
5983  // removed unneded blocks
5984  if(R->order[i-1]==ringorder_unspec)
5985  {
5986  for(j=i;j<=n;j++)
5987  {
5988  R->order[j-1]=R->order[j];
5989  R->block0[j-1]=R->block0[j];
5990  R->block1[j-1]=R->block1[j];
5991  if (R->wvhdl[j-1] !=NULL) omFree(R->wvhdl[j-1]);
5992  R->wvhdl[j-1]=R->wvhdl[j];
5993  }
5994  R->order[n]=ringorder_unspec;
5995  n--;
5996  }
5997  i--;
5998  }
5999  n=rBlocks(org_ring)-1;
6000  while (R->order[n]==0) n--;
6001  while (R->order[n]==ringorder_unspec) n--;
6002  if ((R->order[n]==ringorder_c) || (R->order[n]==ringorder_C)) n--;
6003  if (R->block1[n] != R->N)
6004  {
6005  if (((R->order[n]==ringorder_dp) ||
6006  (R->order[n]==ringorder_ds) ||
6007  (R->order[n]==ringorder_Dp) ||
6008  (R->order[n]==ringorder_Ds) ||
6009  (R->order[n]==ringorder_rp) ||
6010  (R->order[n]==ringorder_rs) ||
6011  (R->order[n]==ringorder_lp) ||
6012  (R->order[n]==ringorder_ls))
6013  &&
6014  R->block0[n] <= R->N)
6015  {
6016  R->block1[n] = R->N;
6017  }
6018  else
6019  {
6020  Werror("mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6021  R->N,R->block1[n],n);
6022  return NULL;
6023  }
6024  }
6025  omFree(perm);
6026  // find OrdSgn:
6027  R->OrdSgn = org_ring->OrdSgn; // IMPROVE!
6028  //for(i=1;i<=R->N;i++)
6029  //{ if (weights[i]<0) { R->OrdSgn=-1;break; }}
6030  //omFree(weights);
6031  // Complete the initialization
6032  if (rComplete(R,1))
6033  goto rInitError;
6034 
6035  rTest(R);
6036 
6037  if (rv != NULL) rv->CleanUp();
6038 
6039  return R;
6040 
6041  // error case:
6042  rInitError:
6043  if (R != NULL) rDelete(R);
6044  if (rv != NULL) rv->CleanUp();
6045  return NULL;
6046 }
6047 
6048 void rKill(ring r)
6049 {
6050  if ((r->ref<=0)&&(r->order!=NULL))
6051  {
6052 #ifdef RDEBUG
6053  if (traceit &TRACE_SHOW_RINGS) Print("kill ring %lx\n",(long)r);
6054 #endif
6055  if (r->qideal!=NULL)
6056  {
6057  id_Delete(&r->qideal, r);
6058  r->qideal = NULL;
6059  }
6060  int j;
6061  for (j=0;j<myynest;j++)
6062  {
6063  if (iiLocalRing[j]==r)
6064  {
6065  if (j==0) WarnS("killing the basering for level 0");
6066  iiLocalRing[j]=NULL;
6067  }
6068  }
6069 // any variables depending on r ?
6070  while (r->idroot!=NULL)
6071  {
6072  r->idroot->lev=myynest; // avoid warning about kill global objects
6073  killhdl2(r->idroot,&(r->idroot),r);
6074  }
6075  if (r==currRing)
6076  {
6077  // all dependend stuff is done, clean global vars:
6078  if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
6080  {
6082  }
6083  //if ((myynest>0) && (iiRETURNEXPR.RingDependend()))
6084  //{
6085  // WerrorS("return value depends on local ring variable (export missing ?)");
6086  // iiRETURNEXPR.CleanUp();
6087  //}
6088  currRing=NULL;
6089  currRingHdl=NULL;
6090  }
6091 
6092  /* nKillChar(r); will be called from inside of rDelete */
6093  rDelete(r);
6094  return;
6095  }
6096  r->ref--;
6097 }
6098 
6099 void rKill(idhdl h)
6100 {
6101  ring r = IDRING(h);
6102  int ref=0;
6103  if (r!=NULL)
6104  {
6105  // avoid, that sLastPrinted is the last reference to the base ring:
6106  // clean up before killing the last "named" refrence:
6107  if ((sLastPrinted.rtyp==RING_CMD)
6108  && (sLastPrinted.data==(void*)r))
6109  {
6110  sLastPrinted.CleanUp(r);
6111  }
6112  ref=r->ref;
6113  rKill(r);
6114  }
6115  if (h==currRingHdl)
6116  {
6117  if (ref<=0) { currRing=NULL; currRingHdl=NULL;}
6118  else
6119  {
6121  }
6122  }
6123 }
6124 
6126 {
6127  idhdl h=root;
6128  while (h!=NULL)
6129  {
6130  if ((IDTYP(h)==RING_CMD)
6131  && (h!=n)
6132  && (IDRING(h)==r)
6133  )
6134  {
6135  return h;
6136  }
6137  h=IDNEXT(h);
6138  }
6139  return NULL;
6140 }
6141 
6142 extern BOOLEAN jjPROC(leftv res, leftv u, leftv v);
6143 ideal kGroebner(ideal F, ideal Q)
6144 {
6145  //test|=Sy_bit(OPT_PROT);
6146  idhdl save_ringhdl=currRingHdl;
6147  ideal resid;
6148  idhdl new_ring=NULL;
6149  if ((currRingHdl==NULL) || (IDRING(currRingHdl)!=currRing))
6150  {
6151  currRingHdl=enterid(omStrDup(" GROEBNERring"),0,RING_CMD,&IDROOT,FALSE);
6152  new_ring=currRingHdl;
6154  }
6155  sleftv v; memset(&v,0,sizeof(v)); v.rtyp=IDEAL_CMD; v.data=(char *) F;
6156  idhdl h=ggetid("groebner");
6157  sleftv u; memset(&u,0,sizeof(u)); u.rtyp=IDHDL; u.data=(char *) h;
6158  u.name=IDID(h);
6159 
6160  sleftv res; memset(&res,0,sizeof(res));
6161  if(jjPROC(&res,&u,&v))
6162  {
6163  resid=kStd(F,Q,testHomog,NULL);
6164  }
6165  else
6166  {
6167  //printf("typ:%d\n",res.rtyp);
6168  resid=(ideal)(res.data);
6169  }
6170  // cleanup GROEBNERring, save_ringhdl, u,v,(res )
6171  if (new_ring!=NULL)
6172  {
6173  idhdl h=IDROOT;
6174  if (h==new_ring) IDROOT=h->next;
6175  else
6176  {
6177  while ((h!=NULL) &&(h->next!=new_ring)) h=h->next;
6178  if (h!=NULL) h->next=h->next->next;
6179  }
