Module ActFuncs
source code
Activation functions for neural network nodes
Activation functions should implement the following API:
- _Eval(input)_: returns the value of the function at a given point
- _Deriv(input)_: returns the derivative of the function at a given point
The current Backprop implementation also requires:
- _DerivFromVal(val)_: returns the derivative of the function when its
value is val
In all cases _input_ is a float as is the value returned.
|
ActFunc
"virtual base class" for activation functions
|
|
Sigmoid
the standard sigmoidal function
|
|
TanH
the standard hyperbolic tangent function
|
|
__package__ = ' rdkit.ML.Neural '
|
Imports:
math