Rheolef
7.1
an efficient C++ finite element environment
burgers_diffusion_exact.h
The diffusive Burgers equation – its exact solution
struct
u_exact
{
Float
operator()
(
const
point
& x)
const
{
return
1 - tanh((x[0]-
x0
-
t
)/(2*
epsilon
)); }
u_exact
(
Float
e1,
Float
t1=0) :
epsilon
(e1),
t
(t1),
x0
(-0.5) {}
Float
M
()
const
{
return
0; }
Float
epsilon
,
t
,
x0
;
};
using
u_init
=
u_exact
;
using
g
=
u_exact
;
Float
see the Float page for the full documentation
point
see the point page for the full documentation
g
Definition:
cavity_dg.h:25
u_exact
Definition:
interpolate_RTk_polynom.icc:125
u_exact::epsilon
Float epsilon
Definition:
burgers_diffusion_exact.h:30
u_exact::operator()
point operator()(const point &x) const
Definition:
interpolate_RTk_polynom.icc:126
u_exact::t
Float t
Definition:
burgers_diffusion_exact.h:30
u_exact::u_exact
u_exact(size_t d1, Float w1=acos(Float(-1)))
Definition:
interpolate_RTk_polynom.icc:144
u_exact::M
Float M() const
Definition:
burgers_diffusion_exact.h:29
u_exact::x0
Float x0
Definition:
burgers_diffusion_exact.h:30
u_exact
g u_exact
Definition:
taylor_exact.h:26