R: A Language and Environment for
Statistical Computing

Reference Index

The R Core Team

Version 3.6.1 (2019-07-05)

Copyright (©) 1999-2012 R Foundation for Statistical Computing.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see
https://www.gnu.org/copyleft/gpl.html.

Contents

1 The base package 1
base-package 1
Jbincode L e e e 1
Device ..o e e e e 2
Machine e e 3
LPlatform . . . L e 5
abbreviate 7
T4 () o 9
all . . e e 11
allequal L L e 12
alllnames L e e e e e e e e e 15
ANY . . o v e e e e e e e e e 16
APETIINL . . v v v v vt e e e e e e e e e e e e e e e e e 17
append L e 18
apply . . 19
ATES o o v e 21
Arithmetic e e e 22
AMTAY © . v v v v e e e e e e e e e e e e e e 25
as.dataframe 27
as.Date e e 29
AS.eNVIFONMENT o v v ot e e e e e e e e e e e e 32
as.function. L L e 33
as.POSIX™ . . . e 34
Asls . . e e e 37
asplito 38
ASSIZN . . . e e 39
assigNOPS e e e e e e e e e 41
attach e 42
15 44
attributes L L L e e e e 45
autoload L. 47
backsolve L e e e 48
basename e e e e 49
Bessel e 50
bindenv e e e 53
DItWISE e e e e 55
body 57

il

CONTENTS
bquote e e e e 58
Browser e e e e 59
browserText e e e 60
builtins e e e 61
DY e 62
C e e e e e e e e s 63
call e 65
callCC e e 66
CallExternal e 67
capabilities 69
CAL . L e e e e e e e 70
chind e e 72
charexpand L 75
character e e 76
charmatch e 78
chartr e 79
chkDots e e 81
chol . . . e e 82
chol2inv e e 84
class . . .o e e e 85
COl . o e e e 87
Colon e e e 88
colSums e 89
commandArgs e e 91
COMMENL . . . o v v v e o e e e e e e e e e e e e e e 92
CompariSOn e e e e e 92
complex 95
conditionS L e e 97
conflicts 101
CONNECLIONS v v v o e 102
Constants e e e e e e e e e 112
contributors L e e e e 113
Control e e e e 113
copyright e 115
Crossprod L. e e 115
Cstack_info e 116
CUMSUIM . . & v v v v e 117
curlGetHeaders 118
CUL . o e e e e e e e e 120
cut POSIXt e 122
data.class e e e 123
dataframe e 124
datamatriX e e e e e e e e e e e e 127
date . . . oL e e 128
Dates e e 129
DateTimeClasses i v it e e e e e e 130
def . o e 134

CONTENTS iii

Defunct e 139
delayedAssign e e e 139
deparse L e e e 141
deparseOpts e 143
Deprecated e e 145
det . . e 146
detach e 147
diag . . . e e 149
diff . . e 150
difftime 152
dim ..o e e 154
dimnames e e e e e e e e 155
do.call e e e 157
dontCheck e 158
dOts . . . e e e e e 159
double e 160
dput . .. e 162
drop . . . e e 164
droplevels e 164
dump e e 166
duplicated 167
dyndoad e 170
eapply e 173
CIZEN e 174
encodeString L L. e e e e 176
Encoding e 177
ENVIFONMENE ottt e e e e 179
EnvVar e e e 181
eval .. e e e 184
EXISES e e e 186
expand.grid 188
EXPIESSION .« . v v v v v e e e e e e e e e e e e e e e e e e e 189
Extract e e 191
Extract.dataframe 196
Extractfactor e e 199
Extremes e 200
extSoftVersion 203
factor e 204
file.access e e 208
file.choose e e e e 209
fileinfo e 210
filepath e 212
file.show e 212
files e 214
files2 e e 217
find.package 218
findInterval e 220

iv

CONTENTS
forceAndCall L 223
Foreign e 223
formals e e e e 226
format L 227
formatinfo L 230
format.pvalo 232
formatC 233
formatDL e 238
function L e 239
funprog L 240
BC o e e 242
GCUME o e e e e e e e 244
GCLOTLUTE o . vt i it et e e e e e e e e e e e e e e e e 245
O . o e 246
getDLLRegisteredRoutines 247
getLoadedDLLs 249
getNativeSymbollnfo 250
GEUEXL . o v v v e e e e e e e e e e e e 252
getwd . .o e e e e 254
gl e 255
SIED o v i e e e e e e e 256
grepRaw L e e 262
groupGeneriC 263
SIOUPINE . .« o v v v v v e e e e e e e e e e e e 266
SZCOM . v v e e e e e e e e e e e e e e e 267
hexmode L 268
Hyperbolic e 270
ICONV . . L o o o e e 271
icuSetCollate L 274
identical e 276
identity L. e e 279
ifelse oo 279
INTEZET o o o e e e 281
INETaCtiON o v e e e e e e e e e e e e e e e e e e e 283
INTETaCtIVE o o o ot e e e e e 284
Internal 285
InternalMethods 285
invisible L 286
isfinite 287
is.function L e e e 289
isdanguage 289
1S.0bJeCt . . . L 290
ISR e 291
ISSTECUISIVE . . v v v e o e 292
is.single . . . L 293
isaunsorted L L e 293
ISOdatetime e 294

1SS4 L 295

CONTENTS v

ISSymmetric L e e e e e e e e 296
JIET . L o e e 297
kappa e 298
kronecker e 300
HOn_info e 301
labels e e e 302
lapply e 303
Last.value e 306
La_library o e 307
La version 307
length o . 308
lengths L L e 309
levels e e e e 311
libcurlVersion e 312
libPaths e 313
library e 315
library.dynam 319
LICENSE e e e e 321
O 321
Listfiles e 323
LSt2enV e e e e 325
load e e 326
locales e e e 328
log . . o e 331
Logic e e e 332
logical e 335
LongVectors e 336
Towertri e e e 337
IS . e e e 337
mMakKe.names o e e e e e e e e e e e e 339
make.unique e e 340
mapply e e e e 341
margin.table 343
MALOLVEC . . & v vt v v e 344
match e e 344
match.arg e 346
match.call 348
match.fun L 349
MathFun e 350
matmult e e e e 351
MAtrIX ot e e e e e e e e e e e e 352
maxCol e 354
10T 1 0 356
MEMCOMPIESS .« . . o v v v e vt e 357
memlimits e e 358
MEMOTY o e e e e e e e 359
Memory-limits 360

memory.profile L 362

vi

CONTENTS
METEE . v v v v v e 362
MESSAZE .+« . v v v v e 365
MISSING . . . o v vt e e e e e e 366
mode e 367
NA e 369
NAME v o e o e 371
NAMES . .« v v e vt e e e e e e e e e e e e e e e e e e e 373
NATES .« v o v v e 374
nchar L e e 375
nlevels e e e e e 378
NOQUOLE .« o v v v v e e e e e e e e e e e e e e e 379
1075 1o 380
normalizePath 381
NotYet o o e 383
IIOW . o v et e e e e e e e e e e e e e e e e 383
ns-dblcolon e 384
ns-hooKS L e e e e 385
ns-load . . .o 387
NS-TOPENV + . v v v v v i e 389
NULL . . . e 390
NUIMETIC . . v v v v v e e e e e e e e e e e 391
NumericConstants o it e e 393
NUMETIC_VEISION v o v v e e e e e e e e e e e e e e e 395
octmode e e e e e e e e e e e 396
OMLEXIL . . o o v vt e e e e 398
Ops.Date e 399
OPLIONS v v i e e 400
OFder o e e 410
OULET . . v o vt e e e e e e e e e e e e e e e 413
Paren e 415
PAISE .« o o o o e e e e 416
PASte e e e e e 418
patheexpand L 420
pere_config e 421
pmatch. 422
POlyroot Lo e e e e 423
POSLOBNV . . o o o o e e e e e e e e e 424
PIEttY . o o e 425
Primitive L 427
Print . . . o e 428
print.dataframe 430
printdefault 431
PrMAtrixX L e e e e e e e e e e 433
PrOC.HIME o o e e e 434
prod . .o 435
prop.table e 436
pushBack e 437

6) 438

CONTENTS vii

QR.AuxIliaries e e 441
QUIE . o o e e e e e e e e e 442
QUOLES e e e 444
R.Version e 447
Random e 449
Random.user e 454
TANZE « ¢ o o e e e e e e e e e e e e e e e e e e 455
TaNK . . . e e e e 457
rapply . .o 458
TAW . o e e e e e e e 460
rawConnection e e e e e e e 461
rawConversion i e e e e e e e e e e e e 462
RAULS e 464
readBin 465
readChar e e e 468
readline L e e e e 470
readlines L L e e 471
readRDS e e e 472
readRenviron 474
Recall e 475
regfinalizer L 476
TEEZEX o v v e 477
regmatches L 481
TEMOVE . . v vt v v e 483
() o P 484
TePlace L e e e 487
Reserved e 488
TEV o o v e e e e e e e e 488
Rhome e 489
le . . e e e e 490
Round e 491
round.POSIXt e e 493
TOW o v o e e e e e e e e e e e e e 494
TOWHCOINAMES e e e e e e 495
TOWAMES . . o o v v v e 496
TOWSUIN & o b vt v v e 498
sampleo e 499
SAVE . v i e e e e e e e e e e e e e e e e 501
scale . .. L e e 505
o7 1 506
search L e 510
seek . .o e 511
SEO « + e e e e e e e e e e e e e e 513
seg.Date 515
seq.POSIXt e 516
SEQUETICE .+ v v v v v v e 517
serialize e e e 518

SEES . L . e e e e e e 520

viii

CONTENTS
setTimellimit 521
showConnections e e e e 522
shQuote e e 523
SIZN . . o e e 525
SignalS. e e e e 526
SINK . . e 526
slicedndex L. 528
SIOtOD . . . e e e e 529
socketSelect e 530
SOIVE . . o e e 531
SOTE o v v e e e e e e e e 532
SOUICE & v v v v e e e e e e e e e e e e e e e e 536
Specialo e 539
SPLIt . . 542
Sprintf . . . L L e e e e 544
SQUOLE e e 548
srcfile . .. e e e e 550
standardGeneric e e 553
startsWith oL L 554
SEartup . . . o e e e e e e 555
170 558
Stopifnot e e 559
SEIPHIME L L e e 562
SLITED . o v v e e e e e 568
SIISPIit . . . e e e e 569
] 30 571
SIFEIM o o e e e e e e e e e e e e e e e 572
SLIUCLUIE . . . o o v o o vt e e e e e e e e e e 573
SITWIAD .« + v v v o e e e e e e e e e e e e e e e e e e 574
SUDSEL L e 575
SUDSHIULE o o e e e e e e e e e e 577
SUDSLT e 579
SUM &t v v e 580
SUMIMATY .+« v v v v v e 582
SVA . 583
SWEED « v v o e e e e e e e e e e e e e e e e e e e 585
SWItCh . . . L e 587
SYNaxX o e e 589
SYS.EENIV . . . v v vt e e e e e e e e e e e 590
Sys.getpid L e 591
Sys.glob 592
Sys.anfo . . .o e 593
Sys.docaleconv e 595
SYS.PATENL e e 596
Sys.readlink 599
SYSSEENV . . o v v v v e e e e e e e e e e e e e e e e e e 599
Sys.setFileTime e 601

Sys.sleep . . . e 601

CONTENTS ix

SYS.SOUICE + v v v v v v e 602
SYSHME . . . o v ot e e e e e e e e e 604
Sys.which 605
SYSIEIM . . . v e e e e e e e 606
system.file 609
SYSEMLUME oo e e e e e e e e e e 610
SYSIEM2 e e e e e 611
b e e e e e e 613
table e e e 614
tabulate L e 617
tapply . . . 618
taskCallback 620
taskCallbackManager e 622
taskCallbackNames e 624
tempfile L e 625
textConnection e e e e e e 627
tilde e 629
MEZONES v v v v o e e e e e e e e e e e e e e e e 630
tOSIIING e e e e e e 634
tTACE . . . o o e e e e e e e e e 635
traceback L. e 640
traCeMEIM v v v v e e e e e e e e e e e e e e e e e e 641
transform L e e e 643
Trig . . . e 644
HMWS . . . o e 646
Y o e e e e e e 647
typeof . . .o 648
UNIQUE . . o o oo v e e e e e e e e e e e e e e e e 649
unlink L L e 651
unlist . . .o e e e e 652
UNNAIME . . . vt v v v e 654
UseMethod e 654
userhooksS e e e e 657
utf8Conversion L 659
validUTFS e 661
5T (o) 662
VECOriZE o e e e e e 664
WAINING o ot v e e e e e e e e e 666
WAIMINGS .« v v v v v v e 667
weekdays 669
which e 671
which.min 672
With . . e e e 674
withVisible 676
WIIEE . . . o e e e e e e e e e e e e 677
writeLines e 678
XUIrm . . . e e e 679

X CONTENTS

Zpackages e e e e e 680
Zutils . . .o e 681
2 The compiler package 683
compile 683
3 The datasets package 687
datasets-package 687
ability.Cov 687
airmiles L e e 688
AirPassengers 689
airquality L 690
anscombe L. L L L e e e 691
AENU e e e e e 692
attitude L L e 693
AUSITES . . . o v e o e e e e e e e e e e e e e e e e e 694
beavers e 695
Blsales e 696
BOD . . . e 697
CATS . . o v i e e e e e e e e e e 698
ChickWeight 699
Chickwits e e 700
CO2 . e e 701
COZ L o e e e 702
crimtab L L e 703
diSCOVEIIES o e e e e e e 705
DNase e 706
eSOph . . . e 707
CUIO . . v v v e e e e e e e e e e e e e e e e 708
eurodiSt L e 709
EuStockMarkets e 710
faithful e 710
Formaldehyde 711
freeny L 712
HairEyeColor e 713
Harman23.cor e e 714
Harman74.cor e 715
Indometh 715
inferto e 716
InsectSprays 718
IS . . o e e 718
islands L. 720
JohnsonJohnson 720
LakeHuron e 721
Th e 722
LifeCycleSavings e 722
Loblolly e 723
longley 724

CONTENTS xi

MOTIEY e e e e 726
MECATS .« o v v v v e e e e e e e e e e e e e 727
nhtemp 728
Nile e 729
00 1733 o 730
NPK . o e e e 731
occupationalStatus L. L L e e 732
Orange o o e 733
OrchardSprays 734
PlantGrowth 735
PIECID .« . o o o e e e e 735
presidents L. e e e e 736
PIESSUIC . . . o o vt o it e e e e e e e e e e e e e e e e e e e 737
Puromycin 738
QUAKES . . . o e e e e e e e e e e 739
randu ... oL e 740
TIVETS . o o v i e e e e e e e e e e e e e e e e 741
TOCK . . e 741
SIEED . . . e e e 742
Stackloss L e 743
STALE e e 744
sunspot.month oL e 746
SUNSPOLYEAT « . v v v v v v v e 747
SUNSPOLS . v v v v v v e 748
SWISS . . v v v e e 749
Theoph e 750
Titanic L e 752
ToothGrowth e 753
trEETING o o e e e e e 754
TEES . . v v o e e e e e e e e e e e e e 754
UCBAAMISSIONS« o oot s e e e e 755
UKDriverDeaths 756
UKgas o e 758
UKLungDeaths e 758
USAccDeaths o e 759
USAITEStS o o e e e 759
USJudgeRatings e e 761
USPersonalExpenditure 761
USPOD « « e e e e e e e e e e e e e e e 762
VADeaths e 763
VOICANO e e e e 764
warpbreaks e e e e e e 764
WOIMETL .« o o v v v e e e et e e e e e e e e e e e 765
WorldPhones 766

Xii CONTENTS

4 The grDevices package 769
grDevices-package L 769
adjustcolor. L 769
as.graphicSANNOt 771
ASTASTET . o . o e e e e e e e e e e e e 771
axisTicks L e 773
boxplot.stats 775
bringToTop e e e 776
CAITO © . v v v v e e e e e e e e e e e 777
check.options L 779
chull 781
CIM . b v vt et e e e e e e e e e 782
col2rgb . .. e 782
colorRamp. e 784
ColOrs . . . o e 786
contourLines L. e e 787
convertColor L 788
densCols 790
dev . . . e 792
dev.capabilities 793
devicapture 795
devflush L e 795
devinteractive e e e e e e e e e 796
devisize 797
dev2 . .o 798
dev2bitmap e e 800
devAskNewPage 802
Devices 803
embedFonts L 804
extendrange Lo 805
getGraphicsEvent 806
SEAY o e e e e e e e e e e e e e e e e e e e 809
gray.colors e 810
grSoftVersion L 811
hel © o o 812
Hershey e 815
hSv . e 818
Japanese L e 819
make.rgb e e 820
msgWindow 822
n2mfrowo 823
nelass ..o 824
paletteo e e e 825
Palettes 826
PAf . 830
pdfoptions L. e e 835
PICIEX e 836

plotmath 838

CONTENTS Xiii

PIE o o e e e e 843
POSESCIIPt o o e e e e e e e 847
postscriptFonts 853
pretty.Date 856
PS-OPHONS .« . . o v v e e e e 857
QUATEZ . o o o et e e e e e e e e e e e e e e e 859
quartzFonts e e e e e e e 861
recordGraphics L e 862
recordPlot L 863
54 o 865
rgb2hsv . . Lo 866
savePlot L 868
trans3d 869
TypelFont o e 870
WINAOWS o o e e e 871
WIndOWS.OPHONS 876
windowsFonts L 877
XLL e 878
XITFonts o e 883
XAZ . e 884
XY.COOTAS . . o o o i e e e e e 886
xyTable e 888
Xyz.coords e 889
S The graphics package 891
graphics-package 891
abline 892
AITOWS . o o v v e e e e e e e e e e e e e e e e 893
assocplot . . . L e 895
AXIS . . e 896
e 897
axis.POSIXct e 900
axTicks 902
barplot e e e e 904
bOX . e 908
boxplot 909
boxplot.matrix 913
DXP . . e 914
cdplot e e e e e 917
Clip . . e e 919
COMMOUL . .t vt v v ettt e e e e e e e e e e e e e e 920
convertXYo e e e e 923
coplot 924
CUIVE . o v et e e e e e e e e e e e e e 926
dotchart e 929
filled.contour 930
fourfoldplot 933
frame 935

Xiv

CONTENTS
hist. 937
hist POSIXt e 940
identify 942
IMAZE . . . o o o e e 944
layout e 947
legend 949
lines e e 954
locator L e e e 956
matploto 957
mosaicplot L L 959
MEEXE . . o o o e e 962
PAITS . . o o e e e e 964
panel.smooth 967
PAT . . o e e 968
PEISP .« o v v e e 978
Ple . . e 981
PlOt . . e e e 983
plot.dataframe 985
plotdefault 986
plotdesign. 988
plotfactor 990
plot.formula L e 991
plot.histogram e 993
plotraster 994
plottable 995
plotwindow L 996
PIOLXY .« « o o e 997
POINES . . . o o e e e e e e e e 998
polygono e 1002
polypath e 1005
rasterlmage L. 1007
TECE . e 1008
TUZ o v e 1009
SCIECIL . . v v v v i it e e e e e e e e e e e e e e 1011
SEEMENLS e e 1013
smoothScatter e 1014
Spineploto 1016
] 1 1019
SIBIM . . o v v e e e e e e e e e e e 1022
stripchart Lo 1023
strwidth oL 1025
sunflowerplot 1026
Symbols 1029
XL . . e e e e 1031
title . ..o e 1034
UNIES . . o oo et e e e e e e e e e e 1036

CONTENTS XV

6 The grid package 1039
grid-package e 1039
absolute.SIZe e 1040
AITOW + o v v v v e e e e e e e e e e e e e e 1041
caleStringMetric L. e e e e e e e 1041
dataViewport L 1043
depth o L 1044
deviceLoc 1045
drawDetails 1047
editDetails L 1048
explode 1049
gEdit. 1049
getNames e e e 1050
S 0 1 P 1051
gPath 1053
Grid 1054
Grid VIEewWports 1055
gridadd 1058
gridbezier e 1059
grid.cap e 1061
gridircle 1062
gridclip . . . L L 1063
grid.convert L 1064
rid.COPY .« . o o e 1067
Grid.CUIVE o o e e e e e e e e e e 1067
griddelay L 1069
grid.display.list 1071
grid.DLapply 1072
gridddraw . . . oL L L e 1073
gridedit 1074
gridforce 1075
gridframe L e e e 1077
gridfunction. 1078
grid.get . . . oL 1080
grid.grab L. 1081
Srid.grep e e e e e e 1083
gridgrill L 1084
grid.grob Lo 1085
gridJayout L e e e 1087
griddines 1089
griddocator 1090
gridds . ..o 1092
grid.moOvVe.to e e e e e e e 1094
eridnewpage 1095
gridnull . . . oL 1096
gridopack e e 1097
gridipath L. 1099

gridpplace 1102

XVi

CONTENTS
grid.plotaand.degend e 1103
grid.points e e e e e e e 1103
grid.polygon 1104
grid.pretty e 1106
GrIdraster e e e e e e e e e 1107
gridarecord L L L e e 1109
gridreCt L e 1110
gridrrefresh oL 1111
GridIEMOVE e e e e e e e e 1112
gridareorder L e e e e e 1113
grid.Segments L. 1114
grid.Set . . . e 1116
grid.showdayout 1117
grid.show.viewport L. 1118
eridAeXt L 1119
Grid.XaXiS e e 1121
grid.xspline e e e 1123
grid.yaXiS e 1125
grobCoords e 1127
grobName 1128
grobWidth 1128
grobX ..o e 1129
legendGrob 1130
makeContent e 1131
pPlotViewport e e e e 1132
Querying the Viewport Tree L o 1133
resolveRasterSize 1134
roundrect L. 1135
showGrob 1136
showViewport L e 1138
stringWidth oL 1139
UNIE . .o o 1140
UNILC . . o o e e e e e e e e 1142
unitlength 0o oL 1143
UNIEPMIN . . . o o oo e e e e e e e 1143
100118 () o 1144
validjust e e e e 1145
validDetails 1146
vpPath L e 1147
widthDetails o 1148
Working with Viewports 1149
xDetails L 1151

xsplinePoints 1152

CONTENTS xvii

7 The methods package 1155
methods-package 1155
BasicFunsList 1156
AS L e e e e e e e e e e 1156
BasicClasses e e e e 1158
callGeneric e e e 1159
callNextMethod e 1161
CANCOBICE v v v e o e i e e e e e e e e e e e e 1165
chind2 L 1166
Classes e e 1167
classesTOAM e 1168
Classes_Details e 1169
className e e 1173
classRepresentation-class L 1175
Documentation e 1176
dotsMethods e 1178
environment-class 1181
envRefClass-class 1181
evalSource L. e e e e 1183
findClass e 1186
findMethods 1188
fixPrel.8 e 1190
genericFunction-class oL oL 1191
GenericFunctions 1192
getClass L e e e e 1196
getMethod L 1198
getPackageName L 1201
hasArg L 1202
implicitGeneric e e e e e e e 1203
inheritedSlotNames e 1205
initialize-methods 1206
Introduction 1208
IS o e e e e e 1210
isSealedMethod 1211
language-class L 1213
LinearMethodsList-class 1214
LocalReferenceClasses e 1215
makeClassRepresentation oL 1216
method.skeleton 1217
MethodDefinition-class 1218
Methods e e 1219
MethodsList-class 1220
Methods_Details e 1221
Methods_for_Nongenerics 1226
Methods_for_S3 e 1230
MethodWithNext-class e 1232
NEW . e 1233

nonStructure-class e e 1235

Xviii

8 The parallel package
parallel-package
clusterApply
detectCores
makeCluster
mcaffinity
mcchildren

9 The splines package
splines-package

asVector oL
backSpline.,
bs ...

ObjectsWithPackage-class
promptClass
promptMethods
ReferenceClasses
removeMethod

representation

S3Part
S4groupGeneric
SClassExtension-class
selectSuperClasses
SetAS ...
setClass

setClassUnion

setGeneric
setGroupGeneric
setls

slot.
StructureClasses
testInheritedMethods

TraceClasses

validObject

mclapply oL
mcparallel oL
PVEC .« o o
RNGstreams
splitindices,

NS s e e e e e e e e

CONTENTS

CONTENTS Xix

periodicSpline L. e e 1337
polySpline e 1339
predict.bs 1340
predict.bSpline 1341
splineDesign 1342
splineKnots L. 1344
splineOrder e e 1344
XYVECIOT . . . o o o o e e e e e e 1345
10 The stats package 1347
stats-package L e 1347
.checkMFClasses e e e e 1347
act . e e e 1349
acf2AR . . . e 1351
addl e 1352
addmargins 1354
AZETEZALEt e 1356
AlIC . e e e 1359
alias L e e e 1361
ANOVA . . . o v e e e e e e e e e e e e e e e e 1363
anova.glmo 1364
anova.lm L e 1365
anova.mlm. L L 1367
ansari.teSt e e e e e e 1369
A0V . o o e e e e e 1371
approxfun L 1373
AT . L e e e e e e 1376
arolS . . . L e e e e 1379
AMIMA . . o o o e 1381
AriMASIML . . . o v v v e e e e e e e e e e e e e e e e e e e 1385
arimal L e 1386
ARMAacf e 1390
ARMAOMA e e 1392
as.helust . . . L 1393
asOneSidedFormula 1394
AVE o v o e e e e e e e e e e e e e e e e 1394
bandwidth e 1395
bartlett.test L e e e e e 1397
Beta e 1399
DInOMLEESt e e e e e e e e e 1402
Binomial 1404
biplot e 1406
biplot.princomp e 1407
birthday 1408
Box.test e e 1410
C o e e e 1411
CANCOT . . v v v v v e e e e e e e e e e e e e 1412
case+variablenames L e 1413

Cauchy e e 1414

XX

CONTENTS

Chisq.test e e e e e 1416
Chisquare e e 1418
cmdscale L. e e 1421
coef . .. 1424
COMPIELE.CASES . . . v v v v o e 1425
Confint e e e e e 1426
constrOptim e 1427
COMITASE .+ v v v o v e 1429
CONIASES v o v o e e e e e e e e e e e e e e e e e e e 1431
CONVOLVE e e 1432
cophenetic L 1433
COT + v vt e e e e e e e e e e e e e e e 1435
COLIESE . o . v o e e e e e e e e e e e e e e e e e 1438
COVLWE L vttt e e e e e e e 1441
CPETAM o v v v v v e 1442
CUITEE . . v v v e o e 1444
decompose e 1445
delete.reSponsSe e e e e e e e e e e e e 1446
dendrapply L e e 1448
dendrogram 1449
densityo 1454
deriv e e e e 1458
deviance e e e e e e e e 1461
dfiresidual L e e e e e 1462
diffinv . . . e e 1463
dist. . . . e e e 1464
Distributions e e e e e e e e e e e 1467
dummy.coef 1468
ecdf . . e e e 1469
effaovlist e 1472
effects L 1473
embed L e e 1474
expand.model.frame L oL 1475
Exponential 1476
extractAIC 1478
factanal 1479
factor.scope 1483
family 1484
FDist . . . o e e e 1488
. e 1490
filter e e e e e e 1492
fishertest e e 1493
fitted e 1497
fivenum L e e e 1498
flignertest 1498
formula e 1500
formulanls 1502

friedman.test e e 1503

CONTENTS XX1

ftable e e e e 1505
ftable.formula 1507
GammabDist e e e e e e 1508
GEOMELIIC v o o e e e e e e e e e e e e e 1511
getlnitial L e 1512
glm ..o e 1513
glm.control 1519
glm.summaries e e e e e e e 1520
helust . . . e e 1521
heatmap L 1525
HoltWinters e e e e e e e 1528
Hypergeometric L e 1531
identify.hclusto 1533
influence.measures e e e 1534
INMEZTALE o o e e e e e e e e e e e e e e e e e 1538
interaction.plot 1540
IQR . . o e 1543
is.empty.model L. e 1544
ISOTEZ . v v o v e e e e e e e e e e e e e 1544
KalmanLike e 1546
kernapply 1548
kernel L e 1550
kmeans L e e e 1552
kruskal.test L e e e 1554
KSEeSt . . . e e e e e e e 1556
ksmooth e 1559
lag . . . e 1560
lag.plot L 1561
Line e e e 1562
Listof e 1564
Im .. e 1564
Imit. . o e e e 1568
Im.influence e 1569
IM.summaries o e e e e e e e e e e e e e e e e e 1571
loadings 1573
loess . . . e e e 1574
loess.control L 1576
Logistic 1577
logLik e e 1579
loglin 1580
Lognormal 1582
TOWESS . . . o e e e e e e e 1584
Is.diag e 1585
Is.print e 1586
Isfit . . 1587
mad . ..o e e e 1588
mahalanobis 1589

makelink 1590

xxil

CONTENTS

makepredictcall L e 1591
00 T2 100 1592
mantelhaen.test L L L e 1593
mauchly.test 1596
MCNEMALIESt o o o ottt e e e e e e e e e 1598
median. e e e e e e e e e e e e 1599
medpolish e 1600
model.extract e 1602
model.frame L 1603
model.matrixX e e e e e e e e e e 1605
model.tables 1607
monthplot e e e e e 1608
mMOoOd.teSt L. e e e e e e e e e e 1611
Multinom e e 1612
NAACHON o bt e e e 1614
NA.CONLZUOUS o ottt it bttt e e 1615
nafail e e e 1615
NAPTING . . . o v o e s e e e e e e e e e e e e e e e 1616
naresid 1617
NegBinomial 1618
XM . o o ottt e e e e e e e e e e 1620
nlm .o e 1621
nlminb e 1624
NS . . e e e e e e 1627
nls.control L. 1632
NLSStASYymMptotic« o v v ot e e e e e e e 1634
NLSstClosestX o e e e e e 1635
NLSStLfASYMPtote o o o e e 1635
NLSStRtASYMPLOte o o v o e e e e e e e e e e e e 1636
1T0] 0 1637
Normal e 1638
numericDerivo 1640
offset 1641
ONEWAY.LESL e e e e e 1641
OPLIM oot e e 1643
OPtIMIZE o o v i o e e e e e e e e e e e e e e 1649
orderdendrogram L Lo e 1651
padjust . ..o e 1652
PAITWISE.PrOP.LESt o o L e e e e e e e 1654
pairwise.t.testo L 1655
pairwise.table oL 1656
pairwise.wilcox.test L e e 1657
plotact . . . e 1658
plotdensity 1659
plotHoltWinters 1660
PIOLASOTEE o e e e e e e e 1661
plotImo 1662

PlOt.PPr . . e e 1665

CONTENTS xxiii

plotprofilenls 1666
PIOLSPEC . . . o o o e e e e e e 1668
plotstepfun L 1669
PIOtES © . e 1671
Poisson 1673
POISSOMLEES e 1675
POly . . 1676
POWET . . o ot e e e e e e e e e e 1678
POWEr.anova.test 1679
POWEL.PIOP.LESt o o i e e e 1680
POWELLIESt o o e e 1682
PPtest e 1683
PPOINES o o e e 1684
25 1686
PICOMD . . o o o o e e e e e e e e e e e e e e e e 1689
predict Lo e 1692
predict Arima e 1694
predict.glm L e e 1695
predict HoltWinters e 1697
predict.m 1698
predict.loess 1700
predictnls e e 1702
predict.smooth.spline L oo 1703
preplot . . . L 1705
PriNCOMP o o e e e e e e e e e e e e 1705
print.powerhtest. L e 1708
PHNCES . . . e e e 1709
printCoefmat 1710
profileo e 1711
profilenls 1712
PIOJ o o e e 1713
PIOPLESt « . o o o o e e e e e e e e e 1715
prop.trend.test Lo L 1718
0 [0 1) 0 0 1719
quade.est e e 1720
quantile e 1722
r2dtable 1725
read.ftable 1726
rect.hclust 1728
relevel L e 1729
reorderdefaulto 1730
reorder.dendrogram Lol 1731
replications e e e e e e 1732
reshape e 1734
residuals 1737
runmed ... L. L e e e 1738
rWishart L e 1740

scatter.smooth L e 1741

XX1V

CONTENTS

screeplot L e e e 1743
SA L 1744
SE.CONLIASE . . . v v v v it e e e e e e e e e e e e e e e 1744
selfStart L 1747
setNames e e 1749
shapiro.test 1750
SIZMA o e e 1751
SignRank 1753
simulate e e e 1754
smooth. L 1756
smooth.spline L 1758
smoothEnds 1763
sortedXyData oL 1765
SPEC.AL & o v v v e e e e e e e e e e e e e e e 1766
SPEC.PEIAM © . v v v v e 1767
SPEC.LAPET L e 1769
SPECIIUIN .+« . v v v v et e e e e e e e e e e e e e e e e e e 1770
splinefun 1772
SSasymp e e e e 1776
SSasympOff 1778
SSasympOrig e 1779
SShieXp . . . o v e e e e e e 1781
SSD . 1782
SSfol . 1784
SSEpl . 1785
SSgompertz e e e e e 1786
SSlogis 1788
SSmicmeno e 1789
SSweibull L e 1791
Start L e 1792
StAt.ANOVA L e e e e 1793
stats-deprecated L L L L e e e e 1794
SIED . o e e e 1795
Stepfun e 1797
StL 1799
stimethods 1802
StructTS . . . e 1802
SUMMATY. A0V « « o o v v v v e e e et e e e e e e e e e e e e e 1805
summary.glm e e e e e e e 1806
summary.lm 1808
SUMMATY.MANOVA .« . . ¢« v v e v v e e e e e e e e e e e e e e e e 1810
SUMMAry.nls e e e e e e e e e 1812
SUMMATY.PIANCOMP . .« v v v v v v e e e e e e e e e e e e e e e e e e 1814
SUPSITIU . o v v vt vt e 1815
SYMNUIM . . v v v v v v e e e et e e e e e e e e e e e 1816
LIBSE . . o e e 1818
TDist e 1820

termplot 1823

CONTENTS XXV

TBIMS . . ¢ o o o e e e e e e e e e e 1825
terms.formula L. L e 1826
terms.ObJeCt e e e e e e 1827
tME o e 1829
toeplitz 1830
IS o e e e e e e 1831
ts-methods L e e e e e 1833
tS.plOt . . e e e e e 1834
TSUNION o o o e e e e 1835
tsdiago e 1836
ESD o e e e e e e e 1837
tsSmooth e e e 1838
Tukey e 1839
TukeyHSD e 1840
Uniform e e e e e e 1842
UNITOOL .+« o o vt e e e e e e e e e e e e e e 1843
updateo e e 1847
updateformula Lo 1848
VALIESt . . . o o e e e e e e e 1849
VANMAX . . v v v v e 1850
VOV . v v vttt e e e e e e e e e e e e e 1852
Weibull e 1853
weightedmean L 1855
weighted.residuals L. 1856
WeIghts e 1857
WilcoX.test L. e 1857
Wilcoxon e 1861
WINdOW e e e e e e 1863
Xtabs . . . e 1865
11 The stats4 package 1869
statsd-package 1869
coef-methods 1869
confint-methods 1870
logLik-methods 1870
mle . ..o e 1870
mle-class 1872
plot-methods 1873
profile-methods 1874
profilemle-class 1875
show-methods L 1875
summary-methodso 1876
summary.mle-class L 1876
update-methods L. e e e 1877

veov-methods L e 1877

XXVi CONTENTS
12 The tcltk package 1879
teltk-package L 1879
Tcllnterface e e e e 1880
tclServiceMode L 1884
TkCommands e 1885
tkpager e 1889
tkProgressBar L e 1889
tkStartGUI e 1891
TkWidgetemds 1891
TkWidgets e 1894
tk_choose.dir e 1896
tk_choose.files e 1897
tk_messageBoX e e 1898
tk_select.list L. e 1899
13 The tools package 1901
tools-package e e e 1901
pprint.viaformat L L Lo e 1901
add_datalist e e 1902
assertCondition 1903
bibstyle 1905
buildVignette e e 1907
buildVignettes e e 1908
charsets e e e 1909
checkFF e 1910
checkMDSsums e e 1912
checkPoFiles e 1912
checkRd e 1914
checkRdaFiles e 1916
checkTnF e 1917
checkVignettes 1918
check_packages_in_dir L 1919
codOC . . . e e 1922
compactPDF 1923
CRANLOOIS o e e e e e 1925
delimMatch e 1927
dependsOnPkgs 1928
encoded_text_to_latex e e 1929
fileutils e 1930
find_gs_cmd e 1932
getVignetteInfo L 1933
HTMLheader e e 1934
HTMLINKS e e 1935
loadRAMaACIos e 1936
MaKEVAIS o o e e e e e e e e e e e e e e 1937
make_translations_pkg e 1938
mdSsum L e e e 1938
package dependencies 1939
package_native_routine_registration_skeleton00 1941

CONTENTS XXVil

parselatex L e e e e e e e 1944
parse_Rd . . . L e 1945
pskill . . e 1947
PSIICE .« « . e e e e e e 1948
QC . e 1949
Remd . . . o 1950
RAZHTML e 1951
Rd2txt_options e e 1954
RAiff e 1955
Rdindex e 1956
RdTextFilter 1957
Rdutils o e 1958
read.00Index L 1959
showNonASCII e 1960
startDynamicHelp Lo 1961
SweaveTeXFilter e 1962
testlnstalledPackage 1963
exi2dvi ..o 1964
toHTML e 1966
tools-deprecated L. 1966
toRd e 1968
toTitleCase e 1968
undoc . .. L e 1969
update PACKAGES e 1970
update_pKg po e e e e e e 1972
vignetteEngineo 1974
vignetteInfoo 1975
write_PACKAGES e 1976
XEOMEXE . . . o o o e e e e 1978
14 The utils package 1981
utils-package 1981
adisto e 1981
alarm ... e 1983
APTOPOS + + v v e 1984
ATEEEXEC .+ o v v v v e 1985
arrangeWindows e 1987
askYesNO L 1988
aspell . . . e e 1989
aspell-utils e e 1991
available.packages L. 1993
BATCH e 1995
bibentry 1996
browseEnv. 2001
browseURL e 2002
browseVignettes e e e e e 2004
bugreport 2005
CaPLUIC.OULPUL v v o ittt e e e e e e e e e e e e e e 2007

changedFiles 2009

XX viil

CONTENTS
choose.dir 2011
choosefiles L 2012
chooseBIioCmirror. e e e e e e 2013
chooseCRANmMirror o 2014
CItation L. e e 2015
CItE . . o v o e e e e e e e e e e 2017
CitEntry 2020
clipboard e e 2021
close.socket e 2022
combn e e 2023
compareVersion i e e e e 2024
COMPILE e 2025
contriburl e e e e 2026
countfields 2027
CrEALE.POSE « . v v v v e o e e e e e e e e e e e e e e e e e e e 2028
data . .. oL e e e e 2029
dataentry L e e e 2032
debugcall e 2034
debugger 2035
demo L e e e 2038
DLL.Version oo i e e e e 2039
download.file 2040
download.packages 2044
edit . .. 2045
edit.dataframe 2047
example L e e e e e 2049
file.edit 2051
file_teSt e e 2052
findLineNum 2053
iX . e 2055
flush.console L 2056
format L 2056
getAnywhere 2057
getFromNamespace L e e 2058
getParseData 2060
getS3method L. 2062
getWindowsHandle 2063
getWindowsHandles L o 2064
glob2rx . .o e e 2065
globalVariables 2066
hasName e e e e e 2068
head 2069
help . . . o e e 2071
help.request 2074
help.search L 2075
help.start e e e 2078
hsearch-utils 2079

INSTALL 2080

CONTENTS XXiX

install.packages e 2083
installed.packages L 2088
isS3method e 2089
isS3stdGeneric 2090
LINK . . e 2091
localeToCharset e e 2092
IS.SIr . o o e e e e e e e 2093
Maintainer e e e e 2094
make.packages.html oL o 2095
make.socket L e e 2096
MEMOTY.S1Z€ . « . v v v v e e et e e e e e e e e e e e e e e 2098
MENU . o 0 ottt e e e e e e e e e e e e e e e e e 2099
methods L. e 2100
mirrorAdmin 2102
modifyList. 2103
NEWS . . v v vt et e 2104
NSl . . e e e 2106
ODJECL.SIZE v o i e e e e e e e 2107
package.skeleton 2109
packageDescription 2111
packageName 2113
packageStatus L e e e 2114
PABE e 2116
PEISON .« . . o i i e e e e e e e e e 2117
PkgUtils o e 2120
PrOCESS.EVENLS v o vt i e e e e e e e e e e e e e e 2121
PIOMPL .« . L o o e e e e e e e e e 2122
promptData 2124
promptPackage 2125
QuUEStion e e e e e e 2126
TCOMPEZEN . o o o v v e 2128
read DIF L L e 2134
read.fortran L e 2136
read fwf L e e 2137
read.socket L 2139
read.table L 2140
readRegistry oL e 2145
TECOVEL « v v v v v e e e e e e e e e e e e e e e e 2147
relist . . . L e 2148
REMOVE e 2150
remove.packages L 2151
TEMOVESOUICE . . . v v v v vt v e e e et e e e e e e e e e e 2152
RHOME e 2153
TOMAN . & o v v v v e 2153
Rprof . . . e 2155
Rprofmem e 2157
Rscript o o e 2158

RShowDoc e 2160

XXX

Index

CONTENTS

RSiteSearch 2161
TEAZS . v o e 2162
Rtangle e 2164
RweaveLatex e e e e 2166
Rwin configuration 2170
SAVEhIStOTY e e e e e e e e 2172
select.list L e 2174
sessionlnfo L 2175
setRepositories 2177
setWindowTitle e 2178
SHLIB 2179
shortPathName 2181
sourceutilso 2182
stack . . . L e e 2183
] 3 2184
SLICAPLUIE . . . o o o v i e e e e e e e e e e 2188
summaryRprof 2189
SWEAVE o e e e e 2191
SweaveSyntConv 2194
1721 2195
toLateX e e e 2197
txtProgressBar.o 2198
LYPE.CONVETIT . . o . v v v vt e 2200
UNGAT . . v o v v e 2202
UNZIP .+ ¢ v v o e e e e e e e e e e e e e e e e e 2205
update.packages e 2206
url.Show L 2208
URLencode e 2209
utils-deprecated L e 2210
VIEW . . o e 2210
VIgNette e e 2211
warnErrList Lo 2213
winDialog e e e e 2214
WINEXIIAS o v v e e e e e e e e e e 2215
WINMENUS e e e e e e e e e e e e 2216
winProgressBar 2217
write.table L. L 2219
ZID o o e e e e e 2222

2225

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which let R function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, use library(help = "base").

.bincode Bin a Numeric Vector

Description

Bin a numeric vector and return integer codes for the binning.

Usage

.bincode(x, breaks, right = TRUE, include.lowest = FALSE)

2 .Device

Arguments
X a numeric vector which is to be converted to integer codes by binning.
breaks a numeric vector of two or more cut points, sorted in increasing order.
right logical, indicating if the intervals should be closed on the right (and open on the

left) or vice versa.

include.lowest logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right = FALSE)
‘breaks’ value should be included in the first (or last) bin.

Details

This is a ‘barebones’ version of cut.default(labels = FALSE) intended for use in other functions
which have checked the arguments passed. (Note the different order of the arguments they have in
common.)

Unlike cut, the breaks do not need to be unique. An input can only fall into a zero-length interval
if it is closed at both ends, so only if include. lowest = TRUE and it is the first (or last for right =
FALSE) interval.

Value

An integer vector of the same length as x indicating which bin each element falls into (the leftmost
bin being bin 1). NaN and NA elements of x are mapped to NA codes, as are values outside range of
breaks.

See Also

cut, tabulate

Examples

An example with non-unique breaks:
x <- c(0, 0.01, 0.5, 0.99, 1)

b <- c(o, 9, 1, 1)

.bincode(x, b, TRUE)

.bincode(x, b, FALSE)

.bincode(x, b, TRUE, TRUE)
.bincode(x, b, FALSE, TRUE)

.Device Lists of Open/Active Graphics Devices

Description

A pairlist of the names of open graphics devices is stored in .Devices. The name of the active
device (see dev. cur) is stored in .Device. Both are symbols and so appear in the base namespace.

.Machine 3

Value

.Device is a length-one character vector.

.Devices is a pairlist of length-one character vectors. The first entry is always "null device”,
and there are as many entries as the maximal number of graphics devices which have been simul-
taneously active. If a device has been removed, its entry will be "" until the device number is
reused.

Devices may add attributes to the character vector: for example devices which write to a file may
record its path in attribute "filepath”.

.Machine Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine R is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR. As all current implementations of
R use 32-bit integers and use IEC 60559 floating-point (double precision) arithmetic, all but three
of the last four values are the same for almost all R builds.

Note that on most platforms smaller positive values than .Machine$double.xmin can occur. On a
typical R platform the smallest positive double is about 5e-324.

Value
A list with components

double.eps the smallest positive floating-point number x such that 1+ x !=1. It equals
double.base * ulp.digits if either double.base is 2 or double.rounding
is 0; otherwise, it is (double.base * double.ulp.digits) / 2. Normally
2.220446e-16.

double.neg.eps a small positive floating-point number x such that 1-x!=1. It
equals double.base * double.neg.ulp.digits if double.base
is 2 or double.rounding is 0; otherwise, it is (double.base
* double.neg.ulp.digits) / 2. Normally 1.110223e-16. As
double.neg.ulp.digits is bounded below by -(double.digits+ 3),
double.neg.eps may not be the smallest number that can alter 1 by subtrac-
tion.

double.xmin the smallest non-zero normalized floating-point number, a power of the radix,
i.e., double.base * double.min.exp. Normally 2.225074e-308.

double. xmax

double.base

double.digits

double.rounding

double.guard

.Machine

the largest normalized floating-point number. Typically, it is equal to (1
-double.neg.eps) * double.base * double.max.exp, but on some machines
it is only the second or third largest such number, being too small by 1 or 2 units
in the last digit of the significand. Normally 1.797693e+308. Note that larger
unnormalized numbers can occur.

the radix for the floating-point representation: normally 2.

the number of base digits in the floating-point significand: normally 53.

the rounding action, one of

0 if floating-point addition chops;

1 if floating-point addition rounds, but not in the IEEE style;

2 if floating-point addition rounds in the IEEE style;

3 if floating-point addition chops, and there is partial underflow;

4 if floating-point addition rounds, but not in the IEEE style, and there is partial
underflow;

5 if floating-point addition rounds in the IEEE style, and there is partial under-
flow.

Normally 5.

the number of guard digits for multiplication with truncating arithmetic. It
is 1 if floating-point arithmetic truncates and more than double digits base-
double.base digits participate in the post-normalization shift of the floating-
point significand in multiplication, and O otherwise.

Normally 0.

double.ulp.digits

the largest negative integer i such that 1 + double.base * i =1, except that it
is bounded below by -(double.digits + 3). Normally -52.

double.neg.ulp.digits

double.exponent

double.min.exp

double.max.exp
integer.max

sizeof.long

sizeof.longlong

the largest negative integer i such that 1 -double.base * i !=1, except that it
is bounded below by -(double.digits + 3). Normally -53.

the number of bits (decimal places if double.base is 10) reserved for the repre-
sentation of the exponent (including the bias or sign) of a floating-point number.
Normally 11.

the largest in magnitude negative integer i such that double.base * i is positive
and normalized. Normally -1022.

the smallest positive power of double.base that overflows. Normally 1024.
the largest integer which can be represented. Always 231 — 1 = 2147483647.

the number of bytes in a C long type: 4 or 8 (most 64-bit systems, but not
Windows).

the number of bytes in a C long long type. Will be zero if there is no such type,
otherwise usually 8.

sizeof.longdouble

the number of bytes in a C long double type. Will be zero if there is no such
type (or its use was disabled when R was built), otherwise possibly 12 (most
32-bit builds) or 16 (most 64-bit builds).

Platform 5

sizeof.pointer the number of bytes in a C SEXP type. Will be 4 on 32-bit builds and 8 on 64-bit
builds of R.

