Rheolef  7.1
an efficient C++ finite element environment
eta.h

The p-Laplacian problem – the eta function

struct eta {
Float operator() (const Float& z) const {
check_macro(z != 0 || p > 2, "eta: division by zero (HINT: check mesh)");
return pow(z, (p-2)/2);
}
Float derivative (const Float& z) const {
check_macro(z != 0 || p > 4, "eta': division by zero (HINT: check mesh)");
return 0.5*(p-2)*pow(z, (p-4)/2);
}
eta (const Float& q) : p(q) {}
};
see the Float page for the full documentation
check_macro(expr1.have_homogeneous_space(Xh1), "dual(expr1,expr2); expr1 should have homogeneous space. HINT: use dual(interpolate(Xh, expr1),expr2)")
space_mult_list< T, M > pow(const space_basic< T, M > &X, size_t n)
Definition: space_mult.h:120
Definition: eta.h:25
Float derivative(const Float &z) const
Definition: eta.h:30
Float operator()(const Float &z) const
Definition: eta.h:26
Float p
Definition: eta.h:35
eta(const Float &q)
Definition: eta.h:34
Definition: sphere.icc:25