The Poisson problem with homogeneous boundary conditions – variable right-hand-side
using namespace std;
int main(
int argc,
char**argv) {
size_t d = omega.dimension();
space Xh (omega, argv[2]);
Xh.block ("boundary");
uh ["boundary"] = 0;
dout << catchmark(
"u") << uh;
}
field lh(Float epsilon, Float t, const test &v)
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
odiststream dout(cout)
see the diststream page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
int main(int argc, char **argv)
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
rheolef::std enable_if ::type dot const Expr1 expr1, const Expr2 expr2 dot(const Expr1 &expr1, const Expr2 &expr2)
dot(x,y): see the expression page for the full documentation
std::enable_if< details::is_field_expr_quadrature_arg< Expr >::value,details::field_lazy_terminal_integrate< Expr >>::type lazy_integrate(const typename Expr::geo_type &domain, const Expr &expr, const integrate_option &iopt=integrate_option())
see the integrate page for the full documentation
rheolef - reference manual
The sinus product function – right-hand-side and boundary condition for the Poisson problem with Neum...