Note

sizeof.longdouble only tells you the amount of storage allocated for a long double (which are
normally used internally by R for accumulators in e.g. sum, and can be read by readBin). Often
what is stored is the 80-bit extended double type of IEC 60559, padded to the double alignment used
on the platform — this seems to be the case for the common R platforms using ix86 and x86_64
chips.

Source

Uses a C translation of Fortran code in the reference, modified by the R Core Team to defeat over-
optimization in recent compilers.

References

Cody, W.J. (1988). MACHAR: A subroutine to dynamically determine machine parameters. Trans-
actions on Mathematical Software, 14(4), 303-311. doi: 10.1145/50063.51907.

See Also

.Platform for details of the platform.

Examples

.Machine
or for a neat printout
noquote(unlist(format(.Machine)))

.Platform Platform Specific Variables

Description

.Platformis a list with some details of the platform under which R was built. This provides means
to write OS-portable R code.

Usage

.Platform

https://doi.org/10.1145/50063.51907

Value

.Platform

A list with at least the following components:

0S. type

file.sep

dynlib.ext

GUI

endian

pkgType

path.sep

r_arch

AQUA

character string, giving the Operating System (family) of the computer. One of
"unix"” or "windows".

character string, giving the file separator used on your platform: "/" on both
Unix-alikes and on Windows (but not on the former port to Classic Mac OS).

character string, giving the file name extension of dymamically loadable
libraries, e.g., ".d11"” on Windows and ".so" or ".sl" on Unix-alikes. (Note
for macOS users: these are shared objects as loaded by dyn. 1load and not dylibs:
see dyn.load.)

character string, giving the type of GUI in use, or "unknown” if no GUI can
be assumed. Possible values are for Unix-alikes the values given via the ‘-g’
command-line flag ("X11", "Tk"), "AQUA" (running under R.app on macQOS),
"Rgui” and "RTerm"” (Windows) and perhaps others under alternative front-ends
or embedded R.

character string, "big"” or "little"”, giving the ‘endianness’ of the processor in
use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: see readBin.

character string, the preferred setting for options("”pkgType”). Values
"source”, "mac.binary.el-capitan” and "win.binary" are currently in use.
This should not be used to identify the OS.

character string, giving the path separator, used on your platform, e.g.,
on Unix-alikes and ";" on Windows. Used to separate paths in environment
variables such as PATH and TEXINPUTS.

nn

n,n

character string, possibly
used in this build of R.

. The name of an architecture-specific directory

.Platform$GUI is set to "AQUA" under the macOS GUI, R. app. This has a number of consequences:

* ‘/usr/local/bin’ is appended to the PATH environment variable.

the default graphics device is set to quartz.
selects native (rather than Tk) widgets for the graphics =TRUE options of menu and

select.list.

See Also

HTML help is displayed in the internal browser.
the spreadsheet-like data editor/viewer uses a Quartz version rather than the X11 one.

R.version and Sys.info give more details about the OS. In particular, R.version$platform is
the canonical name of the platform under which R was compiled.

.Machine for details of the arithmetic used, and system for invoking platform-specific system

commands.

capabilities and extSoftVersion (and links there) for availability of capabilities partly external
to R but used from R functions.

abbreviate 7

Examples

Note: this can be done in a system-independent way by dir.exists()
if(.Platform$0S. type == "unix") {
system.test <- function(...) system(paste("test”, ...)) == 0L
dir.exists2 <- function(dir)
sapply(dir, function(d) system.test(”-d", d))

dir.exists2(c(R.home(), "/tmp", "~", "/NO")) # > T TTF
3
abbreviate Abbreviate Strings
Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they were),
unless strict = TRUE.

Usage

abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, strict = FALSE,
method = c("left.kept”, "both.sides"”), named = TRUE)

Arguments
names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector by as.character.
minlength the minimum length of the abbreviations.
use.classes logical: should lowercase characters be removed first?
dot logical: should a dot (".") be appended?
strict logical: should minlength be observed strictly? Note that setting strict =
TRUE may return non-unique strings.
method a character string specifying the method used with default "left.kept"”, see
‘Details’ below. Partial matches allowed.
named logical: should names (with original vector) be returned.
Details

The default algorithm (method = "left.kept”) used is similar to that of S. For a single string
it works as follows. First spaces at the ends of the string are stripped. Then (if necessary) any
other spaces are stripped. Next, lower case vowels are removed followed by lower case consonants.
Finally if the abbreviation is still longer than minlength upper case letters and symbols are stripped.

Characters are always stripped from the end of the strings first. If an element of names . arg contains
more than one word (words are separated by spaces) then at least one letter from each word will be
retained.

Missing (NA) values are unaltered.

If use.classes is FALSE then the only distinction is to be between letters and space.

8 abbreviate

Value

A character vector containing abbreviations for the character strings in its first argument. Dupli-
cates in the original names.arg will be given identical abbreviations. If any non-duplicated ele-
ments have the same minlength abbreviations then, if method = "both.sides"” the basic internal
abbreviate() algorithm is applied to the characterwise reversed strings; if there are still duplicated
abbreviations and if strict = FALSE as by default, minlength is incremented by one and new ab-
breviations are found for those elements only. This process is repeated until all unique elements of
names. arg have unique abbreviations.

If names is true, the character version of names.arg is attached to the returned value as a names
attribute: no other attributes are retained.

If a input element contains non-ASCII characters, the corresponding value will be in UTF-8 and
marked as such (see Encoding).

Warning

If use.classes is true (the default), this is really only suitable for English, and prior to R 3.3.0
did not work correctly with non-ASCII characters in multibyte locales. It will warn if used with
non-ASCII characters (and required to reduce the length).

As from R 3.3.0 the concept of ‘vowel’ is extended from English vowels by including characters
which are accented versions of lower-case English vowels (including ‘o with stroke’). Of course,
there are languages (even Western European languages such as Welsh) with other vowels.

See Also

substr.

Examples

x <- c("abcd", "efgh", "abce")
abbreviate(x, 2)
abbreviate(x, 2, strict = TRUE) # >> 1st and 3rd are == "ab"

(st.abb <- abbreviate(state.name, 2))
stopifnot(identical (unname(st.abb),

abbreviate(state.name, 2, named=FALSE)))
table(nchar(st.abb)) # out of 50, 3 need 4 letters :
as <- abbreviate(state.name, 3, strict = TRUE)
as[which(as == "Mss")]

and without distinguishing vowels:
st.abb2 <- abbreviate(state.name, 2, FALSE)
chbind(st.abb, st.abb2)[st.abb2 != st.abb,]

method = "both.sides” helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate(state.name, 2, method = "both")
table(nchar(st.ab2))

Compare the two methods:

cbind(st.abb, st.ab2)

agrep

agrep

Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within each element of the string
x (the second argument) using the generalized Levenshtein edit distance (the minimal possibly
weighted number of insertions, deletions and substitutions needed to transform one string into an-

other).

Usage

agrep(pattern, x, max.distance = 0.
ignore.case = FALSE, value =
useBytes

agrepl(pattern, x, max.distance =
ignore.case = FALSE, fixed

Arguments

pattern

max.distance

costs

1, costs = NULL,
FALSE, fixed = TRUE,
= FALSE)

0.1, costs = NULL,
= TRUE, useBytes = FALSE)

anon-empty character string or a character string containing a regular expression
(for fixed = FALSE) to be matched. Coerced by as.character to a string if
possible.

character vector where matches are sought. Coerced by as.character to a
character vector if possible.

Maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length times the maximal transformation cost (will be
replaced by the smallest integer not less than the corresponding fraction), or a
list with possible components

cost: maximum number/fraction of match cost (generalized Levenshtein dis-
tance)

all: maximal number/fraction of all transformations (insertions, deletions and
substitutions)

insertions: maximum number/fraction of insertions

deletions: maximum number/fraction of deletions

substitutions: maximum number/fraction of substitutions

If cost is not given, all defaults to 10%, and the other transformation number
bounds default to all. The component names can be abbreviated.

a numeric vector or list with names partially matching ‘insertions’,
‘deletions’ and ‘substitutions’ giving the respective costs for computing
the generalized Levenshtein distance, or NULL (default) indicating using unit
cost for all three possible transformations. Coerced to integer via as.integer
if possible.

10

ignore.case

value

fixed

useBytes

Details

agrep

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

if FALSE, a vector containing the (integer) indices of the matches determined is
returned and if TRUE, a vector containing the matching elements themselves is
returned.

logical. If TRUE (default), the pattern is matched literally (as is). Otherwise, it is
matched as a regular expression.

logical. in a multibyte locale, should the comparison be character-by-character
(the default) or byte-by-byte.

The Levenshtein edit distance is used as measure of approximateness: it is the (possibly cost-
weighted) total number of insertions, deletions and substitutions required to transform one string

into another.

This uses tre by Ville Laurikari (http://laurikari.net/tre/), which supports MBCS character

matching.

The main effect of useBytes is to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales. It inhibits the conversion of inputs with marked encodings, and is forced if any
input is found which is marked as "bytes” (see Encoding).

Value

agrep returns a vector giving the indices of the elements that yielded a match, or, if value is TRUE,
the matched elements (after coercion, preserving names but no other attributes).

agrepl returns a logical vector.

Note

Since someone who read the description carelessly even filed a bug report on it, do note that this
matches substrings of each element of x (just as grep does) and not whole elements. See also adist
in package utils, which optionally returns the offsets of the matched substrings.

Author(s)

Original version in R < 2.10.0 by David Meyer. Current version by Brian Ripley and Kurt Hornik.

See Also

grep, adist. A different interface to approximate string matching is provided by aregexec().

Examples

agrep("lasy”, "1 lazy 2")
agrep("lasy”, c(” 1 lazy 2", "1 lasy 2"), max = list(sub = 0))

agrep("laysy"”, c("1 lazy”, "1", "1 LAZY"), max
agrep("laysy”, c("1 lazy”, "1", "1 LAZY"), max

2)
2, value = TRUE)

agrep("laysy”, c("1 lazy"”, "1", "1 LAZY"), max = 2, ignore.case = TRUE)

http://laurikari.net/tre/

all 11

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage
all(..., na.rm = FALSE)
Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NA values are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments . . . should be unnamed, and dispatch is on the first argu-
ment.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . . . (after coercion), after removing NAs
if requested by na.rm = TRUE.

The value returned is TRUE if all of the values in x are TRUE (including if there are no values), and
FALSE if at least one of the values in x is FALSE. Otherwise the value is NA (which can only occur if

na.rm= FALSE and . .. contains no FALSE values and at least one NA value).
S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, . ..,na.rm.
Note

That all(logical(@)) is true is a useful convention: it ensures that
all(all(x), all(y)) == all(x, y)

even if x has length zero.

12 all.equal

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

any, the ‘complement’ of all, and stopifnot(*) which is an all(*) ‘insurance’.

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0@)) cat("all x values are negative\n")

all(logical(@®)) # true, as all zero of the elements are true.

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal(x,y) is a utility to compare R objects x and y testing ‘near equality’. If they are
different, comparison is still made to some extent, and a report of the differences is returned. Do not

use all.equal directly in if expressions—either use isTRUE(all.equal(....)) or identical
if appropriate.

Usage
all.equal(target, current, ...)

S3 method for class 'numeric'
all.equal(target, current,
tolerance = sqgrt(.Machine$double.eps), scale = NULL,
countEQ = FALSE,
formatFUN = function(err, what) format(err),
., check.attributes = TRUE)

S3 method for class 'list'
all.equal(target, current, ...,
check.attributes = TRUE, use.names = TRUE)

S3 method for class 'environment'
all.equal(target, current, all.names=TRUE, ...)

S3 method for class 'POSIXt'

all.equal(target, current, ..., tolerance = 1e-3, scale)

attr.all.equal(target, current, ...,
check.attributes = TRUE, check.names = TRUE)

all.equal 13

Arguments

target R object.

current other R object, to be compared with target.
further arguments for different methods, notably the following two, for numeri-
cal comparison:

tolerance numeric > 0. Differences smaller than tolerance are not reported. The default
value is close to 1.5e-8.

scale NULL or numeric > 0, typically of length 1 or length(target). See ‘Details’.

countEQ logical indicating if the target == current cases should be counted when com-
puting the mean (absolute or relative) differences. The default, FALSE may seem
misleading in cases where target and current only differ in a few places; see
the extensive example.

formatFUN a function of two arguments, err, the relative, absolute or scaled error, and

what, a character string indicating the kind of error; maybe used, e.g., to format
relative and absolute errors differently.

check.attributes
logical indicating if the attributes of target and current (other than the
names) should be compared.

use.names logical indicating if 1ist comparison should report differing components by
name (if matching) instead of integer index. Note that this comes after ... and
so must be specified by its full name.
all.names logical passed to 1s indicating if “hidden” objects should also be considered in
the environments.
check.names logical indicating if the names(.) of target and current should be compared.
Details

all.equal is a generic function, dispatching methods on the target argument. To see the available
methods, use methods(”all.equal”), but note that the default method also does some dispatching,
e.g. using the raw method for logical targets.

Remember that arguments which follow ... must be specified by (unabbreviated) name. It is
inadvisable to pass unnamed arguments in . . . as these will match different arguments in different
methods.

Numerical comparisons for scale = NULL (the default) are typically on relative difference scale un-
less the target values are close to zero: First, the mean absolute difference of the two numerical
vectors is computed. If this is smaller than tolerance or not finite, absolute differences are used,
otherwise relative differences scaled by the mean absolute target value. Note that these com-
parisons are computed only for those vector elements where target is not NA and differs from
current. If countEQ is true, the equal and NA cases are counted in determining “sample” size.

If scale is numeric (and positive), absolute comparisons are made after scaling (dividing) by scale.

For complex target, the modulus (Mod) of the difference is used: all.equal.numeric is called so
arguments tolerance and scale are available.

The 1ist method compares components of target and current recursively, passing all other ar-
guments, as long as both are “list-like”, i.e., fulfill either is.vector or is.list.

14 all.equal

The environment method works via the 1ist method, and is also used for reference classes (unless
a specific all.equal method is defined).

The methods for the date-time classes by default allow a tolerance of tolerance = 9.00@1 seconds,
and ignore scale.

attr.all.equal is used for comparing attributes, returning NULL or a character vector.

Value
Either TRUE (NULL for attr.all.equal) or a vector of mode "character” describing the differ-
ences between target and current.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

identical, isTRUE, ==, and all for exact equality testing.

Examples

all.equal(pi, 355/113)
not precise enough (default tol) > relative error

d45 <- pix(1/4 + 1:10)

stopifnot(
all.equal(tan(d45), rep(1, 10))) # TRUE, but
all (tan(d45) == rep(1, 10)) # FALSE, since not exactly

all.equal(tan(d45), rep(1, 10), tolerance = @) # to see difference
advanced: equality of environments
ae <- all.equal(as.environment("”package:stats"),
asNamespace("stats"”))
stopifnot(is.character(ae), length(ae) > 10,
were incorrectly "considered equal” in R <= 3.1.1
all.equal(asNamespace("stats"”), asNamespace("stats")))

A situation where ‘'countEQ = TRUE' makes sense:
X1 <= x2 <= (1:100)/10; x2[2] <- 1.1*x1[2]
99 out of 100 pairs (x1[i], x2[i]) are equal:

plot(x1,x2, main = "all.equal.numeric() -- not counting equal parts”)
all.equal(x1,x2) ## "Mean relative difference: 0.1"
mtext(paste(”all.equal(x1,x2) :", all.equal(x1,x2)), line= -2)

##' extract the 'Mean relative difference' as number:

all.egNum <- function(...) as.numeric(sub(”.*:", '', all.equal(...)))

set.seed(17)

When x2 is jittered, typically all pairs (x1[i],x2[i]) do differ:

summary (r <- replicate(100, all.egNum(x1, x2*(1+rnorm(x1)x1e-7))))

mtext(paste(”"mean(all.equal(x1, x2*x(1 + eps_k))) {100 x} Mean rel.diff.=",
signif(mean(r), 3)), line = -4, adj=0)

With argument countEQ=TRUE, get "the same” (w/o need for jittering):

all.names 15

mtext(paste(”all.equal(x1,x2, countEQ=TRUE) :",
signif(all.egNum(x1,x2, countEQ=TRUE), 3)), line= -6, col=2)

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage
all.names(expr, functions = TRUE, max.names = -1L, unique = FALSE)
all.vars(expr, functions = FALSE, max.names = -1L, unique = TRUE)
Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in the
result.
max .names the maximum number of names to be returned. -1 indicates no limit (other than
vector size limits).
unique a logical value which indicates whether duplicate names should be removed
from the value.
Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

See Also

substitute to replace symbols with values in an expression.

Examples

all.names(expression(sin(x+y)))
all.names(quote(sin(x+y))) # or a call
all.vars(expression(sin(x+y)))

16 any

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage
any(..., na.rm = FALSE)
Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NA values are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments . . . should be unnamed, and dispatch is on the first argu-
ment.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . . . (after coercion), after removing NAs
if requested by na.rm = TRUE.

The value returned is TRUE if at least one of the values in x is TRUE, and FALSE if all of the values
in x are FALSE (including if there are no values). Otherwise the value is NA (which can only occur if

na.rm= FALSE and . .. contains no TRUE values and at least one NA value).
S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, . ..,na.rm.
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

all, the ‘complement’ of any.

aperm 17

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2, 1)))
if(any(x < @)) cat("x contains negative values\n")

aperm Array Transposition

Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage
aperm(a, perm, ...)
Default S3 method:
aperm(a, perm = NULL, resize = TRUE, ...)
S3 method for class 'table'
aperm(a, perm = NULL, resize = TRUE, keep.class = TRUE, ...)
Arguments
a the array to be transposed.
perm the subscript permutation vector, usually a permutation of the integers 1:n,
where n is the number of dimensions of a. When a has named dimnames, it
can be a character vector of length n giving a permutation of those names. The
default (used whenever perm has zero length) is to reverse the order of the di-
mensions.
resize a flag indicating whether the vector should be resized as well as having its ele-
ments reordered (default TRUE).
keep.class logical indicating if the result should be of the same class as a.
potential further arguments of methods.
Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If resize
is TRUE, the array is reshaped as well as having its elements permuted, the dimnames are also per-
muted; if resize = FALSE then the returned object has the same dimensions as a, and the dimnames
are dropped. In each case other attributes are copied from a.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, <J.C.Rougier@durham.ac.uk> did the faster C implementation.

18 append
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
See Also
t, to transpose matrices.
Examples
interchange the first two subscripts on a 3-way array x
X <- array(1:24, 2:4)
xt <- aperm(x, c(2,1,3))
stopifnot(t(xt[,,2]) == x[,,2],
t(xtl,,31) == x[,,3],
t(xtl,,4]) == x[,,4D
UCB <- aperm(UCBAdmissions, c(2,1,3))
UCBLT,, 1
summary(UCB) # UCB is still a contingency table
append Vector Merging
Description
Add elements to a vector.
Usage
append(x, values, after = length(x))
Arguments
X the vector the values are to be appended to.
values to be included in the modified vector.
after a subscript, after which the values are to be appended.
Value
A vector containing the values in x with the elements of values appended after the specified element
of x.
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Brooks/Cole.

Wadsworth &

apply 19

Examples

append(1:5, @:1, after = 3)

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array or

matrix.
Usage

apply (X, MARGIN, FUN, ...)
Arguments

X an array, including a matrix.

MARGIN a vector giving the subscripts which the function will be applied over. E.g.,
for a matrix 1 indicates rows, 2 indicates columns, c(1,2) indicates rows and
columns. Where X has named dimnames, it can be a character vector selecting
dimension names.

FUN the function to be applied: see ‘Details’. In the case of functions like +, %%,
etc., the function name must be backquoted or quoted.
optional arguments to FUN.

Details

If X is not an array but an object of a class with a non-null dim value (such as a data frame), apply
attempts to coerce it to an array via as.matrix if it is two-dimensional (e.g., a data frame) or via
as.array.

FUN is found by a call to match. fun and typically is either a function or a symbol (e.g., a backquoted
name) or a character string specifying a function to be searched for from the environment of the call

to apply.

Arguments in ... cannot have the same name as any of the other arguments, and care may be
needed to avoid partial matching to MARGIN or FUN. In general-purpose code it is good practice to
name the first three arguments if . . . is passed through: this both avoids partial matching to MARGIN
or FUN and ensures that a sensible error message is given if arguments named X, MARGIN or FUN are
passed through

20 apply

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension
c(n,dim(X)[MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length 1 and an
array of dimension dim(X) [MARGIN] otherwise. If n is 9, the result has length O but not necessarily
the ‘correct’ dimension.

If the calls to FUN return vectors of different lengths, apply returns a list of length
prod(dim(X) [MARGIN]) with dim set to MARGIN if this has length greater than one.

In all cases the result is coerced by as. vector to one of the basic vector types before the dimensions
are set, so that (for example) factor results will be coerced to a character array.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lapply and there, simplify2array; tapply, and convenience functions sweep and aggregate.

Examples

Compute row and column sums for a matrix:

x <= cbind(x1 = 3, x2 = c(4:1, 2:5))

dimnames(x)[[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

keeping named dimnames
names (dimnames(x)) <- c("row”, "col")
x3 <- array(x, dim = c(dim(x),3),
dimnames = c(dimnames(x), list(C = paste@("cop.",1:3))))
identical(x, apply(x, 2, identity))
identical(x3, apply(x3, 2:3, identity))

##- function with extra args:
cave <- function(x, cl1, c2) c(mean(x[c1]), mean(x[c2]))
apply(x, 1, cave, c1 = "x1", c2 = c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nrow = 2)

ma

apply(ma, 1, table) #--> a list of length 2

apply(ma, 1, stats::quantile) # 5 x n matrix with rownames

args 21

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call

z <- array(1:24, dim = 2:4)

zseq <- apply(z, 1:2, function(x) seg_len(max(x)))
zseq ## a 2 x 3 matrix

typeof (zseq) ## list

dim(zseq) ## 2 3

zseq[1,]

apply(z, 3, function(x) seg_len(max(x)))

a list without a dim attribute

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

Usage
args(name)
Arguments
name a function (a closure or a primitive). If name is a character string then the func-
tion with that name is found and used.
Details

This function is mainly used interactively to print the argument list of a function. For programming,
consider using formals instead.
Value

For a closure, a closure with identical formal argument list but an empty (NULL) body.

For a primitive, a closure with the documented usage and NULL body. Note that some primitives do
not make use of named arguments and match by position rather than name.

NULL in case of a non-function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals, help; str also prints the argument list of a function.

22

Examples

"regular” (non-primitive) functions "print their arguments”

(by returning another function with NULL body which you also see):
args(ls)

args(graphics: :plot.default)

utils::str(ls) # (just "prints”: does not show a NULL)

You can also pass a string naming a function.

args("scan")

...but :: package specification doesn't work in this case.
tryCatch(args("graphics::plot.default”), error = print)

As explained above, args() gives a function with empty body:
list(is.f = is.function(args(scan)), body = body(args(scan)))

Primitive functions mostly behave like non-primitive functions.
args(c)
args(t+%)

primitive functions without well-defined argument list return NULL:

args(tift)

Arithmetic

Arithmetic Arithmetic Operators

Description

These unary and binary operators perform arithmetic on numeric or complex vectors (or objects

which can be coerced to them).

Usage

1
+ X X

<K K K K K

%% Y
%/% 'y

X X X X X X X
> N %

Arguments

X,y numeric or complex vectors or objects which can be coerced to such, or other

objects for which methods have been written.

Arithmetic 23

Details

The unary and binary arithmetic operators are generic functions: methods can be written for them
individually or via the Ops group generic function. (See Ops for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors, FALSE having value zero and TRUE
having value one.

1*yandy " @are 1, always. x * y should also give the proper limit result when either (numeric)
argument is infinite (one of Inf or -Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For double arguments, %% can be subject to catastrophic loss of accuracy if x is much larger than y,
and a warning is given if this is detected.

%% and x %/% y can be used for non-integer y, e.g. 1 %/% @. 2, but the results are subject to repre-
sentation error and so may be platform-dependent. Because the IEC 60059 representation of . 2 is
a binary fraction slightly larger than 0. 2, the answer to 1 %/% @.2 should be 4 but most platforms
give 5.

Users are sometimes surprised by the value returned, for example why (-8)*(1/3) is NaN. For
double inputs, R makes use of IEC 60559 arithmetic on all platforms, together with the C system
function ‘pow’ for the * operator. The relevant standards define the result in many corner cases. In
particular, the result in the example above is mandated by the C99 standard. On many Unix-alike
systems the command man pow gives details of the values in a large number of corner cases.

Arithmetic on type double in R is supposed to be done in ‘round to nearest, ties to even’ mode, but
this does depend on the compiler and FPU being set up correctly.

Value

Unary + and unary - return a numeric or complex vector. All attributes (including class) are pre-
served if there is no coercion: logical x is coerced to integer and names, dims and dimnames are
preserved.

The binary operators return vectors containing the result of the element by element operations. If
involving a zero-length vector the result has length zero. Otherwise, the elements of shorter vectors
are recycled as necessary (with a warning when they are recycled only fractionally). The operators
are + for addition, - for subtraction, * for multiplication, / for division and * for exponentiation.

%% indicates x mod y and %/% indicates integer division. It is guaranteed that x == (x %% y) +y *
(x%/%y) (up to rounding error) unless y == @ where the result of %% is NA_integer_ or NaN
(depending on the typeof of the arguments), and for non-finite arguments.

If either argument is complex the result will be complex, otherwise if one or both arguments are
numeric, the result will be numeric. If both arguments are of type integer, the type of the result of /
and * is numeric and for the other operators it is integer (with overflow, which occurs at j:(231 —1),
returned as NA_integer_ with a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are
taken from the longer argument. Names will be copied from the first if it is the same length as the
answer, otherwise from the second if that is. If the arguments are the same length, attributes will
be copied from both, with those of the first argument taking precedence when the same attribute

24

Arithmetic

is present in both arguments. For time series, these operations are allowed only if the series are
compatible, when the class and tsp attribute of whichever is a time series (the same, if both are) are
used. For arrays (and an array result) the dimensions and dimnames are taken from first argument
if it is an array, otherwise the second.

S4 methods

These operators are members of the S4 Arith group generic, and so methods can be written for them
individually as well as for the group generic (or the Ops group generic), with arguments c(el,e2)
(with e2 missing for a unary operator).

Implementation limits

R is dependent on OS services (and they on FPUs) for floating-point arithmetic. On all current R
platforms IEC 60559 (also known as IEEE 754) arithmetic is used, but some things in those stan-
dards are optional. In particular, the support for denormal numbers (those outside the range given
by .Machine) may differ between platforms and even between calculations on a single platform.

Another potential issue is signed zeroes: on IEC 60659 platforms there are two zeroes with internal
representations differing by sign. Where possible R treats them as the same, but for example direct
output from C code often does not do so and may output ‘-0.0’ (and on Windows whether it does
so or not depends on the version of Windows). One place in R where the difference might be
seen is in division by zero: 1/x is Inf or -Inf depending on the sign of zero x. Another place is
identical(@,-0,num.eq = FALSE).

Note

All logical operations involving a zero-length vector have a zero-length result.

The binary operators are sometimes called as functions as e.g. *&*(x,y): see the description of
how argument-matching is done in Ops.

*% is translated in the parser to *, but this was undocumented for many years. It appears as an index
entry in Becker et al (1988), pointing to the help for Deprecated but is not actually mentioned on
that page. Even though it had been deprecated in S for 20 years, it was still accepted in R in 2008.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

D. Goldberg (1991). What Every Computer Scientist Should Know about Floating-Point Arith-
metic. ACM Computing Surveys, 23(1), 5-48. doi: 10.1145/103162.103163.

Postscript version available at http://www.validlab.com/goldberg/paper.ps. Extended PDF
version at http://www.validlab.com/goldberg/paper.pdf.

See Also

sqgrt for miscellaneous and Special for special mathematical functions.
Syntax for operator precedence.

%% for matrix multiplication.

https://doi.org/10.1145/103162.103163
http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf

array

Examples

<= -1:12
+ 1

25

%% 2 #-- is periodic

X
X
2 x x +3
X
X

%/% 5

array

Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)

as.array(x,
is.array(x)

Arguments

data

dim

dimnames

Details

>

a vector (including a list or expression vector) giving data to fill the array.
Non-atomic classed objects are coerced by as.vector.

the dim attribute for the array to be created, that is an integer vector of length
one or more giving the maximal indices in each dimension.

either NULL or the names for the dimensions. This must a list (or it will be
ignored) with one component for each dimension, either NULL or a character
vector of the length given by dim for that dimension. The list can be named, and
the list names will be used as names for the dimensions. If the list is shorter than
the number of dimensions, it is extended by NULLs to the length required.

an R object.

additional arguments to be passed to or from methods.

An array in R can have one, two or more dimensions. It is simply a vector which is stored with addi-
tional attributes giving the dimensions (attribute "dim") and optionally names for those dimensions
(attribute "dimnames”).

A two-dimensional array is the same thing as a matrix.

One-dimensional arrays often look like vectors, but may be handled differently by some functions:
str does distinguish them in recent versions of R.

The "dim" attribute is an integer vector of length one or more containing non-negative values: the
product of the values must match the length of the array.

26

array

The "dimnames” attribute is optional: if present it is a list with one component for each dimension,
either NULL or a character vector of the length given by the element of the "dim" attribute for that
dimension.

is.array is a primitive function.

For a list array, the print methods prints entries of length not one in the form ‘integer, 7’ indicat-
ing the type and length.

Value

array returns an array with the extents specified in dim and naming information in dimnames. The
values in data are taken to be those in the array with the leftmost subscript moving fastest. If there
are too few elements in data to fill the array, then the elements in data are recycled. If data has
length zero, NA of an appropriate type is used for atomic vectors (@ for raw vectors) and NULL for
lists.

Unlike matrix, array does not currently remove any attributes left by as.vector from a classed
list data, so can return a list array with a class attribute.

as.array is a generic function for coercing to arrays. The default method does so by attaching a
dim attribute to it. It also attaches dimnames if x has names. The sole purpose of this is to make it
possible to access the dim[names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., has a dim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, see InternalMethods.

Note

is.array is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm, matrix, dim, dimnames.

Examples

dim(as.array(letters))

array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times”
[,11 0,21 [,3] [,4]

#[1,1] 1 3 2 1

#[2,] 2 1 3 2

as.data.frame

27

as.data.frame

Coerce to a Data Frame

Description

Functions to check if an object is a data frame, or coerce it if possible.

Usage

as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S3 method for class 'character'
as.data.frame(x, ...,

stringsAsFactors = default.stringsAsFactors())

S3 method for class 'list'
as.data.frame(x, row.names = NULL, optional = FALSE, ...,

cut.names = FALSE, col.names = names(x), fix.empty.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

S3 method for class 'matrix'
as.data.frame(x, row.names = NULL, optional = FALSE,

make.names = TRUE, ...,
stringsAsFactors = default.stringsAsFactors())

is.data.frame(x)

Arguments

X any R object.

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to syntac-
tic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment,
basically with the meaning of data. frame(*, check.names = loptional). See
also the make . names argument of the matrix method.
additional arguments to be passed to or from methods.

stringsAsFactors
logical: should the character vector be converted to a factor?

cut.names logical or integer; indicating if column names with more than 256 (or cut. names
if that is numeric) characters should be shortened (and the last 6 characters re-
placed by " ...").

col.names (optional) character vector of column names.

28 as.data.frame

fix.empty.names
logical indicating if empty column names, i.e.,
data.frame) or not.

nn

should be fixed up (in

make.names a logical, i.e., one of FALSE,NA, TRUE, indicating what should happen if the
row names (of the matrix x) are invalid. If they are invalid, the default, TRUE,
calls make . names (*,unique=TRUE); make.names=NA will use “automatic” row
names and a FALSE value will signal an error for invalid row names.

Details

as.data. frame is a generic function with many methods, and users and packages can supply fur-
ther methods. For classes that act as vectors, often a copy of as.data. frame.vector will work as
the method.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each
column of a matrix is converted separately. This can be overridden if the object has a class which
has a method for as.data.frame: two examples are matrices of class "model.matrix” (which
are included as a single column) and list objects of class "POSIX1t"” which are coerced to class
"POSIXct".

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected by I.

If a data frame is supplied, all classes preceding "data.frame” are stripped, and the row names are
changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, otherwise are
the integer sequence starting at one. Few of the methods check for duplicated row names. Names
are removed from vector columns unless I.

Value

as.data. frame returns a data frame, normally with all row names "" if optional = TRUE.

is.data.frame returns TRUE if its argument is a data frame (that is, has "data. frame” amongst its
classes) and FALSE otherwise.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, as.data.frame.table for the table method (which has additional arguments if
called directly).

as.Date

29

as.Date

Date Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of class "Date"” representing

calendar dates.

Usage

as.Date(x, ...)

S3 method for class 'character'

as.Date(x, format, tryFormats = c("%Y-%m-%d", "%Y/%m/%d"),
optional = FALSE, ...)

S3 method for class 'numeric'

as.Date(x, origin, ...)

S3 method for class 'POSIXct'

as.Date(x, tz = "UTC", ...)

S3 method for class 'Date'’

format(x, ...)

S3 method for class 'Date'’

as.character(x,

Arguments

X

format

tryFormats
optional
origin

tz

Details

)

an object to be converted.

character string. If not specified, it will try tryFormats one by one on the first
non-NA element, and give an error if none works. Otherwise, the processing is
via strptime.

character vector of format strings to try if format is not specified.

logical indicating to return NA (instead of signalling an error) if the format
guessing does not succeed.

a Date object, or something which can be coerced by as.Date(origin,...) to
such an object.

a time zone name.

further arguments to be passed from or to other methods, including format for
as.character and as.Date methods.

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

30

as.Date

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logical NA and objects of classes "POSIX1t"
and "POSIXct”. (The last is converted to days by ignoring the time after midnight in the represen-
tation of the time in specified time zone, default UTC.) Also objects of class "date” (from package
date) and "dates” (from package chron). Character strings are processed as far as necessary for
the format specified: any trailing characters are ignored.

as.Date will accept numeric data (the number of days since an epoch), but only if origin is sup-
plied.

The format and as.character methods ignore any fractional part of the date.

Value

The format and as.character methods return a character vector representing the date. NA dates
are returned as NA_character_.

The as.Date methods return an object of class "Date”.

Conversion from other Systems

Most systems record dates internally as the number of days since some origin, but this is fraught
with problems, including

* Is the origin day O or day 1? As the ‘Examples’ show, Excel manages to use both choices for
its two date systems.

* If the origin is far enough back, the designers may show their ignorance of calendar systems.
For example, Excel’s designer thought 1900 was a leap year (claiming to copy the error from
earlier DOS spreadsheets), and Matlab’s designer chose the non-existent date of ‘January
0, 0000’ (there is no such day), not specifying the calendar. (There is such a year in the
‘Gregorian’ calendar as used in ISO 8601:2004, but that does say that it is only to be used for
years before 1582 with the agreement of the parties in information exchange.)

The only safe procedure is to check the other systems values for known dates: reports on the Internet
(including R-help) are more often wrong than right.

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-03".

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA. Unfortunately some common implementations (such as ‘glibc’) are unreliable and guess at the
intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

as.Date 31

References

International Organization for Standardization (2004, 1988, 1997, ...) ISO 8601. Data elements
and interchange formats — Information interchange — Representation of dates and times. For links to
versions available on-line see (at the time of writing) http://www.qgsl.net/gl1smd/isopdf.htm.

See Also

Date for details of the date class; locales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats. Windows
users will find no help page for strptime: code based on ‘glibc’ is used (with corrections), so all
the format specifiers described here are supported, but with no alternative number representation
nor era available in any locale.

Examples

locale-specific version of the date
format(Sys.Date(), "%a %b %d")

read in date info in format 'ddmmmyyyy'

This will give NA(s) in some locales; setting the C locale

as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <= c("1jan1960", "2jan1960", "31mar1960", "30jul1960")

z <- as.Date(x, "%d%b%Y")

Sys.setlocale("LC_TIME", 1lct)

z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date(dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date(32768, origin = "1900-01-01")

Excel is said to use 1900-01-01 as day 1 (Windows default) or

1904-01-01 as day @ (Mac default), but this is complicated by Excel
incorrectly treating 1900 as a leap year.

So for dates (post-1901) from Windows Excel

as.Date(35981, origin = "1899-12-30") # 1998-07-05

and Mac Excel

as.Date(34519, origin = "1904-01-01") # 1998-07-05

(these values come from http://support.microsoft.com/kb/214330)

Experiment shows that Matlab's origin is 719529 days before ours,

(it takes the non-existent 0000-01-01 as day 1)

so Matlab day 734373 can be imported as

as.Date(734373, origin = "1970-01-01") - 719529 # 2010-08-23

(value from

http://www.mathworks.de/de/help/matlab/matlab_prog/represent-date-and-times-in-MATLAB.html)

Time zone effect

http://www.qsl.net/g1smd/isopdf.htm

32 as.environment

z <- ISOdate(2010, 04, 13, c(0,12)) # midnight and midday UTC
as.Date(z) # in UTC

these time zone names are common

as.Date(z, tz = "NZ")

as.Date(z, tz = "HST") # Hawaii

as.environment Coerce to an Environment Object

Description

A generic function coercing an R object to an environment. A number or a character string is
converted to the corresponding environment on the search path.

Usage

as.environment(x)

Arguments

X an R object to convert. If it is already an environment, just return it. If it is a
positive number, return the environment corresponding to that position on the
search list. If it is -1, the environment it is called from. If it is a character string,
match the string to the names on the search list.

If it is a list, the equivalent of 1ist2env(x,parent = emptyenv()) is returned.

If is.object(x) is true and it has a class for which an as.environment
method is found, that is used.

Value

The corresponding environment object.

Note

This is a primitive function.

Author(s)

John Chambers

See Also

environment for creation and manipulation, search; list2env.

as.function 33

Examples

as.environment(1) ## the global environment

identical(globalenv(), as.environment(1)) ## is TRUE

try(## <<- stats need not be attached
as.environment("package:stats"))

ee <- as.environment(list(a = "A", b = pi, ch = letters[1:8]))

1s(ee) # names of objects in ee

utils::1s.str(ee)

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.
as.function.default works on a list x, which should contain the concatenation of a formal argu-
ment list and an expression or an object of mode "call” which will become the function body. The
function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:

as.function(x, envir = parent.frame(), ...)
Arguments
X object to convert, a list for the default method.

additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.

Note

For ancient historical reasons, envir = NULL uses the global environment rather than the base envi-
ronment. Please use envir = globalenv() instead if this is what you want, as the special handling
of NULL may change in a future release.

Author(s)

Peter Dalgaard

34 as.POSIX*
See Also
function; alist which is handy for the construction of argument lists, etc.
Examples
as.function(alist(a =, b = 2, ath))
as.function(alist(a =, b = 2, at+bh))(3)
as.POSIX* Date-time Conversion Functions
Description
Functions to manipulate objects of classes "POSIX1t"” and "POSIXct"” representing calendar dates
and times.
Usage
as.POSIXct(x, tz ="", ...)
as.POSIX1t(x, tz ="", ...)
S3 method for class 'character'
as.POSIX1t(x, tz = "", format,
tryFormats = c("%Y-%m-%d %H:%M:%0S",
"%Y/%m/%d %H:%M:%0S",
"%Y-%m-%d %H:%M",
"%Y/%m/%d %H:%M",
"%Y=%m-%d",
"%Y/%m/%d"),
optional = FALSE, ...)
Default S3 method:
as.POSIX1t(x, tz = "",
optional = FALSE, ...)
S3 method for class 'numeric'
as.POSIX1t(x, tz = "", origin, ...)
S3 method for class 'POSIX1t'
as.double(x, ...)
Arguments
X R object to be converted.
tz time zone specification to be used for the conversion, if one is required. System-

nn

specific (see time zones), but is the current time zone, and "GMT" is UTC
(Universal Time, Coordinated). Invalid values are most commonly treated as
UTC, on some platforms with a warning.

further arguments to be passed to or from other methods.

as.POSIX* 35

format character string giving a date-time format as used by strptime.
tryFormats character vector of format strings to try if format is not specified.
optional logical indicating to return NA (instead of signalling an error) if the format

guessing does not succeed.

origin a date-time object, or something which can be coerced by as.POSIXct(tz =
"GMT") to such an object.

Details

The as.POSIX* functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert objects of the other class and of
class "Date” to these classes. Dates without times are treated as being at midnight UTC.

They can also convert character strings of the formats "2001-02-03" and "2001/02/@3" option-
ally followed by white space and a time in the format "14:52" or "14:52:03". (Formats such as
"01/02/03" are ambiguous but can be converted via a format specification by strptime.) Frac-
tional seconds are allowed. Alternatively, format can be specified for character vectors or factors:
if it is not specified and no standard format works for all non-NA inputs an error is thrown.

If format is specified, remember that some of the format specifications are locale-specific, and you
may need to set the LC_TIME category appropriately via Sys.setlocale. This most often affects
the use of %b, %B (month names) and %p (AM/PM).

Logical NAs can be converted to either of the classes, but no other logical vectors can be.
If you are given a numeric time as the number of seconds since an epoch, see the examples.

Character input is first converted to class "POSIX1t" by strptime: numeric input is first converted
to "POSIXct"”. Any conversion that needs to go between the two date-time classes requires a time
zone: conversion from "POSIX1t" to "POSIXct" will validate times in the selected time zone. One
issue is what happens at transitions to and from DST, for example in the UK

as.POSIXct(strptime(”2011-03-27 01:30:00", "%Y-%m-%d %H:%M:%S"))
as.POSIXct(strptime(”2010-10-31 01:30:00", "%Y-%m-%d %H:%M:%S"))

are respectively invalid (the clocks went forward at 1:00 GMT to 2:00 BST) and ambiguous (the
clocks went back at 2:00 BST to 1:00 GMT). What happens in such cases is OS-specific: one should
expect the first to be NA, but the second could be interpreted as either BST or GMT (and common
OSes give both possible values). Note too (see strftime) that OS facilities may not format invalid
times correctly.

Value

as.POSIXct and as.POSIX1t return an object of the appropriate class. If tz was specified,
as.POSIX1t will give an appropriate "tzone” attribute. Date-times known to be invalid will be
returned as NA.

Note

Some of the concepts used have to be extended backwards in time (the usage is said to be ‘pro-
leptic’). For example, the origin of time for the "POSIXct” class, ‘1970-01-01 00:00.00 UTC’,

36

as.POSIX*

is before UTC was defined. More importantly, conversion is done assuming the Gregorian cal-
endar which was introduced in 1582 and not used universally until the 20th century. One of the
re-interpretations assumed by ISO 8601:2004 is that there was a year zero, even though current
year numbering (and zero) is a much later concept (525 AD for year numbers from 1 AD).

Conversions between "POSIX1t" and "POSIXct" of future times are speculative except in UTC.
The main uncertainty is in the use of and transitions to/from DST (most systems will assume the
continuation of current rules but these can be changed at short notice).

If you want to extract specific aspects of a time (such as the day of the week) just convert it to class
"POSIX1t" and extract the relevant component(s) of the list, or if you want a character representa-
tion (such as a named day of the week) use the format method.

If a time zone is needed and that specified is invalid on your system, what happens is system-specific
but attempts to set it will probably be ignored.

Conversion from character needs to find a suitable format unless one is supplied (by trying common
formats in turn): this can be slow for long inputs.

See Also

DateTimeClasses for details of the classes; strptime for conversion to and from character repre-
sentations.

Sys.timezone for details of the (system-specific) naming of time zones.

locales for locale-specific aspects.

Examples
(z <= Sys.time()) # the current datetime, as class "POSIXct”
unclass(z) # a large integer
floor(unclass(z)/86400) # the number of days since 1970-01-01 (UTC)
(now <- as.POSIX1t(Sys.time())) # the current datetime, as class "POSIX1t"
unlist(unclass(now)) # a list shown as a named vector
now$year + 1900 # see ?DateTimeClasses
months(now); weekdays(now) # see ?months

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
(the origin used by SAS)

z <- 1472562988

ways to convert this

as.POSIXct(z, origin = "1960-01-01") # local
as.POSIXct(z, origin = "1960-01-01", tz = "GMT") # in UTC

SPSS dates (R-help 2006-02-16)
z <- c(10485849600, 10477641600, 10561104000, 10562745600)
as.Date(as.POSIXct(z, origin = "1582-10-14", tz = "GMT"))

Stata date-times: milliseconds since 1960-01-01 00:00:00 GMT
format %tc excludes leap-seconds, assumed here

For format %tC including leap seconds, see foreign::read.dta()
z <- 1579598122120

op <- options(digits.secs = 3)

Asls 37

avoid rounding down: milliseconds are not exactly representable
as.POSIXct((z+0.1)/1000, origin = "1960-01-01")
options(op)

Matlab 'serial day number' (days and fractional days)
z <- 7.343736909722223e5 # 2010-08-23 16:35:00
as.POSIXct((z - 719529)*86400, origin = "1970-01-01", tz = "UTC")

as.POSIX1t(Sys.time(), "GMT") # the current time in UTC

These may not be correct names on your system
as.POSIX1t(Sys.time(), "America/New_York") # in New York
as.POSIX1t(Sys.time(), "EST5EDT") # alternative.
as.POSIX1t(Sys.time(), "EST") # somewhere in Eastern Canada
as.POSIX1t(Sys.time(), "HST") # in Hawaii
as.POSIX1t(Sys.time(), "Australia/Darwin")

AsIs Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated ‘as is’.

Usage
I

Arguments

X an object

Details
Function I has two main uses.

¢ In function data. frame. Protecting an object by enclosing it in I() in a call to data.frame
inhibits the conversion of character vectors to factors and the dropping of names, and ensures
that matrices are inserted as single columns. I can also be used to protect objects which are to
be added to a data frame, or converted to a data frame via as.data. frame.
It achieves this by prepending the class "AsIs"” to the object’s classes. Class "AsIs” has a few
of its own methods, including for [, as.data.frame, print and format.

* In function formula. There it is used to inhibit the interpretation of operators such as "+",
"="o"x" and "*" as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol by terms. formula.

Value

A copy of the object with class "AsIs"” prepended to the class(es).

38

asplit

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, formula

asplit Split Array/Matrix By Its Margins

Description

Split an array or matrix by its margins.

Usage

asplit(x, MARGIN)

Arguments

X an array, including a matrix.

MARGIN a vector giving the margins to split by. E.g., for a matrix 1 indicates rows, 2
indicates columns, c(1,2) indicates rows and columns. Where x has named
dimnames, it can be a character vector selecting dimension names.

Details

The values of the splits can also be obtained (less efficiently) by
split(x,slice.index(x,MARGIN)).

apply always simplifies common length results, so attempting to split via
apply(x,MARGIN,identity) does not work (as it simply gives x). By chaining asplit
with lapply or vapply, one can obtain variants of apply which do not auto-simplify.

Value

A “list array” with dimension dv and each element an array of dimension de and dimnames pre-
served as available, where dv and de are, respectively, the dimensions of x included and not included
in MARGIN.

assign

Examples

39

A 3-dimensional array of dimension 2 x 3 x 4:

d<-2:4

x <- array(seq_len(prod(d)), d)

X

Splitting by margin 2 gives a 1-d list array of length 3
consisting of 2 x 4 arrays:

asplit(x, 2)

Spltting by margins 1 and 2 gives a 2 x 3 list array
consisting of 1-d arrays of length 4:a
asplit(x, c(1, 2))

Compare to

split(x, slice.index(x, c(1, 2)))

A 2 x 3 matrix:

(x <= matrix(1

: 6, 2, 3)

To split x by its rows, one can use

asplit(x, 1)

or less efficiently
split(x, slice.index(x, 1))

split(x, row(x))

assign

Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage
assign(x, value, pos = -1, envir = as.environment(pos),
inherits = FALSE, immediate = TRUE)
Arguments
X a variable name, given as a character string. No coercion is done, and the first
element of a character vector of length greater than one will be used, with a
warning.
value a value to be assigned to x.
pos where to do the assignment. By default, assigns into the current environment.
See ‘Details’ for other possibilities.
envir the environment to use. See ‘Details’.
inherits should the enclosing frames of the environment be inspected?
immediate an ignored compatibility feature.