6180  if (h!=NULL) omFreeSize(h,sizeof(*h));
6181  }
6182  currRingHdl=save_ringhdl;
6183  u.CleanUp();
6184  v.CleanUp();
6185  return resid;
6186 }
6187 
6188 static void jjINT_S_TO_ID(int n,int *e, leftv res)
6189 {
6190  if (n==0) n=1;
6191  ideal l=idInit(n,1);
6192  int i;
6193  poly p;
6194  for(i=rVar(currRing);i>0;i--)
6195  {
6196  if (e[i]>0)
6197  {
6198  n--;
6199  p=pOne();
6200  pSetExp(p,i,1);
6201  pSetm(p);
6202  l->m[n]=p;
6203  if (n==0) break;
6204  }
6205  }
6206  res->data=(char*)l;
6207  setFlag(res,FLAG_STD);
6208  omFreeSize((ADDRESS)e,(rVar(currRing)+1)*sizeof(int));
6209 }
6211 {
6212  int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6213  int n=pGetVariables((poly)u->Data(),e);
6214  jjINT_S_TO_ID(n,e,res);
6215  return FALSE;
6216 }
6217 
6219 {
6220  int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6221  ideal I=(ideal)u->Data();
6222  int i;
6223  int n=0;
6224  for(i=I->nrows*I->ncols-1;i>=0;i--)
6225  {
6226  int n0=pGetVariables(I->m[i],e);
6227  if (n0>n) n=n0;
6228  }
6229  jjINT_S_TO_ID(n,e,res);
6230  return FALSE;
6231 }
6232 
6233 void paPrint(const char *n,package p)
6234 {
6235  Print(" %s (",n);
6236  switch (p->language)
6237  {
6238  case LANG_SINGULAR: PrintS("S"); break;
6239  case LANG_C: PrintS("C"); break;
6240  case LANG_TOP: PrintS("T"); break;
6241  case LANG_NONE: PrintS("N"); break;
6242  default: PrintS("U");
6243  }
6244  if(p->libname!=NULL)
6245  Print(",%s", p->libname);
6246  PrintS(")");
6247 }
6248 
6250 {
6251  intvec *aa=(intvec*)a->Data();
6252  sleftv tmp_out;
6253  sleftv tmp_in;
6254  leftv curr=res;
6255  BOOLEAN bo=FALSE;
6256  for(int i=0;i<aa->length(); i++)
6257  {
6258  memset(&tmp_in,0,sizeof(tmp_in));
6259  tmp_in.rtyp=INT_CMD;
6260  tmp_in.data=(void*)(long)(*aa)[i];
6261  if (proc==NULL)
6262  bo=iiExprArith1(&tmp_out,&tmp_in,op);
6263  else
6264  bo=jjPROC(&tmp_out,proc,&tmp_in);
6265  if (bo)
6266  {
6267  res->CleanUp(currRing);
6268  Werror("apply fails at index %d",i+1);
6269  return TRUE;
6270  }
6271  if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6272  else
6273  {
6274  curr->next=(leftv)omAllocBin(sleftv_bin);
6275  curr=curr->next;
6276  memcpy(curr,&tmp_out,sizeof(tmp_out));
6277  }
6278  }
6279  return FALSE;
6280 }
6282 {
6283  WerrorS("not implemented");
6284  return TRUE;
6285 }
6287 {
6288  WerrorS("not implemented");
6289  return TRUE;
6290 }
6292 {
6293  lists aa=(lists)a->Data();
6294  sleftv tmp_out;
6295  sleftv tmp_in;
6296  leftv curr=res;
6297  BOOLEAN bo=FALSE;
6298  for(int i=0;i<=aa->nr; i++)
6299  {
6300  memset(&tmp_in,0,sizeof(tmp_in));
6301  tmp_in.Copy(&(aa->m[i]));
6302  if (proc==NULL)
6303  bo=iiExprArith1(&tmp_out,&tmp_in,op);
6304  else
6305  bo=jjPROC(&tmp_out,proc,&tmp_in);
6306  tmp_in.CleanUp();
6307  if (bo)
6308  {
6309  res->CleanUp(currRing);
6310  Werror("apply fails at index %d",i+1);
6311  return TRUE;
6312  }
6313  if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6314  else
6315  {
6316  curr->next=(leftv)omAllocBin(sleftv_bin);
6317  curr=curr->next;
6318  memcpy(curr,&tmp_out,sizeof(tmp_out));
6319  }
6320  }
6321  return FALSE;
6322 }
6324 {
6325  memset(res,0,sizeof(sleftv));
6326  res->rtyp=a->Typ();
6327  switch (res->rtyp /*a->Typ()*/)
6328  {
6329  case INTVEC_CMD:
6330  case INTMAT_CMD:
6331  return iiApplyINTVEC(res,a,op,proc);
6332  case BIGINTMAT_CMD:
6333  return iiApplyBIGINTMAT(res,a,op,proc);
6334  case IDEAL_CMD:
6335  case MODUL_CMD:
6336  case MATRIX_CMD:
6337  return iiApplyIDEAL(res,a,op,proc);
6338  case LIST_CMD:
6339  return iiApplyLIST(res,a,op,proc);
6340  }
6341  WerrorS("first argument to `apply` must allow an index");
6342  return TRUE;
6343 }
6344 
6346 {
6347  // assume a: level
6348  if ((a->Typ()==INT_CMD)&&((long)a->Data()>=0))
6349  {
6350  if ((TEST_V_ALLWARN) && (myynest==0)) WarnS("ASSUME at top level is of no use: see documentation");
6351  char assume_yylinebuf[80];
6352  strncpy(assume_yylinebuf,my_yylinebuf,79);
6353  int lev=(long)a->Data();
6354  int startlev=0;
6355  idhdl h=ggetid("assumeLevel");
6356  if ((h!=NULL)&&(IDTYP(h)==INT_CMD)) startlev=(long)IDINT(h);
6357  if(lev <=startlev)
6358  {
6359  BOOLEAN bo=b->Eval();
6360  if (bo) { WerrorS("syntax error in ASSUME");return TRUE;}
6361  if (b->Typ()!=INT_CMD) { WerrorS("ASUMME(<level>,<int expr>)");return TRUE; }
6362  if (b->Data()==NULL) { Werror("ASSUME failed:%s",assume_yylinebuf);return TRUE;}
6363  }
6364  }
6365  b->CleanUp();
6366  a->CleanUp();
6367  return FALSE;
6368 }
6369 
6370 #include "libparse.h"
6371 
6372 BOOLEAN iiARROW(leftv r, char* a, char *s)
6373 {
6374  char *ss=(char*)omAlloc(strlen(a)+strlen(s)+30); /* max. 27 currently */
6375  // find end of s:
6376  int end_s=strlen(s);
6377  while ((end_s>0) && ((s[end_s]<=' ')||(s[end_s]==';'))) end_s--;
