Processing of Model Parameters


[Up] [Top]

Documentation for package ‘parameters’ version 0.9.0

Help Pages

B C D E F G K M N P Q R S

-- B --

bootstrap_model Model bootstrapping
bootstrap_parameters Parameters bootstrapping

-- C --

center Centering (Grand-Mean Centering)
center.data.frame Centering (Grand-Mean Centering)
center.numeric Centering (Grand-Mean Centering)
check_clusterstructure Check suitability of data for clustering
check_factorstructure Check suitability of data for Factor Analysis (FA)
check_heterogeneity Compute group-meaned and de-meaned variables
check_kmo Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA) for Factor Analysis
check_multimodal Check if a distribution is unimodal or multimodal
check_sphericity Bartlett's Test of Sphericity
ci.betamfx Confidence Intervals (CI)
ci.betareg Confidence Intervals (CI)
ci.clm2 Confidence Intervals (CI)
ci.default Confidence Intervals (CI)
ci.DirichletRegModel Confidence Intervals (CI)
ci.glm Confidence Intervals (CI)
ci.glmmTMB Confidence Intervals (CI)
ci.HLfit Confidence Intervals (CI)
ci.hurdle Confidence Intervals (CI)
ci.lme Confidence Intervals (CI)
ci.merMod Confidence Intervals (CI)
ci.MixMod Confidence Intervals (CI)
ci.mixor Confidence Intervals (CI)
ci.poissonmfx Confidence Intervals (CI)
ci.polr Confidence Intervals (CI)
ci.zeroinfl Confidence Intervals (CI)
ci_betwithin Between-within approximation for SEs, CIs and p-values
ci_kenward Kenward-Roger approximation for SEs, CIs and p-values
ci_ml1 "m-l-1" approximation for SEs, CIs and p-values
ci_robust Robust estimation
ci_satterthwaite Satterthwaite approximation for SEs, CIs and p-values
ci_wald Wald-test approximation for CIs and p-values
closest_component Principal Component Analysis (PCA)
cluster_analysis Compute cluster analysis and return group indices
cluster_discrimination Compute a linear discriminant analysis on classified cluster groups
convert_data_to_numeric Convert data to numeric
convert_efa_to_cfa Conversion between EFA results and CFA structure
convert_efa_to_cfa.fa Conversion between EFA results and CFA structure

-- D --

data_partition Partition data into a test and a training set
data_to_numeric Convert data to numeric
degrees_of_freedom Degrees of Freedom (DoF)
degrees_of_freedom.default Degrees of Freedom (DoF)
degroup Compute group-meaned and de-meaned variables
demean Compute group-meaned and de-meaned variables
describe_distribution Describe a distribution
describe_distribution.data.frame Describe a distribution
describe_distribution.factor Describe a distribution
describe_distribution.numeric Describe a distribution
dof Degrees of Freedom (DoF)
dof_betwithin Between-within approximation for SEs, CIs and p-values
dof_kenward Kenward-Roger approximation for SEs, CIs and p-values
dof_ml1 "m-l-1" approximation for SEs, CIs and p-values
dof_satterthwaite Satterthwaite approximation for SEs, CIs and p-values

-- E --

efa_to_cfa Conversion between EFA results and CFA structure
equivalence_test.lm Equivalence test
equivalence_test.merMod Equivalence test

-- F --

factor_analysis Factor Analysis (FA)
fish Sample data set
format_order Order (first, second, ...) formatting
format_parameters Parameter names formatting

-- G --

get_scores Get Scores from Principal Component Analysis (PCA)

-- K --

kurtosis Compute Skewness and Kurtosis

-- M --

model_parameters Model Parameters
model_parameters.aov Parameters from ANOVAs
model_parameters.averaging Parameters from special models
model_parameters.befa Parameters from PCA/FA
model_parameters.betamfx Parameters from (General) Linear Models
model_parameters.betareg Parameters from special models
model_parameters.BFBayesFactor Parameters from BayesFactor objects
model_parameters.bracl Parameters from multinomial or cumulative link models
model_parameters.brmsfit Parameters from Bayesian Models
model_parameters.cgam Parameters from Generalized Additive (Mixed) Models
model_parameters.clm2 Parameters from multinomial or cumulative link models
model_parameters.clmm Parameters from Mixed Models
model_parameters.default Parameters from (General) Linear Models
model_parameters.DirichletRegModel Parameters from multinomial or cumulative link models
model_parameters.gam Parameters from Generalized Additive (Mixed) Models
model_parameters.glht Parameters from Hypothesis Testing
model_parameters.glm Parameters from (General) Linear Models
model_parameters.glmmTMB Parameters from Mixed Models
model_parameters.glmx Parameters from special models
model_parameters.htest Parameters from Correlations and t-tests
model_parameters.kmeans Parameters from Cluster Models (k-means, ...)
model_parameters.lavaan Parameters from CFA/SEM models
model_parameters.logitor Parameters from (General) Linear Models
model_parameters.Mclust Parameters from Mixture Models
model_parameters.merMod Parameters from Mixed Models
model_parameters.mira Parameters from multiply imputed repeated analyses
model_parameters.mixor Parameters from Mixed Models
model_parameters.mlm Parameters from multinomial or cumulative link models
model_parameters.multinom Parameters from multinomial or cumulative link models
model_parameters.omega Parameters from Structural Models (PCA, EFA, ...)
model_parameters.PCA Parameters from Structural Models (PCA, EFA, ...)
model_parameters.poissonmfx Parameters from (General) Linear Models
model_parameters.principal Parameters from Structural Models (PCA, EFA, ...)
model_parameters.rma Parameters from Meta-Analysis
model_parameters.rqss Parameters from Generalized Additive (Mixed) Models
model_parameters.stanreg Parameters from Bayesian Models
model_parameters.zeroinfl Parameters from Zero-Inflated Models