40 assign

Details

There are no restrictions on the name given as x: it can be a non-syntactic name (see make . names).

The pos argument can specify the environment in which to assign the object in any of several
ways: as -1 (the default), as a positive integer (the position in the search list); as the character
string name of an element in the search list; or as an environment (including using sys. frame to
access the currently active function calls). The envir argument is an alternative way to specify an
environment, but is primarily for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: see attach and with.

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no envir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable is
encountered (provided that the binding is not locked: see lockBinding: if it is, an error is signaled).
If the symbol is not encountered then assignment takes place in the user’s workspace (the global
environment).

If inherits is FALSE, assignment takes place in the initial frame of envir, unless an existing
binding is locked or there is no existing binding and the environment is locked (when an error is
signaled).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

<-, get, the inverse of assign(), exists, environment.

Examples
for(i in 1:6) { #-- Create objects 'r.1', 'r.2', ... 'r.6' --
nam <- paste("r", i, sep = ".")

assign(nam, 1:i)
3
ls(pattern = "*r..$")

##-- Global assignment within a function:

myf <- function(x) {
innerf <- function(x) assign("Global.res", x*2, envir = .GlobalEnv)
innerf(x+1)

3

myf(3)

assignOps 41

Global.res # 16

a<-1:4

assign("al1]", 2)

al1] == # FALSE
get("al1]1") == 2 # TRUE

assignOps Assignment Operators

Description

Assign a value to a name.

Usage

x <- value
X <<- value
value -> x
value ->> x

x = value
Arguments
X a variable name (possibly quoted).
value a value to be assigned to x.
Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators <- and = assign into the environment in which they are evaluated. The operator
<- can be used anywhere, whereas the operator = is only allowed at the top level (e.g., in the
complete expression typed at the command prompt) or as one of the subexpressions in a braced list
of expressions.

The operators <<- and ->> are normally only used in functions, and cause a search to be made
through parent environments for an existing definition of the variable being assigned. If such a
variable is found (and its binding is not locked) then its value is redefined, otherwise assignment
takes place in the global environment. Note that their semantics differ from that in the S language,
but are useful in conjunction with the scoping rules of R. See ‘The R Language Definition’ manual
for further details and examples.

In all the assignment operator expressions, x can be a name or an expression defining a part of an
object to be replaced (e.g., z[[1]]). A syntactic name does not need to be quoted, though it can be
(preferably by backticks).

The leftwards forms of assignment <-= <<- group right to left, the other from left to right.

42 attach

Value

value. Thus one can use a <-b <-c <-6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

assign (and its inverse get), for “subassignment” such as x[i] <-v, see [<-; further, environment.

attach Attach Set of R Objects to Search Path

Description

The database is attached to the R search path. This means that the database is searched by R when
evaluating a variable, so objects in the database can be accessed by simply giving their names.

Usage

attach(what, pos = 2L, name = deparse(substitute(what), backtick=FALSE),
warn.conflicts = TRUE)

Arguments
what ‘database’. This can be a data.frame or a list or a R data file created with
save or NULL or an environment. See also ‘Details’.
pos integer specifying position in search() where to attach.
name name to use for the attached database. Names starting with package: are re-

served for library.

warn.conflicts logical. If TRUE, warnings are printed about conflicts from attaching the
database, unless that database contains an object .conflicts.OK. A conflict
is a function masking a function, or a non-function masking a non-function.

Details

When evaluating a variable or function name R searches for that name in the databases listed by
search. The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g., in the example
below, height rather than women$height).

attach 43

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously attached packages and previously attached databases. This can
be altered to attach later in the search path with the pos option, but you cannot attach at pos = 1.

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
are copied into the new environment. If you use <<- or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reason attach can lead to confusion.

One useful ‘trick’ is to use what = NULL (or equivalently a length-zero list) to create a new environ-
ment on the search path into which objects can be assigned by assign or load or sys.source.

n

Names starting "package: " are reserved for library and should not be used by end users. At-
tached files are by default given the name file: what. The name argument given for the attached
environment will be used by search and can be used as the argument to as.environment.

There are hooks to attach user-defined table objects of class "UserDefinedDatabase”, supported
by the Omegahat package RObjectTables. See http://www.omegahat.net/RObjectTables/.

Value

The environment is returned invisibly with a "name" attribute.

Good practice

attach has the side effect of altering the search path and this can easily lead to the wrong object of
a particular name being found. People do often forget to detach databases.

In interactive use, with is usually preferable to the use of attach/detach, unless what is a save()-
produced file in which case attach() is a (safety) wrapper for load().

In programming, functions should not change the search path unless that is their purpose. Often
with can be used within a function. If not, good practice is to

* Always use a distinctive name argument, and

* To immediately follow the attach call by an on.exit call to detach using the distinctive
name.

This ensures that the search path is left unchanged even if the function is interrupted or if code after
the attach call changes the search path.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library, detach, search, objects, environment, with.

http://www.omegahat.net/RObjectTables/

44 attr

Examples

require(utils)

summary (women$height) # refers to variable 'height' in the data frame
attach(women)
summary (height) # The same variable now available by name
height <- height*2.54 # Don't do this. It creates a new variable

in the user's workspace
find("height")

summary (height) # The new variable in the workspace
rm(height)
summary (height) # The original variable.

height <<- height*25.4 # Change the copy in the attached environment
find("height")

summary (height) # The changed copy

detach("women™)

summary (women$height) # unchanged

Not run: ## create an environment on the search path and populate it
sys.source("myfuns.R", envir = attach(NULL, name = "myfuns"))

End(Not run)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which, exact = FALSE)
attr(x, which) <- value

Arguments
X an object whose attributes are to be accessed.
which a non-empty character string specifying which attribute is to be accessed.
exact logical: should which be matched exactly?
value an object, the new value of the attribute, or NULL to remove the attribute.
Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

attributes 45

The extraction function first looks for an exact match to which amongst the attributes of x, then
(unless exact = TRUE) a unique partial match. (Setting options(warnPartialMatchAttr = TRUE)
causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names and tsp)
are treated specially and have restrictions on the values which can be set. (Note that this is not true
of levels which should be set for factors via the levels replacement function.)

The extractor function allows (and does not match) empty and missing values of which: the re-
placement function does not.

NULL objects cannot have attributes and attempting to assign one by attr gives an error.

Both are primitive functions.

Value
For the extractor, the value of the attribute matched, or NULL if no exact match is found and no or
more than one partial match is found.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
X <-1:10
attr(x,"dim") <- c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

Usage

attributes(x)
attributes(x) <- value
mostattributes(x) <- value

46

attributes

Arguments

X any R object

value an appropriate named list of attributes, or NULL.
Details

Unlike attr it is not an error to set attributes on a NULL object: it will first be coerced to an empty
list.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names and tsp)
are treated specially and have restrictions on the values which can be set. (Note that this is not true
of levels which should be set for factors via the levels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vector, i.e, the
order of the elements of attributes() does not matter. This is also reflected by identical()’s
behaviour with the default argument attrib.as.set = TRUE. Attributes must have unique names
(and NA is taken as "NA", not a missing value).

Assigning attributes first removes all attributes, then sets any dim attribute and then the remaining
attributes in the order given: this ensures that setting a dim attribute always precedes the dimnames
attribute.

The mostattributes assignment takes special care for the dim, names and dimnames attributes,
and assigns them only when known to be valid whereas an attributes assignment would give an
error if any are not. It is principally intended for arrays, and should be used with care on classed
objects. For example, it does not check that row.names are assigned correctly for data frames.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement form of attributes).

NULL objects cannot have attributes and attempts to assign them will promote the object to an empty
list.

Both assignment and replacement forms of attributes are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr, structure.

Examples

X <- cbind(a = 1:3, pi = pi) # simple matrix with dimnames
attributes(x)

strip an object's attributes:
attributes(x) <- NULL

x # now just a vector of length 6

mostattributes(x) <- list(mycomment = "really special”, dim = 3:2,

autoload 47

dimnames = 1ist(LETTERS[1:3], letters[1:5]), names = paste(1:6))
x # dim(), but not {dim}names

autoload On-demand Loading of Packages

Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in . AutoloadEnv
environment. When R attempts to evaluate name, autoloader is run, the package is loaded and
name is re-evaluated in the new package’s environment. The result is that R behaves as if package
was loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

Usage
autoload(name, package, reset = FALSE, ...)
autoloader(name, package, ...)
.AutoloadEnv
.Autoloaded

Arguments
name string giving the name of an object.
package string giving the name of a package containing the object.
reset logical: for internal use by autoloader.

other arguments to library.
Value

This function is invoked for its side-effect. It has no return value.

See Also
delayedAssign, library

Examples

require(stats)
autoload("interpSpline”, "splines")
search()

1s("Autoloads”)

.Autoloaded

x <- sort(stats::rnorm(12))
y <= x*2

48 backsolve

is <- interpSpline(x, y)
search() ## now has splines
detach("package:splines”)
search()

is2 <- interpSpline(x, y+x)
search() ## and again
detach("package:splines™)

backsolve Solve an Upper or Lower Triangular System

Description

Solves a triangular system of linear equations.

Usage

backsolve(r, x, k = ncol(r), upper.tri = TRUE,
transpose = FALSE)

forwardsolve(l, x, k = ncol(l), upper.tri = FALSE,
transpose = FALSE)
Arguments
r,1 an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.
X a matrix whose columns give the right-hand sides for the equations.
k The number of columns of r and rows of x to use.
upper.tri logical; if TRUE (default), the upper triangular part of r is used. Otherwise, the
lower one.
transpose logical; if TRUE, solve v’ x y = x for y, i.e., t(r) %*%y == x.
Details

Solves a system of linear equations where the coefficient matrix is upper (or ‘right’, ‘R’) or lower
(‘left’, ‘L") triangular.

x <-backsolve (R,b) solves Rz = b, and
x <-forwardsolve(L,b) solves Lz = b, respectively.

The r/1 must have at least k rows and columns, and x must have at least k rows.

This is a wrapper for the level-3 BLAS routine dtrsm.

Value

The solution of the triangular system. The result will be a vector if x is a vector and a matrix if x is
a matrix.

basename 49

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

See Also

chol, gr, solve.

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),
c(0,1,1),
c(0,0,2))
(y <- backsolve(r, x <- c(8,4,2))) # -1 31
r %%y # ==x = (8,4,2)
backsolve(r, x, transpose = TRUE) # 8 -12 -5

basename Manipulate File Paths

Description

basename removes all of the path up to and including the last path separator (if any).

n o n

dirname returns the part of the path up to but excluding the last path separator, or " . " if there is no
path separator.

Usage

basename (path)
dirname(path)

Arguments

path character vector, containing path names.

Details

For dirname tilde expansion of the path is done.

Trailing path separators are removed before dissecting the path, and for dirname any trailing file
separators are removed from the result.

50 Bessel

Value

A character vector of the same length as path. A zero-length input will give a zero-length output
with no error.

Paths not containing any separators are taken to be in the current directory, so dirname returns ".".
If an element of path is NA, so is the result.

nn

is not a valid pathname, but is returned unchanged.

Behaviour on Windows

On Windows this will accept either \ or / as the path separator, but dirname will return a path using
/ (except if on a network share, when the leading \\ will be preserved). Expect these only to be
able to handle complete paths, and not for example just a network share or a drive.

UTF-8-encoded path names not valid in the current locale can be used.

Note
These are not wrappers for the POSIX system functions of the same names: in particular they do
not have the special handling of the path /" and of returning "." for empty strings.

See Also

file.path, path.expand.

Examples

basename(file.path("","p1","p2","p3", c("filel”, "file2")))
dirname(file.path("","p1","p2","p3","filename"))

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, J,, and Y,,, and Modified
Bessel functions (of first and third kind), I,, and K.

Usage

besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)

Bessel 51

Arguments
X numeric, > 0.
nu numeric; The order (maybe fractional and negative) of the corresponding Bessel

function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
(1) or underflow (K,), respectively.

Details

If expon.scaled = TRUE, e * 1, (z), or e* K, (x) are returned.

For v < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
suboptimal), except for besselK which is symmetric in nu.

The current algorithms will give warnings about accuracy loss for large arguments. In some cases,
these warnings are exaggerated, and the precision is perfect. For large nu, say in the order of
millions, the current algorithms are rarely useful.

Value

Numeric vector with the (scaled, if expon.scaled = TRUE) values of the corresponding Bessel func-
tion.

The length of the result is the maximum of the lengths of the parameters. All parameters are recycled
to that length.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaptation to R: Martin Maechler <maechler@stat.math.ethz.ch>.

Source

The C code is a translation of Fortran routines from http://www.netlib.org/specfun/ribesl,
‘../rjbesl’, etc. The four source code files for bessel[IJKY] each contain a paragraph “Acknowl-
edgement” and ‘“References”, a short summary of which is

bessell based on (code) by David J. Sookne, see Sookne (1973). .. Modifications. . . An earlier ver-
sion was published in Cody (1983).

besselJ as bessell

besselK based on (code) by J. B. Campbell (1980). .. Modifications. ..

besselY draws heavily on Temme’s Algol program for Y'...and on Campbell’s programs for Y, (x)
....... heavily modified.

References

Abramowitz, M. and Stegun, 1. A. (1972). Handbook of Mathematical Functions. Dover, New
York; Chapter 9: Bessel Functions of Integer Order.

In order of “Source” citation above:

http://www.netlib.org/specfun/ribesl

52

Bessel

Sockne, David J. (1973). Bessel Functions of Real Argument and Integer Order. Journal of Re-
search of the National Bureau of Standards, TTB, 125-132.

Cody, William J. (1983). Algorithm 597: Sequence of modified Bessel functions of the first kind.
ACM Transactions on Mathematical Software, 9(2), 242-245. doi: 10.1145/357456.357462.

Campbell, J.B. (1980). On Temme’s algorithm for the modified Bessel function of the third kind.
ACM Transactions on Mathematical Software, 6(4), 581-586. doi: 10.1145/355921.355928.

Campbell, J.B. (1979). Bessel functions J_nu(x) and Y_nu(x) of float order and float argument.
Computer Physics Communications, 18, 133-142. doi: 10.1016/00104655(79)900304.

Temme, Nico M. (1976). On the numerical evaluation of the ordinary Bessel function of the second
kind. Journal of Computational Physics, 21, 343-350. doi: 10.1016/00219991(76)900322.

See Also

Other special mathematical functions, such as gamma, I'(x), and beta, B(x).

Examples

require(graphics)
nus <- c(0:5, 10, 20)

x <- seq(@, 4, length.out = 501)
plot(x, x, ylim = c(@, 6), ylab = "", type = "n",
main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu = nu), col = nu + 2)
legend(@, 6, legend = paste(”"nu=", nus), col = nus + 2, lwd = 1)

x <- seq(@, 40, length.out = 801); yl <- c(-.5, 1)
plot(x, x, ylim = yl, ylab = , type = "n",
main = "Bessel Functions J_nu(x)")
abline(h=0, v=0, 1ty=3)
for(nu in nus) lines(x, besselJ(x, nu = nu), col = nu + 2)
legend("topright”, legend = paste("nu=", nus), col = nus + 2, 1wd = 1, bty="n")

nn

Negative nu's ------—---———--——---——--————

XX <- 2:7

nu <- seq(-10, 9, length.out = 2001)

——= I() -== === ——= ——-

matplot(nu, t(outer(xx, nu, bessell)), type = "1", ylim = c(-50, 200),
main = expression(paste(”Bessel ", I[nul(x), " for fixed ", x,

", as ", f(nu))),
xlab = expression(nu))
abline(v = @, col = "light gray”, lty = 3)
legend(5, 200, legend = paste(”x=", xx), col=seq(xx), 1lty=1:5)

-—— J() --= ——= -—— -—-
bJ <- t(outer(xx, nu, bessell))
matplot(nu, bJ, type = "1", ylim = c(-500, 200),
xlab = quote(nu), ylab = quote(J[nul(x)),
main = expression(paste(”Bessel ", J[nul(x), " for fixed ", x)))

https://doi.org/10.1145/357456.357462
https://doi.org/10.1145/355921.355928
https://doi.org/10.1016/0010-4655(79)90030-4
https://doi.org/10.1016/0021-9991(76)90032-2

bindenv

abline(v = @, col = "light gray”, lty = 3)
legend("topright”, legend = paste("x=", xx), col=seq(xx), lty=1:5)

ZOOM into right part:
matplot(nulnu > -2], bJ[nu > -2,], type = "1",
xlab = quote(nu), ylab = quote(J[nul(x)),
main = expression(paste("Bessel ", J[nul(x), " for fixed ", x)))
abline(h=0, v = 0, col = "gray60", 1ty = 3)
legend("topright”, legend = paste(”x=", xx), col=seq(xx), lty=1:5)

HHpm—mmmm oo - X ==> @ mmmmmmmmm oo
X0 <- 2%seq(-16, 5, length.out=256)
plot(range(x@), c(le-40, 1), log = "xy", xlab = "x", ylab = "", type = "n",

main = "Bessel Functions J_nu(x) near 0\n log - log scale"”) ; axis(2, at=1)

for(nu in sort(c(nus, nus+0.5)))
lines(x@, besselJ(x@, nu = nu), col = nu + 2, 1ty= 1+ (nu%%l > 0))
legend("right”, legend = paste(”"nu=", paste(nus, nus+0.5, sep=", ")),
col = nus + 2, lwd = 1, bty="n")

X0 <- 2”*seq(-10, 8, length.out=256)
plot(range(x@), 10*c(-100, 80), log = "xy", xlab = "x", ylab = "", type = "n",
main = "Bessel Functions K_nu(x) near @\n log - log scale") ; axis(2, at=1)
for(nu in sort(c(nus, nus+0.5)))
lines(x0@, besselK(x@, nu = nu), col = nu + 2, lty= 1+ (nu%%1 > 0))
legend("topright”, legend = paste("nu=", paste(nus, nus + 0.5, sep =", ")),
col = nus + 2, 1wd = 1, bty="n")

x <- x[x > 0]

plot(x, x, ylim = c(1e-18, 1ell1), log = "y", ylab = , type = "n",
main = "Bessel Functions K_nu(x)"); axis(2, at=1)

for(nu in nus) lines(x, besselK(x, nu = nu), col = nu + 2)

legend(@, 1e-5, legend=paste(”nu=", nus), col = nus + 2, lwd

nn

»

yl <- c(-1.6, .6)
plot(x, x, ylim = yl, ylab = , type = "n",
main = "Bessel Functions Y_nu(x)")
for(nu in nus){
xx <= x[x > .6*nu]
lines(xx, besselY(xx, nu=nu), col = nu+2)

nn

3

legend(25, -.5, legend = paste(”"nu=", nus), col = nus+2, lwd = 1)
negative nu in bessel_Y -- was bogus for a long time
curve(besselY(x, -0.1), @, 10, ylim = c(-3,1), ylab = "")

for(nu in c(seq(-0.2, -2, by = -0.1)))
curve(besselY(x, nu), add = TRUE)
title(expression(besselY(x, nu) * " "%
{nu == list(-0.1, -0.2, ..., -2)}))

bindenv Binding and Environment Locking, Active Bindings

54

bindenv

Description

These functions represent an interface for adjustments to environments and bindings within envi-
ronments. They allow for locking environments as well as individual bindings, and for linking a
variable to a function.

Usage

lockEnvironment(env, bindings = FALSE)
environmentIsLocked(env)
lockBinding(sym, env)
unlockBinding(sym, env)
bindingIsLocked(sym, env)

makeActiveBinding(sym, fun, env)
bindingIsActive(sym, env)

Arguments
env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string.
fun a function taking zero or one arguments.
Details

The function lockEnvironment locks its environment argument, which must be a normal environ-
ment (not base). (Locking the base environment and namespace may be supported later.) Locking
the environment prevents adding or removing variable bindings from the environment. Changing
the value of a variable is still possible unless the binding has been locked. The namespace environ-
ments of packages with namespaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked binding
cannot be changed. Locked bindings may be removed from an environment unless the environment
is locked.

makeActiveBinding installs fun in environment env so that getting the value of sym calls fun
with no arguments, and assigning to sym calls fun with one argument, the value to be assigned.
This allows the implementation of things like C variables linked to R variables and variables linked
to databases, and is used to implement setRefClass. It may also be useful for making thread-
safe versions of some system globals. Currently active bindings are not preserved during package
installation, but they can be created in . onLoad.

Value

The bindingIsLocked and environmentIsLocked return a length-one logical vector. The remain-
ing functions return NULL, invisibly.

Author(s)

Luke Tierney

bitwise

Examples

locking environments
e <- new.env()
assign("x", 1, envir
get("x", envir = e)
lockEnvironment(e)
get("x", envir = e)
assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

e)

locking bindings

e <- new.env()

assign("x", 1, envir = e)

get("x", envir = e)

lockBinding("x", e)

try(assign(”"x", 2, envir = e)) # error
unlockBinding("x", e)

assign("x", 2, envir = e)

get("x", envir = e)

active bindings
f <= local({
x <=1
function(v) {
if (missing(v))
cat("get\n")

else {
cat("set\n")
X <<= v

}

X

B

makeActiveBinding("fred”, f, .GlobalEnv)
bindingIsActive("fred"”, .GlobalEnv)

fred

fred <- 2

fred

55

bitwise Bitwise Logical Operations

Description

Logical operations on integer vectors with elements viewed as sets of bits.

Usage

bitwNot(a)

56 bitwise

bitwAnd(a, b)
bitwOr(a, b)
bitwXor(a, b)

bitwShiftL(a, n)
bitwShiftR(a, n)

Arguments
a, b integer vectors; numeric vectors are coerced to integer vectors.
n non-negative integer vector of values up to 31.

Details

Each element of an integer vector has 32 bits.
Pairwise operations can result in integer NA.

Shifting is done assuming the values represent unsigned integers.

Value

An integer vector of length the longer of the arguments, or zero length if one is zero-length.

The output element is NA if an input is NA (after coercion) or an invalid shift.

See Also

The logical operators, !, &, |, xor. Notably these do work bitwise for raw arguments.

The classes "octmode” and "hexmode” whose implementation of the standard logical operators is
based on these functions.

Package bitops has similar functions for numeric vectors which differ in the way they treat integers
231 or larger.

Examples

bitwNot(0:12) # -1 -2 ... -13
bitwAnd(15L, 7L) # 7
bitwOr (15L, 7L) # 15
bitwXor(15L, 7L) # 8
bitwXor(-1L, 1L) # -2

The "same” for 'raw' instead of integer :
rr12 <- as.raw(0:12) ; rbind(rri12, !'rri2)
c(r15 <- as.raw(15), r7 <- as.raw(7)) # of o7
ri5 & r7 # 07

ris | r7 # of

xor(ri15, r7)# 08

bitwShiftR(-1, 1:31) # shifts of 2432-1 = 4294967295

https://CRAN.R-project.org/package=bitops

body 57

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function.

Usage

body(fun = sys.function(sys.parent()))
body(fun, envir = environment(fun)) <- value

Arguments
fun a function object, or see ‘Details’.
envir environment in which the function should be defined.
value an object, usually a language object: see section ‘Value’.
Details

For the first form, fun can be a character string naming the function to be manipulated, which is
searched for from the parent frame. If it is not specified, the function calling body is used.

The bodies of all but the simplest are braced expressions, that is calls to {: see the ‘Examples’
section for how to create such a call.

Value

body returns the body of the function specified. This is normally a language object, most often a
call to {, but it can also be an object (e.g., pi) to be the return value of the function.

The replacement form sets the body of a function to the object on the right hand side, and (poten-
tially) resets the environment of the function. If value is of class "expression” the first element
is used as the body: any additional elements are ignored, with a warning.

See Also

alist, args, function.

Examples

body (body)

f <- function(x) x*5

body (f) <- quote(5*x)

or equivalently body(f) <- expression(5%x)
f(3) # =125

body (f)

creating a multi-expression body

58 bquote

e <- expression(y <- x*2, return(y)) # or a list

body(f) <- as.call(c(as.name("{"), e))

f

f(8)

Using substitute() may be simpler than 'as.call(c(as.name("{",..)))":
stopifnot(identical(body(f), substitute({ y <- x*2; return(y) })))

bquote Partial substitution in expressions

Description
An analogue of the LISP backquote macro. bquote quotes its argument except that terms wrapped
in . () are evaluated in the specified where environment.

Usage

bquote(expr, where = parent.frame())

Arguments

expr A language object.

where An environment.

Value

A language object.

See Also

quote, substitute

Examples
require(graphics)
a<-2

bquote(a == a)
quote(a == a)

bquote(a == .(a))
substitute(a == A, list(A = a))
plot(1:10, a*(1:10), main = bquote(a == .(a)))

to set a function default arg
default <- 1
bquote(function(x, y = .(default)) xty)

browser 59

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where browser
was called from.

Usage
browser(text = "", condition = NULL, expr = TRUE, skipCalls = QL)
Arguments
text a text string that can be retrieved once the browser is invoked.
condition a condition that can be retrieved once the browser is invoked.
expr An expression, which if it evaluates to TRUE the debugger will invoked, other-
wise control is returned directly.
skipCalls how many previous calls to skip when reporting the calling context.
Details

A call to browser can be included in the body of a function. When reached, this causes a pause in
the execution of the current expression and allows access to the R interpreter.

The purpose of the text and condition arguments are to allow helper programs (e.g., external
debuggers) to insert specific values here, so that the specific call to browser (perhaps its location in
a source file) can be identified and special processing can be achieved. The values can be retrieved
by calling browserText and browserCondition.

The purpose of the expr argument is to allow for the illusion of conditional debugging. It is an
illusion, because execution is always paused at the call to browser, but control is only passed to the
evaluator described below if expr evaluates to TRUE. In most cases it is going to be more efficient to
use an if statement in the calling program, but in some cases using this argument will be simpler.

The skipCalls argument should be used when the browser () call is nested within another debug-
ging function: it will look further up the call stack to report its location.

At the browser prompt the user can enter commands or R expressions, followed by a newline. The
commands are

¢ exit the browser and continue execution at the next statement.
cont synonym for c.

f finish execution of the current loop or function

help print this list of commands

n evaluate the next statement, stepping over function calls. For byte compiled functions interrupted
by browser calls, n is equivalent to c.

60

browserText

s evaluate the next statement, stepping into function calls. Again, byte compiled functions make s
equivalent to c.

where print a stack trace of all active function calls.

r invoke a "resume” restart if one is available; interpreted as an R expression otherwise. Typically
"resume” restarts are established for continuing from user interrupts.

Q exit the browser and the current evaluation and return to the top-level prompt.

Leading and trailing whitespace is ignored, except for an empty line. Handling of empty lines
depends on the "browserNLdisabled" option; if it is TRUE, empty lines are ignored. If not, an
empty line is the same as n (or s, if it was used most recently).

Anything else entered at the browser prompt is interpreted as an R expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and
1s() lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly, or use autoprint via (n).

The number of lines printed for the deparsed call can be limited by setting
options(deparse.max.lines).

The browser prompt is of the form Browse[n]>: here var{n} indicates the ‘browser level’. The
browser can be called when browsing (and often is when debug is in use), and each recursive call
increases the number. (The actual number is the number of ‘contexts’ on the context stack: this is
usually 2 for the outer level of browsing and 1 when examining dumps in debugger.)

This is a primitive function but does argument matching in the standard way.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

debug, and traceback for the stack on error. browserText for how to retrieve the text and condi-
tion.

browserText Functions to Retrieve Values Supplied by Calls to the Browser

Description

A call to browser can provide context by supplying either a text argument or a condition argument.
These functions can be used to retrieve either of these arguments.

Usage

browserText(n = 1)
browserCondition(n = 1)
browserSetDebug(n = 1)

builtins 61

Arguments

n The number of contexts to skip over, it must be non-negative.

Details

Each call to browser can supply either a text string or a condition. The functions browserText and
browserCondition provide ways to retrieve those values. Since there can be multiple browser con-
texts active at any time we also support retrieving values from the different contexts. The innermost
(most recently initiated) browser context is numbered 1: other contexts are numbered sequentially.

browserSetDebug provides a mechanism for initiating the browser in one of the calling functions.
See sys.frame for a more complete discussion of the calling stack. To use browserSetDebug
you select some calling function, determine how far back it is in the call stack and call
browserSetDebug with n set to that value. Then, by typing c at the browser prompt you will
cause evaluation to continue, and provided there are no intervening calls to browser or other inter-
rupts, control will halt again once evaluation has returned to the closure specified. This is similar to
the up functionality in gdb or the "step out" functionality in other debuggers.

Value

browserText returns the text, while browserCondition returns the condition from the specified
browser context.

browserSetDebug returns NULL, invisibly.

Note

It may be of interest to allow for querying further up the set of browser contexts and this function-
ality may be added at a later date.

Author(s)

R. Gentleman

See Also

browser

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage
builtins(internal = FALSE)

62 by

Arguments
internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.
Details

builtins() returns an unsorted list of the objects in the symbol table, that is all the objects in the
base environment. These are the built-in objects plus any that have been added subsequently when
the base package was loaded. It is less confusing to use 1s(baseenv(),all = TRUE).

builtins(TRUE) returns an unsorted list of the names of internal functions, that is those which can
be accessed as . Internal (foo(args ...)) for foo in the list.

Value

A character vector.

by Apply a Function to a Data Frame Split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage
by(data, INDICES, FUN, ..., simplify = TRUE)
Arguments
data an R object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of length nrow(data).
FUN a function to be applied to (usually data-frame) subsets of data.
ce further arguments to FUN.
simplify logical: see tapply.
Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
function FUN is applied to each subset in turn.

For the default method, an object with dimensions (e.g., a matrix) is coerced to a data frame and
the data frame method applied. Other objects are also coerced to a data frame, but FUN is applied
separately to (subsets of) each column of the data frame.

Value

An object of class "by", giving the results for each subset. This is always a list if simplifly is false,
otherwise a list or array (see tapply).

See Also

tapply, simplify2array. ave also applies a function block-wise.

Examples
require(stats)
by (warpbreaks[, 1:2], warpbreaks[,"tension"], summary)
by (warpbreaks[, 1], warpbreaks[, -11, summary)

by (warpbreaks, warpbreaks[,"tension"],
function(x) 1lm(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmp <- with(warpbreaks,
by(warpbreaks, tension,
function(x) lm(breaks ~ wool, data = x)))
sapply(tmp, coef)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

Usage

S3 Generic function

c(...)

Default S3 method:

c(..., recursive = FALSE, use.names = TRUE)
Arguments

objects to be concatenated.

recursive logical. If recursive = TRUE, the function recursively descends through lists
(and pairlists) combining all their elements into a vector.
use.names logical indicating if names should be preserved.
Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < double < complex < character < list < expression. Pairlists are treated as
lists, whereas non-vector components (such names and calls) are treated as one-element lists which
cannot be unlisted even if recursive = TRUE.

Note that factors are treated only via their internal integer codes; one proposal has been to use

64 c

c.factor <- function(..., recursive=TRUE) unlist(list(...), recursive=recursive)

if factor concatenation by c() should give a factor.

c is sometimes used for its side effect of removing attributes except names, for example to turn an
array into a vector. as.vector is a more intuitive way to do this, but also drops names. Note that
methods other than the default are not required to do this (and they will almost certainly preserve a
class attribute).

This is a primitive function.

Value

NULL or an expression or a vector of an appropriate mode. (With no arguments the value is NULL.)

S4 methods

This function is S4 generic, but with argument list (x, ...).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(1,7:9)
c(1:5, 10.5, "next")

uses with a single argument to drop attributes

x <- 1:4

names(x) <- letters[1:4]
X

c(x) # has names

as.vector(x) # no names
dim(x) <- ¢c(2,2)

X

c(x)

as.vector(x)

append to a list:

11 <- list(A =1, c ="C")

do *not*x use

c(ll, d = 1:3) # which is == c(11, as.list(c(d = 1:3)))
but rather

c(ll, d = 1list(1:3)) # c() combining two lists

c(list(A = ¢c(B = 1)), recursive = TRUE)

call 65

c(options(), recursive = TRUE)
c(list(A=c(B =1, C=2), B=c(E =17)), recursive = TRUE)

call Function Calls

Description

Create or test for objects of mode "call” (or " (", see Details).

Usage

call(name, ...)
is.call(x)
as.call(x)

Arguments

name a non-empty character string naming the function to be called.
arguments to be part of the call.

X an arbitrary R object.

Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of the
named function applied to the given arguments (name must be a quoted string which gives the
name of a function to be called). Note that although the call is unevaluated, the arguments . . .
are evaluated.
call is a primitive, so the first argument is taken as name and the remaining arguments as
arguments for the constructed call: if the first argument is named the name must partially
match name.

is.call is used to determine whether x is a call (i.e., of mode "call"” or " ("). Note that
e is.call(x) is strictly equivalent to typeof (x) == "language"”.
e is.language() is also true for calls (but also for symbols and expressions where
is.call() is false).

as.call(x): Objects of mode "list"” can be coerced to mode "call”. The first element of the
list becomes the function part of the call, so should be a function or the name of one (as a
symbol; a quoted string will not do).
If you think of using as.call(<string>), consider using str2lang(*) which is an efficient
version of parse(text=*). Note that call() and as.call(), when applicable, are much
preferable to these parse () based approaches.

All three are primitive functions.

Warning

call should not be used to attempt to evade restrictions on the use of . Internal and other non-API
calls.

66 callCC

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

do. call for calling a function by name and argument list; Recall for recursive calling of functions;
further is.language, expression, function.

Producing calls etc from character: str2lang and parse.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5

cl <- call("round”, 10.5)

is.call(cl) # TRUE

cl

identical (quote(round(10.5)), # <- less functional, but the same
cl) # TRUE

such a call can also be evaluated.

eval(cl) # [1] 10

class(cl) # "call”
typeof (cl)# "language"
is.call(cl) && is.language(cl) # always TRUE for "call"s

A <- 10.5

call("round”, A) # round(10.5)
call("round”, quote(A)) # round(A)

f <= "round”

call(f, quote(A)) # round(A)
if we want to supply a function we need to use as.call or similar
f <- round

Not run: call(f, quote(A)) # error: first arg must be character
(g <- as.call(list(f, quote(A))))

eval(g)

alternatively but less transparently

g <- list(f, quote(A))

mode(g) <- "call”

g

eval(g)

see also the examples in the help for do.call

callcC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

CallExternal 67

Usage

callCC(fun)

Arguments

fun function of one argument, the exit procedure.

Details

callCC provides a non-local exit mechanism that can be useful for early termination of a com-
putation. callCC calls fun with one argument, an exit function. The exit function takes a single
argument, the intended return value. If the body of fun calls the exit function then the call to cal1CC
immediately returns, with the value supplied to the exit function as the value returned by callCC.

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC(function(k) 1)
callCC(function(k) k(1))
callCC(function(k) {k(1); 2})
callCC(function(k) repeat k(1))

CallExternal Modern Interfaces to C/C++ code

Description

Functions to pass R objects to compiled C/C++ code that has been loaded into R.

Usage
.Call(.NAME, ..., PACKAGE)
.External (.NAME, ..., PACKAGE)
Arguments
.NAME a character string giving the name of a C function, or an object of class

"NativeSymbolInfo”, "RegisteredNativeSymbol” or "NativeSymbol"” re-
ferring to such a name.

arguments to be passed to the compiled code. Up to 65 for .Call.

68 CallExternal

PACKAGE if supplied, confine the search for a character string . NAME to the DLL given by
this argument (plus the conventional extension, ‘.so’, ‘.d11’,...).

This argument follows . .. and so its name cannot be abbreviated.

This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

Details

The functions are used to call compiled code which makes use of internal R objects, passing the
arguments to the code as a sequence of R objects. They assume C calling conventions, so can
usually also be used for C++ code.

For details about how to write code to use with these functions see the chapter on ‘System and
foreign language interfaces’ in the ‘Writing R Extensions’ manual. They differ in the way the
arguments are passed to the C code: .External allows for a variable or unlimited number of
arguments.

These functions are primitive, and .NAME is always matched to the first argument supplied (which
should not be named). For clarity, avoid using names in the arguments passed to . . . that match or
partially match .NAME.

Value

An R object constructed in the compiled code.

Header files for external code
Writing code for use with these functions will need to use internal R structures defined in
‘Rinternals.h’ and/or the macros in ‘Rdefines.h’.

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass .NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base" for symbols linked into R. Do not use this in your own code: such
symbols are not part of the API and may be changed without warning.

PACKAGE = "" used to be accepted (but was undocumented): it is now an error.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (.Call.)

See Also

dyn.load, .C, .Fortran.

The ‘Writing R Extensions’ manual.

capabilities

69

capabilities

Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities(what = NULL)

Arguments

what

Value

character vector or NULL, specifying required components. NULL implies that all
are required.

A named logical vector. Current components are

jpeg
png
tiff
tcltk

X11

aqua

http/ftp

sockets
libxml

fifo
cledit

is the jpeg function operational?
is the png function operational?
is the tiff function operational?

is the teltk package operational? Note that to make use of Tk you will almost
always need to check that "X11" is also available.

are the X11 graphics device and the X11-based data editor available? This loads
the X11 module if not already loaded, and checks that the default display can be
contacted unless a X11 device has already been used.

is the quartz function operational? Only on some macOS builds, including
CRAN binary distributions of R.

Note that this is distinct from .Platform$GUI == "AQUA", which is true only
when using the Mac R. app GUI console.

does the internal method for url and download.file support ‘http://’ and
‘ftp://” URLs? Always TRUE as from R 3.3.0.

are make . socket and related functions available? Always TRUE as from R 3.3.0.

is there support for integrating 1ibxml with the R event loop? Always TRUE as
from R 3.3.0.

are FIFO connections supported?

is command-line editing available in the current R session? This is false in non-
interactive sessions. It will be true for the command-line interface if readline
support has been compiled in and ‘--no-readline’ was not used when R was
invoked. (If ‘--interactive’ was used, command-line editing will not actually
be available.)

70

iconv

NLS
profmem

cairo

ICU

long.double

libcurl

Note to macOS users

cat

is internationalization conversion via iconv supported? Always true in current

R.
is there Natural Language Support (for message translations)?
is there support for memory profiling? See tracemem.

is there support for the svg, cairo_pdf and cairo_ps devices, and for type =
"cairo” in the X11, bmp, jpeg, png, and tiff devices?

is ICU available for collation? See the help on Comparison and icuSetCollate:
it is never used for a C locale.

does this build use a C long double type which is longer than double? Some
platforms do not have such a type, and on others its use can be suppressed by
the configure option ‘--disable-long-double’.

Although not guaranteed, it is a reasonable assumption that if present long dou-
bles will have at least as much range and accuracy as the ISO/IEC 60559 80-bit
‘extended precision’ format.

is libcurl available in this build? Used by function curlGetHeaders and op-
tionally by download.file and url. As from R 3.3.0 always true for Unix-
alikes, and true for CRAN Windows builds.

Capabilities "jpeg”, "png"” and "tiff" refer to the X11-based versions of these devices. If
capabilities(”aqua") is true, then these devices with type = "quartz"” will be available, and
out-of-the-box will be the default type. Thus for example the tiff device will be available if
capabilities(”aqua”) || capabilities("tiff") if the defaults are unchanged.

See Also

.Platform and extSoftVersion (and links there) for availability capabilities external to R but
used from R functions.

Examples

capabilities()

if(!capabilities("ICU"))
warning("ICU is not available")

See also the examples for 'connections'.

cat

Concatenate and Print

Description

Outputs the objects, concatenating the representations. cat performs much less conversion than

print.

cat 71
Usage
cat(... , file = "", sep = " ", fill = FALSE, labels = NULL,
append = FALSE)
Arguments
R objects (see ‘Details’ for the types of objects allowed).
file A connection, or a character string naming the file to print to. If "" (the default),
cat prints to the standard output connection, the console unless redirected by
sink. If it is "|cmd"”, the output is piped to the command given by ‘cmd’, by
opening a pipe connection.
sep a character vector of strings to append after each element.
fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSE (default), only newlines created explicitly by ‘"\n"’ are
printed. Otherwise, the output is broken into lines with print width equal to the
option width if fill is TRUE, or the value of fill if this is numeric. Non-
positive fill values are ignored, with a warning.
labels character vector of labels for the lines printed. Ignored if fill is FALSE.
append logical. Only used if the argument file is the name of file (and not a connection
or " |cmd"). If TRUE output will be appended to file; otherwise, it will overwrite
the contents of file.
Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the given sep = string(s) to each
element and then outputs them.

ns

No linefeeds are output unless explicitly requested by ‘"\n
fill is TRUE or numeric).

or if generated by filling (if argument

If file is a connection and open for writing it is written from its current position. If it is not open,
it is opened for the duration of the call in "wt"” mode and then closed again.

Currently only atomic vectors and names are handled, together with NULL and other zero-length
objects (which produce no output). Character strings are output ‘as is’ (unlike print.default
which escapes non-printable characters and backslash — use encodeString if you want to output
encoded strings using cat). Other types of R object should be converted (e.g., by as.character
or format) before being passed to cat. That includes factors, which are output as integer vectors.

cat converts numeric/complex elements in the same way as print (and not in the same way as
as.character which is used by the S equivalent), so options "digits"” and "scipen” are rele-
vant. However, it uses the minimum field width necessary for each element, rather than the same
field width for all elements.

Value

None (invisible NULL).

72 cbind

Note

If any element of sep contains a newline character, it is treated as a vector of terminators rather than
separators, an element being output after every vector element and a newline after the last. Entries
are recycled as needed.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

print, format, and paste which concatenates into a string.

Examples

iter <- stats::rpois(1, lambda = 10)
print an informative message
cat("iteration = ", iter <- iter + 1, "\n")

'fill' and label lines:

cat(paste(letters, 100x 1:26), fill = TRUE, labels = paste@("{", 1:10, "}:"))
cbind Combine R Objects by Rows or Columns
Description

Take a sequence of vector, matrix or data-frame arguments and combine by columns or rows, re-
spectively. These are generic functions with methods for other R classes.

Usage
cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)
S3 method for class 'data.frame'
rbind(..., deparse.level = 1, make.row.names = TRUE,
stringsAsFactors = default.stringsAsFactors(), factor.exclude = NA)
Arguments

(generalized) vectors or matrices. These can be given as named arguments.
Other R objects may be coerced as appropriate, or S4 methods may be used:
see sections ‘Details’ and ‘Value’. (For the "data.frame" method of cbind
these can be further arguments to data. frame such as stringsAsFactors.)

cbind 73

deparse.level integer controlling the construction of labels in the case of non-matrix-like ar-
guments (for the default method):
deparse.level = 0 constructs no labels; the default,
deparse.level =1 or 2 constructs labels from the argument names, see the
“Value’ section below.

make.row.names (only for data frame method:) logical indicating if unique and valid row. names
should be constructed from the arguments.

stringsAsFactors
logical, passed to as.data.frame; only has an effect when the ... arguments
contain a (non-data.frame) character.

factor.exclude if the data frames contain factors, TRUE ensures that NA levels of factors are
kept, see PR#17562 and the ‘Data frame methods’. In R versions up to 3.6.x,
factor.exclude = NA has been implicitly hardcoded (R <= 3.6.0) or the default
(R=3.6x,x>=1).

Details

The functions cbind and rbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
‘Dispatch’ for how the method to be used is selected. If some of the arguments are of an S4 class,
i.e., isS4(.) is true, S4 methods are sought also, and the hidden cbind / rbind functions from
package methods maybe called, which in turn build on cbind2 or rbind2, respectively. In that
case, deparse.level is obeyed, similarly to the default method.

In the default method, all the vectors/matrices must be atomic (see vector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.
Any classes the inputs might have are discarded (in particular, factors are replaced by their internal
codes).

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors, the
number of columns (rows) in the result is equal to the length of the longest vector. Values in shorter
arguments are recycled to achieve this length (with a warning if they are recycled only fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored in R.)

Matrices are restricted to less than 23! rows and columns even on 64-bit systems. So input vectors
have the same length restriction: as from R 3.2.0 input matrices with more elements (but meeting
the row and column restrictions) are allowed.

Value

For the default method, a matrix combining the . .. arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs are NULL, the value is NULL.)

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17562

74

cbind

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < double < complex < character < list .

For cbind (rbind) the column (row) names are taken from the colnames (rownames) of the argu-
ments if these are matrix-like. Otherwise from the names of the arguments or where those are not
supplied and deparse.level > 9, by deparsing the expressions given, for deparse.level =1 only
if that gives a sensible name (a ‘symbol’, see is.symbol).

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

For rbind column names are taken from the first argument with appropriate names: colnames for a
matrix, or names for a vector of length the number of columns of the result.

Data frame methods

The cbind data frame method is just a wrapper for data. frame(. .., check.names = FALSE). This
means that it will split matrix columns in data frame arguments, and convert character columns to
factors unless stringsAsFactors = FALSE is specified.

The rbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the levelsets of the factors encountered) and the result is an ordered factor if and only if all
the components were ordered factors. (The last point differs from S-PLUS.) Old-style categories
(integer vectors with levels) are promoted to factors.

Note that for result column j, factor(.,exclude = X(j)) is applied, where

X(j) := if(isTRUE(factor.exclude)) {
if(INA.lev[j]) NA # else NULL
} else factor.exclude

where NA.lev[j] is true iff any contributing data frame has had a factor in column j with an
explicit NA level.

Dispatch

The method dispatching is not done via UseMethod(), but by C-internal dispatching. Therefore
there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘. ../src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.
2. We inspect each class in turn to see if there is an applicable method.

3. If we find an applicable method we make sure that it is identical to any method determined for
prior arguments. If it is identical, we proceed, otherwise we immediately drop through to the
default code.

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

char.expand 75

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

¢ to combine vectors (and lists) as vectors, data. frame to combine vectors and matrices as a data
frame.

Examples

m <- cbind(1, 1:7) # the '1' (= shorter vector) is recycled
m

m <- cbind(m, 8:14)[, c(1, 3, 2)] # insert a column

m

cbind(1:7, diag(3)) # vector is subset -> warning

cbind(@, rbind(1, 1:3))

cbind(I = @, X = rbind(a =1, b = 1:3)) # use some names
xx <- data.frame(I = rep(90,2))

cbind(xx, X = rbind(a = 1, b = 1:3)) # named differently

cbind(@, matrix(1, nrow = @, ncol = 4)) #> Warning (making sense)
dim(cbind(@, matrix(1, nrow = 2, ncol = @))) #-> 2 x 1

deparse.level

dd <- 10

rbind(1:4, c = 2, "a++" 10, dd, deparse.level = @) # middle 2 rownames
rbind(1:4, ¢ = 2, "a++" = 10, dd, deparse.level 1) # 3 rownames (default)
rbind(1:4, ¢ = 2, "a++" = 10, dd, deparse.level = 2) # 4 rownames

cheap row names:

b0 <- gl(3,4, labels=letters[1:3])

bf <- setNames(b@, paste@(”o0", seq_along(bd)))

df <- data.frame(a =1, B = bo, f = gl(4,3))

df. <- data.frame(a = 1, B = bf, f = gl(4,3))

new <- data.frame(a = 8, B ="B", f = "1")

(df1 <= rbind(df , new))

(df.1 <= rbind(df., new))

stopifnot(identical(df1, rbind(df, new, make.row.names=FALSE)),
identical(df1, rbind(df., new, make.row.names=FALSE)))

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns
this element; otherwise, it performs an action specified by the third argument.

76 character

Usage

char.expand(input, target, nomatch = stop(”no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

Value
A length-one character vector, one of the elements of target (unless nomatch is changed to be a
non-error, when it can be a zero-length character string).

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean”, "median”, "mode")
char.expand(”"me"”, locPars, warning(”Could not expand!"))
char.expand("mo"”, locPars)

character Character Vectors

Description

Create or test for objects of type "character”.