6378  s[end_s+1]='\0';
6379  char *name=(char *)omAlloc(strlen(a)+strlen(s)+30);
6380  sprintf(name,"%s->%s",a,s);
6381  // find start of last expression
6382  int start_s=end_s-1;
6383  while ((start_s>=0) && (s[start_s]!=';')) start_s--;
6384  if (start_s<0) // ';' not found
6385  {
6386  sprintf(ss,"parameter def %s;return(%s);\n",a,s);
6387  }
6388  else // s[start_s] is ';'
6389  {
6390  s[start_s]='\0';
6391  sprintf(ss,"parameter def %s;%s;return(%s);\n",a,s,s+start_s+1);
6392  }
6393  memset(r,0,sizeof(*r));
6394  // now produce procinfo for PROC_CMD:
6395  r->data = (void *)omAlloc0Bin(procinfo_bin);
6396  ((procinfo *)(r->data))->language=LANG_NONE;
6397  iiInitSingularProcinfo((procinfo *)r->data,"",name,0,0);
6398  ((procinfo *)r->data)->data.s.body=ss;
6399  omFree(name);
6400  r->rtyp=PROC_CMD;
6401  //r->rtyp=STRING_CMD;
6402  //r->data=ss;
6403  return FALSE;
6404 }
6405 
6407 {
6408  char* ring_name=omStrDup((char*)r->Name());
6409  int t=arg->Typ();
6410  if (t==RING_CMD)
6411  {
6412  sleftv tmp;
6413  memset(&tmp,0,sizeof(tmp));
6414  tmp.rtyp=IDHDL;
6415  tmp.data=(char*)rDefault(ring_name);
6416  if (tmp.data!=NULL)
6417  {
6418  BOOLEAN b=iiAssign(&tmp,arg);
6419  if (b) return TRUE;
6420  rSetHdl(ggetid(ring_name));
6421  omFree(ring_name);
6422  return FALSE;
6423  }
6424  else
6425  return TRUE;
6426  }
6427  #ifdef SINGULAR_4_1
6428  else if (t==CRING_CMD)
6429  {
6430  sleftv tmp;
6431  sleftv n;
6432  memset(&n,0,sizeof(n));
6433  n.name=ring_name;
6434  if (iiDeclCommand(&tmp,&n,myynest,CRING_CMD,&IDROOT)) return TRUE;
6435  if (iiAssign(&tmp,arg)) return TRUE;
6436  //Print("create %s\n",r->Name());
6437  //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6438  return FALSE;
6439  }
6440  #endif
6441  //Print("create %s\n",r->Name());
6442  //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6443  return TRUE;// not handled -> error for now
6444 }
6445 
6446 static void iiReportTypes(int nr,int t,const short *T)
6447 {
6448  char *buf=(char*)omAlloc(250);
6449  buf[0]='\0';
6450  if (nr==0)
6451  sprintf(buf,"wrong length of parameters(%d), expected ",t);
6452  else
6453  sprintf(buf,"par. %d is of type `%s`, expected ",nr,Tok2Cmdname(t));
6454  for(int i=1;i<=T[0];i++)
6455  {
6456  strcat(buf,"`");
6457  strcat(buf,Tok2Cmdname(T[i]));
6458  strcat(buf,"`");
6459  if (i<T[0]) strcat(buf,",");
6460  }
6461  WerrorS(buf);
6462 }
6463 
6464 BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
6465 {
6466  if (args==NULL)
6467  {
6468  if (type_list[0]==0) return TRUE;
6469  else
6470  {
6471  if (report) WerrorS("no arguments expected");
6472  return FALSE;
6473  }
6474  }
6475  int l=args->listLength();
6476  if (l!=(int)type_list[0])
6477  {
6478  if (report) iiReportTypes(0,l,type_list);
6479  return FALSE;
6480  }
6481  for(int i=1;i<=l;i++,args=args->next)
6482  {
6483  short t=type_list[i];
6484  if (t!=ANY_TYPE)
6485  {
6486  if (((t==IDHDL)&&(args->rtyp!=IDHDL))
6487  || (t!=args->Typ()))
6488  {
6489  if (report) iiReportTypes(i,args->Typ(),type_list);
6490  return FALSE;
6491  }
6492  }
6493  }
6494  return TRUE;
6495 }
mpz_ptr base
Definition: rmodulon.h:19
int status int void size_t count
Definition: si_signals.h:59
int & rows()
Definition: matpol.h:24
int length
Definition: syz.h:60
BOOLEAN jjCHARSERIES(leftv res, leftv u)
Definition: ipshell.cc:3256
intvec ** weights
Definition: syz.h:45
#define omAllocBin(bin)
Definition: omAllocDecl.h:205
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:99
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
Definition: cf_map_ext.cc:400
int iiRETURNEXPR_len
Definition: iplib.cc:472
int hMu2
Definition: hdegree.cc:22
complex root finder for univariate polynomials based on laguers algorithm
Definition: mpr_numeric.h:65
#define IDLIST(a)
Definition: ipid.h:134
void VoiceBackTrack()
Definition: fevoices.cc:77
ip_package * package
Definition: structs.h:46
#define omRealloc0Size(addr, o_size, size)
Definition: omAllocDecl.h:221
#define pIsPurePower(p)
Definition: polys.h:231
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
Definition: coeffs.h:812
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:33
const CanonicalForm int s
Definition: facAbsFact.cc:55
unsigned si_opt_1
Definition: options.c:5
int iiTestConvert(int inputType, int outputType)
Definition: gentable.cc:294
sleftv * m
Definition: lists.h:45
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
Definition: feread.cc:33
unsigned char * proc[NUM_PROC]
Definition: checklibs.c:14
#define omCheckAddrSize(addr, size)
Definition: omAllocDecl.h:327
for int64 weights
Definition: ring.h:79
void atSet(idhdl root, const char *name, void *data, int typ)
Definition: attrib.cc:156
Class used for (list of) interpreter objects.
