9 #ifndef INCL_FACTORYSING_H
10 #define INCL_FACTORYSING_H
number nChineseRemainder(number *x, number *q, int rl, const coeffs r)
matrix singclap_irrCharSeries(ideal I, const ring r)
matrix singntl_LLL(matrix A, const ring r)
int singclap_det_i(intvec *m, const ring r)
'SR_INT' is the type of those integers small enough to fit into 29 bits.
const CanonicalForm CFMap CFMap int &both_non_zero int n
poly singclap_resultant(poly f, poly g, poly x, const ring r)
void singclap_divide_content(poly f, const ring r)
poly singclap_pdivide(poly f, poly g, const ring r)
char * singclap_neworder(ideal I, const ring r)
The main handler for Singular numbers which are suitable for Singular polynomials.
BOOLEAN singclap_extgcd(poly f, poly g, poly &res, poly &pa, poly &pb, const ring r)
number singclap_det_bi(bigintmat *m, const coeffs cf)
ideal singclap_sqrfree(poly f, intvec **v, int with_exps, const ring r)
poly singclap_gcd_r(poly f, poly g, const ring r)
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
ideal singclap_absFactorize(poly f, ideal &mipos, intvec **exps, int &n, const ring r)
poly singclap_gcd_and_divide(poly &f, poly &g, const ring r)
clears denominators of f and g, divides by gcd(f,g)
const Variable & v
< [in] a sqrfree bivariate poly
The following sip_sideal structure has many different uses thoughout Singular. Basic use-cases for it...
poly singclap_gcd(poly f, poly g, const ring r)
destroys f and g
poly singclap_det(const matrix m, const ring r)
matrix singntl_HNF(matrix A, const ring r)