using namespace std;
int main(
int argc,
char**argv) {
string approx = (argc > 2) ? argv[2] : "P1";
pb.
Bi = (argc > 3) ? atof(argv[3]) : 0.2;
pb.
n = (argc > 4) ? atof(argv[4]) : 1;
size_t n_adapt = (argc > 5) ? atoi(argv[5]) : 0;
pb.
max_iter = (argc > 6) ? atoi(argv[6]) : 10000;
pb.err = (argc > 7) ? atof(argv[7]) : 1e-4;
pb.hmin = 1e-4;
pb.hmax = 1e-1;
pb.ratio = 3;
pb.additional = "-AbsError";
for (size_t i = 0; true; i++) {
pb.
reset (omega, approx);
odiststream
out (omega.name(),
"field");
if (i == n_adapt) break;
space T0h (sigma_h.get_geo(),
"P"+to_string(sigma_h.get_space().degree())+
"d");
omega.save();
}
}
see the field page for the full documentation
see the geo page for the full documentation
see the space page for the full documentation
int main(int argc, char **argv)
The Mossolov problem by the augmented Lagrangian method – solver class header.
rheolef::details::is_vec dot
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
field_basic< T, M > lazy_interpolate(const space_basic< T, M > &X2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
geo_basic< T, M > adapt(const field_basic< T, M > &uh, const adapt_option &opts)
adapt(uh,opts): see the adapt page for the full documentation
rheolef - reference manual
void reset(geo omega, string approx)
int solve(field &sigma_h, field &uh) const
void put(odiststream &out, field &sigma_h, field &uh) const
void initial(field &sigma_h, field &uh) const