Definition: subexpr.h:83
#define TRACE_SHOW_RINGS
Definition: reporter.h:35
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:29
int Eval()
Definition: subexpr.cc:1769
spectrumPolyNode * next
Definition: splist.h:39
#define pSetm(p)
Definition: polys.h:253
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
Definition: coeffs.h:846
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
Definition: syz1.cc:1643
number * interpolateDense(const number *q)
Solves the Vandermode linear system {i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
Definition: mpr_numeric.cc:159
matrix mapToMatrix(matrix m)
ring rSubring(ring org_ring, sleftv *rv)
Definition: ipshell.cc:5886
spectrumState
Definition: ipshell.cc:3459
int yylineno
Definition: febase.cc:45
const poly a
Definition: syzextra.cc:212
int sdb_flags
Definition: sdb.cc:32
void PrintLn()
Definition: reporter.cc:310
void compute()
#define ANY_TYPE
Definition: tok.h:30
#define Print
Definition: emacs.cc:83
Base class for solving 0-dim poly systems using u-resultant.
Definition: mpr_base.h:62
only used if HAVE_RINGS is defined
Definition: coeffs.h:44
scfmon hwork
Definition: hutil.cc:19
void mu(int **points, int sizePoints)
Definition: tok.h:95
ring r
Definition: algext.h:40
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:496
#define SHORT_REAL_LENGTH
Definition: numbers.h:54
int hNexist
Definition: hutil.cc:22
int * varset
Definition: hutil.h:19
idhdl currPackHdl
Definition: ipid.cc:61
vandermonde system solver for interpolating polynomials from their values
Definition: mpr_numeric.h:28
const short MAX_SHORT
Definition: ipshell.cc:5495
int hCo
Definition: hdegree.cc:22
Definition: attrib.h:15
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
Definition: lists.cc:312
Subexpr e
Definition: subexpr.h:106
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
Rational weight
Definition: splist.h:41
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:518
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
Definition: ipshell.cc:5459
static BOOLEAN rComposeVar(const lists L, ring R)
Definition: ipshell.cc:2417
Definition: lists.h:22
CanonicalForm num(const CanonicalForm &f)
#define IDINTVEC(a)
Definition: ipid.h:125
ring rCompose(const lists L, const BOOLEAN check_comp)
Definition: ipshell.cc:2712
only used if HAVE_RINGS is defined
Definition: coeffs.h:46
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
Definition: ipshell.cc:3002
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:39
loop
Definition: myNF.cc:98
if(0 > strat->sl)
Definition: myNF.cc:73
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
Definition: iparith.cc:8284
#define IDID(a)
Definition: ipid.h:119
#define pSetExp(p, i, v)
Definition: polys.h:42
static int si_min(const int a, const int b)
Definition: auxiliary.h:122
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
Definition: ipshell.cc:6210
idhdl rSimpleFindHdl(ring r, idhdl root, idhdl n)
Definition: ipshell.cc:6125
#define FALSE
Definition: auxiliary.h:95
Linear Programming / Linear Optimization using Simplex - Algorithm.
Definition: mpr_numeric.h:194
Compatiblity layer for legacy polynomial operations (over currRing)
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
Definition: ipshell.cc:5187
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
Definition: ipconv.cc:401
attr * Attribute()
Definition: subexpr.cc:1401
Definition: tok.h:38
return P p
Definition: myNF.cc:203
opposite of ls
Definition: ring.h:100
int exprlist_length(leftv v)
Definition: ipshell.cc:550
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:4420
void syMinimizeResolvente(resolvente res, int length, int first)
Definition: syz.cc:360
Matrices of numbers.
Definition: bigintmat.h:51
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:587
Rational * s
Definition: semic.h:70
spectrum spectrumFromList(lists l)
Definition: ipshell.cc:3293
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
Definition: iparith.cc:1602
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
Definition: ipshell.cc:3092
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:3249
static BOOLEAN rField_is_R(const ring r)
Definition: ring.h:507
scmon * scfmon
Definition: hutil.h:18
int rows() const
Definition: bigintmat.h:146
#define pTest(p)
Definition: polys.h:399
char * filename
Definition: fevoices.h:62
void list_error(semicState state)
Definition: ipshell.cc:3377
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
Definition: coeffs.h:440
static poly last
Definition: hdegree.cc:1077
#define pDecrExp(p, i)
Definition: polys.h:44
sleftv iiRETURNEXPR
Definition: iplib.cc:471
rational (GMP) numbers
Definition: coeffs.h:31
#define V_DEF_RES
Definition: options.h:48
resMatrixBase * accessResMat()
Definition: mpr_base.h:78
const char * GFPar_name
Definition: coeffs.h:96
static FORCE_INLINE BOOLEAN nCoeff_is_Ring_Z(const coeffs r)
Definition: coeffs.h:759
int rows() const
Definition: intvec.h:88
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define IDNEXT(a)
Definition: ipid.h:115
int pg
Definition: semic.h:68
scfmon hexist
Definition: hutil.cc:19
Definition: grammar.cc:270
{p < 2^31}
Definition: coeffs.h:30
proclevel * procstack
Definition: ipid.cc:58
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
Definition: iplib.cc:883
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
Definition: ipshell.cc:926
#define IDROOT
Definition: ipid.h:20
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:580
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
#define pNeg(p)
Definition: polys.h:181
intvec * ivCopy(const intvec *o)
Definition: intvec.h:126
BOOLEAN siq
Definition: subexpr.cc:58
static int * multiplicity
poly singclap_resultant(poly f, poly g, poly x, const ring r)
Definition: clapsing.cc:317
const char sNoName[]
Definition: subexpr.cc:56
char buffer[1024]
Definition: run.c:54
int listLength()
Definition: subexpr.cc:61
monf hCreate(int Nvar)
Definition: hutil.cc:1002
long int64
Definition: auxiliary.h:67
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge, ring tailRing)
Definition: hdegree.cc:1005
int hNvar
Definition: hutil.cc:22
intvec * id_QHomWeight(ideal id, const ring r)
int get_den_si()
Definition: GMPrat.cc:159
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
Definition: ipshell.cc:4716
resolvente res
Definition: syz.h:47
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2))) ...