Usage

character(length = 0)
as.character(x,)
is.character(x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.

further arguments passed to or from other methods.

character 77

Details

as.character and is.character are generic: you can write methods to handle specific classes of
objects, see InternalMethods. Further, for as.character the default method calls as.vector, so
dispatch is first on methods for as. character and then for methods for as.vector.

as.character represents real and complex numbers to 15 significant digits (technically the com-
piler’s setting of the ISO C constant DBL_DIG, which will be 15 on machines supporting IEC60559
arithmetic according to the C99 standard). This ensures that all the digits in the result will be reli-
able (and not the result of representation error), but does mean that conversion to character and back
to numeric may change the number. If you want to convert numbers to character with the maximum
possible precision, use format.

Value
character creates a character vector of the specified length. The elements of the vector are all
equal to "".

as.character attempts to coerce its argument to character type; like as. vector it strips attributes
including names. For lists and pairlists (including language objects such as calls) it deparses the
elements individually, except that it extracts the first element of length-one character vectors.

is.character returns TRUE or FALSE depending on whether its argument is of character type or
not.

Note

as.character breaks lines in language objects at 500 characters, and inserts newlines. Prior to
2.15.0 lines were truncated.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

options: option scipen affects the conversion of numbers.

paste, substr and strsplit for character concatenation and splitting, chartr for character trans-
lation and casefolding (e.g., upper to lower case) and sub, grep etc for string matching and substi-
tutions. Note that help.search(keyword = "character™) gives even more links.

deparse, which is normally preferable to as.character for language objects.

Examples

form<-y~a+b+c
as.character(form) ## length 3
deparse(form) ## like the input

a0 <- 11/999 # has a repeating decimal representation
(al <- as.character(a0))
format(a@, digits = 16) # shows one more digit

78 charmatch

a2 <- as.numeric(al)

a2 - ao # normally around -1e-17
as.character(a2) # normally different from al
print(c(a@, a2), digits = 16)

charmatch Partial String Matching

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA_integer_)

Arguments
X the values to be matched: converted to a character vector by as.character.
Long vectors are supported.
table the values to be matched against: converted to a character vector. Long vectors
are not supported.
nomatch the (integer) value to be returned at non-matching positions.
Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then @ is returned
and if no match is found then nomatch is returned.

NA values are treated as the string constant "NA".

Value
An integer vector of the same length as x, giving the indices of the elements in table which
matched, or nomatch.

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch, match.

startsWith for another matching of initial parts of strings; grep or regexpr for more general
(regexp) matching of strings.

chartr 79

Examples
charmatch("", "") # returns 1
charmatch("m", c("mean”, "median”, "mode")) # returns @
charmatch("med”, c("mean”, "median”, "mode")) # returns 2
chartr Character Translation and Casefolding
Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr(old, new, x)
tolower (x)

toupper (x)

casefold(x, upper = FALSE)

Arguments
X a character vector, or an object that can be coerced to character by
as.character.
old a character string specifying the characters to be translated. If a character vector
of length 2 or more is supplied, the first element is used with a warning.
new a character string specifying the translations. If a character vector of length 2 or
more is supplied, the first element is used with a warning.
upper logical: translate to upper or lower case?.
Details

chartr translates each character in x that is specified in o1d to the corresponding character specified
in new. Ranges are supported in the specifications, but character classes and repeated characters are
not. If old contains more characters than new, an error is signaled; if it contains fewer characters,
the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged.

casefold is a wrapper for tolower and toupper provided for compatibility with S-PLUS.

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see Encoding)
if the corresponding input had a declared encoding and the current locale is either Latin-1 or UTF-
8. The result will be in the current locale’s encoding unless the corresponding input was in UTF-8,
when it will be in UTF-8 when the system has Unicode wide characters.

80 chartr

See Also

sub and gsub for other substitutions in strings.

Examples

x <- "MiXeD cAsk 123"
chartr(”iXs", "why", x)
chartr("a-cX", "D-Fw", x)
tolower(x)

toupper (x)

"Mixed Case” Capitalizing - toupper(every first letter of a word) :

.simpleCap <- function(x) {

s <= strsplit(x, " ")L[1]1]
paste(toupper(substring(s, 1, 1)), substring(s, 2),
sep = "", collapse = " ")

3
.simpleCap("the quick red fox jumps over the lazy brown dog")
-> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function(s, strict = FALSE) {
cap <- function(s) paste(toupper(substring(s, 1, 1)),
{s <- substring(s, 2); if(strict) tolower(s) else s},
sep = "", collapse =" ")
sapply(strsplit(s, split = " "), cap, USE.NAMES = !is.null(names(s)))
3
capwords(c("using AIC for model selection”))
-> [1] "Using AIC For Model Selection”
capwords(c("using AIC", "for MODEL selection”), strict = TRUE)
-> [1] "Using Aic" "For Model Selection”

AAA AAAAA

#it 'bad"’ 'good’

-- Very simple insecure crypto --
rot <- function(ch, k = 13) {

p@ <- function(...) paste(c(...), collapse = "")

A <- c(letters, LETTERS, " '")

I <- seqg_len(k); chartr(p@(A), po(c(A[-I1, ALII)), ch)
3

pw <- "my secret pass phrase”
(crypw <- rot(pw, 13)) #-> you can send this off

now ‘‘decrypt'’
rot(crypw, 54 - 13) # -> the original:
stopifnot(identical(pw, rot(crypw, 54 - 13)))

chkDots 81

chkDots Warn About Extraneous Arguments in the "..." of Its Caller
Description
Warn about extraneous arguments in the . .. of its caller. A utility to be used e.g., in S3 methods
which need a formal . . . argument but do not make any use of it. This helps catching user errors in

calling the function in question (which is the caller of chkDots()).

Usage
chkDots(..., which.call = -1, allowed = character(0))
Arguments
“the dots”, as passed from the caller.
which.call passed to sys.call(). A caller may use -2 if the message should mention its
caller.
allowed not yet implemented: character vector of named elements in . . . which are “al-
lowed” and hence not warned about.
Author(s)

Martin Maechler, first version outside base, June 2012.

See Also

warning,

Examples
seq.default ## <- you will see ' chkDots(...) '
seq(1,5, foo = "bar") # gives warning via chkDots()
warning with more than one ...-entry:

density.f <- function(x, ...) NextMethod("density")
x <- density(structure(rnorm(10), class="f"), bar=TRUE, baz=TRUE)

82 chol

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

Usage
chol(x, ...)

Default S3 method:

chol(x, pivot = FALSE, LINPACK = FALSE, tol = -1, ...)
Arguments
X an object for which a method exists. The default method applies to numeric (or

logical) symmetric, positive-definite matrices.

arguments to be based to or from methods.

pivot Should pivoting be used?

LINPACK logical. Should LINPACK be used (now ignored)?

tol A numeric tolerance for use with pivot = TRUE.
Details

chol is generic: the description here applies to the default method.
Note that only the upper triangular part of x is used, so that R’ R = x when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-definite
(i.e., some zero eigenvalues) an error will also occur as a numerical tolerance is used.

If pivot = TRUE, then the Choleski decomposition of a positive semi-definite x can be computed.
The rank of x is returned as attr(Q, "rank”), subject to numerical errors. The pivot is returned
as attr(Q, "pivot”). It is no longer the case that t(Q) %*% Q equals x. However, setting pivot
<-attr(Q,"pivot") and oo <-order(pivot), it is true that t(Q[,00]) %*% Q[,00] equals X, or,
alternatively, t(Q) %*% Q equals x[pivot,pivot]. See the examples.

The value of tol is passed to LAPACK, with negative values selecting the default tolerance of
(usually) nrow(x) * .Machine$double.neg.eps * max(diag(x)). The algorithm terminates once
the pivot is less than tol.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that R'R = x
(see example).

If pivoting is used, then two additional attributes "pivot"” and "rank"” are also returned.

chol 83

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be a warning message but a mean-
ingless result will occur. So only use pivot = TRUE when x is non-negative definite by construction.

Source

This is an interface to the LAPACK routines DPOTRF and DPSTRF,
LAPACK is from http://www.netlib.org/lapack and its guide is listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with upper trian-
gular left sides.

gr, svd for related matrix factorizations.

Examples

(m<-matrix(c(5,1,1,3),2,2))
(cm <= chol(m))

t(cm) %*% cm #-- = 'm'
crossprod(cm) #-- = 'm'

now for something positive semi-definite
x <- matrix(c(1:5, (1:5)*2), 5, 2)

x <- cbind(x, x[, 11 + 3*x[, 21)
colnames(x) <- letters[20:22]

m <- crossprod(x)

gr(m)$rank # is 2, as it should be

chol() may fail, depending on numerical rounding:
chol() unlike gr() does not use a tolerance.
try(chol(m))

(Q <= chol(m, pivot = TRUE))

we can use this by

pivot <- attr(Q, "pivot")

crossprod(Q[, order(pivot)]) # recover m

now for a non-positive-definite matrix
(m<-matrix(c(5,-5,-5,3), 2, 2))
try(chol(m)) # fails

(Q <= chol(m, pivot = TRUE)) # warning

http://www.netlib.org/lapack
http://www.netlib.org/lapack/lug/lapack_lug.html

84 chol2inv

crossprod(Q) # not equal to m

chol2inv Inverse from Choleski (or QR) Decomposition

Description
Invert a symmetric, positive definite square matrix from its Choleski decomposition. Equivalently,
compute (X’X)~! from the (R part) of the QR decomposition of X.

Usage
chol2inv(x, size = NCOL(x), LINPACK = FALSE)

Arguments
X a matrix. The first size columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.
size the number of columns of x containing the Choleski decomposition.
LINPACK logical. Defunct and ignored (with a warning for true value).
Value

The inverse of the matrix whose Choleski decomposition was given.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Source

This is an interface to the LAPACK routine DPOTRI. LAPACK is from http://www.netlib.org/
lapack and its guide is listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM. Available on-line
at http://www.netlib.org/lapack/lug/lapack_lug.html.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.
See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))
ma %*% chol2inv(cma)

http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack/lug/lapack_lug.html

class 85

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class(x)

class(x) <- value

unclass(x)

inherits(x, what, which = FALSE)

oldClass(x)
oldClass(x) <- value

Arguments
X a R object
what, value a character vector naming classes. value can also be NULL.
which logical affecting return value: see ‘Details’.

Details

Here, we describe the so called “S3” classes (and methods). For “S4” classes (and methods), see
‘Formal classes’ below.

Many R objects have a class attribute, a character vector giving the names of the classes from
which the object inherits. (Functions oldClass and oldClass<- get and set the attribute, which
can also be done directly.)

If the object does not have a class attribute, it has an implicit class, notably "matrix”, "array”,
"function” or "numeric” or the result of typeof(x) (which is similar to mode(x)), but for type
"language” and mode "call”, where the following extra classes exist for the corresponding func-
tion calls: if, while, for, =, <-, (, {, call.

Note that NULL objects cannot have attributes (hence not classes) and attempting to assign a class is
an error.

non

When a generic function fun is applied to an object with class attribute c("first”, "second”),
the system searches for a function called fun.first and, if it finds it, applies it to the object. If no
such function is found, a function called fun. second is tried. If no class name produces a suitable
function, the function fun.default is used (if it exists). If there is no class attribute, the implicit
class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Correspondingly,
class<- sets the classes an object inherits from. Assigning NULL removes the class attribute.

86

class

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the what
argument. If which is TRUE then an integer vector of the same length as what is returned. Each
element indicates the position in the class(x) matched by the element of what; zero indicates no
match. If which is FALSE then TRUE is returned by inherits if any of the names in what match
with any class.

All but inherits are primitive functions.

Formal classes

An additional mechanism of formal classes, nicknamed “S4”, is available in package methods
which is attached by default. For objects which have a formal class, its name is returned by class
as a character vector of length one and method dispatch can happen on several arguments, instead
of only the first. However, S3 method selection attempts to treat objects from an S4 class as if they
had the appropriate S3 class attribute, as does inherits. Therefore, S3 methods can be defined for
S4 classes. See the ‘Introduction’ and ‘Methods_for_S3’ help pages for basic information on S4
methods and for the relation between these and S3 methods.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as(object,value) is the way to coerce an object to a particular class.

The analogue of inherits for formal classes is is. The two functions behave consistently with one
exception: S4 classes can have conditional inheritance, with an explicit test. In this case, is will
test the condition, but inherits ignores all conditional superclasses.

Note

Functions oldClass and oldClass<- behave in the same way as functions of those names in S-
PLUS 5/6, but in R UseMethod dispatches on the class as returned by class (with some interpolated
classes: see the link) rather than oldClass. However, group generics dispatch on the oldClass for
efficiency, and internal generics only dispatch on objects for which is.object is true.

In older versions of R, assigning a zero-length vector with class removed the class: it is now an
error (whereas it still works for o1dClass). It is clearer to always assign NULL to remove the class.

See Also

UseMethod, NextMethod, ‘group generic’, ‘internal generic’

Examples

x <- 10

class(x) # "numeric”

oldClass(x) # NULL

inherits(x, "a") #FALSE

class(x) <- c("a", "b")

inherits(x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c"), TRUE) # 1 2 @

col

87

class(quote(pi)) # "name”

regular calls

class(quote(sin(pi*x))) # "call”

special calls

class(quote(x <= 1)) #oU<="
class(quote((1 < 2))) # "
class(quote(if(8<3) pi)) # "if"

col

Column Indexes

Description

Returns a matrix of integers indicating their column number in a matrix-like object, or a factor of

column labels.

Usage

col(x, as.factor = FALSE)

.col(dim)

Arguments

X

dim

as.factor

Value

a matrix-like object, that is one with a two-dimensional dim.

a matrix dimension, i.e., an integer valued numeric vector of length two (with
non-negative entries).

a logical value indicating whether the value should be returned as a factor of
column labels (created if necessary) rather than as numbers.

An integer (or factor) matrix with the same dimensions as x and whose i j-th element is equal to j
(or the j-th column label).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

row to get rows; slice.index for a general way to get slice indices in an array.

88 Colon

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)
ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix more slowly than diag(n = 5):
x <- matrix(@, nrow = 5, ncol = 5)
x[row(x) == col(x)] <- 1

(i34 <- .col(3:4))
stopifnot(identical (i34, .col(c(3,4)))) # 'dim' maybe "double”

Colon Colon Operator

Description

Generate regular sequences.

Usage

from:to
a:b

Arguments

from starting value of sequence.
to (maximal) end value of the sequence.

a, b factors of the same length.

Details

The binary operator : has two meanings: for factors a:b is equivalent to interaction(a,b) (but
the levels are ordered and labelled differently).

For other arguments from: to is equivalent to seq(from, to), and generates a sequence from from
to to in steps of 1 or -1. Value to will be included if it differs from from by an integer up to a
numeric fuzz of about 1e-7. Non-numeric arguments are coerced internally (hence without dis-
patching methods) to numeric—complex values will have their imaginary parts discarded with a
warning.

Value

For numeric arguments, a numeric vector. This will be of type integer if fromis integer-valued and
the result is representable in the R integer type, otherwise of type "double” (aka mode "numeric").

For factors, an unordered factor with levels labelled as 1a:1b and ordered lexicographically (that
is, 1b varies fastest).

colSums 89

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
(for numeric arguments: S does not have : for factors.)

See Also

seq (a generalization of from: to).
As an alternative to using : for factors, interaction.

For : used in the formal representation of an interaction, see formula.

Examples

1:4
pi:6 # real
6:pi # integer

f1 <- gl(2, 3); f1
f2 <- gl(3, 2); f2
f1:f2 # a factor, the "cross” f1 x f2

colSums Form Row and Column Sums and Means

Description

Form row and column sums and means for numeric arrays (or data frames).

Usage

colSums (x, na.rm
rowSums (x, na.rm
colMeans(x, na.rm
rowMeans(x, na.rm

FALSE, dims = 1)
FALSE, dims = 1)
FALSE, dims = 1)
FALSE, dims = 1)

.colSums(x, m, n, na.rm = FALSE)
.rowSums(x, m, n, na.rm = FALSE)
.colMeans(x, m, n, na.rm = FALSE)
.rowMeans(x, m, n, na.rm = FALSE)

Arguments

X an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame. For . colSums() etc, a numeric, integer
or logical matrix (or vector of length m * n).

na.rm logical. Should missing values (including NaN) be omitted from the calculations?

90 colSums

dims integer: Which dimensions are regarded as ‘rows’ or ‘columns’ to sum over.
For rowx, the sum or mean is over dimensions dims+1, . . .; for colx it is over
dimensions 1:dims.

m, n the dimensions of the matrix x for .colSums() etc.

Details

These functions are equivalent to use of apply with FUN = mean or FUN = sum with appropriate
margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties of
NaN and NA. If na.rm = FALSE and either NaN or NA appears in a sum, the result will be one of NaN
or NA, but which might be platform-dependent.

Notice that omission of missing values is done on a per-column or per-row basis, so column means
may not be over the same set of rows, and vice versa. To use only complete rows or columns, first
select them with na.omit or complete.cases (possibly on the transpose of x).

The versions with an initial dot in the name (.colSums() etc) are ‘bare-bones’ versions for use in
programming: they apply only to numeric (like) matrices and do not name the result.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. For the
first four functions the dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with na.rm =
TRUE), that component of the output is set to @ (*Sums) or NaN (*Means), consistent with sum and
mean.

See Also

apply, rowsum

Examples

Compute row and column sums for a matrix:

x <= cbind(x1 = 3, x2 = c(4:1, 2:5))

rowSums(x); colSums(x)

dimnames(x)[[1]1] <- letters[1:8]

rowSums(x); colSums(x); rowMeans(x); colMeans(x)
x[] <- as.integer(x)

rowSums(x); colSums(x)

x[] <-x <3

rowSums(x); colSums(x)

x <= cbind(x1 = 3, x2 = c(4:1, 2:5))

x[3,] <- NA; x[4, 2] <- NA

rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array

dim(UCBAdmissions)

rowSums (UCBAdmissions); rowSums(UCBAdmissions, dims = 2)
colSums (UCBAdmissions); colSums(UCBAdmissions, dims = 2)

commandArgs 91

complex case

x <- cbind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

x[3, 1 <= NA; x[4, 2] <- NA

rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was invoked.

Usage

commandArgs (trailingOnly = FALSE)

Arguments

trailingOnly logical. Should only arguments after ‘--args’ be returned?

Details

These arguments are captured before the standard R command line processing takes place. This
means that they are the unmodified values. This is especially useful with the ‘--args’ command-
line flag to R, as all of the command line after that flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by which R was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embedded R it can be anything the programmer supplied.

If trailingOnly = TRUE, a character vector of those arguments (if any) supplied after ‘--args’.

See Also

R.home(), Startup and BATCH

Examples

commandArgs ()

Spawn a copy of this application as it was invoked,
subject to shell quoting issues

system(paste(commandArgs(), collapse = " "))

92 Comparison

comment Query or Set a "comment” Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically useful for
data. frames or model fits.
Contrary to other attributes, the comment is not printed (by print or print.default).

Assigning NULL or a zero-length character vector removes the comment.

Usage

comment (x)
comment(x) <- value

Arguments

X any R object

value a character vector, or NULL.
See Also

attributes and attr for other attributes.

Examples

X <- matrix(1:12, 3, 4)
comment(x) <- c("This is my very important data from experiment #0234",

"Jun 5, 1998")
X
comment (x)
Comparison Relational Operators
Description

Binary operators which allow the comparison of values in atomic vectors.

Usage

x <y
X >y
X <=y
>=y
==y
I=y

xX X X

Comparison 93

Arguments
X,y atomic vectors, symbols, calls, or other objects for which methods have been
written.
Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via the Ops group generic function. (See Ops for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: see locales. The collating sequence of locales such as ‘en_US’ is
normally different from ‘C’ (which should use ASCII) and can be surprising. Beware of making
any assumptions about the collation order: e.g. in Estonian Z comes between S and T, and collation
is not necessarily character-by-character — in Danish aa sorts as a single letter, after z. In Welsh ng
may or may not be a single sorting unit: if it is it follows g. Some platforms may not respect the
locale and always sort in numerical order of the bytes in an 8-bit locale, or in Unicode code-point
order for a UTF-8 locale (and may not sort in the same order for the same language in different
character sets). Collation of non-letters (spaces, punctuation signs, hyphens, fractions and so on) is
even more problematic.

Character strings can be compared with different marked encodings (see Encoding): they are trans-
lated to UTF-8 before comparison.

Raw vectors should not really be considered to have an order, but the numeric order of the byte
representation is used.

At least one of x and y must be an atomic vector, but if the other is a list R attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

Missing values (NA) and NaN values are regarded as non-comparable even to themselves, so compar-
isons involving them will always result in NA. Missing values can also result when character strings
are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

Value

A logical vector indicating the result of the element by element comparison. The elements of shorter
vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4 Compare group generic, and so methods can be written
for them individually as well as for the group generic (or the Ops group generic), with arguments
c(el,e2).

94 Comparison

Note

Do not use == and ! = for tests, such as in if expressions, where you must get a single TRUE or FALSE.
Unless you are absolutely sure that nothing unusual can happen, you should use the identical
function instead.

For numerical and complex values, remember == and != do not allow for the finite representation
of fractions, nor for rounding error. Using all.equal with identical is almost always preferable.
See the examples. (This also applies to the other comparison operators.)

These operators are sometimes called as functions as e.g. *<*(x,y): see the description of how
argument-matching is done in Ops.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Collation of character strings is a complex topic. For an introduction see https://en.wikipedia.
org/wiki/Collating_sequence. The Unicode Collation Algorithm (http://unicode.org/
reports/tr10/) is likely to be increasingly influential. Where available R by default makes use of
ICU (http://site.icu-project.org/) for collation (except in a C locale).

See Also

factor for the behaviour with factor arguments.
Syntax for operator precedence.

capabilities for whether ICU is available, and icuSetCollate to tune the string collation algo-
rithm when it is.

Examples

x <- stats::rnorm(20)
x <1
x[x > 0]

x1 == x2 # FALSE on most machines
identical(all.equal(x1, x2), TRUE) # TRUE everywhere

range of most 8-bit charsets, as well as of Latin-1 in Unicode
z <- c(32:126, 160:255)
x <= if(l1@n_info()$MBCS) {
intToUtf8(z, multiple = TRUE)
} else rawToChar(as.raw(z), multiple = TRUE)
by number
writeLines(strwrap(paste(x, collapse=" "), width = 60))
by locale collation
writeLines(strwrap(paste(sort(x), collapse=" "), width = 60))

https://en.wikipedia.org/wiki/Collating_sequence
https://en.wikipedia.org/wiki/Collating_sequence
http://unicode.org/reports/tr10/
http://unicode.org/reports/tr10/
http://site.icu-project.org/

complex

95

complex

Complex Numbers and Basic Functionality

Description

Basic functions which support complex arithmetic in R, in addition to the arithmetic operators +, -,

%, /,and *.

Usage

complex(length.out = @, real = numeric(), imaginary = numeric(),

modulus
as.complex(x,
is.complex(x)

Re(z)
Im(z)
Mod(z)
Arg(z)
Conj(z)

Arguments

length.out
real
imaginary
modulus
argument

X

z

Details

=1, argument = Q)

.2

numeric. Desired length of the output vector, inputs being recycled as needed.
numeric vector.

numeric vector.

numeric vector.

numeric vector.

an object, probably of mode complex.

an object of mode complex, or one of a class for which a methods has been
defined.

further arguments passed to or from other methods.

Complex vectors can be created with complex. The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips at-
tributes including names. Up to R versions 3.2.x, all forms of NA and NaN were coerced to a com-
plex NA, i.e., the NA_complex_ constant, for which both the real and imaginary parts are NA. Since
R 3.3.0, typically only objects which are NA in parts are coerced to complex NA, but others with NaN
parts, are not. As a consequence, complex arithmetic where only NaN’s (but no NA’s) are involved
typically will not give complex NA but complex numbers with real or imaginary parts of NaN.

96

complex

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the real part,
imaginary part, modulus, argument and complex conjugate for complex values. The modulus and
argument are also called the polar coordinates. If z = x + iy with real © and y, for r = Mod(z) =
Va2 +y? and ¢ = Arg(z), x = r x cos(¢) and y = r * sin(¢). They are all internal generic
primitive functions: methods can be defined for them individually or via the Complex group generic.

In addition to the arithmetic operators (see Arithmetic) +, -, *, /, and *, the elementary trigonomet-
ric, logarithmic, exponential, square root and hyperbolic functions are implemented for complex
values.

Matrix multiplications (%*%, crossprod, tcrossprod) are also defined for complex matrices
(matrix), and so are solve, eigen or svd.

Internally, complex numbers are stored as a pair of double precision numbers, either or both of
which can be NaN (including NA, see NA_complex_ and above) or plus or minus infinity.

S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im, Mod, Arg and Conj constitute the S4 group generic Complex and so S4 methods can be set
for them individually or via the group generic.

Note

Operations and functions involving complex NaN mostly rely on the C library’s handling of ‘double
complex’ arithmetic, which typically returns complex(re=NaN, im=NaN) (but we have not seen a
guarantee for that). For + and -, R’s own handling works strictly “coordinate wise”.

Operations involving complex NA, i.e., NA_complex_, return NA_complex_.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic; polyroot finds all n complex roots of a polynomial of degree n.

Examples

require(graphics)
i * (-3:3)

matrix(1i* (-6:5), nrow = 4) #- all columns are the same
@ * 11 # a complex NaN

create a complex normal vector
z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100))
or also (less efficiently):

conditions 97

22 <- 1:2 + 1i%(8:9)

The Arg(.) is an angle:

zz <- (rep(1:4, len = 9) + 1ix(9:1))/10

zz.shift <- complex(modulus = Mod(zz), argument = Arg(zz) + pi)
plot(zz, xlim = c(-1,1), ylim = c(-1,1), col = "red”, asp =1,

main = expression(paste(”Rotation by ",” ", pi == 180%0)))
abline(th = @, v = 0, col = "blue”, 1ty = 3)
points(zz.shift, col = "orange")

showC <- function(z) noquote(sprintf("(R = %g, I = %g)", Re(z), Im(z)))

The exact result of this *depends* on the platform, compiler, math-library:

(NpNA <- NaN + NA_complex_) ; str(NpNA) # xbehaves* as 'cplx NA'

stopifnot(is.na(NpNA), is.na(NA_complex_), is.na(Re(NA_complex_)), is.na(Im(NA_complex_)))
showC(NpNA)# but not always is {shows '(R = NaN, I = NA)' on some platforms}

and this is not TRUE everywhere:

identical (NpNA, NA_complex_)

showC(NA_complex_) # always == (R = NA, I = NA)

conditions Condition Handling and Recovery

Description

These functions provide a mechanism for handling unusual conditions, including errors and warn-

ings.

Usage
tryCatch(expr, ..., finally)
withCallingHandlers(expr, ...)

signalCondition(cond)

simpleCondition(message, call = NULL)

simpleError (message, call = NULL)

simpleWarning (message, call = NULL)

simpleMessage (message, call = NULL)
errorCondition(message, ..., class = NULL, call = NULL)
warningCondition(message, ..., class = NULL, call = NULL)

S3 method for class 'condition'

as.character(x, ...)
S3 method for class 'error'
as.character(x, ...)

S3 method for class 'condition'

98

print(x,

S3 method for class 'restart'

print(x,

conditionCall(c)

S3 method for class 'condition'
conditionCall(c)
conditionMessage(c)

S3 method for class 'condition'
conditionMessage(c)

withRestarts(expr, ...)

computeRestarts(cond = NULL)
findRestart(name, cond = NULL)
invokeRestart(r, ...)
invokeRestartInteractively(r)

isRestart(x)

restartDescription(r)
restartFormals(r)

suspendInterrupts(expr)
allowInterrupts(expr)

.signalSimpleWarning(msg, call)
.handleSimpleError(h, msg, call)

.tryResumeInterrupt()
Arguments
c a condition object.
call call expression.
cond a condition object.
expr expression to be evaluated.
finally expression to be evaluated before returning or exiting.
h function.
message character string.
msg character string.
name character string naming a restart.
r restart object.
X object.
class character string naming a condition class.

additional arguments; see details below.

conditions

conditions 99

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract class condition. Errors and warnings are ob-
jects inheriting from the abstract subclasses error and warning. The class simpleError is the
class used by stop and all internal error signals. Similarly, simpleWarning is used by warning,
and simpleMessage is used by message. The constructors by the same names take a string de-
scribing the condition as argument and an optional call. The functions conditionMessage and
conditionCall are generic functions that return the message and call of a condition.

The function errorCondition and warningCondition can be used to construct error conditions
of a particular class with additional fields specified as the ... argument. warningCondition is
analogous for warnings.

Conditions are signaled by signalCondition. In addition, the stop and warning functions have
been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers provided
inthe . .. argument are available. The finally expression is then evaluated in the context in which
tryCatch was called; that is, the handlers supplied to the current tryCatch call are not active when
the finally expression is evaluated.

Handlers provided in the ... argument to tryCatch are established for the duration of the evalua-
tion of expr. If no condition is signaled when evaluating expr then tryCatch returns the value of
the expression.

If a condition is signaled while evaluating expr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a single tryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to the tryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and the ap-
plicable handler is a calling handler, then the handler is called by signalCondition in the context
where the condition was signaled but with the available handlers restricted to those below the han-
dler called in the handler stack. If the handler returns, then the next handler is tried; once the last
handler has been tried, signalCondition returns NULL.

User interrupts signal a condition of class interrupt that inherits directly from class condition
before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using withRestarts.
One pre-established restart is an abort restart that represents a jump to top level.

findRestart and computeRestarts find the available restarts. findRestart returns the most re-
cently established restart of the specified name. computeRestarts returns a list of all restarts. Both
can be given a condition argument and will then ignore restarts that do not apply to the condition.

invokeRestart transfers control to the point where the specified restart was established and calls
the restart’s handler with the arguments, if any, given as additional arguments to invokeRestart.

100 conditions

The restart argument to invokeRestart can be a character string, in which case findRestart is
used to find the restart.

New restarts for withRestarts can be specified in several ways. The simplest is in name =
function form where the function is the handler to call when the restart is invoked. Another simple
variant is as name = string where the string is stored in the description field of the restart object
returned by findRestart; in this case the handler ignores its arguments and returns NULL. The most
flexible form of a restart specification is as a list that can include several fields, including handler,
description, and test. The test field should contain a function of one argument, a condition,
that returns TRUE if the restart applies to the condition and FALSE if it does not; the default function
returns TRUE for all conditions.

One additional field that can be specified for a restart is interactive. This should be a function of
no arguments that returns a list of arguments to pass to the restart handler. The list could be obtained
by interacting with the user if necessary. The function invokeRestartInteractively calls this
function to obtain the arguments to use when invoking the restart. The default interactive method
queries the user for values for the formal arguments of the handler function.

Interrupts can be suspended while evaluating an expression using suspendInterrupts. Subex-
pression can be evaluated with interrupts enabled using allowInterrupts. These functions can be
used to make sure cleanup handlers cannot be interrupted.

.signalSimpleWarning, .handleSimpleError, and .tryResumeInterrupt are used internally
and should not be called directly.

References

The tryCatch mechanism is similar to Java error handling. Calling handlers are based on Common
Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and try is essentially a simplified version of tryCatch.
assertCondition in package tools fests that conditions are signalled and works with several of
the above handlers.

Examples

tryCatch(1, finally = print(”Hello"))

e <- simpleError("test error")

Not run:

stop(e)

tryCatch(stop(e), finally = print("”Hello"))
tryCatch(stop("fred”), finally = print("Hello"))

End(Not run)

tryCatch(stop(e), error = function(e) e, finally = print("Hello"))
tryCatch(stop(”"fred”), error = function(e) e, finally = print(”"Hello"))
withCallingHandlers({ warning("A"); 1+2 }, warning = function(w) {})
Not run:

{ withRestarts(stop("A"), abort = function() {3}); 1 }

End(Not run)

conflicts 101

withRestarts(invokeRestart("foo"”, 1, 2), foo = function(x, y) {x + y})

##--> More examples are part of
##--> demo(error.catching)

conflicts Search for Masked Objects on the Search Path

Description

conflicts reports on objects that exist with the same name in two or more places on the search
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage

conflicts(where = search(), detail = FALSE)

Arguments
where A subset of the search path, by default the whole search path.
detail If TRUE, give the masked or masking functions for all members of the search
path.
Value

If detail = FALSE, a character vector of masked objects. If detail = TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty vectors are
omitted.

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

011 "1m"

#

$package:base
011 "1m"

Remove things from your "workspace” that mask others:
remove(list = conflicts(detail = TRUE)$.GlobalEnv)

102 connections

connections Functions to Manipulate Connections (Files, URLs, ...)

Description

Functions to create, open and close connections, i.e., “generalized files”, such as possibly com-
pressed files, URLs, pipes, etc.

Usage
file(description = "", open = "", blocking = TRUE,
encoding = getOption("encoding"”), raw = FALSE,
method = getOption("url.method”, "default"))
url(description, open = "", blocking = TRUE,

encoding = getOption("encoding”),

method = getOption("url.method”, "default”),

headers = NULL)
gzfile(description, open = ""
compression = 6)

, encoding = getOption("encoding"),

nn

bzfile(description, open , encoding = getOption("encoding"),

compression = 9)
xzfile(description, open = ""
compression = 6)

, encoding = getOption("encoding"),

nn

unz(description, filename, open = , encoding = getOption("encoding”))

nn

pipe(description, open = , encoding = getOption("encoding"))

fifo(description, open = "", blocking = FALSE,
encoding = getOption("encoding”))
socketConnection(host = "localhost”, port, server = FALSE,

blocking = FALSE, open = "at+",
encoding = getOption("encoding”),
timeout = getOption("timeout”))

open(con, ...)

S3 method for class 'connection'
open(con, open = "r", blocking = TRUE, ...)
close(con, ...)

S3 method for class 'connection'
close(con, type = "rw", ...)

connections 103

flush(con)

isOpen(con, rw = "")

isIncomplete(con)

Arguments

description character string. A description of the connection: see ‘Details’.

open character string. A description of how to open the connection (if it should be
opened initially). See section ‘Modes’ for possible values.

blocking logical. See the ‘Blocking’ section.

encoding The name of the encoding to be assumed. See the ‘Encoding’ section.

raw logical. If true, a ‘raw’ interface is used which will be more suitable for argu-
ments which are not regular files, e.g. character devices. This suppresses the
check for a compressed file when opening for text-mode reading, and asserts
that the ‘file’ may not be seekable.

method character string, partially matched to c("default”,”internal”, "wininet”,"libcurl”):
see ‘Details’.

headers named character vector of HTTP headers to use in HTTP requests. It is
ignored for non-HTTP URLs. The User-Agent header, coming from the
HTTPUserAgent option (see options) is used as the first header, automatically.

compression integer in 0-9. The amount of compression to be applied when writing, from
none to maximal available. For xzfile can also be negative: see the ‘Compres-
sion’ section.

timeout numeric: the timeout (in seconds) to be used for this connection. Beware that
some OSes may treat very large values as zero: however the POSIX standard
requires values up to 31 days to be supported.

filename a filename within a zip file.

host character string. Host name for the port.

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

con a connection.

type character string. Currently ignored.

rw character string. Empty or "read” or "write”, partial matches allowed.
arguments passed to or from other methods.

Details

The first nine functions create connections. By default the connection is not opened (except for a
socketConnection), but may be opened by setting a non-empty value of argument open.

For file the description is a path to the file to be opened or a complete URL (when it is the same
as calling url), or "" (the default) or "clipboard” (see the ‘Clipboard’ section). Use "stdin"

104 connections

to refer to the C-level ‘standard input’ of the process (which need not be connected to anything in
a console or embedded version of R, and is not in RGui on Windows). See also stdin() for the
subtly different R-level concept of stdin. See nullfile() for a platform-independent way to get
filename of the null device.

For url the description is a complete URL including scheme (such as ‘http://’, ‘https://’,
‘ftp://’ or ‘file://’). Method "internal” is that available since connections were introduced,
method "wininet"” is only available on Windows (it uses the WinlINet functions of that OS) and
method "libcurl” (using the library of that name: http://curl.haxx.se/libcurl/) is required
on a Unix-alike but optional on Windows. Method "default” uses method "internal” for ‘file:’
URLs and "libcurl” for ftps: URLs. On a Unix-alike it uses "libcurl” for ‘http:’, ‘https:’
and ‘ftp:’ URLs; on Windows "wininet” for ‘http:’, ‘ftp:’ and ‘https:’ URLs. Proxies can
be specified: see download. file.

For gzfile the description is the path to a file compressed by gzip: it can also open for reading
uncompressed files and those compressed by bzip2, xz or 1zma.

For bzfile the description is the path to a file compressed by bzip2.

For xzfile the description is the path to a file compressed by xz (https://en.wikipedia.org/
wiki/Xz) or (for reading only) 1zma (https://en.wikipedia.org/wiki/LZMA).

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with *.zip’ extension if required.

For pipe the description is the command line to be piped to or from. This is run in a shell, on
Windows that specified by the COMSPEC environment variable.

For fifo the description is the path of the fifo. (Support for fifo connections is optional but they
are available on most Unix platforms and on Windows.)

The intention is that file and gzfile can be used generally for text input (from files, ‘http://’
and ‘https://’ URLs) and binary input respectively.

open, close and seek are generic functions: the following applies to the methods relevant to con-
nections.

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open call open explicitly.

close closes and destroys a connection. This will happen automatically in due course (with a
warning) if there is no longer an R object referring to the connection.

A maximum of 128 connections can be allocated (not necessarily open) at any one time. Three of
these are pre-allocated (see stdout). The OS will impose limits on the numbers of connections of
various types, but these are usually larger than 125.

flush flushes the output stream of a connection open for write/append (where implemented, cur-
rently for file and clipboard connections, stdout and stderr).

If for a file or (on most platforms) a fifo connection the description is "", the file/fifo is imme-
diately opened (in "w+" mode unless open = "w+b" is specified) and unlinked from the file system.
This provides a temporary file/fifo to write to and then read from.

Value

file, pipe, fifo, url, gzfile, bzfile, xzfile, unz and socketConnection return a connection
object which inherits from class "connection” and has a first more specific class.

http://curl.haxx.se/libcurl/
https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/LZMA

connections 105

open and flush return NULL, invisibly.

close returns either NULL or an integer status, invisibly. The status is from when the connection was
last closed and is available only for some types of connections (e.g., pipes, files and fifos): typically
zero values indicate success. Negative values will result in a warning; if writing, these may indicate
write failures and should not be ignored.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns a logical value, whether the last read attempt was blocked, or for an output
text connection whether there is unflushed output.

URLs
url and file support URL schemes ‘file://’, ‘http://’, ‘https://’ and ‘ftp://’.

method = "libcurl” allows more schemes: exactly which schemes is platform-dependent (see
libcurlVersion), but all Unix-alike platforms will support ‘https://’ and most platforms will
support ‘ftps://’.

Most methods do not percent-encode special characters such as spaces in ‘http://’ URLs (see
URLencode), but it seems the "wininet"” method does.

A note on ‘file://° URLs. The most general form (from RFC1738) is
‘file://host/path/to/file’, but R only accepts the form with an empty host field refer-
ring to the local machine.

On a Unix-alike, this is then ‘file:///path/to/file’, where ‘path/to/file’ is relative to ‘/’.
So although the third slash is strictly part of the specification not part of the path, this can be
regarded as a way to specify the file ‘/path/to/file’. It is not possible to specify a relative path
using a file URL.

In this form the path is relative to the root of the filesystem, not a Windows concept. The standard
form on Windows is ‘file:///d:/R/repos’: for compatibility with earlier versions of R and Unix
versions, any other form is parsed as R as ‘file://’ plus path_to_file. Also, backslashes are
accepted within the path even though RFC1738 does not allow them.

No attempt is made to decode a percent-encoded ‘file:’ URL: call URLdecode if necessary.

All the methods attempt to follow redirected HTTP URLs, but the "internal” method is unable to
follow redirections to HTTPS URLs.

Server-side cached data is always accepted.

Function download. file and several contributed packages provide more comprehensive facilities
to download from URLs.

Modes

Possible values for the argument open are

n.n

r" or "rt" Open for reading in text mode.
"w" or "wt" Open for writing in text mode.
"a" or "at" Open for appending in text mode.
"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

106 connections

"ab" Open for appending in binary mode.

n

r+", "r+b"” Open for reading and writing.

"w+", "w+b"” Open for reading and writing, truncating file initially.
"a+", "atb" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.
Only file and socket connections can be opened for both reading and writing. An unsupported mode
is usually silently substituted.

If a file or fifo is created on a Unix-alike, its permissions will be the maximal allowed by the current
setting of umask (see Sys.umask).

For many connections there is little or no difference between text and binary modes. For file-like
connections on Windows, translation of line endings (between LF and CRLF) is done in text mode
only (but text read operations on connections such as readLines, scan and source work for any
form of line ending). Various R operations are possible in only one of the modes: for example
pushBack is text-oriented and is only allowed on connections open for reading in text mode, and
binary operations such as readBin, load and save can only be done on binary-mode connections.

nn

The mode of a connection is determined when actually opened, which is deferred if open ="" is
given (the default for all but socket connections). An explicit call to open can specify the mode,
but otherwise the mode will be "r". (gzfile, bzfile and xzfile connections are exceptions, as
the compressed file always has to be opened in binary mode and no conversion of line-endings is
done even on Windows, so the default mode is interpreted as "rb".) Most operations that need
write access or text-only or binary-only mode will override the default mode of a non-yet-open
connection.

Append modes need to be considered carefully for compressed-file connections. They do not pro-
duce a single compressed stream on the file, but rather append a new compressed stream to the
file. Readers may or may not read beyond end of the first stream: currently R does so for gzfile,
bzfile and xzfile connections.

Compression

R supports gzip, bzip2 and xz compression (also read-only support for its precursor, 1zma com-
pression).

For reading, the type of compression (if any) can be determined from the first few bytes of the file.
Thus for file(raw = FALSE) connections, if openis "", "r" or "rt" the connection can read any
of the compressed file types as well as uncompressed files. (Using "rb" will allow compressed files
to be read byte-by-byte.) Similarly, gzfile connections can read any of the forms of compression

and uncompressed files in any read mode.

(The type of compression is determined when the connection is created if open is unspecified and a
file of that name exists. If the intention is to open the connection to write a file with a different form
of compression under that name, specify open = "w"” when the connection is created or unlink the
file before creating the connection.)

For write-mode connections, compress specifies how hard the compressor works to minimize the
file size, and higher values need more CPU time and more working memory (up to ca 800Mb
for xzfile(compress = 9)). For xzfile negative values of compress correspond to adding the

xz argument ‘-e’: this takes more time (double?) to compress but may achieve (slightly) better

connections 107

compression. The default (6) has good compression and modest (100Mb memory) usage: but if
you are using xz compression you are probably looking for high compression.

Choosing the type of compression involves tradeoffs: gzip, bzip2 and xz are successively less
widely supported, need more resources for both compression and decompression, and achieve more
compression (although individual files may buck the general trend). Typical experience is that
bzip2 compression is 15% better on text files than gzip compression, and xz with maximal com-
pression 30% better. The experience with R save files is similar, but on some large ‘. rda’ files
xz compression is much better than the other two. With current computers decompression times
even with compress =9 are typically modest and reading compressed files is usually faster than
uncompressed ones because of the reduction in disc activity.

Encoding

The encoding of the input/output stream of a connection can be specified by name in the same way
as it would be given to iconv: see that help page for how to find out what encoding names are
recognized on your platform. Additionally, "" and "native.enc” both mean the ‘native’ encoding,
that is the internal encoding of the current locale and hence no translation is done.

When writing to a text connection, the connections code always assumes its input is in native en-
coding, so e.g. writelLines has to convert text to native encoding. writeLines does not do the
conversion when useBytes=TRUE (for expert use only), but the connections code still behaves as if
the text was in native encoding, so any attempt to convert encoding (encoding argument other than
"" and "native.enc"”) in connections will produce incorrect results.

When reading from a text connection, the connections code, after re-encoding based on the
encoding argument, returns text that is assumed to be in native encoding; an encoding mark is
only added by functions that read from the connection, so e.g. readLines can be instructed to mark
the text as "UTF-8" or "1atin1”, but readLines does no further conversion. To allow reading text
in "UTF-8" on a system that cannot represent all such characters in native encoding (currently only
Windows), a connection can be internally configured to return the read text in UTF-8 even though it
is not the native encoding; currently readLines and scan use this feature when given a connection
that is not yet open and, when using the feature, they unconditionally mark the text as "UTF-8".

Re-encoding only works for connections in text mode: reading from a connection with re-encoding
specified in binary mode will read the stream of bytes, but mixing text and binary mode reads (e.g.,
mixing calls to readLines and readChar) is likely to lead to incorrect results.

The encodings "UCS-2LE" and "UTF-16LE" are treated specially, as they are appropriate values
for Windows ‘Unicode’ text files. If the first two bytes are the Byte Order Mark OxFEFF then
these are removed as some implementations of iconv do not accept BOMs. Note that whereas
most implementations will handle BOMs using encoding "UCS-2" and choose the appropriate byte
order, some (including earlier versions of glibc) will not. There is a subtle distinction between
"UTF-16" and "UCS-2" (see https://en.wikipedia.org/wiki/UTF-16): the use of characters in
the ‘Supplementary Planes’ which need surrogate pairs is very rare so "UCS-2LE" is an appropriate
first choice (as it is more widely implemented).

As from R 3.0.0 the encoding "UTF-8-BOM” is accepted for reading and will re-
move a Byte Order Mark if present (which it often is for files and webpages gener-
ated by Microsoft applications). If a BOM is required (it is not recommended) when
writing it should be written explicitly, e.g. by writeChar(”\ufeff”, 6 con,eos=NULL) or
writeBin(as.raw(c(@xef,@xbb,0xbf)),binary_con)

https://en.wikipedia.org/wiki/UTF-16

108 connections

Encoding names "utf8"”, "mac” and "macroman” are not portable, and not supported on all current
R platforms. "UTF-8" is portable and "macintosh” is the official (and most widely supported)
name for ‘Mac Roman’. (As from R 3.4.0, R maps "utf8" to "UTF-8" internally.)

Requesting a conversion that is not supported is an error, reported when the connection is opened.
Exactly what happens when the requested translation cannot be done for invalid input is in general
undocumented. On output the result is likely to be that up to the error, with a warning. On input, it
will most likely be all or some of the input up to the error.

It may be possible to deduce the current native encoding from Sys.getlocale("LC_CTYPE"), but
not all OSes record it.

Blocking

Whether or not the connection blocks can be specified for file, url (default yes), fifo and socket
connections (default not).

In blocking mode, functions using the connection do not return to the R evaluator until the
read/write is complete. In non-blocking mode, operations return as soon as possible, so on in-
put they will return with whatever input is available (possibly none) and for output they will return
whether or not the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts of R. These do not always succeed, and the whole
R process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on HTTP/FTP URLs and on sockets are subject to the timeout set by
options(”timeout”). Note that this is a timeout for no response, not for the whole operation. The
timeout is set at the time the connection is opened (more precisely, when the last connection of that
type — ‘http:’, ‘ftp:’ or socket — was opened).

Fifos

Fifos default to non-blocking. That follows S version 4 and is probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing (only)
will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to the R process, and provides an similar facility to file().

Clipboard

file can be used with description = "clipboard” in mode "r" only. This reads the X11 primary
selection (see http://standards.freedesktop.org/clipboards-spec/clipboards-latest.
txt), which can also be specified as "X11_primary” and the secondary selection as
"X11_secondary”. On most systems the clipboard selection (that used by ‘Copy’ from an ‘Edit’
menu) can be specified as "X11_clipboard”.

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt

connections 109

Unix users wishing to write to one of the X11 selections may be able to do so via xclip
(http://sourceforge.net/projects/xclip/) or xsel (http://www.vergenet.net/~conrad/

snoonon

software/xsel/), for example by pipe(”xclip -i"”,"w") for the primary selection.

nonon

macOS users can use pipe("pbpaste”) and pipe("pbcopy”,"w") to read from and write to that
system’s clipboard.

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the S model, for example in output text connections and URL, compressed and socket
connections. The default open mode in R is "r" except for socket connections. This differs from S,
where it is the equivalent of "r+", known as "*".

