maxLik-package | Maximum Likelihood Estimation |
activePar | free parameters under maximisation |
activePar.default | free parameters under maximisation |
AIC.maxLik | Methods for the various standard functions |
bread.maxLik | Bread for Sandwich Estimator |
coef.maxim | Methods for the various standard functions |
coef.maxLik | Methods for the various standard functions |
coef.summary.maxLik | summary the Maximum-Likelihood estimation |
compareDerivatives | function to compare analytic and numeric derivatives |
condiNumber | Print matrix condition numbers column-by-column |
condiNumber.default | Print matrix condition numbers column-by-column |
condiNumber.maxLik | Print matrix condition numbers column-by-column |
estfun.maxLik | Extract Gradients Evaluated at each Observation |
fnSubset | Call fnFull with variable and fixed parameters |
hessian | Hessian matrix |
hessian.default | Hessian matrix |
logLik.maxLik | Return the log likelihood value |
logLik.summary.maxLik | Return the log likelihood value |
maxBFGS | BFGS, conjugate gradient, SANN and Nelder-Mead Maximization |
maxBFGSR | Newton- and Quasi-Newton Maximization |
maxBHHH | Newton- and Quasi-Newton Maximization |
maxCG | BFGS, conjugate gradient, SANN and Nelder-Mead Maximization |
maxControl | Class '"MaxControl"' |
MaxControl-class | Class '"MaxControl"' |
maxControl-method | Class '"MaxControl"' |
maximType | Type of Minimization/Maximization |
maximType.default | Type of Minimization/Maximization |
maximType.maxim | Type of Minimization/Maximization |
maximType.MLEstimate | Type of Minimization/Maximization |
maxLik | Maximum likelihood estimation |
maxNM | BFGS, conjugate gradient, SANN and Nelder-Mead Maximization |
maxNR | Newton- and Quasi-Newton Maximization |
maxSANN | BFGS, conjugate gradient, SANN and Nelder-Mead Maximization |
nIter | Return number of iterations for iterative models |
nIter.default | Return number of iterations for iterative models |
nObs.maxLik | Number of Observations |
nParam.maxim | Number of model parameters |
numericGradient | Functions to Calculate Numeric Derivatives |
numericHessian | Functions to Calculate Numeric Derivatives |
numericNHessian | Functions to Calculate Numeric Derivatives |
print.maxLik | Maximum likelihood estimation |
returnCode | Success or failure of the optimization |
returnCode.default | Success or failure of the optimization |
returnCode.maxLik | Success or failure of the optimization |
returnMessage | Success or failure of the optimization |
returnMessage.default | Success or failure of the optimization |
returnMessage.maxim | Success or failure of the optimization |
returnMessage.maxLik | Success or failure of the optimization |
show-method | Class '"MaxControl"' |
stdEr.maxLik | Methods for the various standard functions |
summary.maxim | Summary method for maximization |
summary.maxLik | summary the Maximum-Likelihood estimation |
sumt | Equality-constrained optimization |
vcov.maxLik | Variance Covariance Matrix of maxLik objects |