Definition: polys.h:115
BOOLEAN spectrumProc(leftv result, leftv first)
Definition: ipshell.cc:4042
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:528
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
Definition: ipshell.cc:6218
#define TRUE
Definition: auxiliary.h:99
#define nIsOne(n)
Definition: numbers.h:25
denominator_list DENOMINATOR_LIST
Definition: kutil.cc:89
uResultant::resMatType determineMType(int imtype)
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2231
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
Definition: maps_ip.cc:49
void type_cmd(leftv v)
Definition: ipshell.cc:248
BOOLEAN iiAssignCR(leftv r, leftv arg)
Definition: ipshell.cc:6406
#define IDIDEAL(a)
Definition: ipid.h:130
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1430
poly iiHighCorner(ideal I, int ak)
Definition: ipshell.cc:1489
void * ADDRESS
Definition: auxiliary.h:116
int hNrad
Definition: hutil.cc:22
intvec * zrovToIV()
int hNpure
Definition: hutil.cc:22
sleftv * leftv
Definition: structs.h:60
bool solver(const int polishmode=PM_NONE)
Definition: mpr_numeric.cc:449
void pWrite(poly p)
Definition: polys.h:291
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4379
BOOLEAN hasConstTerm(poly h, const ring r)
Definition: spectrum.h:28
scmon hpure
Definition: hutil.cc:20
void WerrorS(const char *s)
Definition: feFopen.cc:24
int k
Definition: cfEzgcd.cc:93
#define nIsMOne(n)
Definition: numbers.h:26
int min_in()
Definition: intvec.h:113
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:510
static char const ** rParameter(const ring r)
(r->cf->parameter)
Definition: ring.h:613
void nlGMP(number &i, number n, const coeffs r)
Definition: longrat.cc:1467
#define Q
Definition: sirandom.c:25
char * lString(lists l, BOOLEAN typed, int dim)
Definition: lists.cc:377
int getAnzElems()
Definition: mpr_numeric.h:95
ring rAssure_HasComp(const ring r)
Definition: ring.cc:4522
ideal loNewtonPolytope(const ideal id)
Definition: mpr_base.cc:3190
void killlocals_rec(idhdl *root, int v, ring r)
Definition: ipshell.cc:324
syStrategy syConvList(lists li)
Definition: ipshell.cc:3165
int get_num_si()
Definition: GMPrat.cc:145
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
void hRadical(scfmon rad, int *Nrad, int Nvar)
Definition: hutil.cc:417
int traceit
Definition: febase.cc:47
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
Definition: coeffs.h:908
#define WarnS
Definition: emacs.cc:81
rootContainer ** specializeInU(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:3059
CanonicalForm Lc(const CanonicalForm &f)
coeffs coeffs_BIGINT
Definition: ipid.cc:54
int hasOne(ideal J, const ring r)
Definition: spectrum.cc:96
int Typ()
Definition: subexpr.cc:1004
#define omAlloc(size)
Definition: omAllocDecl.h:210
BOOLEAN exitBuffer(feBufferTypes typ)
Definition: fevoices.cc:241
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
Definition: ipshell.cc:149
poly numvec2poly(const number *q)
Definition: mpr_numeric.cc:106
void rComposeC(lists L, ring R)
Definition: ipshell.cc:2212
#define Sy_bit(x)
Definition: options.h:30
static void jjINT_S_TO_ID(int n, int *e, leftv res)
Definition: ipshell.cc:6188
const char * Name()
Definition: subexpr.h:121
scfmon hrad
Definition: hutil.cc:19
void Print(leftv store=NULL, int spaces=0)
Called by type_cmd (e.g. "r;") or as default in jPRINT.
Definition: subexpr.cc:73
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:762
Creation data needed for finite fields.
Definition: coeffs.h:92
BOOLEAN iiExport(leftv v, int toLev)
Definition: ipshell.cc:1389
Definition: idrec.h:34
Definition: semic.h:63
#define IDHDL
Definition: tok.h:31
Definition: mpr_base.h:98
idhdl iiCurrProc
Definition: ipshell.cc:81
idhdl rDefault(const char *s)
Definition: ipshell.cc:1527
static BOOLEAN idIsZeroDim(ideal i)
Definition: ideals.h:161
idhdl get(const char *s, int lev)
Definition: ipid.cc:91
real floating point (GMP) numbers
Definition: coeffs.h:34
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
Definition: ipshell.cc:6281
BITSET validOpts
Definition: kstd1.cc:63
BOOLEAN iiParameter(leftv p)
Definition: ipshell.cc:1255
short float_len2
additional char-flags, rInit
Definition: coeffs.h:102
#define pGetVariables(p, e)
Definition: polys.h:234
bool found
Definition: facFactorize.cc:56
const char * currid
Definition: grammar.cc:171
void rDecomposeRing_41(leftv h, const coeffs C)
Definition: ipshell.cc:1759
intvec ** hilb_coeffs
Definition: syz.h:46
omBin procinfo_bin
Definition: subexpr.cc:51
#define nPrint(a)
only for debug, over any initalized currRing
Definition: numbers.h:46
lists getList(spectrum &spec)
Definition: ipshell.cc:3305
void ipListFlag(idhdl h)
Definition: ipid.cc:527
int iiRegularity(lists L)
Definition: ipshell.cc:962
void * data
Definition: subexpr.h:89
void rDecomposeCF(leftv h, const ring r, const ring R)
Definition: ipshell.cc:1598
void hDelete(scfmon ev, int ev_length)
Definition: hutil.cc:146
#define pIter(p)
Definition: monomials.h:44
poly res
Definition: myNF.cc:322
BOOLEAN iiTestAssume(leftv a, leftv b)
Definition: ipshell.cc:6345
semicState list_is_spectrum(lists l)
Definition: ipshell.cc:4162
Definition: subexpr.h:21
BOOLEAN kWeight(leftv res, leftv id)
Definition: ipshell.cc:3210
#define IDPACKAGE(a)
Definition: ipid.h:136
int myynest
Definition: febase.cc:46
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220
ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:10
char * char_ptr
Definition: structs.h:56
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
#define IDTYP(a)
Definition: ipid.h:116
indset ISet
Definition: hdegree.cc:279
single prescision (6,6) real numbers
Definition: coeffs.h:32
void * CopyA()
Definition: subexpr.cc:1966
void killhdl2(idhdl h, idhdl *ih, ring r)
Definition: ipid.cc:411
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
Definition: ipid.cc:261
spectrumPolyNode * root
Definition: splist.h:60
BOOLEAN hasLinearTerm(poly h, const ring r)
Definition: spectrum.h:30
static int rBlocks(ring r)
Definition: ring.h:556
BOOLEAN syBetti1(leftv res, leftv u)
Definition: ipshell.cc:3080
Definition: tok.h:56
int RingDependend(int t)
Definition: gentable.cc:23
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
Definition: ipshell.cc:3478
char my_yylinebuf[80]
Definition: febase.cc:48
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
Definition: ipshell.cc:4587
short float_len
additional char-flags, rInit
Definition: coeffs.h:101
const ring r
Definition: syzextra.cc:208
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:3938
Coefficient rings, fields and other domains suitable for Singular polynomials.