On (rare) platforms where vsnprintf does not return the needed length of output there is a 100,000
byte output limit on the length of a line for text output on fifo, gzfile, bzfile and xzfile
connections: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

Ripley, B. D. (2001) Connections. R News, 1/1, 16-7. https://www.r-project.org/doc/Rnews/
Rnews_2001-1.pdf

See Also

textConnection, seek, showConnections, pushBack.

Functions making direct use of connections are (text-mode) readlLines, writelLines, cat,
sink, scan, parse, read.dcf, dput, dump and (binary-mode) readBin, readChar, writeBin,
writeChar, load and save.

capabilities to see if fifo connections are supported by this build of R.
gzcon to wrap gzip (de)compression around a connection.

options HTTPUserAgent, internet.info and timeout are used by some of the methods for URL
connections.

memCompress for more ways to (de)compress and references on data compression.
extSoftVersion for the versions of the z1ib (for gzfile), bzip2 and xz libraries in use.

To flush output to the Windows and macOS consoles, see flush.console.

Examples

zzfil <- tempfile(fileext=".data")
zz <- file(zzfil, "w") # open an output file connection

cat("TITLE extra line"”, "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat(”"One more line\n", file = zz)

close(zz)

readLines(zzfil)

unlink(zzfil)

zzfil <- tempfile(fileext=".gz")

http://sourceforge.net/projects/xclip/
http://www.vergenet.net/~conrad/software/xsel/
http://www.vergenet.net/~conrad/software/xsel/
https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf

110 connections

zz <- gzfile(zzfil, "w") # compressed file

cat("TITLE extra line”, "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

readLines(zz <- gzfile(zzfil))

close(zz)

unlink(zzfil)

zz # an invalid connection

zzfil <- tempfile(fileext=".bz2")

zz <- bzfile(zzfil, "w") # bzip2-ed file

cat("TITLE extra line”, "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

zz # print() method: invalid connection

print(readLines(zz <- bzfile(zzfil)))

close(zz)

unlink(zzfil)

An example of a file open for reading and writing
Tpath <- tempfile("test")

Tfile <- file(Tpath, "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat("abc\ndef\n", file = Tfile)

readLines(Tfile)

seek(Tfile, @, rw = "r") # reset to beginning
readLines(Tfile)

cat("ghi\n", file = Tfile)

readLines(Tfile)

Tfile # -> print() : "valid” connection
close(Tfile)

Tfile # -> print() : "invalid” connection
unlink(Tpath)

We can do the same thing with an anonymous file.
Tfile <- file()

cat("abc\ndef\n", file = Tfile)

readLines(Tfile)

close(Tfile)

Not run: ## fifo example -- may hang even with OS support for fifos
if(capabilities("fifo")) {
zzfil <- tempfile(fileext="-fifo")
zz <- fifo(zzfil, "w+")
writeLines("abc”, zz)
print(readLines(zz))
close(zz)
unlink(zzfil)
3
End(Not run)

Unix examples of use of pipes

read listing of current directory
readLines(pipe("1ls -1"))

connections

remove trailing commas. Suppose

Not run: % cat data2_

450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479

End(Not run)

Then read this by

scan(pipe("”sed -e s/,$// data2_"), sep = ",")

convert decimal point to comma in output: see also write.table
both R strings and (probably) the shell need \ doubled

zzfil <- tempfile("outfile")

zz <- pipe(paste(”sed s/\\\\./,/ >", zzfil), "w")
cat(format(round(stats::rnorm(48), 4)), fill = 70, file = zz)
close(zz)

file.show(zzfil, delete.file = TRUE)

Not run:
example for a machine running a finger daemon

con <- socketConnection(port = 79, blocking = TRUE)
writeLines(paste@(system("whoami”, intern = TRUE), "\r"), con)
gsub (" *$", "", readlLines(con))

close(con)

End(Not run)

Not run:

Two R processes communicating via non-blocking sockets
R process 1

conl <- socketConnection(port = 6011, server = TRUE)
writeLines(LETTERS, conl)

close(cont)

R process 2
con2 <- socketConnection(Sys.info()["nodename”], port = 6011)
as non-blocking, may need to loop for input
readLines(con2)
while(isIncomplete(con2)) {
Sys.sleep(1)
z <- readLines(con2)
if(length(z)) print(z)
3

close(con2)

examples of use of encodings

write a file in UTF-8

cat(x, file = (con <- file("foo"”, "w", encoding = "UTF-8"))); close(con)
read a 'Windows Unicode' file

A <- read.table(con <- file("students"”, encoding = "UCS-2LE")); close(con)

112 Constants

End(Not run)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name
pi

Details

R has a small number of built-in constants.

The following constants are available:

LETTERS: the 26 upper-case letters of the Roman alphabet;

e letters: the 26 lower-case letters of the Roman alphabet;

* month.abb: the three-letter abbreviations for the English month names;
* month.name: the English names for the months of the year;

¢ pi: the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base namespace taking appropriate values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data, DateTimeClasses.

Quotes for the parsing of character constants, NumericConstants for numeric constants.

contributors 113

Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4x(4*xatan(1/5) - atan(1/239))

months in English

month.name

months in your current locale
format(ISOdate(2000, 1:12, 1), "%B")
format(ISOdate(2000, 1:12, 1), "%b")

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the same way
as control statements in any Algol-like language. They are all reserved words.

Usage

if(cond) expr
if(cond) cons.expr else alt.expr

for(var in seq) expr
while(cond) expr
repeat expr

break

next

114 Control

Arguments

cond A length-one logical vector that is not NA. Conditions of length greater
than one are currently accepted with a warning, but only the first ele-
ment is used. An error is signalled instead when the environment variable
_R_CHECK_LENGTH_1_CONDITION_ is set to true. Other types are coerced to
logical if possible, ignoring any class.

var A syntactical name for a variable.

seq An expression evaluating to a vector (including a list and an expression) or to a

pairlist or NULL. A factor value will be coerced to a character vector.

expr, cons.expr, alt.expr
An expression in a formal sense. This is either a simple expression or a so called
compound expression, usually of the form { expri ; expr2 }.

Details

break breaks out of a for, while or repeat loop; control is transferred to the first statement outside
the inner-most loop. next halts the processing of the current iteration and advances the looping
index. Both break and next apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ .. }) around your statements, e.g., after
if(..) or for(....). In particular, you should not have a newline between } and else to avoid a
syntax error in entering a if ... else construct at the keyboard or via source. For that reason, one
(somewhat extreme) attitude of defensive programming is to always use braces, e.g., for if clauses.

The seq in a for loop is evaluated at the start of the loop; changing it subsequently does not affect
the loop. If seq has length zero the body of the loop is skipped. Otherwise the variable var is
assigned in turn the value of each element of seq. You can assign to var within the body of the
loop, but this will not affect the next iteration. When the loop terminates, var remains as a variable
containing its latest value.

Value

if returns the value of the expression evaluated, or NULL invisibly if none was (which may happen
if there is no else).

for, while and repeat return NULL invisibly. for sets var to the last used element of seq, or to
NULL if it was of length zero.

break and next do not return a value as they transfer control within the loop.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces.

ifelse, switch for other ways to control flow.

copyright 115

Examples

for(i in 1:5) print(1:1i)
for(n in ¢(2,5,10,20,50)) {
x <- stats::rnorm(n)
cat(n, ": ", sum(x*2), "\n", sep = "")
3
f <- factor(sample(letters[1:5], 10, replace = TRUE))
for(i in unique(f)) print(i)

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: see license for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (see contributors) for the ability to use
their work.

Details
The file ‘R_HOME/COPYRIGHTS’ lists the copyrights in full detail.

crossprod Matrix Crossproduct

Description

Given matrices x and y as arguments, return a matrix cross-product. This is formally equivalent to
(but usually slightly faster than) the call t(x) %x% y (crossprod) or x %*% t(y) (tcrossprod).

Usage
crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments
X,y numeric or complex matrices (or vectors): y = NULL is taken to be the same
matrix as x. Vectors are promoted to single-column or single-row matrices,
depending on the context.
Value

A double or complex matrix, with appropriate dimnames taken from x and y.

116 Cstack_info

Note

When x or y are not matrices, they are treated as column or row matrices, but their names are usually
not promoted to dimnames. Hence, currently, the last example has empty dimnames.

In the same situation, these matrix products (also %*%) are more flexible in promotion of vectors to
row or column matrices, such that more cases are allowed, since R 3.2.0.

The propagation of NaN/Inf values, precision, and performance of matrix products can be controlled
by options("matprod”).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%*% and outer product %0%.

Examples

(z <- crossprod(1:4)) # = sum(1 + 272 + 372 + 4*2)
drop(z) # scalar
X <= 1:4; names(x) <- letters[1:4]; x
tcrossprod(as.matrix(x)) # is
identical (tcrossprod(as.matrix(x)),

crossprod(t(x)))
tcrossprod(x) # no dimnames

m <- matrix(1:6, 2,3) ; v <= 1:3; v2 <- 2:1

stopifnot(identical (tcrossprod(v, m), v %x% t(m)),
identical(tcrossprod(v, m), crossprod(v, t(m))),
identical(crossprod(m, v2), t(m) %*x% v2))

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info()

cumsum 117

Details

On most platforms, C stack information is recorded when R is initialized and used for stack-
checking. If this information is unavailable, the size will be returned as NA, and stack-checking is
not performed.

The information on the stack base address is thought to be accurate on Windows, Linux (using
glibc), macOS and FreeBSD but a heuristic is used on other platforms. Because this might be
slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used on
embedded uses of R on platforms where the stack base information is not thought to be accurate.)

The ‘evaluation depth’ is the number of nested R expressions currently under evaluation: this has a
limit controlled by options("expressions”).

Value

An integer vector. This has named elements

size The size of the stack (in bytes), or NA if unknown.

current The estimated current usage (in bytes), possibly NA.

direction 1 (stack grows down, the usual case) or -1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to Cstack_info).
Examples

Cstack_info()

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum(x)
cumprod(x)
cummax (x)
cummin(x)

Arguments

X a numeric or complex (not cummin or cummax) object, or an object that can be
coerced to one of these.

118 curlGetHeaders

Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Value

A vector of the same length and type as x (after coercion), except that cumprod returns a numeric
vector for integer input (for consistency with x). Names are preserved.

An NA value in x causes the corresponding and following elements of the return value to be NA, as
does integer overflow in cumsum (with a warning).

S4 methods

cumsum and cumprod are S4 generic functions: methods can be defined for them individually or via
the Math group generic. cummax and cummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (cumsum only.)

Examples

cumsum(1:10)
cumprod(1:10)

cummin(c(3:1, 2:0, 4:2))
cummax(c(3:1, 2:0, 4:2))
curlGetHeaders Retrieve Headers from URLs

Description

Retrieve the headers for a URL for a supported protocol such as http://, ftp://, https:// and
ftps://. An optional function not supported on all platforms.

Usage

curlGetHeaders(url, redirect = TRUE, verify = TRUE)

Arguments
url character string specifying the URL.
redirect logical: should redirections be followed?

verify logical: should certificates be verified as valid and applying to that host?

curlGetHeaders 119

Details

This reports what curl -I -L or curl -I would report. Fora ftp:// URL the ‘headers’ are a record
of the conversation between client and server before data transfer.

Only 500 header lines will be reported: there is a limit of 20 redirections so this should suffice (and
even 20 would indicate problems).

It uses getOption(”"timeout") for the connection timeout: that defaults to 60 seconds. As this
cannot be interrupted you may want to consider a shorter value.

To see all the details of the interaction with the server(s) set options(internet.info=1).

HTTPI[S] servers are allowed to refuse requests to read the headers and some do: this will result in
a status of 405.

For possible issues with secure URLs (especially on Windows) see download. file.

There is a security risk in not verifying certificates, but as only the headers are captured it is slight.
Usually looking at the URL in a browser will reveal what the problem is (and it may well be
machine-specific).

Value

A character vector with integer attribute "status” (the last-received ‘status’ code). If redirection
occurs this will include the headers for all the URLSs visited.

For the interpretation of ‘status’ codes see https://en.wikipedia.org/wiki/List_of_HTTP_
status_codes and https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes.
A successful FTP connection will usually have status 250 or 350.

See Also

capabilities("libcurl™) to see if this is supported.

options HTTPUserAgent and timeout are used.

Examples

needs Internet access, results vary
curlGetHeaders("http://bugs.r-project.org”) ## this redirects to https://
curlGetHeaders("https://httpbin.org/status/404") ## returns status
curlGetHeaders("ftp://cran.r-project.org")

Not run: ## a not-always-available site:
curlGetHeaders("ftps://test.rebex.net/readme. txt")

End(Not run)

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes

120

cut

cut

Convert Numeric to Factor

Description

cut divides the range of x into intervals and codes the values in x according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.

Usage

cut(x, ...)

Default S3 method:
cut(x, breaks, labels = NULL,
include.lowest = FALSE, right = TRUE, dig.lab = 3,

ordered_result = FALSE, ...)
Arguments
X a numeric vector which is to be converted to a factor by cutting.
breaks either a numeric vector of two or more unique cut points or a single number
(greater than or equal to 2) giving the number of intervals into which x is to be
cut.
labels labels for the levels of the resulting category. By default, labels are constructed

include.lowest

right

dig.lab

ordered_result

Details

using "(a,b]"” interval notation. If labels = FALSE, simple integer codes are
returned instead of a factor.

logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right = FALSE)
‘breaks’ value should be included.

logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.

logical: should the result be an ordered factor?

further arguments passed to or from other methods.

When breaks is specified as a single number, the range of the data is divided into breaks pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (If x is a constant vector, equal-length intervals
are created, one of which includes the single value.)

If a 1abels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as "(b1,b2]", "(b2,b3]" etc. for right = TRUE and as
"[b1,b2)", ...if right = FALSE. In this case, dig.lab indicates the minimum number of digits
should be used in formatting the numbers b1, b2, A larger value (up to 12) will be used if

cut 121

needed to distinguish between any pair of endpoints: if this fails labels such as "Range3"” will be
used. Formatting is done by formatC.

The default method will sort a numeric vector of breaks, but other methods are not required to and
labels will correspond to the intervals after sorting.

As from R 3.2.0, getOption("OutDec”) is consulted when labels are constructed for labels =
NULL.

Value

A factor is returned, unless labels = FALSE which results in an integer vector of level codes.

Values which fall outside the range of breaks are coded as NA, as are NaN and NA values.

Note

Instead of table(cut(x,br)), hist(x,br,plot = FALSE) is more efficient and less memory hun-
gry. Instead of cut (*,labels = FALSE), findInterval() is more efficient.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

split for splitting a variable according to a group factor; factor, tabulate, table,
findInterval.

quantile for ways of choosing breaks of roughly equal content (rather than length).

.bincode for a bare-bones version.

Examples

Z <- stats::rnorm(10000)

table(cut(Z, breaks = -6:6))

sum(table(cut(Z, breaks = -6:6, labels = FALSE)))
sum(graphics::hist(Z, breaks = -6:6, plot = FALSE)$counts)

cut(rep(1,5), 4) #-- dummy

tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)
X <- rep(0:8, tx0)
stopifnot(table(x) == tx@)

table(cut(x, b = 8))
table(cut(x, breaks = 3%(-2:5)))
table(cut(x, breaks = 3x(-2:5), right = FALSE))

##--- some values OUTSIDE the breaks :

table(cx <- cut(x, breaks = 2%(0:4)))

table(cxl <- cut(x, breaks = 2x(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #-- the first 9 values 0
which(is.na(cx1l)); x[is.na(cx1)] #-- the last 5 values 8

122 cut. POSIXt

Label construction:

y <- stats::rnorm(100)

table(cut(y, breaks = pi/3*(-3:3)))

table(cut(y, breaks = pi/3*%(-3:3), dig.lab = 4))

table(cut(y, breaks = 1%(-3:3), dig.lab = 4))
extra digits don't "harm” here

table(cut(y, breaks = 1%(-3:3), right = FALSE))
#- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- ¢(1,2,3,4,5,2,3,4,5,6,7)

cut(aaa, 3)

cut(aaa, 3, dig.lab = 4, ordered = TRUE)

one way to extract the breakpoints

labs <- levels(cut(aaa, 3))

cbind(lower = as.numeric(sub("\\((.+),.*", "\\1", labs)),
upper = as.numeric(sub("[*, 1%, ([*11x)\\]1", "\\1", labs)))

cut.POSIXt Convert a Date or Date-Time Object to a Factor

Description

Method for cut applied to date-time objects.

Usage

S3 method for class 'POSIXt'
cut(x, breaks, labels = NULL, start.on.monday
right = FALSE, ...)

TRUE,

S3 method for class 'Date'’
cut(x, breaks, labels = NULL, start.on.monday = TRUE,

right = FALSE, ...)
Arguments
X an object inheriting from class "POSIXt" or "Date”.
breaks a vector of cut points or number giving the number of intervals which x is to

be cut into or an interval specification, one of "sec”, "min”, "hour”, "day",
"DSTday", "week”, "month"”, "quarter” or "year", optionally preceded by an
integer and a space, or followed by "s". (For "Date"” objects only interval spec-

non

ifications using "day", "week"”, "month”, "quarter” and "year" are allowed.)

data.class 123

labels labels for the levels of the resulting category. By default, labels are constructed
from the left-hand end of the intervals (which are included for the default value
of right). If labels = FALSE, simple integer codes are returned instead of a
factor.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sundays?

right, ... arguments to be passed to or from other methods.

Details
Note that the default for right differs from the default method. Using include.lowest = TRUE
will include both ends of the range of dates.

Using breaks = "quarter"” will create intervals of 3 calendar months, with the intervals beginning
on January 1, April 1, July 1 or October 1 (based upon min(x)) as appropriate.

A vector of breaks will be sorted before use: labels should correspond to the sorted vector.

Value

A factor is returned, unless labels = FALSE which returns the integer level codes.

Values which fall outside the range of breaks are coded as NA, as are and NA values.

See Also

seq.POSIXt, seq.Date, cut

Examples

random dates in a 10-week period
cut(ISOdate(2001, 1, 1) + 70%86400*stats::runif(100), "weeks")
cut(as.Date("2001/1/1") + 70xstats::runif(100), "weeks")

The standards all have midnight as the start of the day, but some

people incorrectly interpret it at the end of the previous day ...

tm <- seq(as.POSIXct("2012-06-01 06:00"), by = "6 hours”, length.out = 24)
aggregate(1:24, list(day = cut(tm, "days")), mean)

and a version with midnight included in the previous day:
aggregate(1:24, list(day = cut(tm, "days", right = TRUE)), mean)

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class(x)

124 data.frame

Arguments

X an R object.

Value

character string giving the class of x.

The class is the (first element) of the class attribute if this is non-NULL, or inferred from the object’s
dim attribute if this is non-NULL, or mode (x).

Simply speaking, data.class(x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the result
of data.class(x) is "numeric” even when x is classed.

See Also
class

Examples
x <- LETTERS
data.class(factor(x)) # has a class attribute
data.class(matrix(x, ncol = 13)) # has a dim attribute
data.class(list(x)) # the same as mode(x)
data.class(x) # the same as mode(x)
stopifnot(data.class(1:2) == "numeric") # compatibility "rule”

data.frame Data Frames
Description

The function data.frame() creates data frames, tightly coupled collections of variables which
share many of the properties of matrices and of lists, used as the fundamental data structure by most
of R’s modeling software.

Usage

data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE, fix.empty.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

default.stringsAsFactors()

data.frame 125

Arguments

these arguments are of either the form value or tag = value. Component names
are created based on the tag (if present) or the deparsed argument itself.

row.names NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.

check. rows if TRUE then the rows are checked for consistency of length and names.

check.names logical. If TRUE then the names of the variables in the data frame are checked to

ensure that they are syntactically valid variable names and are not duplicated. If
necessary they are adjusted (by make . names) so that they are.
fix.empty.names
logical indicating if arguments which are “unnamed” (in the sense of not being
formally called as someName = arg) get an automatically constructed name or
rather name "". Needs to be set to FALSE even when check.names is false if ""
names should be kept.
stringsAsFactors
logical: should character vectors be converted to factors? The ‘factory-fresh’
default is TRUE, but this can be changed by setting options(stringsAsFactors
= FALSE).

Details

A data frame is a list of variables of the same number of rows with unique row names, given class
"data.frame"”. If no variables are included, the row names determine the number of rows.

The column names should be non-empty, and attempts to use empty names will have unsup-
ported results. Duplicate column names are allowed, but you need to use check.names = FALSE
for data.frame to generate such a data frame. However, not all operations on data frames will
preserve duplicated column names: for example matrix-like subsetting will force column names in
the result to be unique.

data.frame converts each of its arguments to a data frame by calling as.data. frame(optional
=TRUE). As that is a generic function, methods can be written to change the behaviour of argu-
ments according to their classes: R comes with many such methods. Character variables passed to
data. frame are converted to factor columns unless protected by I or argument stringsAsFactors
is false. If a list or data frame or matrix is passed to data. frame itis as if each component or column
had been passed as a separate argument (except for matrices protected by I).

Objects passed to data.frame should have the same number of rows, but atomic vectors (see
is.vector), factors and character vectors protected by I will be recycled a whole number of times
if necessary (including as elements of list arguments).

If row names are not supplied in the call to data.frame, the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied as NULL or no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved by as.matrix).

If row names are supplied of length one and the data frame has a single row, the row. names is taken
to specify the row names and not a column (by name or number).

126 data.frame

Names are removed from vector inputs not protected by I.

default.stringsAsFactors is autility that takes getOption("”stringsAsFactors”) and ensures
the result is TRUE or FALSE (or throws an error if the value is not NULL).

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

How the names of the data frame are created is complex, and the rest of this paragraph is only the
basic story. If the arguments are all named and simple objects (not lists, matrices of data frames)
then the argument names give the column names. For an unnamed simple argument, a deparsed
version of the argument is used as the name (with an enclosing I(...) removed). For a named ma-
trix/list/data frame argument with more than one named column, the names of the columns are the
name of the argument followed by a dot and the column name inside the argument: if the argument
is unnamed, the argument’s column names are used. For a named or unnamed matrix/list/data frame
argument that contains a single column, the column name in the result is the column name in the
argument. Finally, the names are adjusted to be unique and syntactically valid unless check.names
= FALSE.

Note

In versions of R prior to 2.4.0 row.names had to be character: to ensure compatibility with such
versions of R, supply a character vector as the row.names argument.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I, plot.data.frame, print.data.frame, row.names, names (for the column names),
[.data.frame for subsetting methods and I (matrix(..)) examples; Math.data. frame etc, about
Group methods for data. frames; read. table, make.names.

Examples

L3 <- LETTERS[1:3]

fac <- sample(L3, 10, replace = TRUE)

(d <- data.frame(x = 1, y = 1:10, fac = fac))

The "same" with automatic column names:
data.frame(1, 1:10, sample(L3, 10, replace = TRUE))

is.data.frame(d)

do not convert to factor, using I() :

(dd <- cbind(d, char = I(letters[1:101)))

rbind(class = sapply(dd, class), mode = sapply(dd, mode))

stopifnot(1:10 == row.names(d)) # {coercion}

data.matrix 127

(do0 <- d[, FALSE]) # data frame with @ columns and 10 rows
(d.@ <- d[FALSE, 1) # <@ rows> data frame (3 named cols)
(doo <- dO[FALSE, 1) # data frame with @ columns and @ rows

data.matrix Convert a Data Frame to a Numeric Matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

Usage

data.matrix(frame, rownames.force = NA)

Arguments

frame a data frame whose components are logical vectors, factors or numeric vectors.

rownames. force logical indicating if the resulting matrix should have character (rather than NULL)
rownames. The default, NA, uses NULL rownames if the data frame has ‘auto-
matic’ row.names or for a zero-row data frame.

Details

Logical and factor columns are converted to integers. Any other column which is not numeric
(according to is.numeric) is converted by as.numeric or, for S4 objects, as(, "numeric”). If all
columns are integer (after conversion) the result is an integer matrix, otherwise a numeric (double)
matrix.

Value

If frame inherits from class "data.frame”, an integer or numeric matrix of the same dimensions
as frame, with dimnames taken from the row.names (or NULL, depending on rownames. force) and
names.

Otherwise, the result of as.matrix.

Note
The default behaviour for data frames differs from R < 2.5.0 which always gave the result character
rownames.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

128 date

See Also

as.matrix, data.frame, matrix.

Examples

DF <- data.frame(a = 1:3, b = letters[10:12],
c = seq(as.Date("2004-01-01"), by = "week”, len = 3),
stringsAsFactors = TRUE)

data.matrix(DF[1:21])

data.matrix(DF)

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage
date()

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e., length 24, since it relies on POSIX’s
ctime ensuring the above fixed format. Timezone and Daylight Saving Time are taken account of,
but not indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Sys.Date and Sys. time; Date and DateTimeClasses for objects representing date and time.
Examples

(d <- date())
nchar(d) == 24

something similar in the current locale
format(Sys.time(), "%a %b %d %H:%M:%S %Y")

Dates 129

Dates Date Class

Description

Description of the class "Date” representing calendar dates.

Usage

S3 method for class 'Date'’
summary(object, digits = 12, ...)

S3 method for class 'Date'’

print(x, max = NULL, ...)
Arguments
object, x a Date object to be summarized or printed.
digits number of significant digits for the computations.
max numeric or NULL, specifying the maximal number of entries to be printed. By

default, when NULL, getOption("max.print") used.

further arguments to be passed from or to other methods.

Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

It is intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days via the mean
method or by adding or subtracting (see Ops.Date).

From the many methods, see methods(class = "Date"”), a few are documented separately, see
below.

See Also

Sys.Date for the current date.
weekdays for convenience extraction functions.

Methods with extra arguments and documentation:

Ops.Date for operators on "Date” objects.
format.Date for conversion to and from character strings.

axis.Date and hist.Date for plotting.

130 DateTimeClasses

seq.Date , cut.Date, and round.Date for utility operations.

DateTimeClasses for date-time classes.

Examples

(today <- Sys.Date())

format(today, "%d %b %Y") # with month as a word

(tenweeks <- seq(today, length.out=10, by="1 week"”)) # next ten weeks
weekdays (today)

months(tenweeks)

(Dls <- as.Date(.leap.seconds))

length(<Date>) <- n now works

1s <- DIs; length(ls) <- 12

12 <- DIs; length(l2) <- 5 + length(Dls)

stopifnot(exprs = {
length(.) <- * is compatible to subsetting/indexing:
identical(ls, Dls[seq_along(ls)]1)
identical(l2, Dls[seq_along(12)1)
has filled with NA's
is.na(12[(length(D1ls)+1):1length(12)1)

»

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIX1t"” and "POSIXct" representing calendar dates and times.

Usage

S3 method for class 'POSIXct'
print(x, tz = "", usetz = TRUE, max = NULL, ...)

S3 method for class 'POSIXct'
summary(object, digits = 15, ...)

time + z
z + time
time - z
timel lop time2

DateTimeClasses 131

Arguments
x, object an object to be printed or summarized from one of the date-time classes.
tz, usetz for timezone formatting, passed to format.POSIXct.
max numeric or NULL, specifying the maximal number of entries to be printed. By
default, when NULL, getOption("max.print") used.
digits number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.
further arguments to be passed from or to other methods.
time date-time objects
time1l, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct.)
z a numeric vector (in seconds)
lop one of ==, I= <, <=, > or >=.
Details

There are two basic classes of date/times. Class "POSIXct" represents the (signed) number of
seconds since the beginning of 1970 (in the UTC time zone) as a numeric vector. Class "POSIX1t"
is a named list of vectors representing

sec 0-61: seconds.

min 0-59: minutes.

hour 0-23: hours.

mday 1-31: day of the month

mon O—11: months after the first of the year.

year years since 1900.

wday 0-6 day of the week, starting on Sunday.

yday 0-365: day of the year.

isdst Daylight Saving Time flag. Positive if in force, zero if not, negative if unknown.

nn nn

zone (Optional.) The abbreviation for the time zone in force at that time:
might also be used for UTC).

gmtoff (Optional.) The offset in seconds from GMT: positive values are East of the meridian.
Usually NA if unknown, but @ could mean unknown.

if unknown (but

(The last two components are not present for times in UTC and are platform-dependent: they are
supported on platforms based on BSD or glibc (including Linux and macOS) and those using the
tzcode implementation shipped with R (including Windows). But they are not necessarily set.).
Note that the internal list structure is somewhat hidden, as many methods (including length(x),
print() and str) apply to the abstract date-time vector, as for "POSIXct”. As from R 3.5.0, one
can extract and replace single components via [indexing with two indices (see the examples). The
classes correspond to the POSIX/C99 constructs of ‘calendar time’ (the time_t data type) and ‘local
time’ (or broken-down time, the struct tm data type), from which they also inherit their names.
The components of "POSIX1t" are integer vectors, except sec and zone.

132 DateTimeClasses

"POSIXct" is more convenient for including in data frames, and "POSIX1t" is closer to human-
readable forms. A virtual class "POSIXt" exists from which both of the classes inherit: it is used to
allow operations such as subtraction to mix the two classes.

Components wday and yday of "POSIX1t" are for information, and are not used in the conversion
to calendar time. However, isdst is needed to distinguish times at the end of DST: typically lam to
2am occurs twice, first in DST and then in standard time. At all other times isdst can be deduced
from the first six values, but the behaviour if it is set incorrectly is platform-dependent.

Logical comparisons and some arithmetic operations are available for both classes. One can add or
subtract a number of seconds from a date-time object, but not add two date-time objects. Subtraction
of two date-time objects is equivalent to using difftime. Be aware that "POSIX1t" objects will
be interpreted as being in the current time zone for these operations unless a time zone has been
specified.

"POSIX1t" objects will often have an attribute "tzone", a character vector of length 3 giving the
time zone name from the TZ environment variable and the names of the base time zone and the
alternate (daylight-saving) time zone. Sometimes this may just be of length one, giving the time
zone name.

"POSIXct" objects may also have an attribute "tzone", a character vector of length one. If set to a
non-empty value, it will determine how the object is converted to class "POSIX1t" and in particular
how it is printed. This is usually desirable, but if you want to specify an object in a particular time
zone but to be printed in the current time zone you may want to remove the "tzone" attribute (e.g.,
by c(x)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds (ac-
cording to this version of R’s data, 27 days have been 86401 seconds long so far, the last being
on (actually, immediately before) 2017-01-01: the times of the extra seconds are in the object
.leap.seconds). The details of this are entrusted to the OS services where possible. It seems
that some rare systems used to use leap seconds, but all known current platforms ignore them (as
required by POSIX). This is detected and corrected for at build time, so "POSIXct" times used by
R do not include leap seconds on any platform.

Using c on "POSIX1t" objects converts them to the current time zone, and on "POSIXct” objects
drops any "tzone" attributes (even if they are all marked with the same time zone).

A few times have specific issues. First, the leap seconds are ignored, and real times
such as "2005-12-3123:59:60" are (probably) treated as the next second. However, they
will never be generated by R, and are unlikely to arise as input. Second, on some OSes
there is a problem in the POSIX/C99 standard with "1969-12-31 23:59:59 UTC", which
is -1 in calendar time and that value is on those OSes also used as an error code.
Thus as.POSIXct(”1969-12-3123:59:59",format = "%Y-%m-%d %H:%M:%S" , tz = "UTC") may
give NA, and hence as.POSIXct(”1969-12-3123:59:59",tz ="UTC") will give "1969-12-31
23:59:00". Other OSes (including the code used by R on Windows) report errors separately and
so are able to handle that time as valid.

The print methods respect options(”max.print").

Sub-second Accuracy

Classes "POSIXct"” and "POSIX1t" are able to express fractions of a second. (Conversion of frac-
tions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed only if options("digits.secs") is set: see strftime.

DateTimeClasses 133

Valid ranges for times

The "POSIX1t" class can represent a very wide range of times (up to billions of years), but such
times can only be interpreted with reference to a time zone.

The concept of time zones was first adopted in the nineteenth century, and the Gregorian calen-
dar was introduced in 1582 but not universally adopted until 1927. OS services almost invariably
assume the Gregorian calendar and may assume that the time zone that was first enacted for the
location was in force before that date. (The earliest legislated time zone seems to have been London
on 1847-12-01.) Some OSes assume the previous use of ‘local time’ based on the longitude of a
location within the time zone.

Most operating systems represent POSIXct times as C type long. This means that on 32-bit OSes
this covers the period 1902 to 2037. On all known 64-bit platforms and for the code we use on
32-bit Windows, the range of representable times is billions of years: however, not all can convert
correctly times before 1902 or after 2037. A few benighted OSes used a unsigned type and so
cannot represent times before 1970.

Where possible the platform limits are detected, and outside the limits we use our own C code.
This uses the offset from GMT in use either for 1902 (when there was no DST) or that predicted
for one of 2030 to 2037 (chosen so that the likely DST transition days are Sundays), and uses the
alternate (daylight-saving) time zone only if isdst is positive or (if -1) if DST was predicted to be
in operation in the 2030s on that day.

Note that there are places (e.g., Rome) whose offset from UTC varied in the years prior to 1902,
and these will be handled correctly only where there is OS support.

There is no reason to suppose that the DST rules will remain the same in the future, and indeed
the US legislated in 2005 to change its rules as from 2007, with a possible future reversion. So
conversions for times more than a year or two ahead are speculative.

Warnings

Some Unix-like systems (especially Linux ones) do not have environment variable TZ set, yet have
internal code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting TZ. See Sys. timezone for valid settings.

Great care is needed when comparing objects of class "POSIX1t". Not only are components and
attributes optional; several components may have values meaning ‘not yet determined’ and the same
time represented in different time zones will look quite different.

Currently the order of the list components of "POSIX1t" objects must not be changed, as several
C-based conversion methods rely on the order for efficiency.

References
Ripley, B. D. and Hornik, K. (2001) Date-time classes. R News, 1/2, 8-11. https://www.
r-project.org/doc/Rnews/Rnews_2001-2.pdf

See Also

Dates for dates without times.
as.POSIXct and as.POSIX1t for conversion between the classes.

strptime for conversion to and from character representations.

https://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf

134 dcf

Sys. time for clock time as a "POSIXct"” object.
difftime for time intervals.
cut.POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these classes.

weekdays for convenience extraction functions.

Examples
(z <~ Sys.time()) # the current date, as class "POSIXct”
Sys.time() - 3600 # an hour ago

as.POSIX1t(Sys.time(), "GMT") # the current time in GMT
format(.leap.seconds) # the leap seconds in your time zone
print(.leap.seconds, tz = "PST8PDT") # and in Seattle's

look at xinternal* representation of "POSIX1t" :
leapS <- as.POSIX1t(.leap.seconds)

names(leapS) ; is.list(leapS)

str() "too smart” --> need unclass(.):
utils::str(unclass(leapS), vec.len = 7)

Extracting xsingle* components of POSIX1t objects:
leapS[1 : 5, "year"]

length(.) <- n now works for "POSIXct"” and "POSIX1t" :
for(1lpS in list(.leap.seconds, leapS)) {
1s <- 1pS; length(ls) <- 12
12 <- 1pS; length(l2) <- 5 + length(1pS)
stopifnot(exprs = {
length(.) <- * is compatible to subsetting/indexing:
identical(ls, 1lpS[seq_along(ls)])
identical (12, 1pS[seq_along(12)1)
has filled with NA's
is.na(12[(length(1pS)+1):1length(12)1)

»
3
dcf Read and Write Data in DCF Format
Description

Reads or writes an R object from/to a file in Debian Control File format.

dcf

Usage

135

read.dcf(file, fields = NULL, all = FALSE, keep.white = NULL)

write.dcf(x, file = "", append = FALSE, useBytes = FALSE,

Arguments
file
fields

all

keep.white

append

useBytes

indent

width

Details

indent = 0.1 x getOption("width"),
width = 0.9 x getOption("width"),
keep.white = NULL)

nn

either a character string naming a file or a connection. "" indicates output to the
console. For read.dcf this can name a compressed file (see gzfile).

Fields to read from the DCEF file. Default is to read all fields.

alogical indicating whether in case of multiple occurrences of a field in a record,
all these should be gathered. If all is false (default), only the last such occur-
rence is used.

a character string with the names of the fields for which whitespace should be
kept as is, or NULL (default) indicating that there are no such fields. Coerced
to character if possible. For fields where whitespace is not to be kept as is,
read.dcf removes leading and trailing whitespace, and write.dcf folds using
strwrap.

the object to be written, typically a data frame. If not, it is attempted to coerce x
to a data frame.

logical. If TRUE, the output is appended to the file. If FALSE, any existing file of
the name is destroyed.

logical to be passed to writeLines(), see there: “for expert use”.

a positive integer specifying the indentation for continuation lines in output en-
tries.

a positive integer giving the target column for wrapping lines in the output.

DCF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCF is used in various places to store R system information, like descriptions
and contents of packages.

The DCF rules as implemented in R are:

1. A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field, separated
by : (only the first : counts). The value can be empty (i.e., whitespace only).

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least one
character in the line is non-whitespace. Continuation lines where the only non-whitespace
character is a *.” are taken as blank lines (allowing for multi-paragraph field values).

136 dcf

5. Records are separated by one or more empty (i.e., whitespace only) lines.
6. Individual lines may not be arbitrarily long; prior to R 3.0.2 the length limit was approximately
8191 bytes per line.

Note that read.dcf(all = FALSE) reads the file byte-by-byte. This allows a ‘DESCRIPTION’ file
to be read and only its ASCII fields used, or its ‘Encoding’ field used to re-encode the remaining
fields.

write.dcf does not write NA fields.

Value

The default read.dcf(all = FALSE) returns a character matrix with one row per record and one
column per field. Leading and trailing whitespace of field values is ignored unless a field is listed
in keep.white. If a tag name is specified in the file, but the corresponding value is empty, then an
empty string is returned. If the tag name of a field is specified in fields but never used in a record,
then the corresponding value is NA. If fields are repeated within a record, the last one encountered
is returned. Malformed lines lead to an error.

For read.dcf(all = TRUE) a data frame is returned, again with one row per record and one col-
umn per field. The columns are lists of character vectors for fields with multiple occurrences, and
character vectors otherwise.

Note that an empty file is a valid DCF file, and read.dcf will return a zero-row matrix or data
frame.

For write.dcf, invisible NULL.

Note

As from R 3.4.0, ‘whitespace’ in all cases includes newlines.

References

https://www.debian.org/doc/debian-policy/index.html#document-ch-controlfields.

Note that R does not require encoding in UTF-8, which is a recent Debian requirement. Nor does it
use the Debian-specific sub-format which allows comment lines starting with “#’.
See Also

write.table.

available.packages, which uses read. dcf to read the indices of package repositories.
Examples

Create a reduced version of the DESCRIPTION file in package 'splines'

x <- read.dcf(file = system.file("DESCRIPTION", package = "splines"),
fields = c("Package”, "Version”, "Title"))

write.dcf(x)

An online DCF file with multiple records

https://www.debian.org/doc/debian-policy/index.html#document-ch-controlfields

debug

137

con <- url("http://cran.r-project.org/src/contrib/PACKAGES")
y <- read.dcf(con, all = TRUE)

close(con)
utils::str(y)

debug

Debug a Function

Description

Set, unset or query the debugging flag on a function. The text and condition arguments are the
same as those that can be supplied via a call to browser. They can be retrieved by the user once the
browser has been entered, and provide a mechanism to allow users to identify which breakpoint has

been activated.

Usage
debug(fun, text = "", condition = NULL, signature = NULL)
debugonce(fun, text = "", condition = NULL, signature = NULL)

undebug(fun, signature = NULL)
isdebugged(fun, signature = NULL)
debuggingState(on = NULL)

Arguments

fun
text
condition

signature

on

Details

any interpreted R function.

a text string that can be retrieved when the browser is entered.

a condition that can be retrieved when the browser is entered.

an optional method signature. If specified, the method is debugged, rather than
its generic.

logical; a call to the support function debuggingState returns TRUE if debug-
ging is globally turned on, FALSE otherwise. An argument of one or the other of
those values sets the state. If the debugging state is FALSE, none of the debug-
ging actions will occur (but explicit browser calls in functions will continue to
work).

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step (and
the previous one destroyed).

At the debug prompt the user can enter commands or R expressions, followed by a newline. The
commands are described in the browser help topic.

To debug a function which is defined inside another function, single-step through to the end of its
definition, and then call debug on its name.

138 debug

If you want to debug a function not starting at the very beginning, use trace(...,at=%) or
setBreakpoint.

Using debug is persistent, and unless debugging is turned off the debugger will be entered on every
invocation (note that if the function is removed and replaced the debug state is not preserved). Use
debugonce () to enter the debugger only the next time the function is invoked.

To debug an S4 method by explicit signature, use signature. When specified, signature indicates
the method of fun to be debugged. Note that debugging is implemented slightly differently for this
case, as it uses the trace machinery, rather than the debugging bit. As such, text and condition
cannot be specified in combination with a non-null signhature. For methods which implement the
. local rematching mechanism, the . local closure itself is the one that will be ultimately debugged
(see isRematched).

isdebugged returns TRUE if a) signature is NULL and the closure fun has been debugged, or b)
signature is not NULL, fun is an S4 generic, and the method of fun for that signature has been
debugged. In all other cases, it returns FALSE.

The number of lines printed for the deparsed call when a function is entered for debugging can be
limited by setting options(deparse.max.lines).

When debugging is enabled on a byte compiled function then the interpreted version of the function
will be used until debugging is disabled.

Value

debug and undebug invisibly return NULL.
isdebugged returns TRUE if the function or method is

marked for debugging, and FALSE otherwise.

See Also

debugcall for conveniently debugging methods, browser notably for its ‘commands’, trace;
traceback to see the stack after an Error: ... message; recover for another debugging approach.

Examples

Not run:
debug(library)
library(methods)

End(Not run)

Not run:

debugonce(sample)

only the first call will be debugged
sampe(10, 1)

sample(10, 1)

End(Not run)

Defunct 139

Defunct Marking Objects as Defunct

Description

When a function is removed from R it should be replaced by a function which calls .Defunct.

Usage

.Defunct(new, package = NULL, msg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the defunct
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details

.Defunct is called from defunct functions. Functions should be listed in help("pkg-defunct”)
for an appropriate pkg, including base (with the alias added to the respective Rd file).

.Defunct signals an error of class defunctError with fields old, new, and package.

See Also

Deprecated.

base-defunct and so on which list the defunct functions in the packages.

delayedAssign Delay Evaluation

Description

delayedAssign creates a promise to evaluate the given expression if its value is requested. This
provides direct access to the lazy evaluation mechanism used by R for the evaluation of (interpreted)
functions.

Usage

delayedAssign(x, value, eval.env = parent.frame(1),
assign.env = parent.frame(1))

140 delayedAssign

Arguments
X a variable name (given as a quoted string in the function call)
value an expression to be assigned to x
eval.env an environment in which to evaluate value
assign.env an environment in which to assign x
Details

Both eval.env and assign.env default to the currently active environment.

The expression assigned to a promise by delayedAssign will not be evaluated until it is eventually
‘forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by eval . env
(whose contents may have changed in the meantime). After that, the value is fixed and the expres-
sion will not be evaluated again.

Value

This function is invoked for its side effect, which is assigning a promise to evaluate value to the
variable x.

See Also

substitute, to see the expression associated with a promise, if assign.env is not the .GlobalEnv.

Examples

msg <- "old"
delayedAssign(”x", msg)
substitute(x) # shows only
msg <- "new!"”

x # new!

[}

x', as it is in the global env.

delayedAssign("x", {
for(i in 1:3)
cat("yippee!\n")
10
»

x"2 #- yippee
x"2 #- simple number

ne <- new.env()
delayedAssign(”x", pi + 2, assign.env = ne)
See the promise {without "forcing” (i.e. evaluating) it}:

substitute(x, ne) # 'pi + 2'

Promises in an environment [for advanced users]: ------—---—-—-——————-

deparse 141

e <- (function(x, y =1, z) environment())(cos, "y", {cat(" HO!\n"); pi+2})
How can we look at all promises in an env (w/o forcing them)?
gete <- function(e_)
lapply(lapply(ls(e_), as.name),
function(n) eval(substitute(substitute(X, e_), list(X=n))))

(exps <- gete(e))
sapply(exps, typeof)

(le <- as.list(e)) # evaluates ("force"s) the promises
stopifnot(identical (unname(le), lapply(exps, eval))) # and another "Ho!"

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage
deparse(expr, width.cutoff = 60L,
backtick = mode(expr) %in% c("call”, "expression”, "(", "function"),
control = c("keepNA", "keepInteger”, "niceNames"”, "showAttributes"),

nlines = -1L)

Arguments
expr any R expression.
width.cutoff integer in [20,500] determining the cutoff (in bytes) at which line-breaking is
tried.
backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.
control character vector (or NULL) of deparsing options. See .deparseOpts.
nlines integer: the maximum number of lines to produce. Negative values indicate no
limit.
Details

This function turns unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode "expression” used in expression) into character strings (a kind
of inverse to parse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functions deparse and substitute to create labels for a plot
which are character string versions of the actual arguments to the function myplot.

The default for the backtick option is not to quote single symbols but only composite expressions.
This is a compromise to avoid breaking existing code.

142 deparse

Using control = "all"” comes closest to making deparse() an inverse of parse(). However,
not all objects are deparse-able even with this option and a warning will be issued if the function
recognizes that it is being asked to do the impossible.

Numeric and complex vectors are converted using 15 significant digits: see as.character for more
details.

width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff bytes have been output and e.g. arg = value expressions will not be split across
lines.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

Deparsing internal structures may not be accurate: for example the graphics display list recorded by
recordPlot is not intended to be deparsed and . Internal calls will be shown as primitive calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

substitute, parse, expression.

Quotes for quoting conventions, including backticks.

Examples
require(stats); require(graphics)

deparse(args(1lm))
deparse(args(lm), width = 500)
myplot <-
function(x, y) {
plot(x, y, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)))

}
e <- quote(‘foo bar*‘)
deparse(e)

deparse(e, backtick = TRUE)

e <- quote(‘foo bar‘+1)

deparse(e)

deparse(e, control = "all"”) # wraps it w/ quote(.)

deparseOpts 143

deparseOpts Options for Expression Deparsing

Description

Process the deparsing options for deparse, dput and dump.

Usage

.deparseOpts(control)

. .deparseOpts
Arguments

control character vector of deparsing options.
Details

. .deparseOpts is the character vector of possible deparsing options used by .deparseOpts().
.deparseOpts() is called by deparse, dput and dump to process their control argument.

The control argument is a vector containing zero or more of the following strings (exactly those
in . .deparseOpts). Partial string matching is used.

"keepInteger”: Either surround integer vectors by as.integer() or use suffix L, so they are not
converted to type double when parsed. This includes making sure that integer NAs are pre-
served (via NA_integer_ if there are no non-NA values in the vector, unless "S_compatible”
is set).

"quoteExpressions”: Surround unevaluated expressions, but not formulas, with quote(), so
they are not evaluated when re-parsed.

"showAttributes"”: If the object has attributes (other than a source attribute, see srcref), use
structure() to display them as well as the object value unless the only such attribute is names
and the "niceNames” option is set. This ("showAttributes”) is the default for deparse and
dput.

"useSource"”: If the object has a source attribute (srcref), display that instead of deparsing the
object. Currently only applies to function definitions.

"warnIncomplete”: Some exotic objects such as environments, external pointers, etc. can not be
deparsed properly. This option causes a warning to be issued if the deparser recognizes one of
these situations.

Also, the parser in R < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

"keepNA": Integer, real and character NAs are surrounded by coercion functions where necessary
to ensure that they are parsed to the same type. Since e.g. NA_real_ can be output in R, this
is mainly used in connection with S_compatible.

144 deparseOpts

"niceNames”: If true, lists and atomic vectors with non-NA names (see names) are de-
parsed as e.g., c(A=1) instead of structure(1,.Names ="A"), independently of the
"showAttributes” setting.

"all”: An abbreviated way to specify all of the options listed above. This is the default for dump,
and the options used by edit (which are fixed).

"delayPromises”: Deparse promises in the form <promise: expression> rather than evaluating
them. The value and the environment of the promise will not be shown and the deparsed code
cannot be sourced.

