Processing of Model Parameters


[Up] [Top]

Documentation for package ‘parameters’ version 0.2.0

Help Pages

C D E F I K M N O P R S

-- C --

check_factorstructure Check suitability of data for Factor Analysis (FA)
check_kmo Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA) for Factor Analysis
check_smoothness Quantify the smoothness of a vector
check_sphericity Bartlett's Test of Sphericity
ci.glm Confidence Interval (CI)
ci.glmmTMB Confidence Interval (CI)
ci.hurdle Confidence Interval (CI)
ci.merMod Confidence Interval (CI)
ci.MixMod Confidence Interval (CI)
ci.zeroinfl Confidence Interval (CI)
ci_wald Wald-test approximation for CIs and p-values
cmds Classical Multidimensional Scaling (cMDS)
cohens_f ANOVA Effect Size (Omega Squared, Eta Squared, Epsilon Squared)
convert_data_to_numeric Convert data to numeric
convert_d_to_odds Conversion between (log)odds and standardized difference
convert_d_to_r Conversion between standardized difference d and correlation r
convert_efa_to_cfa Conversion between EFA results and CFA structure
convert_efa_to_cfa.fa Conversion between EFA results and CFA structure
convert_odds_to_d Conversion between (log)odds and standardized difference
convert_odds_to_probs Conversion between (log)odds and probabilities
convert_probs_to_odds Conversion between (log)odds and probabilities
convert_r_to_d Conversion between standardized difference d and correlation r

-- D --

data_partition Partition data into a test and a training set
data_to_numeric Convert data to numeric
describe_distribution Describe a Distribution
dof_kenward p-values using Kenward-Roger approximation
DRR Dimensionality Reduction via Regression (DRR)
d_to_odds Conversion between (log)odds and standardized difference
d_to_r Conversion between standardized difference d and correlation r

-- E --

efa_to_cfa Conversion between EFA results and CFA structure
epsilon_squared ANOVA Effect Size (Omega Squared, Eta Squared, Epsilon Squared)
equivalence_test.lm Equivalence test
eta_squared ANOVA Effect Size (Omega Squared, Eta Squared, Epsilon Squared)
eta_squared.aov ANOVA Effect Size (Omega Squared, Eta Squared, Epsilon Squared)

-- F --

format_bf Bayes Factor Formatting
format_ci Confidence/Credible Interval (CI) Formatting
format_number Convert number to words
format_order Order (first, second, ...) formatting
format_p p-values formatting
format_parameters Parameters Names Formatting
format_pd Probability of direction (pd) Formatting
format_rope Percentage in ROPE Formatting
format_standardize Transform a standardized vector into character

-- I --

ICA Independent Component Analysis (ICA)

-- K --

kurtosis Compute Skewness and Kurtosis

-- M --

model_bootstrap Model bootstrapping
model_parameters Model Parameters
model_parameters.aov ANOVAs Parameters
model_parameters.befa Format PCA/FA from the psych package
model_parameters.BFBayesFactor BayesFactor objects Parameters
model_parameters.gam Parameters of Generalized Additive (Mixed) Models
model_parameters.glmmTMB Mixed Model Parameters
model_parameters.htest Correlations and t-test Parameters
model_parameters.lavaan Format CFA/SEM from the lavaan package
model_parameters.lm Parameters of (General) Linear Models
model_parameters.lme Mixed Model Parameters
model_parameters.merMod Mixed Model Parameters
model_parameters.PCA Structural Models (PCA, EFA, ...)
model_parameters.polr Parameters of (General) Linear Models
model_parameters.principal Structural Models (PCA, EFA, ...)
model_parameters.stanreg Bayesian Models Parameters
model_parameters.zeroinfl Model Parameters for Zero-Inflated Models
model_simulate Simulated draws from model coefficients
model_simulate.glmmTMB Simulated draws from model coefficients

-- N --

normalize Normalization
normalize.data.frame Normalization
normalize.grouped_df Normalization
normalize.numeric Normalization
n_factors Number of Components/Factors to Retain
n_parameters Count how many parameters in a model

-- O --

odds_to_d Conversion between (log)odds and standardized difference
odds_to_probs Conversion between (log)odds and probabilities
odds_to_probs.data.frame Conversion between (log)odds and probabilities
omega_squared ANOVA Effect Size (Omega Squared, Eta Squared, Epsilon Squared)

-- P --

parameters Model Parameters
parameters_bootstrap Parameters bootstrapping
parameters_reduction Dimensionality reduction (DR) / Features Reduction
parameters_selection Parameters Selection
parameters_selection.lm Parameters Selection
parameters_selection.merMod Parameters Selection
parameters_selection.stanreg Parameters Selection
parameters_simulate Parameters simulation
parameters_standardize Parameters standardization
parameters_table Parameters Table Formatting
parameters_type Type of Model Parameters
principal_components Principal Component Analysis (PCA)
print Print model parameters
print.parameters_model Print model parameters
probs_to_odds Conversion between (log)odds and probabilities
p_value p-values
p_value.glmmTMB p-values
p_value.lmerMod p-values
p_value.MixMod p-values
p_value_kenward p-values using Kenward-Roger approximation
p_value_wald Wald-test approximation for CIs and p-values
p_value_wald.merMod Wald-test approximation for CIs and p-values

-- R --

reshape_loadings Reshape loadings between wide/long formats
reshape_loadings.data.frame Reshape loadings between wide/long formats
reshape_loadings.parameters_efa Reshape loadings between wide/long formats
r_to_d Conversion between standardized difference d and correlation r

-- S --

se Extract standard errors
se_kenward p-values using Kenward-Roger approximation
skewness Compute Skewness and Kurtosis
smoothness Quantify the smoothness of a vector
standardize Standardization (Z-scoring)
standardize.data.frame Standardization (Z-scoring)
standardize.factor Standardization (Z-scoring)
standardize.lm Standardization (Z-scoring)
standardize.numeric Standardization (Z-scoring)
standardize_names Standardize column names
standardize_names.parameters_model Standardize column names
standard_error Extract standard errors
standard_error.factor Extract standard errors
standard_error.glmmTMB Extract standard errors
standard_error.MixMod Extract standard errors