15 #define nCopy(n) n_Copy(n, currRing->cf)
16 #define nDelete(n) n_Delete(n, currRing->cf)
17 #define nMult(n1, n2) n_Mult(n1, n2, currRing->cf)
18 #define nAdd(n1, n2) n_Add(n1, n2, currRing->cf)
19 #define nIsZero(n) n_IsZero(n, currRing->cf)
20 #define nEqual(n1, n2) n_Equal(n1, n2, currRing->cf)
21 #define nInpNeg(n) n_InpNeg(n, currRing->cf)
22 #define nSub(n1, n2) n_Sub(n1, n2, currRing->cf)
23 #define nGetChar() n_GetChar(currRing->cf)
24 #define nInit(i) n_Init(i, currRing->cf)
25 #define nIsOne(n) n_IsOne(n, currRing->cf)
26 #define nIsMOne(n) n_IsMOne(n, currRing->cf)
27 #define nGreaterZero(n) n_GreaterZero(n, currRing->cf)
28 #define nGreater(a, b) n_Greater (a,b,currRing->cf)
29 #define nWrite(n) n_Write(n, currRing->cf, rShortOut(currRing))
30 #define nNormalize(n) n_Normalize(n,currRing->cf)
31 #define nGcd(a,b) n_Gcd(a,b,currRing->cf)
32 #define nDiv(a, b) n_Div(a,b,currRing->cf)
33 #define nInvers(a) n_Invers(a,currRing->cf)
34 #define nExactDiv(a, b) n_ExactDiv(a,b,currRing->cf)
35 #define nTest(a) n_Test(a,currRing->cf)
37 #define nInpMult(a, b) n_InpMult(a,b,currRing->cf)
38 #define nPower(a, b, res) n_Power(a,b,res,currRing->cf)
39 #define nSize(n) n_Size(n,currRing->cf)
40 #define nGetDenom(N) n_GetDenom((N),currRing->cf)
41 #define nGetNumerator(N) n_GetNumerator((N),currRing->cf)
43 #define nSetMap(R) n_SetMap(R,currRing->cf)
46 #define nPrint(a) n_Print(a,currRing->cf)
54 #define SHORT_REAL_LENGTH 6 // use short reals for real <= 6 digits
const CanonicalForm CFMap CFMap int &both_non_zero int n
BOOLEAN(* cfInitCharProc)(coeffs, void *)
initialize an object of type coeff, return FALSE in case of success
Coefficient rings, fields and other domains suitable for Singular polynomials.
The main handler for Singular numbers which are suitable for Singular polynomials.
const char *const nDivBy0
n_coeffType nRegister(n_coeffType n, cfInitCharProc p)
number ndCopyMap(number a, const coeffs src, const coeffs dst)
BOOLEAN n_IsZeroDivisor(number a, const coeffs r)
Test whether a is a zero divisor in r i.e. not coprime with char. of r very inefficient implementatio...