resolvente orderedRes
Definition: syz.h:48
BOOLEAN killlocals_list(int v, lists L)
Definition: ipshell.cc:360
BOOLEAN RingDependend()
Definition: subexpr.cc:405
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
Definition: ipshell.cc:2462
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:924
intvec * posvToIV()
Definition: intvec.h:14
#define pSub(a, b)
Definition: polys.h:270
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ...
Definition: coeffs.h:551
void hKill(monf xmem, int Nvar)
Definition: hutil.cc:1016
void rKill(ring r)
Definition: ipshell.cc:6048
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3351
for(int i=0;i< R->ExpL_Size;i++) Print("%09lx "
Definition: cfEzgcd.cc:66
varset hvar
Definition: hutil.cc:21
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
Definition: gen_maps.cc:88
BOOLEAN mapFromMatrix(matrix m)
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
Definition: ipshell.cc:419
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
Definition: spectrum.cc:309
int j
Definition: myNF.cc:70
only used if HAVE_RINGS is defined
Definition: coeffs.h:45
Definition: tok.h:58
Definition: ipid.h:56
const char * name
Definition: subexpr.h:88
#define omFree(addr)
Definition: omAllocDecl.h:261
static long pTotaldegree(poly p)
Definition: polys.h:265
static leftv rOptimizeOrdAsSleftv(leftv ord)
Definition: ipshell.cc:5075
#define assume(x)
Definition: mod2.h:403
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:404
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
The main handler for Singular numbers which are suitable for Singular polynomials.
BOOLEAN iiBranchTo(leftv, leftv args)
Definition: ipshell.cc:1185
static BOOLEAN iiNoKeepRing
Definition: ipshell.cc:84
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:313
double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:28
int status int void * buf
Definition: si_signals.h:59
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1321
indlist * indset
Definition: hutil.h:31
int GFDegree
Definition: coeffs.h:95
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
Definition: hutil.cc:627
const ExtensionInfo & info
< [in] sqrfree poly
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
static void rDecomposeC(leftv h, const ring R)
Definition: ipshell.cc:1722
BOOLEAN hasAxis(ideal J, int k, const ring r)
Definition: spectrum.cc:81
const ring R
Definition: DebugPrint.cc:36
void killlocals(int v)
Definition: ipshell.cc:380
complex floating point (GMP) numbers
Definition: coeffs.h:42
static FORCE_INLINE char * nCoeffName(const coeffs cf)
Definition: coeffs.h:977
Definition: grammar.cc:269
const char * rSimpleOrdStr(int ord)
Definition: ring.cc:88
ip_smatrix * matrix
int mult_spectrumh(spectrum &)
Definition: semic.cc:425
gmp_float sqrt(const gmp_float &a)
Definition: mpr_complex.cc:329
bool success()
Definition: mpr_numeric.h:162
#define IDSTRING(a)
Definition: ipid.h:133
#define rTest(r)
Definition: ring.h:775
idhdl currRingHdl
Definition: ipid.cc:65
static resolvente iiCopyRes(resolvente r, int l)
Definition: ipshell.cc:861
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
Definition: ipshell.cc:4817
omBin indlist_bin
Definition: hdegree.cc:23
void Copy(leftv e)
Definition: subexpr.cc:695
static void iiReportTypes(int nr, int t, const short *T)
Definition: ipshell.cc:6446
#define setFlag(A, F)
Definition: ipid.h:110
BOOLEAN rCheckIV(const intvec *iv)
Definition: ring.cc:185
indset JSet
Definition: hdegree.cc:279
int cols() const
Definition: bigintmat.h:145
#define pSetComp(p, v)
Definition: polys.h:38
void arrange()
Definition: mpr_numeric.cc:895
int rOrderName(char *ordername)
Definition: ring.cc:508
omBin sip_sring_bin
Definition: ring.cc:54
const unsigned short fftable[]
Definition: ffields.cc:61
int m
Definition: cfEzgcd.cc:119
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
#define pIsConstant(p)
like above, except that Comp might be != 0
Definition: polys.h:221
proclevel * next
Definition: ipid.h:59
#define pMult_nn(p, n)
Definition: polys.h:183
int * scmon
Definition: hutil.h:17
struct for passing initialization parameters to naInitChar
Definition: transext.h:92
only used if HAVE_RINGS is defined
Definition: coeffs.h:43
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6291
void spectrumPrintError(spectrumState state)
Definition: ipshell.cc:4011
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
Definition: mpr_numeric.cc:312
const char * iiTwoOps(int t)
Definition: ipshell.cc:88
static int si_max(const int a, const int b)
Definition: auxiliary.h:121
unsigned long exp
Definition: rmodulon.h:19
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:932
idrec * idhdl
Definition: ring.h:18
virtual ideal getMatrix()
Definition: mpr_base.h:31
FILE * f
Definition: checklibs.c:7
omBin sleftv_bin
Definition: subexpr.cc:50
int i
Definition: cfEzgcd.cc:123
ring rInit(leftv pn, leftv rv, leftv ord)
Definition: ipshell.cc:5507
Induced (Schreyer) ordering.
Definition: ring.h:101
void PrintS(const char *s)
Definition: reporter.cc:284
BOOLEAN iiDebugMarker
Definition: ipshell.cc:988
matrix singclap_irrCharSeries(ideal I, const ring r)
Definition: clapsing.cc:1398
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:501
lists rDecompose(const ring r)
Definition: ipshell.cc:2027
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
Definition: ipshell.cc:6286
idhdl next
Definition: idrec.h:38
BOOLEAN spectrumfProc(leftv result, leftv first)
Definition: ipshell.cc:4093
int IsPrime(int p)
Definition: prime.cc:61
S?