"S_compatible”: Make deparsing as far as possible compatible with S and R < 2.5.0. For com-
patibility with S, integer values of double vectors are deparsed with a trailing decimal point.
Backticks are not used.

ns

"hexNumeric”: Real and finite complex numbers are output in ‘"%a"’ format as binary fractions
(coded as hexadecimal: see sprintf) with maximal opportunity to be recorded exactly to
full precision. Complex numbers with one or both non-finite components are output as if this
option were not set.

(This relies on that format being correctly supported: known problems on Windows are
worked around as from R 3.1.2.)

"digits17": Real and finite complex numbers are output using format ‘"%.17g"’ which may give
more precision than the default (but the output will depend on the platform and there may be
loss of precision when read back). Complex numbers with one or both non-finite components
are output as if this option were not set.

For the most readable (but perhaps incomplete) display, use control = NULL. This displays the
object’s value, but not its attributes. The default in deparse is to display the attributes as well, but
not to use any of the other options to make the result parseable. (dput and dump do use more default
options, and printing of functions without sources uses c("keepInteger"”, "keepNA").)

Using control = c("all”,"hexNumeric") comes closest to making deparse() an inverse of
parse(), as representing double and complex numbers as decimals may well not be exact. How-
ever, not all objects are deparse-able even with this option. A warning will be issued if the function
recognizes that it is being asked to do the impossible.

Only one of "hexNumeric” and "digits17" can be specified.

Value

An integer value corresponding to the control options selected.

Examples

(iOpt.all <- .deparseOpts(”all”)) # a four digit integer

one integer --> vector binary bits
int2bits <- function(x, base = 2L,
ndigits = 1 + floor(le-9 + log(max(x,1), base))) {
r <- numeric(ndigits)
for (i in ndigits:1) {
rfi] <- x%%base
if (i > 1L)
x <- x%/%base

Deprecated 145

}
rev(r) # smallest bit at left
3
int2bits(iOpt.all)
what options does "all” contain ?
(oa <- ..deparseOpts[-1][int2bits(iOpt.all) == 11)
stopifnot(identical(iOpt.all, .deparseOpts(oa)))

Deprecated Marking Objects as Deprecated

Description

When an object is about to be removed from R it is first deprecated and should include a call to
.Deprecated.

Usage

.Deprecated(new, package=NULL, msg,
old = as.character(sys.call(sys.parent()))[1L])

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the deprecated
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
old character string specifying the function (default) or usage which is being depre-
cated.
Details

.Deprecated("<new name>") is called from deprecated functions. The original help page for these
functions is often available at help("”oldName-deprecated”) (note the quotes). Functions should
be listed in help("pkg-deprecated”) for an appropriate pkg, including base.

.Deprecated signals a warning of class deprecatedWarning with fields old, new, and package.

See Also

Defunct

base-deprecated and so on which list the deprecated functions in the packages.

146 det

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns sepa-
rately the modulus of the determinant, optionally on the logarithm scale, and the sign of the deter-

minant.
Usage
det(x, ...)
determinant(x, logarithm = TRUE, ...)
Arguments
X numeric matrix: logical matrices are coerced to numeric.
logarithm logical; if TRUE (default) return the logarithm of the modulus of the determinant.
Optional arguments. At present none are used. Previous versions of det al-
lowed an optional method argument. This argument will be ignored but will not
produce an error.
Details

The determinant function uses an LU decomposition and the det function is simply a wrapper
around a call to determinant.

Often, computing the determinant is not what you should be doing to solve a given problem.

Value

For det, the determinant of x. For determinant, a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if logarithm
is FALSE; otherwise the logarithm of the modulus.
sign integer; either +1 or —1 according to whether the determinant is positive or
negative.
Examples

(x <= matrix(1:4, ncol = 2))
unlist(determinant(x))
det(x)

det(print(cbind(1, 1:3, c(2,0,1))))

detach

147

detach

Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search() path of available R objects. Usually this is
either a data. frame which has been attached or a package which was attached by library.

Usage

detach(name, pos = 2L, unload = FALSE, character.only = FALSE,

force =

Arguments

name

pos

unload

character.only

force

Details

FALSE)

The object to detach. Defaults to search()[pos]. This can be an unquoted
name or a character string but not a character vector. If a number is supplied this
is taken as pos.

Index position in search() of the database to detach. When name is a number,
pos = name is used.

A logical value indicating whether or not to attempt to unload the namespace
when a package is being detached. If the package has a namespace and unload is
TRUE, then detach will attempt to unload the namespace via unloadNamespace:
if the namespace is imported by another namespace or unload is FALSE, no
unloading will occur.

a logical indicating whether name can be assumed to be a character string.

logical: should a package be detached even though other attached packages de-
pend on it?

This is most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as

package:tools.

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even with unload = TRUE), and detaching will not in general unload any dynamically loaded
compiled code (DLLs). Further, registered S3 methods from the namespace will not be removed.
If you use library on a package whose namespace is loaded, it attaches the exports of the already
loaded namespace. So detaching and re-attaching a package may not refresh some or all components
of the package, and is inadvisable.

Value

The return value is invisible. It is NULL when a package is detached, otherwise the environment
which was returned by attach when the object was attached (incorporating any changes since it

was attached).

148 detach

Good practice

detach() without an argument removes the first item on the search path after the workspace. It is
all too easy to call it too many or too few times, or to not notice that the search path has changed
since an attach call.

Use of attach/detach is best avoided in functions (see the help for attach) and in interactive use
and scripts it is prudent to detach by name.

Note

You cannot detach either the workspace (position 1) nor the base package (the last item in the search
list), and attempting to do so will throw an error.

Unloading some namespaces has undesirable side effects: e.g. unloading grid closes all graphics
devices, and on some systems teltk cannot be reloaded once it has been unloaded and may crash R
if this is attempted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attach, library, search, objects, unloadNamespace, library.dynam.unload .

Examples

require(splines) # package
detach(package:splines)
or also
library(splines)

pkg <- "package:splines”

detach(pkg, character.only = TRUE)

careful: do not do this unless 'splines' is not already attached.
library(splines)
detach(2) # 'pos' used for 'name'

an example of the name argument to attach
and of detaching a database named by a character vector
attach_and_detach <- function(db, pos = 2)
{
name <- deparse(substitute(db))
attach(db, pos = pos, name = name)
print(search()[pos])
detach(name, character.only = TRUE)
3

attach_and_detach(women, pos = 3)

diag 149

diag Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol, names = TRUE)
diag(x) <- value

Arguments
X a matrix, vector or 1D array, or missing.
nrow, ncol optional dimensions for the result when x is not a matrix.
names (when x is a matrix) logical indicating if the resulting vector, the diagonal of x,
should inherit names from dimnames(x) if available.
value either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that of x.
Details

diag has four distinct usages:

1. xis a matrix, when it extracts the diagonal.

2. x is missing and nrow is specified, it returns an identity matrix.

3. x is a scalar (length-one vector) and the only argument, it returns a square identity matrix of
size given by the scalar.

4. x is a ‘numeric’ (complex, numeric, integer, logical, or raw) vector, either of length at
least 2 or there were further arguments. This returns a matrix with the given diagonal and zero
off-diagonal entries.

It is an error to specify nrow or ncol in the first case.

Value

If x is a matrix then diag(x) returns the diagonal of x. The resulting vector will have names if the
matrix x has matching column and rownames.

The replacement form sets the diagonal of the matrix x to the given value(s).

In all other cases the value is a diagonal matrix with nrow rows and ncol columns (if ncol is not
given the matrix is square). Here nrow is taken from the argument if specified, otherwise inferred
from x: if that is a vector (or 1D array) of length two or more, then its length is the number of rows,
but if it is of length one and neither nrow nor ncol is specified, nrow = as. integer(x).

When a diagonal matrix is returned, the diagonal elements are one except in the fourth case, when
x gives the diagonal elements: it will be recycled or truncated as needed, but fractional recycling
and truncation will give a warning.

150 diff

Note

Using diag(x) can have unexpected effects if x is a vector that could be of length one. Use
diag(x,nrow = length(x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri, lower.tri, matrix.

Examples

dim(diag(3))
diag(10, 3, 4) # guess what?
all(diag(1:3) == {m <- matrix(9,3,3); diag(m) <- 1:3; m})

other "numeric"-like diagonal matrices :
diag(c(1i,2i)) # complex

diag(TRUE, 3) # logical
diag(as.raw(1:3)) # raw

(D2 <- diag(2:1, 4)); typeof(D2) # "integer"

require(stats)

diag(<var-cov-matrix>) = variances
diag(var(M <- cbind(X = 1:5, Y = rnorm(5))))
#-> vector with names "X" and "Y"
rownames(M) <- c(colnames(M), rep("", 3))

M; diag(M) # named as well

diag(M, names = FALSE) # w/o names

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.

Usage
diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences =1, ...)

diff 151

S3 method for class 'POSIXt'
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'Date'’

diff(x, lag = 1, differences =1, ...)
Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.
differences an integer indicating the order of the difference.

further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and ones for classes "ts", "POSIXt" and "Date”.

NA’s propagate.

Value

If x is a vector of length n and differences = 1, then the computed result is equal to the successive
differences x[(1+1lag) :n] -x[1:(n-1lag)].

If difference is larger than one this algorithm is applied recursively to x. Note that the returned
value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
diff.ts,diffinv.

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

x <= cumsum(cumsum(1:10))
diff(x, lag = 2)

diff(x, differences = 2)

diff(.leap.seconds)

152 difftime

difftime Time Intervals / Differences

Description

Time intervals creation, printing, and some arithmetic. The print() method calls these “time
differences”.

Usage
timel - time2
difftime(timel, time2, tz,
units = c("auto”, "secs”, "mins”, "hours",
Ildayslly "Weeks“))

as.difftime(tim, format = "%X", units = "auto")

S3 method for class 'difftime'

format(x, ...)
S3 method for class 'difftime’
units(x)

S3 replacement method for class 'difftime’
units(x) <- value

S3 method for class 'difftime’
as.double(x, units = "auto”, ...)

Group methods, notably for round(), signif(), floor(),
ceiling(), trunc(), abs(); called directly, *notx as Math():
S3 method for class 'difftime'

Math(x, ...)
Arguments

timel, time2 date-time or date objects.

tz an optional time zone specification to be used for the conversion, mainly for
"POSIX1t" objects.

units character string. Units in which the results are desired. Can be abbreviated.

value character string. Like units, except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format of tim: see strptime. The default is a locale-
specific time format.

X an object inheriting from class "difftime".

arguments to be passed to or from other methods.

difftime 153

Details

Function difftime calculates a difference of two date/time objects and returns an object of class
"difftime” with an attribute indicating the units. The Math group method provides round, signif,
floor, ceiling, trunc, abs, and sign methods for objects of this class, and there are methods for
the group-generic (see Ops) logical and arithmetic operations.

If units = "auto”, a suitable set of units is chosen, the largest possible (excluding "weeks") in
which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by calling difftime with units =
"auto”. Alternatively, as.difftime() works on character-coded or numeric time intervals; in the
latter case, units must be specified, and format has no effect.

Limited arithmetic is available on "difftime” objects: they can be added or subtracted, and mul-
tiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector by a
"difftime” object implicitly converts the numeric vector to a "difftime” object with the same
units as the "difftime"” object. There are methods for mean and sum (via the Summary group
generic), and diff via diff.default building on the "difftime"” method for arithmetic, notably

The units of a "difftime” object can be extracted by the units function, which also has a replace-
ment form. If the units are changed, the numerical value is scaled accordingly. The replacement
version keeps attributes such as names and dimensions.

Note that units = "days” means a period of 24 hours, hence takes no account of Daylight Savings
Time. Differences in objects of class "Date” are computed as if in the UTC time zone.

The as.double method returns the numeric value expressed in the specified units. Using units =
"auto” means the units of the object.

The format method simply formats the numeric value and appends the units as a text string.

Note
Units such as "months” are not possible as they are not of constant length. To create intervals of
months, quarters or years use seq.Date or seq.POSIXt.

See Also

DateTimeClasses.
Examples

(z <- Sys.time() - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between release days of R 1.2.2 and 1.2.3.
ISOdate (2001, 4, 26) - ISOdate(2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))

as.difftime(c("”3:20", "23:15", "2:"), format = "%H:%M") # 3rd gives NA
(z <- as.difftime(c(@,30,60), units = "mins"))

as.numeric(z, units = "secs")

154 dim

as.numeric(z, units = "hours")
format(z)
dim Dimensions of an Object
Description

Retrieve or set the dimension of an object.

Usage

dim(x)
dim(x) <- value

Arguments
X an R object, for example a matrix, array or data frame.
value For the default method, either NULL or a numeric vector, which is coerced to
integer (by truncation).
Details

The functions dim and dim<- are internal generic primitive functions.

dim has a method for data. frames, which returns the lengths of the row.names attribute of x and
of x (as the numbers of rows and columns respectively).

Value

For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the object. It is
NULL or a vector of mode integer.

The replacement method changes the "dim" attribute (provided the new value is compatible) and
removes any "dimnames” and "names” attributes.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ncol, nrow and dimnames.

dimnames 155

Examples

X <= 1:12 ; dim(x) <- c(3,4)
X

simple versions of nrow and ncol could be defined as follows
nrowd <- function(x) dim(x)[1]
ncol@® <- function(x) dim(x)[2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames(x)
dimnames(x) <- value

provideDimnames(x, sep = "", base = 1list(LETTERS), unique = TRUE)

Arguments
X an R object, for example a matrix, array or data frame.
value a possible value for dimnames (x): see the ‘Value’ section.
sep a character string, used to separate base symbols and digits in the constructed
dimnames.
base a non-empty list of character vectors. The list components are used in turn
(and recycled when needed) to construct replacements for empty dimnames
components. See also the examples.
unique logical indicating that the dimnames constructed are unique within each dimen-
sion in the sense of make.unique.
Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a matrix), they retrieve or set the dimnames attribute (see
attributes) of the object. A list value can have names, and these will be used to label the dimensions
of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements of value to charac-
ter, but does not dispatch methods for as.character. It coerces zero-length elements to NULL, and
a zero-length list to NULL. If value is a list shorter than the number of dimensions, it is extended
with NULLs to the needed length.

156 dimnames

Both have methods for data frames. The dimnames of a data frame are its row. names and its names.
For the replacement method each component of value will be coerced by as.character.

For a 1D matrix the names are the same thing as the (only) component of the dimnames.
Both are primitive functions.

provideDimnames(x) provides dimnames where “missing”, such that its result has character dim-
names for each component. If unique is true as by default, they are unique within each component
via make.unique(*, sep=sep).

Value

The dimnames of a matrix or array can be NULL (which is not stored) or a list of the same length
as dim(x). If a list, its components are either NULL or a character vector with positive length of the
appropriate dimension of x. The list can have names. It is possible that all components are NULL:
such dimnames may get converted to NULL.

For the "data.frame” method both dimnames are character vectors, and the rownames must con-
tain no duplicates nor missing values.

provideDimnames(x) returns x, with “NULL - free” dimnames, i.e. each component a character
vector of correct length.

Note

Setting components of the dimnames, e.g., dimnames(A)[[1]] <-value is a common paradigm,
but note that it will not work if the value assigned is NULL. Use rownames instead, or (as it does)
manipulate the whole dimnames list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

rownames, colnames; array, matrix, data.frame.

Examples

simple versions of rownames and colnames
could be defined as follows

rownames® <- function(x) dimnames(x)[[1]]
colnames@ <- function(x) dimnames(x)[[2]]

(dn <- dimnames(A <- provideDimnames(N <- array(1:24, dim = 2:4))))

AQ <- A; dimnames(A)[2:3] <- list(NULL)

stopifnot(identical (A@, provideDimnames(A)))

strd <- function(x) utils::str(dimnames(x))

strd(provideDimnames (A, base= list(letters[-(1:9)], tail(LETTERS))))
strd(provideDimnames(N, base= list(letters[-(1:9)], tail(LETTERS)))) # recycling
strd(provideDimnames (A, base= list(c("AA","BB")))) # recycling on both levels

set "empty dimnames”:

provideDimnames(rbind(1, 2:3), base = list(""), unique=FALSE)

do.call 157

do.call Execute a Function Call

Description
do.call constructs and executes a function call from a name or a function and a list of arguments
to be passed to it.

Usage

do.call(what, args, quote = FALSE, envir = parent.frame())

Arguments
what either a function or a non-empty character string naming the function to be
called.
args a list of arguments to the function call. The names attribute of args gives the
argument names.
quote a logical value indicating whether to quote the arguments.
envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.
Details

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment, not in
envir). If quote is TRUE then each argument is quoted (see quote) so that the effect of argument
evaluation is to remove the quotes — leaving the original arguments unevaluated when the call is
constructed.

The behavior of some functions, such as substitute, will not be the same for functions evaluated
using do.call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

Value

The result of the (evaluated) function call.

Warning
This should not be used to attempt to evade restrictions on the use of . Internal and other non-API
calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

158 dontCheck

See Also

call which creates an unevaluated call.

Examples

do.call("complex”, list(imag = 1:3))

if we already have a list (e.g., a data frame)
we need c() to add further arguments

tmp <- expand.grid(letters[1:2], 1:3, c("+", "-"))
do.call("paste”, c(tmp, sep = ""))

do.call(paste, list(as.name("A"), as.name(”"B")), quote = TRUE)

examples of where objects will be found.
A<-2

f <- function(x) print(x*2)

env <- new.env()

assign("A", 10, envir = env)

assign("f", f, envir = env)

f <= function(x) print(x)

f(A) # 2
do.call("f", list(A)) # 2
do.call("f", list(A), envir = env) # 4
do.call(f, list(A), envir = env) # 2
do.call("f", list(quote(A)), envir = env) # 100

do.call(f, list(quote(A)), envir = env) # 10
do.call("f", list(as.name("A")), envir = env) # 100

eval(call("f", A)) # 2
eval(call("f", quote(A))) # 2
eval(call("f", A), envir = env) # 4

eval(call("f", quote(A)), envir = env) # 100

dontCheck Identity Function to Suppress Checking

Description

The dontCheck function is the same as identity, but is interpreted by R CMD check code analysis
as a directive to suppress checking of x. Currently this is only used by checkFF (registration =
TRUE) when checking the .NAME argument of foreign function calls.

Usage
dontCheck(x)

Arguments

X an R object.

dots 159

See Also

suppressForeignCheck which explains why that and dontCheck are undesirable and should be
avoided if at all possible.

dots ..., .. 1, etc used in Functions

Description

...and ..1, ..2 etc are used to refer to arguments passed down from a calling function. These
(and the following) can only be used inside a function which has . .. among it formal arguments.

...elt(n) is a functional way to get ..<n> and basically the same as eval(paste@(”..",n)),
just more elegant and efficient. Note that switch(n,...) is very close, differing by returning NULL
invisibly instead of an error when n is zero or too large.

...length() returns the number of expressions in This is the same as length(list(...))
but without evaluating the expressions in . .. (which happens with 1ist(...)).

Usage

...length()
...elt(n)

Arguments

n a positive integer, not larger than the number of expressions in ..., which is the
same as . ..length() which is the same as length(list(...)), but the latter
evaluates all expressions in

See Also

...and ..1,..2are reserved words in R, see Reserved.

For more, see the ‘Introduction to R’ manual for usage of these syntactic elements, and dotsMethods
for their use in formal (S4) methods.

Examples

tst <- function(n, ...) ...elt(n)

tst(1, pi=pi*0:1, 2:4) ## [1] 0.000000 3.141593

tst(2, pi=pi*0:1, 2:4) ## [1] 2 3 4

try(tst(1)) # -> Error about '...' not containing an element.

tst.dl <- function(x, ...) ...length()

tst.dl(1:10) # @ (because the first argument is 'x')

tst.dl(4, 5) #1

tst.dl(4, 5, 6) # 2 namely '5, 6'

tst.dl(4, 5, 6, 7, sin(1:10), "foo"/"bar") # 5. Note: no evaluation!

160 double

double Double-Precision Vectors

Description

Create, coerce to or test for a double-precision vector.

Usage
double(length = @)
as.double(x, ...)
is.double(x)
single(length = @)
as.single(x, ...)
Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

double creates a double-precision vector of the specified length. The elements of the vector are all
equal to @. It is identical to numeric.

as.double is a generic function. It is identical to as.numeric. Methods should return an object of
base type "double”.

is.double is a test of double type.

R has no single precision data type. All real numbers are stored in double precision format. The
functions as.single and single are identical to as.double and double except they set the at-
tribute Csingle that is used in the . C and . Fortran interface, and they are intended only to be used
in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are all
equal to .

as.double attempts to coerce its argument to be of double type: like as.vector it strips attributes
including names. (To ensure that an object is of double type without stripping attributes, use
storage.mode.) Character strings containing optional whitespace followed by either a decimal
representation or a hexadecimal representation (starting with @x or @X) can be converted, as can
special values such as "NA", "NaN", "Inf" and "infinity", irrespective of case.

as.double for factors yields the codes underlying the factor levels, not the numeric representation
of the labels, see also factor.

double 161

is.double returns TRUE or FALSE depending on whether its argument is of double type or not.

Double-precision values

All R platforms are required to work with values conforming to the IEC 60559 (also known as IEEE
754) standard. This basically works with a precision of 53 bits, and represents to that precision a
range of absolute values from about 2 x 1073% to 2 x 1038, It also has special values NaN (many
of them), plus and minus infinity and plus and minus zero (although R acts as if these are the same).
There are also denormal(ized) (or subnormal) numbers with absolute values above or below the
range given above but represented to less precision.

See .Machine for precise information on these limits. Note that ultimately how double precision
numbers are handled is down to the CPU/FPU and compiler.

In IEEE 754-2008/TEC60559:2011 this is called ‘binary64’ format.

Note on names

It is a historical anomaly that R has two names for its floating-point vectors, double and numeric
(and formerly had real).

double is the name of the type. numeric is the name of the mode and also of the implicit class. As
an S4 formal class, use "numeric”.

The potential confusion is that R has used mode "numeric” to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as. numeric (which
is identical to as.double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

https://en.wikipedia.org/wiki/IEEE_754-1985, https://en.wikipedia.org/wiki/IEEE_
754-2008, https://en.wikipedia.org/wiki/Double_precision, https://en.wikipedia.
org/wiki/Denormal_number.

http://754r.ucbtest.org/ for links to information on the standards.

See Also

integer, numeric, storage.mode.

Examples

is.double(1)
all(double(3) == 0)

https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/Double_precision
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Denormal_number
http://754r.ucbtest.org/

162 dput

dput Write an Object to a File or Recreate it

Description

Writes an ASCII text representation of an R object to a file or connection, or uses one to recreate
the object.

Usage

dput(x, file = "",
control = c("keepNA", "keepInteger"”, "niceNames"”, "showAttributes”))

dget(file, keep.source = FALSE)

Arguments
X an object.
file either a character string naming a file or a connection. "" indicates output to the
console.
control character vector indicating deparsing options. See .deparseOpts for their de-
scription.
keep.source logical: should the source formatting be retained when parsing functions, if
possible?
Details

dput opens file and deparses the object x into that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the default control, dput () attempts
to deparse in a way that is readable, but for more complex or unusual objects (see dump), not likely
to be parsed as identical to the original. Use control = "all” for the most complete deparsing; use
control = NULL for the simplest deparsing, not even including attributes.

dput will warn if fewer characters were written to a file than expected, which may indicate a full or
corrupt file system.

To display saved source rather than deparsing the internal representation include "useSource” in
control. R currently saves source only for function definitions. If you do not care about source
representation (e.g., for a data object), for speed set options(keep.source = FALSE) when calling
source.

Value

For dput, the first argument invisibly.
For dget, the object created.

dput 163

Note

This is not a good way to transfer objects between R sessions. dump is better, but the function save
is designed to be used for transporting R data, and will work with R objects that dput does not
handle correctly as well as being much faster.

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

deparse, dump, write.

Examples

fil <- tempfile()

Write an ASCII version of the 'base' function mean() to our temp file,
dput (base: :mean, fil)

... read it back into 'bar' and confirm it is the same

bar <- dget(fil)

stopifnot(all.equal(bar, base::mean))

Create a function with comments
baz <- function(x) {
Subtract from one

1-x
3
and display it
dput(baz)
and now display the saved source
dput(baz, control = "useSource")

Numeric values:
xx <= pi*(1:3)

dput (xx)
dput(xx, control = "digits17")
dput (xx, control = "hexNumeric")

dput(xx, fil); dget(fil) - xx # slight rounding on all platforms
dput(xx, fil, control = "digits17")

dget(fil) - xx # slight rounding on some platforms

dput(xx, fil, control = "hexNumeric"); dget(fil) - xx
unlink(fil)

xn <- setNames(xx, paste@("pi*",1:3))

dput(xn) # nicer, now "niceNames" being part of default 'control'
dput(xn, control = "S_compat”) # no names

explicitly asking for output as in R < 3.5.0:

dput(xn, control = c("keepNA", "keepInteger"”, "showAttributes"))

164 droplevels

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage
drop(x)

Arguments

X an array (including a matrix).

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object like X,
but with any extents of length one removed. Any accompanying dimnames attribute is adjusted and
returned with x: if the result is a vector the names are taken from the dimnames (if any). If the result
is a length-one vector, the names are taken from the first dimension with a dimname.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes it is
useful to invoke drop directly.

See Also

drop1 which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim = ¢(1,3,1,1,2,1,2)))) # =3 2 2
drop(1:3 %*% 2:4) # scalar product

droplevels Drop Unused Levels from Factors

Description

The function droplevels is used to drop unused levels from a factor or, more commonly, from
factors in a data frame.

Usage

S3 method for class 'factor'

droplevels(x, exclude = if(anyNA(levels(x))) NULL else NA, ...)
S3 method for class 'data.frame'

droplevels(x, except, exclude, ...)

droplevels 165

Arguments
X an object from which to drop unused factor levels.
exclude passed to factor (); factor levels which should be excluded from the result even
if present. Note that this was implicitly NA in R <= 3.3.1 which did drop NA levels
even when present in x, contrary to the documentation. The current default is
compatible with x[,drop=TRUE].
further arguments passed to methods
except indices of columns from which not to drop levels
Details

The method for class "factor” is currently equivalent to factor(x,exclude=exclude). For the
data frame method, you should rarely specify exclude “globally” for all factor columns; rather the
default uses the same factor-specific exclude as the factor method itself.

The except argument follow the usual indexing rules.

Value

droplevels returns an object of the same class as x

Note

This function was introduced in R 2.12.0. It is primarily intended for cases where one or more
factors in a data frame contains only elements from a reduced level set after subsetting. (Notice that
subsetting does not in general drop unused levels). By default, levels are dropped from all factors in
a data frame, but the except argument allows you to specify columns for which this is not wanted.

See Also

subset for subsetting data frames. factor for definition of factors. drop for dropping array di-
mensions. drop1 for dropping terms from a model. [. factor for subsetting of factors.

Examples

aq <- transform(airquality, Month = factor(Month, labels = month.abb[5:9]))
aqg <- subset(aq, Month != "Jul")

table(aq $Month)

table(droplevels(aq)$Month)

166 dump

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dump file can usually be sourced into another R session.

Usage
dump(list, file = "dumpdata.R", append = FALSE,
control = "all”, envir = parent.frame(), evaluate = TRUE)
Arguments
list character vector. The names of one or more R objects to be dumped.
file either a character string naming a file or a connection. "" indicates output to the
console.
append if TRUE and file is a character string, output will be appended to file; other-
wise, it will overwrite the contents of file.
control character vector indicating deparsing options. See .deparseOpts for their de-
scription.
envir the environment to search for objects.
evaluate logical. Should promises be evaluated?
Details

If some of the objects named do not exist (in scope), they are omitted, with a warning. If fileis a
file and no objects exist then no file is created.

sourceing may not produce an identical copy of dumped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can be sourced into another R (or perhaps S) session, but the function save is designed
to be used for transporting R data, and will work with R objects that dump does not handle. For
maximal reproducibility use control = c("all"”, "hexNumeric").

To produce a more readable representation of an object, use control = NULL. This will skip at-
tributes, and will make other simplifications that make source less likely to produce an identical
copy. See deparse for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control = c("keepInteger”,"warnIncomplete”, "keepNA"). This will lose all formatting and
comments, but may be useful in those cases where the saved source is no longer correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the default
evaluate = TRUE is essential) and after the use of delayedAssign, when evaluate = FALSE might
be intended.

duplicated 167

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base namespace, the base package will be searched before the global envi-
ronment unless dump is called from the top level prompt or the envir argument is given explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of type S4 are not deparsed
in a way that can be sourced. In addition, language objects are deparsed in a simple way whatever
the value of control, and this includes not dumping their attributes (which will result in a warning).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

dput, dget, write.
save for a more reliable way to save R objects.

Examples

Xx <= 1; y<-1:10

fil <- tempfile(fileext=".Rdmped")
dump(ls(pattern = '*[xyz]'), fil)
print(.Last.value)

unlink(fil)

duplicated Determine Duplicate Elements

Description

duplicated() determines which elements of a vector or data frame are duplicates of elements with
smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

anyDuplicated(.) is a “generalized” more efficient shortcut for any (duplicated(.)).

168 duplicated

Usage

duplicated(x, incomparables = FALSE, ...)

Default S3 method:

duplicated(x, incomparables = FALSE,
fromLast = FALSE, nmax = NA, ...)

S3 method for class 'array'
duplicated(x, incomparables = FALSE, MARGIN = 1,
fromLast = FALSE, ...)

anyDuplicated(x, incomparables

Default S3 method:

anyDuplicated(x, incomparables = FALSE,
fromLast = FALSE, ...)

S3 method for class 'array'

anyDuplicated(x, incomparables = FALSE,
MARGIN = 1, fromLast = FALSE, ...)

FALSE, ...)

Arguments

X a vector or a data frame or an array or NULL.

incomparables a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.

fromLast logical indicating if duplication should be considered from the reverse side, i.e.,
the last (or rightmost) of identical elements would correspond to duplicated =
FALSE.

nmax the maximum number of unique items expected (greater than one).

arguments for particular methods.

MARGIN the array margin to be held fixed: see apply, and note that MARGIN = @ may be
useful.

Details

These are generic functions with methods for vectors (including lists), data frames and arrays (in-
cluding matrices).

For the default methods, and whenever there are equivalent method definitions for
duplicated and anyDuplicated, anyDuplicated(x,...) is a “generalized” shortcut for
any(duplicated(x,...)), in the sense that it returns the index i of the first duplicated entry x[i]
if there is one, and @ otherwise. Their behaviours may be different when at least one of duplicated
and anyDuplicated has a relevant method.

duplicated(x, fromLast = TRUE) is equivalent to but faster than rev(duplicated(rev(x))).

The array method calculates for each element of the sub-array specified by MARGIN if the remaining
dimensions are identical to those for an earlier (or later, when fromLast = TRUE) element (in row-
major order). This would most commonly be used to find duplicated rows (the default) or columns
(with MARGIN = 2). Note that MARGIN = @ returns an array of the same dimensionality attributes as x.

duplicated 169

Missing values ("NA") are regarded as equal, numeric and complex ones differing from NaN; char-
acter strings will be compared in a “common encoding”; for details, see match (and unique) which
use the same concept.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

Except for factors, logical and raw vectors the default nmax = NA is equivalent to nmax = length(x).
Since a hash table of size 8*nmax bytes is allocated, setting nmax suitably can save large amounts
of memory. For factors it is automatically set to the smaller of length(x) and the number of levels
plus one (for NA). If nmax is set too small there is liable to be an error: nmax = 1 is silently ignored.

Long vectors are supported for the default method of duplicated, but may only be usable if nmax
is supplied.

Value

duplicated(): For a vector input, a logical vector of the same length as x. For a data frame, a
logical vector with one element for each row. For a matrix or array, and when MARGIN = @, a logical
array with the same dimensions and dimnames.

anyDuplicated(): an integer or real vector of length one with value the 1-based index of the first
duplicate if any, otherwise ©.

Warning
Using this for lists is potentially slow, especially if the elements are not atomic vectors (see vector)
or differ only in their attributes. In the worst case it is O(n?).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unique.

Examples

x <- c(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <- x[!duplicated(x)])

similar, same elements but different order:
(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique(x) but unique(x) is more efficient
stopifnot(identical(xu, unique(x)),
identical(xu2, unique(x, fromLast = TRUE)))

duplicated(iris)[140:143]

duplicated(iris3, MARGIN = c(1, 3))

170

dyn.load

anyDuplicated(iris) #i# 143

anyDuplicated(x)

anyDuplicated(x, fromLast = TRUE)

dyn.load

Foreign Function Interface

Description

Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran
subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE, ...)

dyn.unload(x)

is.loaded(symbol, PACKAGE = "", type = "")
Arguments
X a character string giving the pathname to a DLL, also known as a dynamic shared

local

now

symbol
PACKAGE

type

object. (See ‘Details’ for what these terms mean.)

a logical value controlling whether the symbols in the DLL are stored in their
own local table and not shared across DLLs, or added to the global symbol table.
Whether this has any effect is system-dependent.

a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent.

other arguments for future expansion.
a character string giving a symbol name.

if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, ‘.so’, ‘.s1’, “.d11’,...). This is intended to
add safety for packages, which can ensure by using this argument that no other
package can override their external symbols. This is used in the same way as in
.C, .Call, .Fortran and .External functions.

The type of symbol to look for: can be any ("", the default), "Fortran”, "Call"
or "External”.

dyn.load 171

Details

The objects dyn. load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’) on
all platforms except macOS, which uses the term for a different sort of object. On Unix-alikes
they are also called ‘dynamic shared objects’ (‘DSO’), or ‘shared objects’ for short. (The POSIX
standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the ‘Writing R Extensions’ and ‘R Installation and Administration” manuals for
how to create and install a suitable DLL.

Unfortunately a very few platforms (e.g., Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn.load mirror the different aspects of the mode argument to the
dlopen() routine on POSIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the default values are appropriate and
you should override them only if there is good reason and you understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own namespace is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the now argument as
FALSE. If a routine is called that has a missing symbol, the process will terminate immediately. The
intended use is for library developers to call with value TRUE to check that all symbols are actually
resolved and for regular users to call with FALSE so that missing symbols can be ignored and the
available ones can be called.

The initial motivation for adding these was to avoid such termination in the _init() routines of the
Java virtual machine library. However, symbols loaded locally may not be (read probably) available
to other DLLs. Those added to the global table are available to all other elements of the application
and so can be shared across two different DLLs.

Some (very old) systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning messages
emitted when unsupported options are used. This is done by setting either of the options verbose
or warn to be non-zero via the options function.

There is a short discussion of these additional arguments with some example code available at
http://www.stat.ucdavis.edu/~duncan/R/dynload/.

Value

The function dyn.load is used for its side effect which links the specified DLL to the executing
R image. Calls to .C, .Call, .Fortran and .External can then be used to execute compiled C
functions or Fortran subroutines contained in the library. The return value of dyn.load is an object
of class DLLInfo. See getlLoadedDLLs for information about this class.

The function dyn.unload unlinks the DLL. Note that unloading a DLL and then re-loading a DLL
of the same name may or may not work: on Solaris it uses the first version loaded. Note also that
some DLLs cannot be safely unloaded at all: unloading a DLL which implements C finalizers but
does not unregister them on unload causes R to crash.

http://www.stat.ucdavis.edu/~duncan/R/dynload/

172 dyn.load

is.loaded checks if the symbol name is loaded and searchable and hence available for use as
a character string value for argument .NAME in .C or .Fortran or .Call or .External. It will
succeed if any one of the four calling functions would succeed in using the entry point unless type
is specified. (See .Fortran for how Fortran symbols are mapped.) Note that symbols in base
packages are not searchable, and other packages can be so marked.

Warning

Do not use dyn.unload on a DLL loaded by library.dynam: use library.dynam.unload. This
is needed for system housekeeping.

Note

is.loaded requires the name you would give to .C etc and not (as in S) that remapped by the
defunct functions symbol.C or symbol.For.

By default, the maximum number of DLLs that can be loaded is now 614 when the OS limit on the
number of open files allows or can be increased, but less otherwise (but it will be at least 100). A
specific maximum can be requested via the environment variable R_MAX_NUM_DLLS, which has to be
set (to a value between 100 and 1000 inclusive) before starting an R session. If the OS limit on the
number of open files does not allow using this maximum and cannot be increased, R will fail to start
with an error. The maximum is not allowed to be greater than 60% of the OS limit on the number
of open files (essentially unlimited on Windows, on Unix typically 1024, but 256 on macOS). The
limit can sometimes (including on macOS) be modified using command ulimit -n (sh, bash) or
limit descriptors (csh) in the shell used to launch R. Increasing R_MAX_NUM_DLLS comes with
some memory overhead.

If the OS limit on the number of open files cannot be determined, the DLL limit is 100 and cannot
be changed via R_MAX_NUM_DLLS.

The creation of DLLs and the runtime linking of them into executing programs is very platform de-
pendent. In recent years there has been some simplification in the process because the C subroutine
call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn.load uses the
dlopen mechanism and should work on all platforms which support it. On Windows it uses the
standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a package’s . onLoad initialization.
SHLIB for how to create suitable DLLs.

.C, .Fortran, .External, .Call.

eapply 173

Examples

expect all of these to be false in R >= 3.0.0.
is.loaded("supsmu”) # Fortran entry point in stats
is.loaded("supsmu”, "stats", "Fortran")

is.loaded("PDF", type = "External”) # pdf() device in grDevices

eapply Apply a Function Over Values in an Environment

Description

eapply applies FUN to the named values from an environment and returns the results as a list. The
user can request that all named objects are used (normally names that begin with a dot are not). The
output is not sorted and no enclosing environments are searched.

This is a primitive function.

Usage
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)
Arguments
env environment to be used.
FUN the function to be applied, found via match. fun. In the case of functions like +,
%*%, etc., the function name must be backquoted or quoted.
optional arguments to FUN.
all.names a logical indicating whether to apply the function to all values.
USE .NAMES logical indicating whether the resulting list should have names.
Value

A named (unless USE.NAMES = FALSE) list. Note that the order of the components is arbitrary for
hashed environments.

See Also

environment, lapply.

Examples

require(stats)

env <- new.env(hash = FALSE) # so the order is fixed
env$a <- 1:10

env$beta <- exp(-3:3)

env$logic <- c(TRUE, FALSE, FALSE, TRUE)

what have we there?

174 eigen

utils::1s.str(env)

compute the mean for each list element
eapply(env, mean)
unlist(eapply(env, mean, USE.NAMES = FALSE))
median and quartiles for each element (making use of "..."
eapply(env, quantile, probs = 1:3/4)
eapply(env, quantile)

passing):

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of numeric (double, integer, logical) or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

Arguments
X a numeric or complex matrix whose spectral decomposition is to be computed.
Logical matrices are coerced to numeric.
symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and
only its lower triangle (diagonal included) is used. If symmetric is not specified,
isSymmetric(x) is used.
only.values if TRUE, only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.
EISPACK logical. Defunct and ignored.
Details

If symmetric is unspecified, isSymmetric(x) determines if the matrix is symmetric up to plausible
numerical inaccuracies. It is surer and typically much faster to set the value yourself.

Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close to x. So even though a real asymmetric x may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code (most often 1): these can only be interpreted by detailed study of the FORTRAN code.

eigen 175

Value

The spectral decomposition of x is returned as a list with components

values a vector containing the p eigenvalues of x, sorted in decreasing order, according
to Mod(values) in the asymmetric case when they might be complex (even for
real matrices). For real asymmetric matrices the vector will be complex only if
complex conjugate pairs of eigenvalues are detected.

vectors either a p X p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE. The vectors are normalized to unit length.

Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

When only.values is not true, as by default, the result is of S3 class "eigen”.

If r <-eigen(A), and V <-r$vectors; lam <-r$values, then
A=VAV~!

(up to numerical fuzz), where A =diag(lam).

Source

eigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV.
LAPACK is from http://www.netlib.org/lapack and its guide is listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. STAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.

See Also

svd, a generalization of eigen; qr, and chol for related decompositions.

To compute the determinant of a matrix, the qr decomposition is much more efficient: det.

Examples

eigen(cbind(c(1,-1), c(-1,1)))
eigen(cbind(c(1,-1), c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind(1, c(1,-1)), only.values = TRUE)

eigen(cbind(-1, 2:1)) # complex values

eigen(print(cbind(c(@, 1i), c(-1i, @)))) # Hermite ==> real Eigenvalues
3 x 3:

http://www.netlib.org/lapack
http://www.netlib.org/lapack/lug/lapack_lug.html

176 encodeString

eigen(cbind(1, 3:1, 1:3))
eigen(cbind(-1, c(1:2,0), 0:2)) # complex values

encodeString Encode Character Vector as for Printing

Description

encodeString escapes the strings in a character vector in the same way print.default does, and
optionally fits the encoded strings within a field width.

Usage
encodeString(x, width = @, quote = "", na.encode = TRUE,
justify = c("left”, "right”, "centre”, "none"))
Arguments
X A character vector, or an object that can be coerced to one by as.character.
width integer: the minimum field width. If NULL or NA, this is taken to be the largest
field width needed for any element of x.
quote character: quoting character, if any.
na.encode logical: should NA strings be encoded?
justify character: partial matches are allowed. If padding to the minimum field width
is needed, how should spaces be inserted? justify == "none” is equivalent to
width = 0, for consistency with format.default.
Details

This escapes backslash and the control characters ‘\a’ (bell), ‘\b’ (backspace), ‘\f’ (formfeed),
‘An’ (line feed), ‘\r’ (carriage return), ‘\t’ (tab) and ‘\v’ (vertical tab) as well as any non-printable
characters in a single-byte locale, which are printed in octal notation (‘\xyz’ with leading zeroes).

Which characters are non-printable depends on the current locale. Windows’ reporting of printable
characters is unreliable, so there all other control characters are regarded as non-printable, and all
characters with codes 32-255 as printable in a single-byte locale. See print.default for how
non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length as x, with the same attributes (including names and dimen-
sions) but with no class set.

Marked UTF-8 encodings are preserved.

Encoding 177

Note

The default for width is different from format.default, which does similar things for character
vectors but without encoding using escapes.

See Also

print.default

Examples

x <= "ab\bc\ndef"

print(x)

cat(x) # interprets escapes
cat(encodeString(x), "\n", sep =

nn

) # similar to print()
factor(x) # makes use of this to print the levels

x <- c("a", "ab", "abcde")

encodeString(x) # width = @: use as little as possible
encodeString(x, 2) # use two or more (left justified)
encodeString(x, width = NA) # left justification
encodeString(x, width = NA, justify = "c")
encodeString(x, width = NA, justify = "r")
encodeString(x, width = NA, quote = "'", justify = "r")

Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.
Usage

Encoding(x)

Encoding(x) <- value

enc2native(x)
enc2utf8(x)

Arguments

X A character vector.

value A character vector of positive length.

178 Encoding

Details

Character strings in R can be declared to be encoded in "1atin1” or "UTF-8" or as "bytes”. These
declarations can be read by Encoding, which will return a character vector of values "latin1”,
"UTF-8" "bytes"” or "unknown", or set, when value is recycled as needed and other values are
silently treated as "unknown". ASCII strings will never be marked with a declared encoding, since
their representation is the same in all supported encodings. Strings marked as "bytes" are intended
to be non-ASCII strings which should be manipulated as bytes, and never converted to a character
encoding (so writing them to a text file is not supported).

enc2native and enc2utf8 convert elements of character vectors to the native encoding or UTF-8
respectively, taking any marked encoding into account. They are primitive functions, designed to
do minimal copying.

There are other ways for character strings to acquire a declared encoding apart from explicitly
setting it (and these have changed as R has evolved). Functions scan, read.table, readLines,
and parse have an encoding argument that is used to declare encodings, iconv declares encodings
from its to argument, and console input in suitable locales is also declared. intToUtf8 declares
its output as "UTF-8", and output text connections (see textConnection) are marked if running
in a suitable locale. Under some circumstances (see its help page) source(encoding=) will mark
encodings of character strings it outputs.

Most character manipulation functions will set the encoding on output strings if it was declared
on the corresponding input. These include chartr, strsplit(useBytes = FALSE), tolower and
toupper as well as sub(useBytes = FALSE) and gsub(useBytes = FALSE). Note that such func-
tions do not preserve the encoding, but if they know the input encoding and that the string has been
successfully re-encoded (to the current encoding or UTF-8), they mark the output.

substr does preserve the encoding, and chartr, tolower and toupper preserve UTF-8 encoding
on systems with Unicode wide characters. With their fixed and perl options, strsplit, sub and
gsub will give a marked UTF-8 result if any of the inputs are UTF-8.

paste and sprintf return elements marked as bytes if any of the corresponding inputs is marked
as bytes, and otherwise marked as UTF-8 of any of the inputs is marked as UTF-8.

match, pmatch, charmatch, duplicated and unique all match in UTF-8 if any of the elements are
marked as UTF-8.

There is some ambiguity as to what is meant by a ‘Latin-1" locale, since some OSes (notably
Windows) make use of character positions used for control characters in the ISO 8859-1 character
set. How such characters are interpreted is system-dependent but as from R 3.5.0 they are if possible
interpreted as per Windows codepage 1252 (which Microsoft calls “Windows Latin 1 (ANSI)’)
when converting to e.g. UTF-8.

Value

A character vector.

For enc2utf8 encodings are always marked: they are for enc2native in UTF-8 and Latin-1 locales.

Examples

x is intended to be in latini
x <- "fa\xE7ile"
Encoding(x)

environment

Encoding(x) <- "latinl”
X

xx <- iconv(x, "latin1", "UTF-8")
Encoding(c(x, xx))
c(x, xx)

Encoding(xx) <- "bytes"”
xx # will be encoded in hex

179

cat("xx = ", xx, "\n", sep = "")
environment Environment Access
Description

Get, set, test for and create environments.

Usage

environment(fun = NULL)
environment(fun) <- value

is.environment(x)
.GlobalEnv
globalenv()

.BaseNamespaceEnv

emptyenv()
baseenv()

new.env(hash = TRUE, parent = parent.frame(), size = 29L)

parent.env(env)
parent.env(env) <- value

environmentName(env)

env.profile(env)

Arguments
fun a function, a formula, or NULL, which is the default.
value an environment to associate with the function
X an arbitrary R object.
hash a logical, if TRUE the environment will use a hash table.

parent

an environment to be used as the enclosure of the environment created.

180 environment

env an environment
size an integer specifying the initial size for a hashed environment. An internal de-
fault value will be used if size is NA or zero. This argument is ignored if hash
is FALSE.
Details

Environments consist of a frame, or collection of named objects, and a pointer to an enclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined (unless changed subsequently). The enclosing
environment is distinguished from the parent frame: the latter (returned by parent. frame) refers
to the environment of the caller of a function. Since confusion is so easy, it is best never to use
‘parent’ in connection with an environment (despite the presence of the function parent.env).

When get or exists search an environment with the default inherits = TRUE, they look for the
variable in the frame, then in the enclosing frame, and so on.

The global environment . GlobalEnv, more often known as the user’s workspace, is the first item on
the search path. It can also be accessed by globalenv (). On the search path, each item’s enclosure
is the next item.

The object .BaseNamespaceEnv is the namespace environment for the base package. The environ-
ment of the base package itself is available as baseenv ().

If one follows the chain of enclosures found by repeatedly calling parent.env from any envi-
ronment, eventually one reaches the empty environment emptyenv (), into which nothing may be
assigned.

The replacement function parent.env<- is extremely dangerous as it can be used to destructively
change environments in ways that violate assumptions made by the internal C code. It may be
removed in the near future.

The replacement form of environment, is.environment, baseenv, emptyenv and globalenv are
primitive functions.

System environments, such as the base, global and empty environments, have names as do the
package and namespace environments and those generated by attach(). Other environments can
be named by giving a "name” attribute, but this needs to be done with care as environments have
unusual copying semantics.

Value

If fun is a function or a formula then environment (fun) returns the environment associated with
that function or formula. If fun is NULL then the current evaluation environment is returned.