-- N --

n_clusters Number of clusters to extract
n_components Number of components/factors to retain in PCA/FA
n_factors Number of components/factors to retain in PCA/FA
n_parameters Count number of parameters in a model
n_parameters.brmsfit Count number of parameters in a model
n_parameters.default Count number of parameters in a model
n_parameters.gam Count number of parameters in a model
n_parameters.glmmTMB Count number of parameters in a model
n_parameters.merMod Count number of parameters in a model
n_parameters.zeroinfl Count number of parameters in a model

-- P --

parameters Model Parameters
parameters_table Parameter table formatting
parameters_type Type of model parameters
pool_parameters Pool Model Parameters
principal_components Principal Component Analysis (PCA)
print Print model parameters
print.parameters_kurtosis Compute Skewness and Kurtosis
print.parameters_model Print model parameters
print.parameters_skewness Compute Skewness and Kurtosis
p_value p-values
p_value.averaging p-values for Models with Special Components
p_value.betamfx p-values for Marginal Effects Models
p_value.betaor p-values for Marginal Effects Models
p_value.brmsfit p-values for Bayesian Models
p_value.cgam p-values for Models with Special Components
p_value.clm2 p-values for Models with Special Components
p_value.default p-values
p_value.DirichletRegModel p-values for Models with Special Components
p_value.emmGrid p-values
p_value.gee p-values
p_value.glmmTMB p-values for Mixed Models
p_value.lmerMod p-values for Mixed Models
p_value.merMod p-values for Mixed Models
p_value.MixMod p-values for Mixed Models
p_value.mixor p-values for Mixed Models
p_value.poissonmfx p-values for Marginal Effects Models
p_value.zcpglm p-values for Models with Zero-Inflation
p_value.zeroinfl p-values for Models with Zero-Inflation
p_value_betwithin Between-within approximation for SEs, CIs and p-values
p_value_kenward Kenward-Roger approximation for SEs, CIs and p-values
p_value_ml1 "m-l-1" approximation for SEs, CIs and p-values
p_value_robust Robust estimation
p_value_satterthwaite Satterthwaite approximation for SEs, CIs and p-values
p_value_wald Wald-test approximation for CIs and p-values
p_value_wald.merMod Wald-test approximation for CIs and p-values

-- Q --

qol_cancer Sample data set

-- R --

random_parameters Summary information from random effects
reduce_data Dimensionality reduction (DR) / Features Reduction
reduce_parameters Dimensionality reduction (DR) / Features Reduction
rescale_weights Rescale design weights for multilevel analysis
reshape_loadings Reshape loadings between wide/long formats
reshape_loadings.data.frame Reshape loadings between wide/long formats
reshape_loadings.parameters_efa Reshape loadings between wide/long formats

-- S --

select_parameters Automated selection of model parameters
select_parameters.lm Automated selection of model parameters
select_parameters.merMod Automated selection of model parameters
select_parameters.stanreg Automated selection of model parameters
se_betwithin Between-within approximation for SEs, CIs and p-values
se_kenward Kenward-Roger approximation for SEs, CIs and p-values
se_ml1 "m-l-1" approximation for SEs, CIs and p-values
se_satterthwaite Satterthwaite approximation for SEs, CIs and p-values
simulate_model Simulated draws from model coefficients
simulate_model.glmmTMB Simulated draws from model coefficients
simulate_parameters Simulate Model Parameters
simulate_parameters.default Simulate Model Parameters
simulate_parameters.glmmTMB Simulate Model Parameters
skewness Compute Skewness and Kurtosis
smoothness Quantify the smoothness of a vector
standard_error Standard Errors
standard_error.averaging Standard Errors
standard_error.betamfx Standard Errors
standard_error.betareg Standard Errors
standard_error.clm2 Standard Errors
standard_error.coxph Standard Errors
standard_error.default Standard Errors
standard_error.DirichletRegModel Standard Errors
standard_error.factor Standard Errors
standard_error.glmmTMB Standard Errors
standard_error.merMod Standard Errors
standard_error.MixMod Standard Errors
standard_error.mixor Standard Errors
standard_error.poissonmfx Standard Errors
standard_error.zeroinfl Standard Errors
standard_error_robust Robust estimation