Definition: ring.h:83
#define pOne()
Definition: polys.h:298
char name(const Variable &v)
Definition: factory.h:178
gmp_complex * getRoot(const int i)
Definition: mpr_numeric.h:88
idhdl rFindHdl(ring r, idhdl n)
Definition: ipshell.cc:1572
void iiDebug()
Definition: ipshell.cc:990
void solve_all()
Definition: mpr_numeric.cc:870
static unsigned pLength(poly a)
Definition: p_polys.h:189
#define IDELEMS(i)
Definition: simpleideals.h:24
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
Definition: ipshell.cc:4478
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:853
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise, if qr == 1, then qrideal equality is tested, as well
Definition: ring.cc:1627
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:725
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
Definition: ipshell.cc:1028
spectrumState spectrumCompute(poly h, lists *L, int fast)
Definition: ipshell.cc:3719
CFList tmp2
Definition: facFqBivar.cc:70
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
Definition: ipshell.cc:772
rootContainer ** interpolateDenseSP(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:2921
#define IDLEV(a)
Definition: ipid.h:118
resolvente fullres
Definition: syz.h:57
static void rRenameVars(ring R)
Definition: ipshell.cc:2376
const char * VoiceName()
Definition: fevoices.cc:66
#define nDelete(n)
Definition: numbers.h:16
semicState
Definition: ipshell.cc:3343
#define IDMAP(a)
Definition: ipid.h:132
static void rDecomposeC_41(leftv h, const coeffs C)
Definition: ipshell.cc:1687
#define FLAG_STD
Definition: ipid.h:106
ideal idCopy(ideal A)
Definition: ideals.h:60
short errorreported
Definition: feFopen.cc:23
int n
Definition: semic.h:69
leftv next
Definition: subexpr.h:87
static BOOLEAN rField_is_long_C(const ring r)
Definition: ring.h:534
#define rHasLocalOrMixedOrdering_currRing()
Definition: ring.h:754
void test_cmd(int i)
Definition: ipshell.cc:512
void rChangeCurrRing(ring r)
Definition: polys.cc:12
resolvente minres
Definition: syz.h:58
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:495
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
Definition: hutil.cc:571
#define BVERBOSE(a)
Definition: options.h:33
INLINE_THIS void Init(int l=0)
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:47
CanonicalForm buf2
Definition: facFqBivar.cc:71
#define nInvers(a)
Definition: numbers.h:33
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
Definition: ipshell.cc:3057
Definition: tok.h:34
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
Definition: ipshell.cc:1128
#define omAlloc0Bin(bin)
Definition: omAllocDecl.h:206
BOOLEAN iiAllStart(procinfov pi, char *p, feBufferTypes t, int l)
Definition: iplib.cc:311
int GFChar
Definition: coeffs.h:94
#define IDPROC(a)
Definition: ipid.h:137
void paPrint(const char *n, package p)
Definition: ipshell.cc:6233
BOOLEAN iiCheckRing(int i)
Definition: ipshell.cc:1469
#define pi
Definition: libparse.cc:1143
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:38
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type...
Definition: old.gring.cc:2746
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
BOOLEAN kQHWeight(leftv res, leftv v)
Definition: ipshell.cc:3232
static BOOLEAN iiInternalExport(leftv v, int toLev)
Definition: ipshell.cc:1291
ring * iiLocalRing
Definition: iplib.cc:470
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
Definition: attrib.cc:135
int nr
Definition: lists.h:43
int & cols()
Definition: matpol.h:25
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
Definition: maps.cc:169
#define ppMult_nn(p, n)
Definition: polys.h:182
void rComposeRing(lists L, ring R)
Definition: ipshell.cc:2283
int mu
Definition: semic.h:67
CanonicalForm cf
Definition: cfModGcd.cc:4024
#define MATCOLS(i)
Definition: matpol.h:28
Definition: tok.h:116
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:649
#define BREAK_LINE_LENGTH
Definition: ipshell.cc:989
#define nIsZero(n)
Definition: numbers.h:19
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:477
void rDecomposeRing(leftv h, const ring R)
Definition: ipshell.cc:1788
#define NULL
Definition: omList.c:10
attr attribute
Definition: idrec.h:41
poly * polyset
Definition: hutil.h:15
slists * lists
Definition: mpr_numeric.h:146
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
Definition: syz1.cc:1757
int getAnzRoots()
Definition: mpr_numeric.h:97
package req_packhdl
Definition: subexpr.h:107
int length() const
Definition: intvec.h:86
BOOLEAN iiDefaultParameter(leftv p)
Definition: ipshell.cc:1172
{p^n < 2^16}
Definition: coeffs.h:33
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of &#39;n&#39;
Definition: coeffs.h:455
CanonicalForm den(const CanonicalForm &f)
struct for passing initialization parameters to naInitChar
Definition: algext.h:40
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:116
BOOLEAN semicProc(leftv res, leftv u, leftv v)
Definition: ipshell.cc:4460
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:448
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i...
Definition: ipshell.cc:4564
#define IDINT(a)
Definition: ipid.h:122
const char * Tok2Cmdname(int tok)
Definition: gentable.cc:130
#define IDPOLY(a)
Definition: ipid.h:127
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic ...