The replacement form sets the environment of the function or formula fun to the value given.
is.environment(obj) returns TRUE if and only if obj is an environment.

new.env returns a new (empty) environment with (by default) enclosure the parent frame.
parent.env returns the enclosing environment of its argument.

parent.env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printed or "" if it
is not a named environment.

EnvVar 181

env.profile returns a list with the following components: size the number of chains that can
be stored in the hash table, nchains the number of non-empty chains in the table (as reported by
HASHPRI), and counts an integer vector giving the length of each chain (zero for empty chains).
This function is intended to assess the performance of hashed environments. When env is a non-
hashed environment, NULL is returned.

See Also

For the performance implications of hashing or not, see https://en.wikipedia.org/wiki/Hash_
table.

The envir argument of eval, get, and exists.

1s may be used to view the objects in an environment, and hence 1s.str may be useful for an
overview.

sys.source can be used to populate an environment.

Examples

f <- function() "top level function”

##-- all three give the same:
environment()

environment(f)

.GlobalEnv

ls(envir = environment(stats: :approxfun(1:2, 1:2, method = "const")))
is.environment(.GlobalEnv) # TRUE

el <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = el)

assign("a", 3, envir = el)

1s(el)

1s(e2)

exists("a", envir = e2) # this succeeds by inheritance

exists("a", envir = e2, inherits = FALSE)

exists("+", envir = e2) # this succeeds by inheritance

eh <- new.env(hash = TRUE, size = NA)
with(env.profile(eh), stopifnot(size == length(counts)))

EnvVar Environment Variables

Description

Details of some of the environment variables which affect an R session.

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

182 EnvVar

Details

It is impossible to list all the environment variables which can affect an R session: some affect
the OS system functions which R uses, and others will affect add-on packages. But here are notes
on some of the more important ones. Those that set the defaults for options are consulted only at
startup (as are some of the others).
HOME: The user’s ‘home’ directory.

LANGUAGE: Optional. The language(s) to be used for message translations. This is consulted when
needed.

LC_ALL: (etc) Optional. Use to set various aspects of the locale — see Sys.getlocale. Consulted
at startup.

MAKEINDEX: The path to makeindex. If unset to a value determined when R was built. Used by the
emulation mode of texi2dvi and texi2pdf.

R_BATCH: Optional — set in a batch session, that is one started by R CMD BATCH. Most often set to
"" so test by something like !is.na(Sys.getenv("R_BATCH" ,NA)).

R_BROWSER: The path to the default browser. Used to set the default value of options("browser”).

R_COMPLETION: Optional. If set to FALSE, command-line completion is not used. (Not used by the
macOS GUIL)

R_DEFAULT_PACKAGES: A comma-separated list of packages which are to be attached in every ses-
sion. See options.

R_DOC_DIR: The location of the R ‘doc’ directory. Set by R.
R_ENVIRON: Optional. The path to the site environment file: see Startup. Consulted at startup.

R_GSCMD: Optional. The path to Ghostscript, used by dev2bitmap, bitmap and embedFonts. Con-
sulted when those functions are invoked. Since it will be treated as if passed to system, spaces
and shell metacharacters should be escaped.

R_HISTFILE: Optional. The path of the history file: see Startup. Consulted at startup and when the
history is saved.

R_HISTSIZE: Optional. The maximum size of the history file, in lines. Exactly how this is used
depends on the interface. For the readline command-line interface it takes effect when the
history is saved (by savehistory or at the end of a session).

R_HOME: The top-level directory of the R installation: see R.home. Set by R.
R_INCLUDE_DIR: The location of the R ‘include’ directory. Set by R.
R_LIBS: Optional. Used for initial setting of . libPaths.

R_LIBS_SITE: Optional. Used for initial setting of . libPaths.
R_LIBS_USER: Optional. Used for initial setting of . libPaths.

R_PAPERSIZE: Optional. Used to set the default for options("papersize”), e.g. used by pdf and
postscript.

R_PCRE_JIT_STACK_MAXSIZE: Optional. Consulted when PCRE’s JIT pattern compiler is first
used. See grep.

R_PDFVIEWER: The path to the default PDF viewer. Used by R CMD Rd2pdf.
R_PLATFORM: The platform — a string of the form cpu-vendor-os, see R.Version.

EnvVar 183

R_PROFILE: Optional. The path to the site profile file: see Startup. Consulted at startup.
R_RD4PDF: Options for pdflatex processing of Rd files. Used by R CMD Rd2pdf.
R_SHARE_DIR: The location of the R ‘share’ directory. Set by R.

R_TEXI2DVICMD: The path to texi2dvi. Defaults to the value of TEXI2DVI, and if that is un-
set to a value determined when R was built. Consulted at startup to set the default for
options("texi2dvi"), used by texi2dvi and texi2pdf in package tools.

R_UNZIPCMD: The path to unzip. Sets the initial value for options(”unzip”) on a Unix-alike
when namespace utils is loaded.

R_ZIPCMD: The path to zip. Used by zip and by R CMD INSTALL --build on Windows.

TMPDIR, TMP, TEMP: Consulted (in that order) when setting the temporary directory for the session:
see tempdir. TMPDIR is also used by some of the utilities see the help for build.

TZ: Optional. The current time zone. See Sys.timezone for the system-specific formats. Con-
sulted as needed.

no_proxy, http_proxy, ftp_proxy: (and more). Optional. Settings for download.file: see its
help for further details.

Unix-specific

Some variables set on Unix-alikes, and not (in general) on Windows.

DISPLAY: Optional: used by X11, Tk (in package tcltk), the data editor and various packages.

EDITOR: The path to the default editor: sets the default for options(”editor”) when namespace
utils is loaded.

PAGER: The path to the pager with the default setting of options("pager”). The default value is
chosen at configuration, usually as the path to less.

R_PRINTCMD: Sets the default for options("printcmd"”), which sets the default print command to
be used by postscript.

R_SUPPORT_OLD_TARS logical. Sets the default for the support_old_tars argument of untar.
Should be set to TRUE if an old system tar command is used which does not support either xz
compression or automagically detecting compression type.

See Also

Sys.getenv and Sys. setenv to read and set environmental variables in an R session.

gctorture for environment variables controlling garbage collection.

184 eval

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval(expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir))
parent.frame() else baseenv())
evalg(expr, envir, enclos)
eval.parent(expr, n = 1)
local(expr, envir = new.env())

Arguments
expr an object to be evaluated. See ‘Details’.
envir the environment in which expr is to be evaluated. May also be NULL, a list, a
data frame, a pairlist or an integer as specified to sys.call.
enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted as
the base package environment, baseenv()) or an environment.
n number of parent generations to go back
Details

eval evaluates the expr argument in the environment specified by envir and returns the computed
value. If envir is not specified, then the default is parent.frame() (the environment where the
call to eval was made).

Objects to be evaluated can be of types call or expression or name (when the name is looked
up in the current scope and its binding is evaluated), a promise or any of the basic types such as
vectors, functions and environments (which are returned unchanged).

The evalq form is equivalent to eval (quote(expr),...). eval evaluates its first argument in the
current scope before passing it to the evaluator: evalq avoids this.

eval.parent(expr,n) is a shorthand for eval (expr,parent.frame(n)).

If envir is a list (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosure enclos), and the temporary environment is used for evaluation. So if expr changes any
of the components named in the (pair)list, the changes are lost.

If envir is NULL it is interpreted as an empty list so no values could be found in envir and look-up
goes directly to enclos.

local evaluates an expression in a local environment. It is equivalent to evalqg except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited namespace feature since variables defined in the environment are
not visible from the outside.

eval 185

Value

The result of evaluating the object: for an expression vector this is the result of evaluating the last
element.

Note

Due to the difference in scoping rules, there are some differences between R and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in a data frame that has been passed as an argument
to a function, the relevant enclosure is often the caller’s environment, i.e., one needs
eval(x,data,parent.frame()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (eval only.)

See Also

expression, quote, sys.frame, parent.frame, environment.

Further, force to force evaluation, typically of function arguments.

Examples

eval(2 » 2 * 3)
mEx <- expression(272”3); mEx; 1 + eval(mEx)
eval({ xx <- pi; xx*2}) ; xx

a <- 3 ; aa <- 4 ; evalqg(evalq(atb+aa, list(a = 1)), list(b =5)) # == 10
<- 3 ; aa <- 4 ; evalg(evalqg(atbtaa, -1), list(b = 5)) #==12

ev <- function() {
el <- parent.frame()
Evaluate a in el
aa <- eval(expression(a), el)
evaluate the expression bound to a in el
a <- expression(xty)
list(aa = aa, eval = eval(a, el))
3
tst.ev <- function(a = 7) { x <- pi; y <= 1; ev() }
tst.ev() #->aa : 7, eval : 4.14

a <- list(a =3, b =4)
with(a, a <- 5) # alters the copy of a from the list, discarded.

#H#
Example of evalq()
##

186

env <- new.env()
assign("N", 27, envir = env)

this version changes the visible copy of N only, since the argument

passed to eval is '4'.
eval(N <- 4, env)

N
get(nNn ,

this version does the assignment in env, and changes N only there.

envir = env)

evalq(N <- 5, env)

N

get("N", envir = env)

#it

Uses of local()

#it

Mutually recursive.

gg gets value of last assignment, an anonymous version of f.

gg <- local({
k <= function(y)f(y)
f <= function(x) if(x) x*k(x-1) else 1

D
gg(10)

sapply(1:5, gg)

Nesting locals: a is private storage accessible to k
gg <- local({

exists

k <= local({
a<-1
function(y){print(a <<- a+1);f(y)}
»
f <= function(x) if(x) xxk(x-1) else 1
»
sapply(1:5, gg)
ls(envir = environment(gg))
ls(envir = environment(get("k"”, envir = environment(gg))))
exists Is an Object Defined?
Description

Look for an R object of the given name and possibly return it

Usage

exists(x, where =

-1, envir

, frame, mode = "any",

exists 187

inherits = TRUE)

getd(x, envir

= pos.to.env(-1L), mode = "any"”, inherits = TRUE,
ifnotfound =

NULL)
Arguments
X a variable name (given as a character string).
where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.
envir an alternative way to specify an environment to look in, but it is usually simpler
to just use the where argument.
frame a frame in the calling list. Equivalent to giving where as sys. frame(frame).
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?
ifnotfound the return value of get@(x,*) when x does not exist.
Details

The where argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys. frame to access the currently active
function calls). The envir argument is an alternative way to specify an environment, but is primarily
there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing frames
of the environment are searched until the name x is encountered. See environment and the ‘R
Language Definition” manual for details about the structure of environments and their enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric” and "function” (see mode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for example mode = "special” will
seek any type of function.)

Value

exists(): Logical, true if and only if an object of the correct name and mode is found.

get@() : The object—as from get (x,*)— if exists(x,) is true, otherwise ifnotfound.

Note

With get@(), instead of the easy to read but somewhat inefficient

if (exists(myVarName, envir = myEnvir)) {
r <- get(myVarName, envir = myEnvir)
... deal with r ...

188 expand.grid

you now can use the more efficient (and slightly harder to read)

if (lis.null(r <- get@(myVarName, envir = myEnvir))) {
... deal with r ...

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

get and hasName. For quite a different kind of “existence” checking, namely if function arguments
were specified, missing; and for yet a different kind, namely if a file exists, file.exists.

Examples

Define a substitute function if necessary:
if(!exists("some.fun”, mode = "function"))

some. fun <- function(x) { cat(”some.fun(x)\n"); x }
search()
exists("1ls"”, 2) # true even though 1ls is in pos = 3
exists("ls", 2, inherits = FALSE) # false

These are true (in most circumstances):
identical(ls, geto("1s"))
identical (NULL, get@(".foo.bar.")) # default ifnotfound = NULL (!)

expand.grid Create a Data Frame from All Combinations of Factor Variables

Description

Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE, stringsAsFactors = TRUE)

Arguments

vectors, factors or a list containing these.

KEEP.OUT.ATTRS a logical indicating the "out.attrs" attribute (see below) should be computed
and returned.
stringsAsFactors

logical specifying if character vectors are converted to factors.

expression 189

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out.attrs” is a list which gives the dimension and dimnames for use by predict meth-
ods.

Note

Conversion to a factor is done with levels in the order they occur in the character vectors (and not
alphabetically, as is most common when converting to factors).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

combn (package utils) for the generation of all combinations of n elements, taken m at a time.

Examples

require(utils)

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male"”,"Female"))

x <- seq(@, 10, length.out = 100)

y <- seq(-1, 1, length.out = 20)

dl <- expand.grid(x = x, y =y)

d2 <- expand.grid(x = x, y =y, KEEP.OUT.ATTRS = FALSE)
object.size(d1) - object.size(d2)

##-> 5992 or 8832 (on 32- / 64-bit platform)

expression Unevaluated Expressions

Description

Creates or tests for objects of mode "expression”.

Usage

expression(...)

is.expression(x)
as.expression(x, ...)

190 expression

Arguments
expression: R objects, typically calls, symbols or constants.
as.expression: arguments to be passed to methods.
X an arbitrary R object.
Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (see call) in R, and an R expression vector is a list of calls, symbols etc, for example as
returned by parse.

As an object of mode "expression” is a list, it can be subsetted by [, [[or $, the latter two
extracting individual calls etc. The replacement forms of these operators can be used to replace or
delete elements.

expression and is.expression are primitive functions. expression is ‘special’: it does not
evaluate its arguments.

Value

expression returns a vector of type "expression” containing its arguments (unevaluated).
is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and only
the default method is described here. (The default method calls as. vector(type = "expression”)
and so may dispatch methods for as.vector.) NULL, calls, symbols (see as.symbol) and pairlists
are returned as the element of a length-one expression vector. Atomic vectors are placed element-
by-element into an expression vector (without using any names): lists are changed type to an ex-
pression vector (keeping all attributes). Other types are not currently supported.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, eval, function. Further, text and legend for plotting mathematical expressions.

Examples

length(ex1 <- expression(l + 0:9)) # 1
ex1
eval(ex1) # 1:10

length(ex3 <- expression(u, 2, u + 0:9)) # 3
mode(ex3 [3]) # expression

mode(ex3[[3]]) # call

but not all components are 'call's :
sapply(ex3, mode) # name numeric call
sapply(ex3, typeof) # symbol double language
rm(ex3)

Extract

191

Extract

Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage

x[i]
x[i, j,

x[[i, exact

x[li, j,
x$name

L

drop = TRUE]
TRUET]
exact = TRUE]]

getElement(object, name)

x[i] <- value

xti, 3,

...] <= value

x[[i]] <- value
x$name <- value

Arguments
X, object

i, 3, ...

name

drop

exact

object from which to extract element(s) or in which to replace element(s).

indices specifying elements to extract or replace. Indices are numeric or
character vectors or empty (missing) or NULL. Numeric values are coerced
to integer as by as.integer (and hence truncated towards zero). Character
vectors will be matched to the names of the object (or for matrices/arrays, the
dimnames): see ‘Character indices’ below for further details.

For [-indexing only: i, j, ... can be logical vectors, indicating elements/slices
to select. Such vectors are recycled if necessary to match the corresponding
extent. i, j, ... can also be negative integers, indicating elements/slices to
leave out of the selection.

When indexing arrays by [a single argument i can be a matrix with as many
columns as there are dimensions of x; the result is then a vector with elements
corresponding to the sets of indices in each row of i.

An index value of NULL is treated as if it were integer(0).

A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the names of
the object.

For matrices and arrays. If TRUE the result is coerced to the lowest possible
dimension (see the examples). This only works for extracting elements, not for
the replacement. See drop for further details.

Controls possible partial matching of [[when extracting by a character vec-
tor (for most objects, but see under ‘Environments’). The default is no partial

192 Extract

matching. Value NA allows partial matching but issues a warning when it occurs.
Value FALSE allows partial matching without any warning.

value typically an array-like R object of a similar class as x.

Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
see InternalMethods as well as [.data.frame and [.factor. The descriptions here apply only to
the default methods. Note that separate methods are required for the replacement functions [<-,
[[<- and $<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between [, [[and $ is that the [can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, see is.recursive) objects. $ is only valid for recursive objects, and is only discussed
in the section below on recursive objects.

Subsetting (except by an empty index) will drop all attributes except names, dim and dimnames.

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part of x is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed to
accept the values. For vectors, the answer will be of the higher of the types of x and value in the
hierarchy raw < logical < integer < double < complex < character < list < expression. Attributes are
preserved (although names, dim and dimnames will be adjusted suitably). Subassignment is done
sequentially, so if an index is specified more than once the latest assigned value for an index will
result.

It is an error to apply any of these operators to an object which is not subsettable (e.g., a function).

Atomic vectors

The usual form of indexing is [. [[can be used to select a single element dropping names, whereas
[keeps them, e.g., in c(abc =123)[1].

The index object i can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (see factor) and not by the character values which
are printed (for which use [as.character(i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes.

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unless x is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing a k-dimensional array is to specify k indices to [. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. And again, indexing
by factors is equivalent to indexing by the numeric codes, see ‘Atomic vectors’ above.

Extract 193

An empty index (a comma separated blank) indicates that all entries in that dimension are selected.
The argument drop applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix. NA and zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing an NA produce an NA in the result.

Indexing via a character matrix with one column per dimensions is also supported if the array has
dimension names. As with numeric matrix indexing, each row of the index matrix selects a single
element of the array. Indices are matched against the appropriate dimension names. NA is allowed
and will produce an NA in the result. Unmatched indices as well as the empty string ("") are not
allowed and will result in an error.

A vector obtained by matrix indexing will be unnamed unless x is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by [is similar to atomic vectors and selects a list of the specified element(s).

Both [[and $ select a single element of the list. The main difference is that $ does not allow
computed indices, whereas [[does. x$name is equivalent to x[["name"”,exact = FALSE]]. Also,
the partial matching behavior of [[can be controlled using the exact argument.

getElement(x,name) is a version of x[[name,exact = TRUE]] which for formally classed (S4)
objects returns slot(x, name), hence providing access to even more general list-like objects.

[and [[are sometimes applied to other recursive objects such as calls and expressions. Pairlists
are coerced to lists for extraction by [, but all three operators can be used for replacement.

[[can be applied recursively to lists, so that if the single index i is a vector of length p, alist[[i]]
is equivalent to alist[[i1]]...[[ip]] providing all but the final indexing results in a list.

Note that in all three kinds of replacement, a value of NULL deletes the corresponding item of the
list. To set entries to NULL, you need x[i] <-1ist(NULL).

When $<- is applied to a NULL X, it first coerces x to 1ist (). This is what also happens with [[<-
if the replacement value value is of length greater than one: if value has length 1 or 0, x is first
coerced to a zero-length vector of the type of value.

Environments

Both $ and [[can be applied to environments. Only character indices are allowed and no par-
tial matching is done. The semantics of these operations are those of get(i,env = x,inherits
= FALSE). If no match is found then NULL is returned. The replacement versions, $<- and [[<-,
can also be used. Again, only character arguments are allowed. The semantics in this case are
those of assign(i,value,env =x,inherits = FALSE). Such an assignment will either create a
new binding or change the existing binding in x.

NAs in indexing

When extracting, a numerical, logical or character NA index picks an unknown element and so
returns NA in the corresponding element of a logical, integer, numeric, complex or character result,
and NULL for a list. (It returns 0@ for a raw result.)

194 Extract

When replacing (that is using indexing on the lhs of an assignment) NA does not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the
same outcome). (The documented behaviour of S was that an NA replacement index ‘goes nowhere’
but uses up an element of value: Becker ef al p. 359. However, that has not been true of other
implementations.)

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. Som[j =2,1 =1] is equivalent to m[2,1] and
nottom[1,2].

This may not be true for methods defined for them; for example it is not true for the data. frame
methods described in [.data.frame which warn if i or j is named and have undocumented be-
haviour in that case.

To avoid confusion, do not name index arguments (but drop and exact must be named).

S4 methods
These operators are also implicit S4 generics, but as primitives, S4 methods will be dispatched only
on S4 objects x.

The implicit generics for the $ and $<- operators do not have name in their signature because the
grammar only allows symbols or string constants for the name argument.

Character indices

Character indices can in some circumstances be partially matched (see pmatch) to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Becker et al
p- 358), R never uses partial matching when extracting by [, and partial matching is not by default
used by [[(see argument exact).

Thus the default behaviour is to use partial matching only when extracting from recursive
objects (except environments) by $. Even in that case, warnings can be switched on by
options(warnPartialMatchDollar = TRUE).

nn

Neither empty ("") nor NA indices match any names, not even empty nor missing names. If any
object has no names or appropriate dimnames, they are taken as all "" and so match nothing.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

names for details of matching to names, and pmatch for partial matching.

list, array, matrix.

[.data.frame and [.factor for the behaviour when applied to data.frame and factors.

Syntax for operator precedence, and the ‘R Language Definition’ manual about indexing details.

NULL for details of indexing null objects.

Extract 195

Examples

X <= 1:12
m <- matrix(1:6, nrow = 2, dimnames = list(c("a", "b"), LETTERS[1:3]))

1li <- list(pi = pi, e = exp(1))

x[10] # the tenth element of x

x <- x[-1] # delete the 1st element of x
m[1,] # the first row of matrix m
m[{1, , drop = FALSE] # is a 1-row matrix

m[, c(TRUE,FALSE,TRUE) J# logical indexing
mcbind(c(1,2,1),3:1)J# matrix numeric index
ci <- cbind(c(”a”, "b", "a"y, c("A", "C", "B"))

mlci] # matrix character index

m <- m[,-1] # delete the first column of m

1if[11]] # the first element of list 1i

y <= list(1, 2, a = 4, 5)

yl[c(3, 4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:
(i <- 3.999999999) # "4" is printed
(1:5)[i] # 3

named atomic vectors, compare "[" and "[[" :
nx <- c(Abc = 123, pi = pi)
nx[1] ; nx["pi"] # keeps names, whereas "[[" does not:

nx[[11] ; nx[["pi"]]

recursive indexing into lists

z <- list(a = list(b = 9, ¢ = "hello"), d = 1:5)
unlist(z)

z[[c(1, 2)]1]

z[[c(1, 2, 1)]1]1 # both "hello”

z[[c("a", "b")1] <= "new"

unlist(z)

check $ and [[for environments
el <- new.env()

el$a <- 10

el[["a"]]

el[["b"]1] <- 20

el1$b

1s(el)

partial matching - possibly with warning :

stopifnot(identical(li$p, pi))

op <- options(warnPartialMatchDollar = TRUE)

stopifnot(identical(li$p, pi), #-- a warning
inherits(tryCatch (li$p, warning = identity), "warning”))

revert the warning option:

if(is.null(opl[[1]]1)) op[[1]] <- FALSE; options(op)

196 Extract.data.frame

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage

S3 method for class 'data.frame'

x[i, j, drop = 1]

S3 replacement method for class 'data.frame'
x[i, j1 <- value

S3 method for class 'data.frame'

x[[..., exact = TRUE]]

S3 replacement method for class 'data.frame'’
x[[i, j11 <- value

S3 replacement method for class 'data.frame'
x$name <- value

Arguments
X data frame.
i, 3, ... elements to extract or replace. For [and [[, these are numeric or character or,
for [only, empty. Numeric values are coerced to integer as if by as.integer.
For replacement by [, a logical matrix is allowed.
name A literal character string or a name (possibly backtick quoted).
drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.
value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.
exact logical: see [, and applies to column names.
Details

Data frames can be indexed in several modes. When [and [[are used with a single vector index
(x[i] or x[[1]]), they index the data frame as if it were a list. In this usage a drop argument is
ignored, with a warning.

There is no data. frame method for $, so x$name uses the default method which treats x as a list
(with partial matching of column names if the match is unique, see Extract). The replacement
method (for $) checks value for the correct number of rows, and replicates it if necessary.

Extract.data.frame 197

When [and [[are used with two indices (x[i,j] and x[[i, j1]) they act like indexing a matrix:
[[can only be used to select one element. Note that for each selected column, xj say, typically
(if it is not matrix-like), the resulting column will be xj[i], and hence rely on the corresponding [
method, see the examples section.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transform-
ing the row names using make.unique. Similarly, if columns are selected column names will be
transformed to be unique if necessary (e.g., if columns are selected more than once, or if more than
one column of a given name is selected if the data frame has duplicate column names).

When drop = TRUE, this is applied to the subsetting of any matrices contained in the data frame as
well as to the data frame itself.

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can contain NULL elements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing (x[i] with a logical or a 2-column integer matrix i) using [is not recommended.
For extraction, x is first coerced to a matrix. For replacement, logical matrix indices must be of the
same dimension as x. Replacements are done one column at a time, with multiple type coercions
possibly taking place.

Both [and [[extraction methods partially match row names. By default neither partially match
column names, but [[will if exact = FALSE (and with a warning if exact = NA). If you want to
exact matching on row names use match, as in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a vector results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a *missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result is NULL.

For [[a column of the data frame or NULL (extraction with one index) or a length-one vector
(extraction with two indices).

For $, a column of the data frame (or NULL).

For [<-, [[<- and $<-, a data frame.

Coercion

The story over when replacement values are coerced is a complicated one, and one that has changed
during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but value will
be replicated (by calling the generic function rep) to the right length if an exact number of repeats
can be used.

198

Extract.data.frame

When [is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to accommodate

the value.

Note that when the replacement value is an array (including a matrix) it is not treated as a series of
columns (as data.frame and as.data. frame do) but inserted as a single column.

Warning

The default behaviour when only one row is left is equivalent to specifying drop = FALSE. To drop

from a data frame to a list, drop = TRUE has to be specified explicitly.

Arguments other than drop and exact should not be named: there is a warning if they are and the
behaviour differs from the description here.

See Also

subset which is often easier for extraction, data.frame, Extract.

Examples

sw <- swiss[1:5, 1:4] # select a manageable subset

sw[1:3]

swl[, 1:3]
sw[4:5, 1:3]
sw[1]

sw[, 1, drop
sw[, 1]
swl[1]1]
sw$Fert

swl1,]

#
#
#
#
#
#
#

#

select columns

same

select rows and columns

a one-column data frame

FALSE] # the same

a (unnamed) vector

the same

the same (possibly w/ warning, see ?Extract)

a one-row data frame

sw[1,, drop = TRUE] # a list

sw["C",] # partially matches
swlmatch(”"C", row.names(sw)), 1 # no exact match
try(sw[, "Ferti”]) # column names must match exactly

swiss[c(1, 1:2),]

swlsw <= 6] <- 6 # logical matrix indexing

Sw

adding a column

sw["new1"”] <- LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[1:5] # ditto

sw[, "new3"] <- LETTERS[1:5] # ditto

sw$newd <- 1:

5

sapply(sw, class)
sw$new # -> NULL: no unique partial match

duplicate row, unique row names are created

Extract.factor 199

sw$newd <- NULL # delete the column
sw

sw[6:8] <- list(letters[10:14], NULL, aa = 1:5)
update col. 6, delete 7, append

sw

matrices in a data frame
A <- data.frame(x = 1:3, y = I(matrix(4:9, 3, 2)),
z = I(matrix(letters[1:9], 3, 3)))
A[1:3, "y"] # a matrix
A[1:3, "z"]1 # a matrix
AL, "y"] # a matrix
stopifnot(identical(colnames(A), c("x", "y", "z")), ncol(A) == 3L,
identical(AL,"y"]1, A[1:3, "y"1),
inherits (A[,"y"], "AsIs"))

keeping special attributes: use a class with a

"as.data.frame” and "[" method;

"avector” := vector that keeps attributes. Could provide a constructor
avector <- function(x) { class(x) <- c("avector”, class(x)); x }
as.data.frame.avector <- as.data.frame.vector

*[.avector"® <- function(x,i,...) {
r <- NextMethod("[")
mostattributes(r) <- attributes(x)
r

3

d <- data.frame(i = 0:7, f = gl(2,4),
u = structure(11:18, unit = "kg", class = "avector”))
str(d[2:4, -11) # 'u' keeps its "unit"

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage
S3 method for class 'factor'
x[..., drop = FALSE]
S3 method for class 'factor'
x[[...]1]

S3 replacement method for class 'factor'
x[...] <- value

S3 replacement method for class 'factor'
x[C[...J1] <- value

200

Arguments

X

drop
value

Details

Extremes

a factor
a specification of indices — see Extract.
logical. If true, unused levels are dropped.

character: a set of levels. Factor values are coerced to character.

When unused levels are dropped the ordering of the remaining levels is preserved.

If value is not in levels(x), a missing value is assigned with a warning.

Any contrasts assigned to the factor are preserved unless drop = TRUE.

The [[method supports argument exact.

Value

A factor with the same set of levels as x unless drop = TRUE.

See Also

factor, Extract.

Examples

following example(factor)
(ff <- factor(substring("statistics”, 1:10, 1:10), levels = letters))

ff[, drop = TRUE]

factor(letters[7:10]1)[2:3, drop = TRUE]

Extremes

Maxima and Minima

Description

Returns the (regular or parallel) maxima and minima of the input values.

pmax* () and pmin*() take one or more vectors as arguments, recycle them to common length and
return a single vector giving the ‘parallel’ maxima (or minima) of the argument vectors.

Usage
max(..., na.rm = FALSE)
min(..., na.rm = FALSE)
pmax(..., na.rm = FALSE)
pmin(..., na.rm = FALSE)
pmax.int(..., na.rm = FALSE)
pmin.int(..., na.rm = FALSE)

Extremes 201

Arguments
numeric or character arguments (see Note).
na.rm a logical indicating whether missing values should be removed.
Details

max and min return the maximum or minimum of all the values present in their arguments, as
integer if all are logical or integer, as double if all are numeric, and character otherwise.

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

The minimum and maximum of a numeric empty set are +Inf and -Inf (in this order!) which
ensures transitivity, e.g., min(x1,min(x2)) ==min(x1,x2). For numeric x max(x) == -Inf and
min(x) == +Inf whenever length(x) == @ (after removing missing values if requested). However,
pmax and pmin return NA if all the parallel elements are NA even for na.rm = TRUE.

pmax and pmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘parallel” maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result is
the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs (of
non-zero length) are recycled if necessary. Attributes (see attributes: such as names or dim) are
copied from the first argument (if applicable, e.g., not for an S4 object).

pmax.int and pmin.int are faster internal versions only used when all arguments are atomic vec-
tors and there are no classes: they drop all attributes. (Note that all versions fail for raw and complex
vectors since these have no ordering.)

max and min are generic functions: methods can be defined for them individually or via the Summary
group generic. For this to work properly, the arguments . . . should be unnamed, and dispatch is on
the first argument.

By definition the min/max of a numeric vector containing an NaN is NaN, except that the min/max
of any vector containing an NA is NA even if it also contains an NaN. Note that max (NA, Inf) == NA
even though the maximum would be Inf whatever the missing value actually is.

Character versions are sorted lexicographically, and this depends on the collating sequence of the
locale in use: the help for ‘Comparison’ gives details. The max/min of an empty character vector
is defined to be character NA. (One could argue that as "" is the smallest character element, the
maximum should be "", but there is no obvious candidate for the minimum.)

Value

For min or max, a length-one vector. For pmin or pmax, a vector of length the longest of the input
vectors, or length zero if one of the inputs had zero length.

The type of the result will be that of the highest of the inputs in the hierarchy integer < double <
character.

For min and max if there are only numeric inputs and all are empty (after possible removal of NAs),
the result is double (Inf or -Inf).

202 Extremes

S4 methods

max and min are part of the S4 Summary group generic. Methods for them must use the signature
X, ...,Na.rm.

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons, NULL is accepted as equivalent to integer(0).

pmax and pmin will also work on classed S3 or S4 objects with appropriate methods for comparison,
is.na and rep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location where an
extreme value occurs.

‘plotmath’ for the use of min in plot annotation.

Examples

require(stats); require(graphics)
min(5:1, pi) #-> one number
pmin(5:1, pi) #-> 5 numbers

x <- sort(rnorm(100)); cH <- 1.35

pmin(cH, quantile(x)) # no names

pmin(quantile(x), cH) # has names

plot(x, pmin(cH, pmax(-cH, x)), type = "b", main = "Huber's function”)

cut@l <- function(x) pmax(pmin(x, 1), @)
curve(x*2 - 1/4, -1.4, 1.5, col = 2)
curve(cut@1(x*2 - 1/4), col = "blue”, add = TRUE, n = 500)
pmax(), pmin() preserve attributes of *firstx argument
D <- diag(x = (3:1)/4) ; n@ <- numeric()
stopifnot(identical(D, cut@1(D)),

identical(n@, cut@1(ne)),

identical(n@, cut@1(NULL)),

identical(n@, pmax(3:1, n@, 2)),

identical(n@, pmax(n@, 4)))

extSoftVersion 203

extSoftVersion Report Versions of Third-Party Software

Description

Report versions of (external) third-party software used.

Usage

extSoftVersion()

Details

The reports the versions of third-party software libraries in use. These are often external but might
have been compiled into R when it was installed.

With dynamic linking, these are the versions of the libraries linked to in this session: with static
linking, of those compiled in.

Value

A named character vector, currently with components

zlib The version of z1ib in use.

bzlib The version of bz1lib (from bzip2) in use.

Xz The version of 1iblzma (from xz) in use.

PCRE The version of PCRE in use.

ICU The version of ICU in use (if any, otherwise "").

TRE The version of 1ibtre in use.

iconv The implementation and version of the iconv library in use (if known).
readline The version of readline in use (if any, otherwise "").

BLAS Name of the binary/executable file with the implementation of BLAS in use (if

known, otherwise "").

Note that the values for bz1ib and pcre normally contain a date as well as the version number, and
that for tre includes several items separated by spaces, the version number being the second.

For iconv this will give the implementation as well as the version, for example "GNU libiconv
1.14", "glibc 2.18" or "win_iconv" (which has no version number).

The name of the binary/executable file for BLAS can be used as an indication of which imple-
mentation is in use. Typically, the R version of BLAS will appear as 1ibR.so (1ibR.dylib),
R or 1ibRblas.so (1ibRblas.dylib), depending on how R was built. Note that 1ibRblas.so
(1ibRblas.dylib) may also be shown for an external BLAS implementation that had been copied,
hard-linked or renamed by the system administrator. For an external BLAS, a shared object file
will be given and its path/name may indicate the vendor/version. The detection does not work on
Windows.

204 factor

See Also

libcurlVersion for the version of 1ibCurl.

La_version for the version of LAPACK in use.
La_library for binary/executable file with LAPACK in use.
grSoftVersion for third-party graphics software.
tclVersion for the version of Tcl/Tk.

pcre_config for PCRE configuration options.

Examples
extSoftVersion()
the PCRE version
sub(” %", "" extSoftVersion()["PCRE"])
factor Factors
Description

The function factor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). If argument ordered is TRUE, the factor levels are assumed to be
ordered. For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion functions
for these classes.

Usage

factor(x = character(), levels, labels = levels,
exclude = NA, ordered = is.ordered(x), nmax = NA)

ordered(x, ...)

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

addNA(x, ifany = FALSE)

factor 205

Arguments
X a vector of data, usually taking a small number of distinct values.
levels an optional vector of the unique values (as character strings) that x might have
taken. The default is the unique set of values taken by as. character(x), sorted
into increasing order of x. Note that this set can be specified as smaller than
sort(unique(x)).
labels either an optional character vector of labels for the levels (in the same order
as levels after removing those in exclude), or a character string of length 1.
Duplicated values in 1abels can be used to map different values of x to the same
factor level.
exclude a vector of values to be excluded when forming the set of levels. This may be
factor with the same level set as x or should be a character.
ordered logical flag to determine if the levels should be regarded as ordered (in the order
given).
nmax an upper bound on the number of levels; see ‘Details’.
(in ordered(.)): any of the above, apart from ordered itself.
ifany only add an NA level if it is used, i.e. if any(is.na(x)).
Details

The type of the vector x is not restricted; it only must have an as. character method and be sortable
(by order).

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed from
levels. If x[i] equals levels[j], then the i-th element of the result is j. If no match is found for
x[1] in levels (which will happen for excluded values) then the i-th element of the result is set to
NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those in exclude, but this can be altered by supplying labels. This should either be a set of new
labels for the levels, or a character string, in which case the levels are that character string with a
sequence number appended.

factor(x,exclude = NULL) applied to a factor without NAs is a no-operation unless there are un-
used levels: in that case, a factor with the reduced level set is returned. If exclude is used, since R
version 3.4.0, excluding non-existing character levels is equivalent to excluding nothing, and when
exclude is a character vector, that is applied to the levels of x. Alternatively, exclude can be
factor with the same level set as x and will exclude the levels present in exclude.

The codes of a factor may contain NA. For a numeric X, set exclude = NULL to make NA an extra
level (prints as <NA>); by default, this is the last level.

If NA is a level, the way to set a code to be missing (as opposed to the code of the missing level) is
to use is.na on the left-hand-side of an assignment (as in is.na(f)[i] <-TRUE; indexing inside
is.na does not work). Under those circumstances missing values are currently printed as <NA>, i.e.,
identical to entries of level NA.

206 factor

is.factor is generic: you can write methods to handle specific classes of objects, see Internal-
Methods.

Where levels is not supplied, unique is called. Since factors typically have quite a small number
of levels, for large vectors x it is helpful to supply nmax as an upper bound on the number of unique
values.

Value

factor returns an object of class "factor” which has a set of integer codes the length of x with
a "levels” attribute of mode character and unique (!anyDuplicated(.)) entries. If argument
ordered is true (or ordered() is used) the result has class c("ordered”,"factor"”). Undocu-
mentedly for a long time, factor(x) loses all attributes(x) but "names”, and resets "levels”
and "class”.

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just the
levels which occur: see also [. factor for a more transparent way to achieve this.

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or not. Corre-
spondingly, is.ordered returns TRUE when its argument is an ordered factor and FALSE otherwise.

as.factor coerces its argument to a factor. It is an abbreviated (sometimes faster) form of factor.
as.ordered(x) returns x if this is ordered, and ordered(x) otherwise.

addNA modifies a factor by turning NA into an extra level (so that NA values are counted in tables, for
instance).

.valid.factor(object) checks the validity of a factor, currently only levels(object), and re-
turns TRUE if it is valid, otherwise a string describing the validity problem. This function is used for
validObject(<factor>).

Warning

The interpretation of a factor depends on both the codes and the "levels” attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular, as.numeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor f
to approximately its original numeric values, as.numeric(levels(f))[f] is recommended and
slightly more efficient than as.numeric(as.character(f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

There are some anomalies associated with factors that have NA as a level. It is suggested to use them
sparingly, e.g., only for tabulation purposes.

Comparison operators and group generic methods

There are "factor” and "ordered” methods for the group generic Ops which provide methods for
the Comparison operators, and for the min, max, and range generics in Summary of "ordered”.
(The rest of the groups and the Math group generate an error as they are not meaningful for factors.)

Only == and != can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

factor 207

All the comparison operators are available for ordered factors. Collation is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

Note

In earlier versions of R, storing character data as a factor was more space efficient if there is even
a small proportion of repeats. However, identical character strings now share storage, so the dif-
ference is small in most cases. (Integer values are stored in 4 bytes whereas each reference to a
character string needs a pointer of 4 or 8 bytes.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

[.factor for subsetting of factors.

gl for construction of balanced factors and C for factors with specified contrasts. levels and
nlevels for accessing the levels, and unclass to get integer codes.

Examples

(ff <- factor(substring("”statistics”, 1:10, 1:10), levels = letters))
as.integer(ff) # the internal codes

(f. <= factor(ff)) # drops the levels that do not occur

ff[, drop = TRUE] # the same, more transparently

factor(letters[1:20], labels = "letter")

class(ordered(4:1)) # "ordered”, inheriting from "factor”
z <- factor(LETTERS[3:1], ordered = TRUE)

and "relational” methods work:
stopifnot(sort(z)[c(1,3)] == range(z), min(z) < max(z))

suppose you want "NA" as a level, and to allow missing values.
(x <= factor(c(1, 2, NA), exclude = NULL))

is.na(x)[2] <- TRUE

x # [1]1 <NA> <NA>

is.na(x)

[1] FALSE TRUE FALSE

More rational, since R 3.4.0 :

factor(c(1:2, NA), exclude = "") # keeps <NA> | as
factor(c(1:2, NA), exclude = NULL) # always did

exclude = <character>

z # ordered levels 'A < B < C'

factor(z, exclude = "C") # does exclude

factor(z, exclude = "B") # ditto

Now, labels maybe duplicated:
factor() with duplicated labels allowing to "merge levels”

208 file.access

x <= c("Man”, "Male", "Man”, "Lady", "Female")

Map from 4 different values to only two levels:

(xf <- factor(x, levels = c("Male”, "Man" , "Lady", "Female"),
labels = c("Male”, "Male"”, "Female"”, "Female")))

#> [1] Male Male Male Female Female

#> Levels: Male Female

Using addNA()

Month <- airquality$Month
table(addNA(Month))
table(addNA(Month, ifany = TRUE))

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage

file.access(names, mode = @)

Arguments
names character vector containing file names. Tilde-expansion will be done: see
path.expand.
mode integer specifying access mode required: see ‘Details’.
Details

The mode value can be the exclusive or of the following values

0 test for existence.
1 test for execute permission.
2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).

Please note that it is not a good idea to use this function to test before trying to open a file. On a
multi-tasking system, it is possible that the accessibility of a file will change between the time you
call file.access() and the time you try to open the file. It is better to wrap file open attempts in
try.

Value

An integer vector with values @ for success and -1 for failure.

file.choose 209

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value is false for
success.

See Also

file.info for more details on permissions, Sys.chmod to change permissions, and try for a ‘test
it and see’ approach.

file_test for shell-style file tests.

Examples

fa <- file.access(dir("."))
table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose(new = FALSE)

Arguments
new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.
Value

A character vector of length one giving the file path.

See Also

list.files for non-interactive selection.

210 file.info

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage
file.info(..., extra_cols = TRUE)
file.mode(...)

file.mtime(...)
file.size(...)

Arguments
character vectors containing file paths. Tilde-expansion is done: see
path.expand.
extra_cols Logical: return all cols rather than just the first six.
Details

What constitutes a ‘file’ is OS-dependent but includes directories. (However, directory names
must not include a trailing backslash or slash on Windows.) See also the section in the help for
file.exists on case-insensitive file systems.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logical or of read
(4), write (2) and execute/search (1) permissions.

On most systems symbolic links are followed, so information is given about the file to which the
link points rather than about the link.

Value

For file.info, data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode"”. The file permissions, printed in octal, for example
644.

mtime, ctime, atime
integer of class "POSIXct": file modification, ‘last status change’ and last access
times.

uid integer: the user ID of the file’s owner.

gid integer: the group ID of the file’s group.

file.info 211

uname character: uid interpreted as a user name.

grname character: gid interpreted as a group name.

Unknown user and group names will be NA.

If extra_cols is false, only the first six columns are returned: as these can all be found from a
single C system call this can be faster. (However, properly configured systems will use a ‘name
service cache daemon’ to speed up the name lookups.)

Entries for non-existent or non-readable files will be NA. The uid, gid, uname and grname columns
may not be supplied on a non-POSIX Unix-alike system, and will not be on Windows.

What is meant by the three file times depends on the OS and file system. On Windows native file
systems ctime is the file creation time (something which is not recorded on most Unix-alike file
systems). What is meant by ‘file access’” and hence the ‘last access time’ is system-dependent.

The times are reported to an accuracy of seconds, and perhaps more on some systems. However,
many file systems only record times in seconds, and some (e.g., modification time on FAT systems)
are recorded in increments of 2 or more seconds.

file.mode, file.mtime and file.size are convenience wrappers returning just one of the
columns.

Note

Some systems allow files of more than 2Gb to be created but not accessed by the stat system
call. Such files will show up as non-readable (and very likely not be readable by any of R’s input
functions) — fortunately such file systems are becoming rare.

See Also

Sys.readlink to find out about symbolic links, files, file.access, list.files, and
DateTimeClasses for the date formats.

Sys.chmod to change permissions.

Examples

ncol(finf <- file.info(dir())) # at least six

finf # the whole list

Those that are more than 100 days old :

finf <- file.info(dir(), extra_cols = FALSE)

finf[difftime(Sys.time(), finf[,"mtime"”], units = "days") > 100 , 1:4]

file.info("no-such-file-exists")

212 file.show

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage
file.path(..., fsep = .Platform$file.sep)
Arguments
character vectors.
fsep the path separator to use.
Details

The implementation is designed to be fast (faster than paste) as this function is used extensively in
R itself.

It can also be used for environment paths such as PATH and R_LIBS with fsep=
.Platform$path.sep.

Trailing path separators are invalid for Windows file paths apart from ‘/* and ‘d:/’ (although some
functions/utilities do accept them), so a trailing / or \ is removed.

Value
A character vector of the arguments concatenated term-by-term and separated by fsep if all argu-
ments have positive length; otherwise, an empty character vector (unlike paste).

Note

The components are by default separated by / (not \) on Windows.

file.show Display One or More Text Files

Description

)

Display one or more (plain) text files, in a platform specific way, typically via a ‘pager’.

Usage

file.show(..., header = rep("", nfiles),
title = "R Information”,
delete.file = FALSE, pager = getOption("pager"”),
encoding = "")

file.show 213

Arguments
one or more character vectors containing the names of the files to be displayed.
Paths with have tilde expansion.
header character vector (of the same length as the number of files specified in ...)
giving a header for each file being displayed. Defaults to empty strings.
title an overall title for the display. If a single separate window is used for the display,

title will be used as the window title. If multiple windows are used, their titles
should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.

pager the pager to be used: not used on all platforms
encoding character string giving the encoding to be assumed for the file(s).
Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such as page.

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by the pager argument, which is a character vector specifying a system
command (a full path or a command found on the PATH) to run on the set of files. The ‘factory-
fresh’ default is to use ‘R_HOME/bin/pager’, which is a shell script running the command-line
specified by the environment variable PAGER whose default is set at configuration, usually to less.
On a Unix-alike more is used if pager is empty.

Most GUI systems will use a separate pager window for each file, and let the user leave it
up while R continues running. The selection of such pagers could either be done using spe-
cial pager names being intercepted by lower-level code (such as "internal” and "console”
on Windows), or by letting pager be an R function which will be called with arguments
(files,header,title,delete.file) corresponding to the first four arguments of file.show
and take care of interfacing to the GUIL

The R.app GUI on macOS uses its internal pager irrespective of the setting of pager.

Not all implementations will honour delete.file. In particular, using an external pager on Win-
dows does not, as there is no way to know when the external application has finished with the
file.

Author(s)

Ross Thaka, Brian Ripley.

See Also

files, list.files, help; RShowDoc call file.show() for type="text". Consider
getOption("pdfviewer”) and e.g., system for displaying pdf files.

file.edit.

