27 #define MATROWS(i) ((i)->nrows)
28 #define MATCOLS(i) ((i)->ncols)
29 #define MATELEM(mat,i,j) ((mat)->m)[MATCOLS((mat)) * ((i)-1) + (j)-1]
matrix mp_Sub(matrix a, matrix b, const ring r)
matrix mp_MultP(matrix a, poly p, const ring r)
multiply a matrix 'a' by a poly 'p', destroy the args
matrix pMultMp(poly p, matrix a, const ring r)
void mp_Delete(matrix *a, const ring r)
const CanonicalForm CFMap CFMap int &both_non_zero int n
void mp_RecMin(int, ideal, int &, matrix, int, int, poly, ideal, const ring)
for minors with Bareiss
void mp_MinorToResult(ideal, int &, matrix, int, int, ideal, const ring)
entries of a are minors and go to result (only if not in R)
void mp_Monomials(matrix c, int r, int var, matrix m, const ring R)
BOOLEAN mp_IsDiagUnit(matrix U, const ring r)
matrix mp_InitI(int r, int c, int v, const ring R)
make it a v * unit matrix
matrix mp_CoeffProc(poly f, poly vars, const ring r)
void mp_Coef2(poly v, poly vars, matrix *c, matrix *m, const ring r)
corresponds to Macauley's coef: the exponent vector of vars has to contain the variables, eg 'xy'; then the poly f is searched for monomials in x and y, these monimials are written to the first row of the matrix co. the second row of co contains the respective factors in f. Thus f = sum co[1,i]*co[2,i], i = 1..cols, rows equals 2.
void iiWriteMatrix(matrix im, const char *n, int dim, const ring r, int spaces)
set spaces to zero by default
matrix mp_Mult(matrix a, matrix b, const ring r)
matrix mp_Transp(matrix a, const ring r)
BOOLEAN mp_Equal(matrix a, matrix b, const ring r)
matrix mp_Wedge(matrix a, int ar, const ring r)
static matrix mp_New(int r, int c)
poly mp_DetBareiss(matrix a, const ring r)
returns the determinant of the matrix m; uses Bareiss algorithm
matrix mp_Copy(const matrix a, const ring rSrc, const ring rDst)
copies matrix a from rSrc into rDst
const Variable & v
< [in] a sqrfree bivariate poly
char * iiStringMatrix(matrix im, int dim, const ring r, char ch=',')
matrix mp_MultI(matrix a, int f, const ring r)
c = f*a
poly TraceOfProd(matrix a, matrix b, int n, const ring r)
matrix mp_Add(matrix a, matrix b, const ring r)
matrix mp_InitP(int r, int c, poly p, const ring R)
make it a p * unit matrix
matrix mp_Coeffs(ideal I, int var, const ring r)
corresponds to Maple's coeffs: var has to be the number of a variable
matrix mpNew(int r, int c)
create a r x c zero-matrix
poly mp_Trace(matrix a, const ring r)