Definition: coeffs.h:36
Voice * currentVoice
Definition: fevoices.cc:57
BOOLEAN iiWRITE(leftv, leftv v)
Definition: ipshell.cc:586
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
Definition: ipshell.cc:6464
BOOLEAN jjBETTI(leftv res, leftv u)
Definition: ipshell.cc:892
package basePack
Definition: ipid.cc:64
coeffs basecoeffs() const
Definition: bigintmat.h:147
void copy_new(int)
Definition: semic.cc:54
static BOOLEAN rField_is_Ring_Z(const ring r)
Definition: ring.h:474
void pNorm(poly p, const ring R=currRing)
Definition: polys.h:346
static BOOLEAN rField_is_long_R(const ring r)
Definition: ring.h:531
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
Definition: lists.cc:215
denominator_list next
Definition: kutil.h:67
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
monf radmem
Definition: hutil.cc:24
#define IDRING(a)
Definition: ipid.h:124
int rTypeOfMatrixOrder(const intvec *order)
Definition: ring.cc:195
const CanonicalForm & w
Definition: facAbsFact.cc:55
strat ak
Definition: myNF.cc:321
#define pDelete(p_ptr)
Definition: polys.h:169
package currPack
Definition: ipid.cc:63
int iiOpsTwoChar(const char *s)
Definition: ipshell.cc:121
leftv iiCurrArgs
Definition: ipshell.cc:80
Variable x
Definition: cfModGcd.cc:4023
int rtyp
Definition: subexpr.h:92
BOOLEAN jjMINRES(leftv res, leftv v)
Definition: ipshell.cc:871
#define nCopy(n)
Definition: numbers.h:15
sleftv sLastPrinted
Definition: subexpr.cc:55
void CleanUp(ring r=currRing)
Definition: subexpr.cc:335
void Clean(ring r=currRing)
Definition: lists.h:25
#define pNext(p)
Definition: monomials.h:43
void * Data()
Definition: subexpr.cc:1146
int * w
Definition: semic.h:71
#define nSetMap(R)
Definition: numbers.h:43
const char * par_name
parameter name
Definition: coeffs.h:103
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:193
lists rDecompose_list_cf(const ring r)
Definition: ipshell.cc:1894
int typ
Definition: idrec.h:43
short list_length
Definition: syz.h:62
#define pSetCoeff0(p, n)
Definition: monomials.h:67
static int rInternalChar(const ring r)
Definition: ring.h:677
Definition: tok.h:117
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:74
ideal * resolvente
Definition: ideals.h:18
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
Definition: fevoices.cc:171
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6249
number nlMapGMP(number from, const coeffs src, const coeffs dst)
Definition: longrat.cc:206
attr attribute
Definition: subexpr.h:90
omBin slists_bin
Definition: lists.cc:23
BOOLEAN iiARROW(leftv r, char *a, char *s)
Definition: ipshell.cc:6372
BOOLEAN ringIsLocal(const ring r)
Definition: spectrum.cc:461
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4337
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
attr get(const char *s)
Definition: attrib.cc:96
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
Definition: mpr_complex.cc:706
Definition: tok.h:157
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:791
int hisModule
Definition: hutil.cc:23
leftv iiMap(map theMap, const char *what)
Definition: ipshell.cc:613
size_t gmp_output_digits
Definition: mpr_complex.cc:44
#define pDiff(a, b)
Definition: polys.h:279
idhdl packFindHdl(package r)
Definition: ipid.cc:738
#define omCheckAddr(addr)
Definition: omAllocDecl.h:328
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
void iiCheckPack(package &p)
Definition: ipshell.cc:1513
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
Definition: clapsing.cc:784
#define MATROWS(i)
Definition: matpol.h:27
void wrp(poly p)
Definition: polys.h:293
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
Definition: mpr_complex.cc:62
int icase
Definition: mpr_numeric.h:201
kBucketDestroy & P
Definition: myNF.cc:191
static jList * T
Definition: janet.cc:37
polyrec * poly
Definition: hilb.h:10
#define IDDATA(a)
Definition: ipid.h:123
virtual IStateType initState() const
Definition: mpr_base.h:41
void rSetHdl(idhdl h)
Definition: ipshell.cc:5021
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
BITSET kOptions
Definition: kstd1.cc:48
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
Definition: ipshell.cc:1821
#define nInit(i)
Definition: numbers.h:24
Rational pow(const Rational &a, int e)
Definition: GMPrat.cc:418
unsigned si_opt_2
Definition: options.c:6
int perm[100]
char * iiGetLibProcBuffer(procinfo *pi, int part)
Definition: iplib.cc:210
int * int_ptr
Definition: structs.h:57
static Poly * h
Definition: janet.cc:978
s?
Definition: ring.h:84
int BOOLEAN
Definition: auxiliary.h:86
#define IMATELEM(M, I, J)
Definition: intvec.h:77
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
const poly b
Definition: syzextra.cc:213
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
Definition: ipshell.cc:905
void syKillEmptyEntres(resolvente res, int length)
Definition: syz1.cc:2199
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6323
int mult_spectrum(spectrum &)
Definition: semic.cc:396
package cPack
Definition: ipid.h:61
lists listOfRoots(rootArranger *self, const unsigned int oprec)
Definition: ipshell.cc:4974
static BOOLEAN rField_is_numeric(const ring r)
Definition: ring.h:504
BOOLEAN lRingDependend(lists L)
Definition: lists.cc:199
scfmon hInit(ideal S, ideal Q, int *Nexist, ring tailRing)
Definition: hutil.cc:34
#define V_REDEFINE
Definition: options.h:43
static int sign(int x)
Definition: ring.cc:3328
void copy_deep(spectrum &spec, lists l)
Definition: ipshell.cc:3269
void delete_node(spectrumPolyNode **)
Definition: splist.cc:256
int binom(int n, int r)
void Werror(const char *fmt,...)
Definition: reporter.cc:189
virtual number getSubDet()
Definition: mpr_base.h:37
ideal kGroebner(ideal F, ideal Q)
Definition: ipshell.cc:6143
#define TEST_V_ALLWARN
Definition: options.h:135
void syKillComputation(syStrategy syzstr, ring r=currRing)
Definition: syz1.cc:1497
void * CopyD(int t)
Definition: subexpr.cc:714
const char * lastreserved
Definition: ipshell.cc:82
int hMu
Definition: hdegree.cc:22
idhdl ggetid(const char *n, BOOLEAN, idhdl *packhdl)
Definition: ipid.cc:498
int atyp
Definition: attrib.h:22
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
Definition: coeffs.h:555
#define omAlloc0(size)
Definition: omAllocDecl.h:211
static void killlocals0(int v, idhdl *localhdl, const ring r)
Definition: ipshell.cc:289
return result
Definition: facAbsBiFact.cc:76
int l
Definition: cfEzgcd.cc:94
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.c:78
#define IDMATRIX(a)
Definition: ipid.h:131
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
Definition: ipshell.cc:4472
#define pCopy(p)
return a copy of the poly
Definition: polys.h:168
#define MATELEM(mat, i, j)
Definition: matpol.h:29
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
Definition: spectrum.cc:142
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition: numbers.cc:334
syStrategy syForceMin(lists li)
Definition: ipshell.cc:3194
ssyStrategy * syStrategy
Definition: syz.h:35
utypes data
Definition: idrec.h:40
int IsCmd(const char *n, int &tok)
Definition: iparith.cc:8688
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
Definition: hutil.cc:180
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
Definition: ipassign.cc:1792
BOOLEAN mpJacobi(leftv res, leftv a)
Definition: ipshell.cc:2980
#define Warn
Definition: emacs.cc:80
#define omStrDup(s)
Definition: omAllocDecl.h:263