214 files

Examples

file.show(file.path(R.home("doc"), "COPYRIGHTS"))

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage
TRUE)

file.create(..., showWarnings
file.exists(...)
file.remove(...)
file.rename(from, to)
file.append(filel, file2)
file.copy(from, to, overwrite = recursive, recursive = FALSE,
copy.mode = TRUE, copy.date = FALSE)
file.symlink(from, to)
file.link(from, to)

Arguments

..., filel, file2
character vectors, containing file names or paths.

from, to character vectors, containing file names or paths. For file.copy and
file.symlink to can alternatively be the path to a single existing directory.

overwrite logical; should existing destination files be overwritten?

showWarnings logical; should the warnings on failure be shown?

recursive logical. If to is a directory, should directories in from be copied (and their
contents)? (Like cp -R on POSIX OSes.)
copy .mode logical: should file permission bits be copied where possible?
copy.date logical: should file dates be preserved where possible? See Sys.setFileTime.
Details
The ... arguments are concatenated to form one character string: you can specify the files sepa-

rately or as one vector. All of these functions expand path names: see path.expand.

file.create creates files with the given names if they do not already exist and truncates them if
they do. They are created with the maximal read/write permissions allowed by the ‘umask’ setting
(where relevant). By default a warning is given (with the reason) if the operation fails.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’s stat call: a file will be reported as existing only if you

files 215

have the permissions needed by stat. Existence can also be checked by file.access, which might
use different permissions and so obtain a different result. Note that the existence of a file does not
imply that it is readable: for that use file.access.) What constitutes a ‘file’ is system-dependent,
but should include directories. (However, directory names must not include a trailing backslash or
slash on Windows.) Note that if the file is a symbolic link on a Unix-alike, the result indicates if
the link points to an actual file, not just if the link exists. Lastly, note the different function exists
which checks for existence of R objects.

file.remove attempts to remove the files named in its argument. On most Unix platforms ‘file’
includes empty directories, symbolic links, fifos and sockets. On Windows, ‘file’ means a regular
file and not, say, an empty directory.

file.rename attempts to rename files (and from and to must be of the same length). Where file
permissions allow this will overwrite an existing element of to. This is subject to the limitations of
the OS’s corresponding system call (see something like man 2 rename on a Unix-alike): in particular
in the interpretation of ‘file’: most platforms will not rename files from one file system to another.
(On Windows, file.rename can rename files but not directories across volumes.) On platforms
which allow directories to be renamed, typically neither or both of from and to must a directory,
and if to exists it must be an empty directory.

file.append attempts to append the files named by its second argument to those named by its first.
The R subscript recycling rule is used to align names given in vectors of different lengths.

file.copy works in a similar way to file.append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unless overwrite = TRUE. The to
argument can specify a single existing directory. If copy.mode = TRUE file read/write/execute per-
missions are copied where possible, restricted by ‘umask’. (On Windows this applies only to files.)
Other security attributes such as ACLs are not copied. On a POSIX filesystem the targets of sym-
bolic links will be copied rather than the links themselves, and hard links are copied separately.
Using copy . date = TRUE may or may not copy the timestamp exactly (for example, fractional sec-
onds may be omitted), but is more likely to do so as from R 3.4.0.

file.symlink and file.link make symbolic and hard links on those file systems which support
them. For file.symlink the to argument can specify a single existing directory. (Unix and macOS
native filesystems support both. Windows has hard links to files on NTFS file systems and concepts
related to symbolic links on recent versions: see the section below on the Windows version of this
help page. What happens on a FAT or SMB-mounted file system is OS-specific.)

Value

These functions return a logical vector indicating which operation succeeded for each of the files
attempted. Using a missing value for a file or path name will always be regarded as a failure.

If showWarnings = TRUE, file.create will give a warning for an unexpected failure.

Case-insensitive file systems

Case-insensitive file systems are the norm on Windows and macOS, but can be found on all OSes
(for example a FAT-formatted USB drive is probably case-insensitive).

These functions will most likely match existing files regardless of case on such file systems: how-
ever this is an OS function and it is possible that file names might be mapped to upper or lower
case.

216 files

Warning

Always check the return value of these functions when used in package code. This is especially
important for file.rename, which has OS-specific restrictions (and note that the session temporary
directory is commonly on a different file system from the working directory): it is only portable to
use file.rename to change file name(s) within a single directory.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, 1list.files, wunlink, basename,
path.expand.

dir.create.
Sys.glob to expand wildcards in file specifications.
file_test, Sys.readlink (for ‘symlink’s).

https://en.wikipedia.org/wiki/Hard_link and https://en.wikipedia.org/wiki/
Symbolic_link for the concepts of links and their limitations.

Examples

cat("file A\n", file = "A")
cat("file B\n", file = "B")
file.append("A", "B")
file.create("A") # (trashing previous)
file.append("A", rep(”"B", 10))
if(interactive()) file.show("A") # -> the 10 lines from 'B'
file.copy("A", "C")
dir.create("tmp")
file.copy(c("A", "B"), "tmp")
list.files("tmp"”) # -> "A" and "B"
setwd("tmp")
file.remove("A") # the tmp/A file
file.symlink(file.path("..", c("A", "B")), ".")
|--> (TRUE,FALSE) : ok for A but not B as it exists already
setwd(”..")
unlink("tmp"”, recursive = TRUE)
file.remove("A", "B", "C")

https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Symbolic_link
https://en.wikipedia.org/wiki/Symbolic_link

files2 217

files2 Manipulation of Directories and File Permissions

Description

These functions provide a low-level interface to the computer’s file system.

Usage

dir.exists(paths)

dir.create(path, showWarnings = TRUE, recursive = FALSE, mode = "@777")
Sys.chmod(paths, mode = "@777", use_umask = TRUE)

Sys.umask(mode = NA)

Arguments
path a character vector containing a single path name. Tilde expansion (see
path.expand) is done.
paths character vectors containing file or directory paths. Tilde expansion (see

path.expand) is done.

showWarnings logical; should the warnings on failure be shown?

recursive logical. Should elements of the path other than the last be created? If true, like
the Unix command mkdir -p.
mode the mode to be used on Unix-alikes: it will be coerced by as.octmode. For
Sys.chmod it is recycled along paths.
use_umask logical: should the mode be restricted by the umask setting?
Details

dir.create creates the last element of the path, unless recursive = TRUE. Trailing path separators
are discarded. The mode will be modified by the umask setting in the same way as for the system
function mkdir. What modes can be set is OS-dependent, and it is unsafe to assume that more than
three octal digits will be used. For more details see your OS’s documentation on the system call
mkdir, e.g. man 2 mkdir (and not that on the command-line utility of that name).

One of the idiosyncrasies of Windows is that directory creation may report success but create a
directory with a different name, for example dir.create("G.S.") creates *"G.S"’. This is undoc-
umented, and what are the precise circumstances is unknown (and might depend on the version of
Windows). Also avoid directory names with a trailing space.

Sys. chmod sets the file permissions of one or more files. It may not be supported on a system (when
a warning is issued). See the comments for dir.create for how modes are interpreted. Changing
mode on a symbolic link is unlikely to work (nor be necessary). For more details see your OS’s
documentation on the system call chmod, e.g. man 2 chmod (and not that on the command-line utility
of that name). Whether this changes the permission of a symbolic link or its target is OS-dependent
(although to change the target is more common, and POSIX does not support modes for symbolic
links: BSD-based Unixes do, though).

218 find.package

Sys.umask sets the umask and returns the previous value: as a special case mode = NA just returns
the current value. It may not be supported (when a warning is issued and "@" is returned). For more
details see your OS’s documentation on the system call umask, e.g. man 2 umask.

How modes are handled depends on the file system, even on Unix-alikes (although their documen-
tation is often written assuming a POSIX file system). So treat documentation cautiously if you are
using, say, a FAT/FAT32 or network-mounted file system.

Value

dir.exists returns a logical vector of TRUE or FALSE values (without names).

dir.create and Sys.chmod return invisibly a logical vector indicating if the operation succeeded
for each of the files attempted. Using a missing value for a path name will always be regarded as
a failure. dir.create indicates failure if the directory already exists. If showWarnings = TRUE,
dir.create will give a warning for an unexpected failure (e.g., not for a missing value nor for an
already existing component for recursive = TRUE).

Sys.umask returns the previous value of the umask, as a length-one object of class "octmode”: the
visibility flag is off unless mode is NA.

See also the section in the help for file.exists on case-insensitive file systems for the interpreta-
tion of path and paths.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.exists, file.path, list.files, unlink, basename, path.expand.

Examples

Not run:

Fix up maximal allowed permissions in a file tree
Sys.chmod(list.dirs("."), "777")

f <- list.files("."”, all.files = TRUE, full.names = TRUE, recursive = TRUE)
Sys.chmod(f, (file.info(f)$mode | "664"))

End(Not run)

find.package Find Packages

Description

Find the paths to one or more packages.

find.package 219

Usage

find.package(package, lib.loc = NULL, quiet = FALSE,
verbose = getOption("verbose"))

path.package(package, quiet = FALSE)

packageNotFoundError(package, 1lib.loc, call = NULL)

Arguments
package character vector: the names of packages.
lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to checking the loaded namespace,
then all libraries currently known in . 1ibPaths().
quiet logical. Should this not give warnings or an error if the package is not found?
verbose a logical. If TRUE, additional diagnostics are printed, notably when a package is
found more than once.
call call expression.
Details

find. package returns path to the locations where the given packages are found. If 1ib.locis NULL,
then loaded namespaces are searched before the libraries. If a package is found more than once, the
first match is used. Unless quiet = TRUE a warning will be given about the named packages which
are not found, and an error if none are. If verbose is true, warnings about packages found more
than once are given. For a package to be returned it must contain a either a ‘Meta’ subdirectory
or a ‘DESCRIPTION’ file containing a valid version field, but it need not be installed (it could be a
source package if 1ib.loc was set suitably).

find.package is not usually the right tool to find out if a package is available for use: the only
way to do that is to use require to try to load it. It need not be installed for the correct platform, it
might have a version requirement not met by the running version of R, there might be dependencies
which are not available,

path.package returns the paths from which the named packages were loaded, or if none were
named, for all currently attached packages. Unless quiet = TRUE it will warn if some of the pack-
ages named are not attached, and given an error if none are.

packageNotFoundError creates an error condition object of class packageNotFoundError for sig-
naling errors. The condition object contains the fields package and 1ib.loc.

Value

A character vector of paths of package directories.

See Also

path.expand and normalizePath for path standardization.

220 findInterval

Examples

try(find.package("knitr"))
will not give an error, maybe a warning about *all* locations it is found:
find.package("kitty", quiet=TRUE, verbose=TRUE)

Find all .libPaths() entries a package is found:
findPkgAll <- function(pkg)
unlist(lapply(.libPaths(), function(lib)
find.package(pkg, lib, quiet=TRUE, verbose=FALSE)))

findPkgAll("MASS™)
findPkgAll("knitr")

findInterval Find Interval Numbers or Indices

Description

Given a vector of non-decreasing breakpoints in vec, find the interval containing each element of
x; i.e., if i <-findInterval(x,v), for each index j in x vi; < x5 < v;;41 wWhere vy 1= —o0,
UN41 = +00, and N<-length(v). At the two boundaries, the returned index may differ by 1,
depending on the optional arguments rightmost.closed and all.inside.

Usage

findInterval(x, vec, rightmost.closed = FALSE, all.inside = FALSE,
left.open = FALSE)

Arguments
X numeric.
vec numeric, sorted (weakly) increasingly, of length N, say.

rightmost.closed
logical; if true, the rightmost interval, vec[N-1] .. vec[N] is treated as closed,
see below.

all.inside logical; if true, the returned indices are coerced into 1, .. . ,N-1, i.e., @ is mapped
to 1 and N to N-1.

left.open logical; if true all the intervals are open at left and closed at right; in the formulas
below, < should be swapped with < (and > with >), and rightmost.closed
means ‘leftmost is closed’. This may be useful, e.g., in survival analysis com-
putations.

findInterval 221

Details

The function findInterval finds the index of one vector x in another, vec, where the latter must
be non-decreasing. Where this is trivial, equivalent to apply(outer(x,vec,”>="),1,sum), as a
matter of fact, the internal algorithm uses interval search ensuring O(n log N) complexity where n
<-length(x) (and N <-length(vec)). For (almost) sorted x, it will be even faster, basically O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval(t,sort(X)) is identical to nF, (t; X1, ..., X,) where F,, is the empirical distri-
bution function of X1,..., X,,.

When rightmost.closed = TRUE, the result for x[j] = vec[N] (= maxwvec), is N -1 as for all
other values in the last interval.

left.open = TRUE is occasionally useful, e.g., for survival data. For (anti-)symmetry reasons, it is
equivalent to using “mirrored” data, i.e., the following is always true:

identical(
findInterval(x, v, left.open= TRUE, ...) ,
N - findInterval(-x, -v[N:1], left.open=FALSE, ...))

where N <-length(vec) as above.

Value

vector of length length(x) with values in @:N (and NA) where N <-length(vec), or values co-
erced to 1: (N-1) if and only if all.inside = TRUE (equivalently coercing all x values inside the
intervals). Note that NAs are propagated from x, and Inf values are allowed in both x and vec.

Author(s)

Martin Maechler

See Also

approx(x,method = "constant”) which is a generalization of findInterval(), ecdf for com-
puting the empirical distribution function which is (up to a factor of n) also basically the same as
findInterval(.).

Examples

X <- 2:18
v <- ¢c(5, 10, 15) # create two bins [5,10) and [10,15)
cbind(x, findInterval(x, v))

N <- 100

X <- sort(round(stats::rt(N, df = 2), 2))

tt <- c(-100, seq(-2, 2, len = 201), +100)

it <- findInterval(tt, X)

ttfit < 1 | it >= N] # only first and last are outside range(X)

'left.open = TRUE' means "mirroring"” :

222 force

N <- length(v)
stopifnot(identical(
findInterval(x, v, left.open=TRUE) ,
N - findInterval(-x, -v[N:11)))

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force(x)

Arguments

X a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of other promises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implements lazy evaluation.)

Examples

f <- function(y) function() y

1f <- vector("list”, 5)

for (i in seq_along(lf)) 1f[[i]] <- f(i)
1fL[111() # returns 5

g <- function(y) { force(y); function() y }
lg <- vector("list"”, 5)

for (i in seq_along(lg)) 1g[[il] <- g(i)
1g[[11]1() # returns 1

This is identical to
g <- function(y) { y; function() y }

forceAndCall 223

forceAndCall Call a function with Some Arguments Forced

Description

Call a function with a specified number of leading arguments forced before the call if the function
is a closure.

Usage
forceAndCall(n, FUN, ...)
Arguments
n number of leading arguments to force.
FUN function to call.
arguments to FUN.
Details
forceAndCall calls the function FUN with arguments specified in If the value of FUN is a clo-

sure then the first n arguments to the function are evaluated (i.e. their delayed evaluation promises
are forced) before executing the function body. If the value of FUN is a primitive then the call
FUN(...) is evaluated in the usual way.

forceAndCall is intended to help defining higher order functions like apply to behave more rea-
sonably when the result returned by the function applied is a closure that captured its arguments.

See Also

force, promise, closure.

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(.NAME, ..., NAOK
.Fortran(.NAME, ..., NAOK

FALSE, DUP
FALSE, DUP

TRUE, PACKAGE, ENCODING)
TRUE, PACKAGE, ENCODING)

224

Arguments

.NAME

NAOK

PACKAGE

DUP, ENCODING

Details

Foreign

a character string giving the name of a C function or Fortran subroutine,
or an object of class "NativeSymbolInfo"”, "RegisteredNativeSymbol"” or
"NativeSymbol" referring to such a name.

arguments to be passed to the foreign function. Up to 65.

if TRUE then any NA or NaN or Inf values in the arguments are passed on to the
foreign function. If FALSE, the presence of NA or NaN or Inf values is regarded
as an error.

if supplied, confine the search for a character string . NAME to the DLL given by
this argument (plus the conventional extension, ‘.so’, ‘.d11’,...).

This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

For back-compatibility, accepted but ignored.

These functions can be used to make calls to compiled C and Fortran 77 code. Later interfaces are
.Call and .External which are more flexible and have better performance.

These functions are primitive, and .NAME is always matched to the first argument supplied (which

should not be named). The other named arguments follow . .. and so cannot be abbreviated. For
clarity, should avoid using names in the arguments passed to ... that match or partially match
.NAME.

Value
A list similar to the . .. list of arguments passed in (including any names given to the arguments),

but reflecting any changes made by the C or Fortran code.

Argument types

The mapping of the types of R arguments to C or Fortran arguments is

R C Fortran

integer int * integer

numeric double * double precision
—or— float * real

complex Rcomplex * double complex
logical int * integer
character char ** [see below]

raw unsigned char * not allowed

list SEXP * not allowed
other SEXP not allowed

Note: The C types corresponding to integer and logical are int, not long as in S. This differ-
ence matters on most 64-bit platforms, where int is 32-bit and long is 64-bit (but not on 64-bit

Foreign 225

‘Windows).

Note: The Fortran type corresponding to logical is integer, not logical: the difference matters
on some Fortran compilers.

Numeric vectors in R will be passed as type double * to C (and as double precision to Fortran)
unless the argument has attribute Csingle set to TRUE (use as.single or single). This mechanism
is only intended to be used to facilitate the interfacing of existing C and Fortran code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r; double i;}. It
may or may not be equivalent to the C99 double complex type, depending on the compiler used.

Logical values are sent as @ (FALSE), 1 (TRUE) or INT_MIN =-2147483648 (NA, but only if NAOK
= TRUE), and the compiled code should return one of these three values: however non-zero values
other than INT_MIN are mapped to TRUE.

Missing (NA) string values are passed to . C as the string "NA". As the C char type can represent all
possible bit patterns there appears to be no way to distinguish missing strings from the string "NA".
If this distinction is important use .Call.

Using a character string with .Fortran is deprecated and will give a warning. It passes the first
(only) character string of a character vector as a C character array to Fortran: that may be usable
as character=*255 if its true length is passed separately. Only up to 255 characters of the string
are passed back. (How well this works, and even if it works at all, depends on the C and Fortran
compilers and the platform.)

Lists, functions are other R objects can (for historical reasons) be passed to .C, but the .Call
interface is much preferred. All inputs apart from atomic vectors should be regarded as read-only,
and all apart from vectors (including lists), functions and environments are now deprecated.

Fortran symbol names

All Fortran compilers known to be usable to compile R map symbol names to lower case, and so
does .Fortran.

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers will allow them but may translate them in a different way to
names not containing underscores. Such names will often work with . Fortran (since how they are
translated is detected when R is built and the information used by .Fortran), but portable code
should not use Fortran names containing underscores.

Use .Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran 77 compiler used when configuring R, especially if the subroutine
name is not lower-case or includes an underscore. It is possible to use .C and do any necessary
symbol-name translation yourself.

Copying of arguments

Character vectors are copied before calling the compiled code and to collect the results. For other
atomic vectors the argument is copied before calling the compiled code if it is otherwise used in the
calling code.

Non-atomic-vector objects are read-only to the C code and are never copied.

This behaviour can be changed by setting options(CBoundsCheck = TRUE). In that case raw, log-
ical, integer, double and complex vector arguments are copied both before and after calling the

226 formals

compiled code. The first copy made is extended at each end by guard bytes, and on return it is
checked that these are unaltered. For .C, each element of a character vector uses guard bytes.

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass .NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base" for symbols linked into R. Do not use this in your own code: such
symbols are not part of the API and may be changed without warning.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
dyn.load, .Call.

The ‘Writing R Extensions’ manual.

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage

formals(fun = sys.function(sys.parent()), envir = parent.frame())
formals(fun, envir = environment(fun)) <- value

Arguments
fun a function, or see ‘Details’.
envir environment in which the function should be defined (or found via get() in
the first case and when fun a character string).
value alist (or pairlist) of R expressions.
Details

For the first form, fun can also be a character string naming the function to be manipulated, which
is searched for in envir, by default from the parent frame. If it is not specified, the function calling
formals is used.

Only closures have formals, not primitive functions.

format 227

Value

formals returns the formal argument list of the function specified, as a pairlist, or NULL for a
non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and
(potentially) resets the environment of the function.

See Also

formalArgs (from methods), a shortcut for names(formals(.)). args for a human-readable ver-
sion, alist, body, function.

Examples

require(stats)
formals(1lm)

If you just want the names of the arguments, use formalArgs instead.
names(formals(1lm))
methods:: formalArgs(lm) # same

formals returns a pairlist. Arguments with no default have type symbol (aka name).
str(formals(1lm))

formals returns NULL for primitive functions. Use it in combination with
args for this case.

is.primitive(*+")

formals(*+%)

formals(args(*+'))

You can overwrite the formal arguments of a function (though this is
advanced, dangerous coding).

f <- function(x) a + b

formals(f) <- alist(a =, b = 3)

f # function(a, b =3) a +b

f(2) # result =5

format Encode in a Common Format

Description

Format an R object for pretty printing.

Usage

format(x, ...)

Default S3 method:

228 format

format(x, trim = FALSE, digits = NULL, nsmall = oL,
justify = c("left”, "right”, "centre”, "none"),
width = NULL, na.encode = TRUE, scientific = NA,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = getOption("OutDec"),

zero.print = NULL, drop@trailing = FALSE, ...)

S3 method for class 'data.frame'
format(x, ..., justify = "none")

S3 method for class 'factor'
format(x, ...)

S3 method for class 'AsIs'

format(x, width =12, ...)
Arguments
X any R object (conceptually); typically numeric.
trim logical; if FALSE, logical, numeric and complex values are right-justified to a

common width: if TRUE the leading blanks for justification are suppressed.

digits how many significant digits are to be used for numeric and complex x. The de-
fault, NULL, uses getOption("digits"). This is a suggestion: enough decimal
places will be used so that the smallest (in magnitude) number has this many
significant digits, and also to satisfy nsmall. (For the interpretation for complex
numbers see signif.)

nsmall the minimum number of digits to the right of the decimal point in format-
ting real/complex numbers in non-scientific formats. Allowed values are @ <=
nsmall <= 20.

justify should a character vector be left-justified (the default), right-justified, centred
or left alone. Can be abbreviated.

width default method: the minimum field width or NULL or @ for no restriction.
AsIs method: the maximum field width for non-character objects. NULL corre-
sponds to the default 12.

na.encode logical: should NA strings be encoded? Note this only applies to elements of
character vectors, not to numerical, complex nor logical NAs, which are always
encoded as "NA".

scientific Either a logical specifying whether elements of a real or complex vector should
be encoded in scientific format, or an integer penalty (see options(”scipen™)).
Missing values correspond to the current default penalty.

further arguments passed to or from other methods.

big.mark, big.interval, small.mark, small.interval, decimal.mark, zero.print, drop@trailing
used for prettying (longish) numerical and complex sequences. Passed to
prettyNum: that help page explains the details.

format 229

Details

format is a generic function. Apart from the methods described here there are methods
for dates (see format.Date), date-times (see format.POSIXct) and for other classes such as
format.octmode and format.dist.

format.data.frame formats the data frame column by column, applying the appropriate method
of format for each column. Methods for columns are often similar to as.character but offer
more control. Matrix and data-frame columns will be converted to separate columns in the result,
and character columns (normally all) will be given class "AsIs".

format. factor converts the factor to a character vector and then calls the default method (and so
justify applies).

format.AsIs deals with columns of complicated objects that have been extracted from a data frame.
Character objects and (atomic) matrices are passed to the default method (and so width does not
apply). Otherwise it calls toString to convert the object to character (if a vector or list, element by
element) and then right-justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods)
is done on display width (see nchar), taking double-width characters and the rendering of spe-
cial characters (as escape sequences, including escaping backslash but not double quote: see
print.default) into account. Thus the width is as displayed by print(quote = FALSE) and not
as displayed by cat. Character strings are padded with blanks to the display width of the widest. (If
na.encode = FALSE missing character strings are not included in the width computations and are
not encoded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all the
elements to at least the digits significant digits. However, if all the elements then have trailing
zeroes, the number of decimal places is reduced until nsmall is reached or at least one element has
a non-zero final digit; see also the argument documentation for big. *, small.* etc, above. See the
note in print.default about digits >=16.

Raw vectors are converted to their 2-digit hexadecimal representation by as.character.
format.default(x) now provides a “minimal” string when isS4(x) is true.

The internal code respects the option getOption("OutDec”) for the ‘decimal mark’, so if this is

n o n

set to something other than "." then it takes precedence over argument decimal.mark.

Value

An object of similar structure to x containing character representations of the elements of the first
argument x in a common format, and in the current locale’s encoding.

For character, numeric, complex or factor x, dims and dimnames are preserved on matrices/arrays
and names on vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by applying format.default(x,...) to
each element of the list (after unlisting elements which are themselves lists), and then collapsing
the result for each element with paste(collapse =","). The defaults in this case are trim =
TRUE, justify = "none" since one does not usually want alignment in the collapsed strings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

230 format.info

See Also

format.info indicates how an atomic vector would be formatted.

formatC, paste, as.character, sprintf, print, prettyNum, toString, encodeString.

Examples

format(1:10)
format(1:10, trim = TRUE)

zz <- data.frame("”(row names)”"= c("aaaaa", "b"), check.names = FALSE)
format(zz)
format(zz, justify = "left")

use of nsmall

format(13.7)

format(13.7, nsmall = 3)

format(c(6.0, 13.1), digits = 2)
format(c(6.0, 13.1), digits = 2, nsmall = 1)

use of scientific
format(2*31-1)
format(2731-1, scientific = TRUE)

a list

z <- list(a = letters[1:3], b = (-pi+t@i)*((-2:2)/2), c = c(1,10,100,1000),
d = c("a", "longer"”, "character”, "string"),
g = quote(a + b), e = expression(1+x))

can you find the "2" small differences?

(f1 <- format(z, digits = 2))

(f2 <- format(z, digits = 2, justify = "left”, trim = FALSE))

f1 == f2 ## 2 FALSE, 4 TRUE

A "minimal” format() for S4 objects without their own format() method:
cc <- methods: :getClassDef ("standardGeneric")

format(cc) ## "<S4 class >"
format.info format(.) Information
Description

Information is returned on how format(x,digits,nsmall) would be formatted.

Usage

format.info(x, digits = NULL, nsmall = @)

format.info 231

Arguments
X an atomic vector; a potential argument of format(x,...).
digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption("digits").
nsmall (see format(...,nsmall)).
Value

An integer vector of length 1, 3 or 6, say r.

For logical, integer and character vectors a single element, the width which would be used by
format if width = NULL.

For numeric vectors:

ri1] width (in characters) used by format(x)

rf2] number of digits after decimal point.

ri3] in @:2; if >1, exponential representation would be used, with exponent length
of r[3]+1.

For a complex vector the first three elements refer to the real parts, and there are three further
elements corresponding to the imaginary parts.

See Also

format (notably about digits >= 16), formatC.

Examples

dd <- options("digits"”) ; options(digits = 7) #-- for the following
format.info(123) # 3 0 0@

format.info(pi) #3860

format.info(1e8) # 5 @ 1 - exponential "1e+08"

format.info(1e222) # 6 @ 2 - exponential "1e+222"

X <- pi*10°c(-10,-2,0:2,8,20)

names(x) <- formatC(x, width = 1, digits = 3, format = "g")
cbind(sapply(x, format))

t(sapply(x, format.info))

using at least 8 digits right of "."
t(sapply(x, format.info, nsmall = 8))

Reset old options:
options(dd)

232 format.pval

format.pval Format P Values

Description

format.pval is intended for formatting p-values.

Usage

format.pval(pv, digits = max(1, getOption("digits”) - 2),

eps = .Machine$double.eps, na.form = "NA", ...)

Arguments

pv a numeric vector.

digits how many significant digits are to be used.

eps a numerical tolerance: see ‘Details’.

na.form character representation of NAs.

further arguments to be passed to format such as nsmall.

Details

format.pval is mainly an auxiliary function for print.summary.1lm etc., and does separate for-
matting for fixed, floating point and very small values; those less than eps are formatted as "<
[eps]"” (where ‘[eps]’ stands for format (eps,digits)).

Value

A character vector.

Examples

format.pval(c(stats::runif(5), pi*-100, NA))
format.pval(c(0.1, 0.0001, 1e-27))

formatC 233

formatC Formatting Using C-style Formats

Description

formatC() formats numbers individually and flexibly using C style format specifications.
prettyNum() is used for “prettifying” (possibly formatted) numbers, also in format.default.

.format.zeros(x), an auxiliary function of prettyNum(), re-formats the zeros in a vector x of
formatted numbers.

Usage

formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = getOption("OutDec"),
preserve.width = "individual”,
zero.print = NULL, replace.zero = TRUE,
drop@trailing = FALSE)
prettyNum(x, big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = getOption("OutDec"”), input.d.mark = decimal.mark,
preserve.width = c(”"common”, "individual”, "none"),
zero.print = NULL, replace.zero = FALSE,
drop@trailing = FALSE, is.cmplx = NA,
.

.format.zeros(x, zero.print, nx = suppressWarnings(as.numeric(x)),
replace = FALSE, warn.non.fitting = TRUE)

Arguments
X an atomic numerical or character object, possibly complex only for
prettyNum(), typically a vector of real numbers. Any class is discarded, with a
warning.
digits the desired number of digits after the decimal point (format = "f") or significant

digits (format = "g"”, = "e" or = "fg").

Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6 digits
is used. If specified as more than 50, 50 will be used with a warning unless
format = "f" where it is limited to typically 324. (Not more than 15-21 digits
need be accurate, depending on the OS and compiler used. This limit is just a
precaution against segfaults in the underlying C runtime.)

234

width

format

flag

mode

big.mark

big.interval

small.mark

small.interval
decimal.mark

input.d.mark

preserve.width

formatC

the total field width; if both digits and width are unspecified, width defaults
to 1, otherwise to digits + 1. width =0 will use width =digits, width<o
means left justify the number in this field (equivalent to flag = "-"). If neces-
sary, the result will have more characters than width. For character data this is
interpreted in characters (not bytes nor display width).

n o n

equal to "d" (for integers), "f", "e", "E", "g", "G", "fg" (for reals), or "s" (for
strings). Default is "d" for integers, "g" for reals.

"f" gives numbers in the usual xxx.xxx format; "e" and "E" give n.ddde+nn
or n.dddE+nn (scientific format); "g" and "G" put x[i] into scientific format
only if it saves space to do so and drop trailing zeros and decimal point - unless
flag contains "#" which keeps trailing zeros for the "g","G" formats.

"fg" (our own hybrid format) uses fixed format as "f", but digits as the mini-
mum number of significant digits. This can lead to quite long result strings, see
examples below. Note that unlike signif this prints large numbers with more
significant digits than digits. Trailing zeros are dropped in this format, unless
flag contains "#".

for formatC, a character string giving a format modifier as in Kernighan and
Ritchie (1988, page 243) or the C+99 standard.

"Q" pads leading zeros;

n_mn

does left adjustment,
"+" ensures a sign in all cases, i.e., "+" for positive numbers ,

nn non

if the first character is not a sign, the space character " " will be used instead.

"#" specifies “an alternative output form”, specifically depending on format.

""" on some platform—locale combination, activates “thousands’ grouping” for

decimal conversion,

"I" in some versions of ‘glibc’ allow for integer conversion to use the locale’s
alternative output digits, if any.

There can be more than one of these flags, in any order. Other characters used
to have no effect for character formatting, but signal an error since R 3.4.0.

"double” (or "real"), "integer" or "character"”. Default: Determined from
the storage mode of x.

character; if not empty used as mark between every big.interval decimals
before (hence big) the decimal point.

see big.mark above; defaults to 3.

character; if not empty used as mark between every small.interval decimals
after (hence small) the decimal point.

see small.mark above; defaults to 5.
the character to be used to indicate the numeric decimal point.

if x is character, the character known to have been used as the numeric decimal
point in x.

string specifying if the string widths should be preserved where possible in those
cases where marks (big.mark or small.mark) are added. "common", the de-
fault, corresponds to format-like behavior whereas "individual” is the default
in formatC(). Value can be abbreviated.

formatC 235

zero.print logical, character string or NULL specifying if and how zeros should be formatted
specially. Useful for pretty printing ‘sparse’ objects.

replace.zero, replace
logical; if zero.print is a character string, indicates if the exact zero entries
in x should be simply replaced by zero.print. Otherwise, depending on the
widths of the respective strings, the (formatted) zeroes are partly replaced by
zero.print and then padded with " " to the right were applicable. In that case
(false replace[.zero]), if the zero.print string does not fit, a warning is
produced (if warn.non. fitting is true).
This works via prettyNum(), which calls
.format.zeros(*,replace=replace.zero) three times in this case, see
the ‘Details’.

warn.non.fitting
logical; if it is true, replacel.zero] is false and the zero.print string does
not fit, a warning is signalled.

drop@trailing logical, indicating if trailing zeros, i.e., "@" after the decimal mark, should be
removed; also drops "e+0@" in exponential formats. This is simply passed to
prettyNum(), see the ‘Details’.

is.cmplx optional logical, to be used when x is "character” to indicate if it stems from
complex vector or not. By default (NA), x is checked to ‘look like’ complex.

arguments passed to format.

nx numeric vector of the same length as x, typically the numbers of which the
character vector x is the pre-format.

Details

For numbers, formatC() «calls prettyNum() when needed which itself calls
.format.zeros(*,replace=replace.zero). (“when needed”: when zero.print is not
NULL, drop@trailing is true, or one of big.mark, small.mark, or decimal.mark is not at
default.)

If you set format it overrides the setting of mode, so formatC(123.45,mode = "double”, format
="d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so
formatC(c(6.11,13.1),digits =2,format = "fg") gives c("6.1"," 13"). If you want
common formatting for several numbers, use format.

prettyNumis the utility function for prettifying x. x can be complex (or format (<complex>)), here.
If x is not a character, format(x[i],...) is applied to each element, and then it is left unchanged
if all the other arguments are at their defaults. Use the input.d.mark argument for prettyNum(x)
when x is a character vector not resulting from something like format (<number>) with a period
as decimal mark.

Because gsub is used to insert the big.mark and small.mark, special characters need escaping. In
particular, to insert a single backslash, use "\\\\".

The C doubles used for R numerical vectors have signed zeros, which formatC may output as -0,
-0.000....

236 formatC

There is a warning if big.mark and decimal.mark are the same: that would be confusing to those
reading the output.

Value
A character object of same size and attributes as x (after discarding any class), in the current locale’s
encoding.

Unlike format, each number is formatted individually. Looping over each element of x, the C
function sprintf(...) is called for numeric inputs (inside the C function str_signif).

formatC: for character x, do simple (left or right) padding with white space.

Note

The default for decimal.mark in formatC() was changed in R 3.2.0: for use within
print methods in packages which might be used with earlier versions: use decimal.mark =
getOption("OutDec") explicitly.

Author(s)
formatC was originally written by Bill Dunlap for S-PLUS, later much improved by Martin Maech-
ler.

It was first adapted for R by Friedrich Leisch and since much improved by the R Core team.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition. Pren-
tice Hall.

See Also

format.

sprintf for more general C-like formatting.

Examples

XX <= pi * 10*(-5:4)

cbind(format(xx, digits = 4), formatC(xx))

cbind(formatC(xx, width = 9, flag = "-"))

cbind(formatC(xx, digits = 5, width = 8, format = "f", flag = "0"))
cbind(format(xx, digits = 4), formatC(xx, digits = 4, format = "fg"))

f <= (-2:4); f <- fx16*f

Default ("g") format:

formatC(pixf)

Fixed ("f") format, more than one flag ('width' partly "enlarged"):
cbind(formatC(pixf, digits = 3, width=9, format = "f", flag = "@+"))

formatC(c("a", "Abc", "no way"), width = -7) # <=> flag = "-"
formatC(c((-1:1)/0,c(1,100)*pi), width = 8, digits = 1)

formatC 237

note that some of the results here depend on the implementation
of long-double arithmetic, which is platform-specific.
xx <- c(le-12,-3.98765e-10,1.45645e-69,1e-70,pi*1e37,3.44e4)

1 2 3 4 5 6
formatC(xx)
formatC(xx, format = "fg") # special "fixed" format.

formatC(xx[1:4], format = "f", digits = 75) #>> even longer strings

formatC(c(3.24, 2.3e-6), format = "f", digits = 11)
formatC(c(3.24, 2.3e-6), format = "f", digits = 11, drop@trailing = TRUE)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:

prettyNum(r, big.mark = ",")

Some Europeans:
prettyNum(r, big.mark =

nan

, decimal.mark = " ")

(dd <- sapply(1:10, function(i) paste((9:0)[1:i], collapse = "")))
prettyNum(dd, big‘mark - uvu)

examples of 'small.mark'
pN <- stats::pnorm(1:7, lower.tail = FALSE)

cbind(format (pN, small.mark = " ", digits = 15))
cbind(formatC(pN, small.mark = " ", digits = 17, format = "f"))
cbind(ff <- format(1.2345 + 10%(@:5), width = 11, big.mark = "'"))

all with same width (one more than the specified minimum)

individual formatting to common width:

fc <- formatC(1.234 + 10%(0:8), format = "fg", width = 11, big.mark = "'")
cbind(fc)

Powers of two, stored exactly, formatted individually:

pow.2 <- formatC(2*-(1:32), digits = 24, width = 1, format = "fg")

nicely printed (the last line showing 5732 exactly):
noquote(cbind(pow.2))

complex numbers:
r <- 10.0000001; rv <- (r/10)*(1:10)
(zv <= (rv + 1i*rv))
op <- options(digits = 7) ## (system default)
(pnv <- prettyNum(zv))
stopifnot(pnv == "1+1i", pnv == format(zv),
pnv == prettyNum(zv, drop@trailing = TRUE))
more digits change the picture:
options(digits = 8)
head(fv <- format(zv), 3)
prettyNum(fv)
prettyNum(fv, drop@trailing = TRUE) # a bit nicer
options(op)

The ' flag :
doLC <- FALSE # <= R warns, so change to TRUE manually if you want see the effect
if(doLC)

238 formatDL

0ldLC <- Sys.setlocale("LC_NUMERIC", "de_CH.UTF-8")
formatC(1.234 + 10%(0:4), format = "fg", width = 11, flag = "'")
--> ... " 1'001" " 10'001" on supported platforms
if(doLC) ## revert, typically to "C"

Sys.setlocale("LC_NUMERIC", oldLC)

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

Usage

formatDL(x, y, style = c("table”, "list"),
width = 0.9 * getOption("width"), indent = NULL)

Arguments
X a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.
y a vector of the same length as x with the corresponding descriptions. Only used
if x does not already give the descriptions.
style a character string specifying the rendering style of the description information.
Can be abbreviated. If "table”, a two-column table with items and descriptions
as columns is produced (similar to Texinfo’s @table environment). If "1ist"”, a
LaTeX-style tagged description list is obtained.
width a positive integer giving the target column for wrapping lines in the output.
indent a positive integer specifying the indentation of the second column in table style,
and the indentation of continuation lines in list style. Must not be greater than
width/2, and defaults to width/3 for table style and width/9 for list style.
Details

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more than indent -3 characters are displayed on a line of their own.

Value

a character vector with the formatted entries.

function 239

Examples

Provide a nice summary of the numerical characteristics of the

machine R is running on:

writeLines(formatDL(unlist(.Machine)))

Inspect Sys.getenv() results in "list” style (by default, these are
printed in "table"” style):

writeLines(formatDL(Sys.getenv(), style = "list"))

function Function Definition

Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage
function(arglist) expr
return(value)
Arguments
arglist Empty or one or more name or name=expression terms.
expr An expression.
value An expression.
Details

The names in an argument list can be back-quoted non-standard names (see ‘backquote’).

If value is missing, NULL is returned. If it is a single expression, the value of the evaluated expres-
sion is returned. (The expression is evaluated as soon as return is called, in the evaluation frame
of the function and before any on.exit expression is evaluated.)

If the end of a function is reached without calling return, the value of the last evaluated expression
is returned.

Technical details

This type of function is not the only type in R: they are called closures (a name with origins in
LISP) to distinguish them from primitive functions.

A closure has three components, its formals (its argument list), its body (expr in the ‘Usage’
section) and its environment which provides the enclosure of the evaluation frame when the closure
is used.

There is an optional further component if the closure has been byte-compiled. This is not normally
user-visible, but is indicated when functions are printed.

240 funprog

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args.
formals, body and environment for accessing the component parts of a function.

debug for debugging; using invisible inside return(.) for returning invisibly.

Examples

norm <- function(x) sqrt(x%*%x)
norm(1:4)

An anonymous function:
(function(x, y){ z <= x*2 + y*2; x+y+z })(0:7, 1)

funprog Common Higher-Order Functions in Functional Programming Lan-
guages

Description

Reduce uses a binary function to successively combine the elements of a given vector and a possibly
given initial value. Filter extracts the elements of a vector for which a predicate (logical) function
gives true. Find and Position give the first or last such element and its position in the vector,
respectively. Map applies a function to the corresponding elements of given vectors. Negate creates
the negation of a given function.

Usage

Reduce(f, x, init, right = FALSE, accumulate = FALSE)
Filter(f, x)

Find(f, x, right = FALSE, nomatch = NULL)

Map(f, ...)

Negate(f)

Position(f, x, right = FALSE, nomatch = NA_integer_)

Arguments
f a function of the appropriate arity (binary for Reduce, unary for Filter, Find
and Position, k-ary for Map if this is called with k£ arguments). An arbitrary
predicate function for Negate.
X a vector.

init an R object of the same kind as the elements of x.

funprog 241

right a logical indicating whether to proceed from left to right (default) or from right
to left.
accumulate a logical indicating whether the successive reduce combinations should be ac-

cumulated. By default, only the final combination is used.

nomatch the value to be returned in the case when “no match” (no element satisfying the
predicate) is found.

vectors.

Details

If init is given, Reduce logically adds it to the start (when proceeding left to right) or the end
of x, respectively. If this possibly augmented vector v has n > 1 elements, Reduce successively
applies f to the elements of v from left to right or right to left, respectively. Le., a left reduce
computes [y = f(v1,v2), la = f(l1,v3), etc., and returns I,,_; = f(l,—2,v,), and a right reduce
does -1 = f(vpn—1,Vn), Tn—2o = f(vUp_2,7,—1) and returns , = f(v1,r2). (E.g., if v is the
sequence (2, 3, 4) and f is division, left and right reduce give (2/3)/4 = 1/6 and 2/(3/4) = 8/3,
respectively.) If v has only a single element, this is returned; if there are no elements, NULL is
returned. Thus, it is ensured that f is always called with 2 arguments.

The current implementation is non-recursive to ensure stability and scalability.

Reduce is patterned after Common Lisp’s reduce. A reduce is also known as a fold (e.g., in Haskell)
or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version corre-
sponds to Haskell’s scan functions.

Filter applies the unary predicate function f to each element of x, coercing to logical if necessary,
and returns the subset of x for which this gives true. Note that possible NA values are currently
always taken as false; control over NA handling may be added in the future. Filter corresponds to
filter in Haskell or remove-if-not in Common Lisp.

Find and Position are patterned after Common Lisp’s find-if and position-if, respectively. If
there is an element for which the predicate function gives true, then the first or last such element or
its position is returned depending on whether right is false (default) or true, respectively. If there
is no such element, the value specified by nomatch is returned. The current implementation is not
optimized for performance.

Map is a simple wrapper to mapply which does not attempt to simplify the result, similar to Common
Lisp’s mapcar (with arguments being recycled, however). Future versions may allow some control
of the result type.

Negate corresponds to Common Lisp’s complement. Given a (predicate) function f, it creates a
function which returns the logical negation of what f returns.

See Also
Function clusterMap and mcmapply (not Windows) in package parallel provide parallel versions
of Map.

Examples

A general-purpose adder:
add <- function(x) Reduce("+", x)
add(list(1, 2, 3))

242 &c

Like sum(), but can also used for adding matrices etc., as it will
use the appropriate '+' method in each reduction step.

More generally, many generics meant to work on arbitrarily many
arguments can be defined via reduction:

FOO <- function(...) Reduce(F002, list(...))

FO02 <- function(x, y) UseMethod("F002")

FOO() methods can then be provided via F002() methods.

A general-purpose cumulative adder:
cadd <- function(x) Reduce("+", x, accumulate = TRUE)
cadd(seq_len(7))

A simple function to compute continued fractions:

cfrac <- function(x) Reduce(function(u, v) u + 1 / v, x, right = TRUE)
Continued fraction approximation for pi:

cfrac(c(3, 7, 15, 1, 292))

Continued fraction approximation for Euler's number (e):

cfrac(c(2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8))

Iterative function application:
Funcall <- function(f, ...) f(...)
Compute log(exp(acos(cos(0))))
Reduce(Funcall, list(log, exp, acos, cos), @, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)

function(x) Reduce(Funcall, rep.int(list(f), n), x, right = TRUE)
Continued fraction approximation to the golden ratio:
Iterate(function(x) 1 + 1 / x, 30)(1)
which is the same as
cfrac(rep.int(1, 31))
Computing square root approximations for x as fixed points of the
function t |-> (t + x / t) / 2, as a function of the initial value:
asgrt <- function(x, n) Iterate(function(t) (t + x / t) / 2, n)
asqrt(2, 30)(10) # Starting from a positive value => +sqrt(2)
asqrt(2, 30)(-1) # Starting from a negative value => -sqrt(2)

A list of all functions in the base environment:

funs <- Filter(is.function, sapply(ls(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:
names(Filter(function(f) length(formals(f)) > 1@, funs))

Number of functions in base with a '...' argument:
length(Filter(function(f)
any(names(formals(f)) %in% "..."),

funs))

Find all objects in the base environment which are *not* functions:
Filter(Negate(is.function), sapply(ls(baseenv()), get, baseenv()))

gc Garbage Collection

gC

243

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that automatic collection
is either silent (verbose = FALSE) or prints memory usage statistics (verbose = TRUE).

Usage

gc(verbose = getOption("verbose”), reset = FALSE, full = TRUE)
gcinfo(verbose)

Arguments
verbose logical; if TRUE, the garbage collection prints statistics about cons cells and the
space allocated for vectors.
reset logical; if TRUE the values for maximum space used are reset to the current
values.
full logical; if TRUE a full collection is performed; otherwise only more recently
allocated objects may be collected.
Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of calling gc is for the report on memory usage.
For an accurate report full = TRUE should be used.

It can be useful to call gc after a large object has been removed, as this may prompt R to return
memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the report of "Vcells”, a relict of an
earlier allocator (that used a vector heap).

When gcinfo(TRUE) is in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0) ...
6.4 Mbytes of cons cells used (58%)
2.0 Mbytes of vectors used (32%)

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rows "Ncells"” (cons cells), usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns "used” and
"gc trigger”, each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for either "Ncells"” or "Vcells”, a fifth column is printed giving the
current limits in Mb (with NA denoting no limit).

The final two columns show the maximum space used since the last call to gc(reset = TRUE) (or
since R started).

gcinfo returns the previous value of the flag.

244 gc.time

See Also

The ‘R Internals’ manual.
Memory on R’s memory management, and gctorture if you are an R developer.

reg.finalizer for actions to happen at garbage collection.

Examples

gc() #- do it now

gcinfo(TRUE) #-- in the future, show when R does it
X <- integer(100000); for(i in 1:18) x <- c(x, 1i)
gcinfo(verbose = FALSE) #-- don't show it anymore

gc (TRUE)

gc(reset = TRUE)

gc.time Report Time Spent in Garbage Collection

Description
This function reports the time spent in garbage collection so far in the R session while GC timing
was enabled.

Usage

gc.time(on = TRUE)

Arguments

on logical; if TRUE, GC timing is enabled.

Details

Due to timer resolution this may be under-estimate.

This is a primitive.

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Times of child processes are not available on Windows and will always be given as NA.

See Also

gc, proc. time for the timings for the session.

gctorture 245

Examples

gc.time()

gctorture Torture Garbage Collector

Description
Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture(on = TRUE)
gctorture2(step, wait = step, inhibit_release = FALSE)

Arguments
on logical; turning it on/off.
step integer; run GC every step allocations; step = @ turns the GC torture off.
wait integer; number of allocations to wait before starting GC torture.

inhibit_release
logical; do not release free objects for re-use: use with caution.

Details

Calling gctorture(TRUE) instructs the memory manager to force a full GC on every allocation.
gctorture2 provides a more refined interface that allows the start of the GC torture to be deferred
and also gives the option of running a GC only every step allocations.

The third argument to gctorture?2 is only used if R has been configured with a strict write barrier
enabled. When this is the case all garbage collections are full collections, and the memory manager
marks free nodes and enables checks in many situations that signal an error when a free node is
used. This can help greatly in isolating unprotected values in C code. It does not detect the case
where a node becomes free and is reallocated. The inhibit_release argument can be used to
prevent such reallocation. This will cause memory to grow and should be used with caution and in
conjunction with operating system facilities to monitor and limit process memory use.

gctorture2 can also be invoked via environment variables at the start of the R ses-
sion. R_GCTORTURE corresponds to the step argument, R_GCTORTURE_WAIT to wait, and
R_GCTORTURE_INHIBIT_RELEASE to inhibit_release.

Value

Previous value of first argument.

Author(s)

Peter Dalgaard and Luke Tierney

246 get

get Return the Value of a Named Object

Description

Search by name for an object (get) or zero or more objects (mget).

Usage
get(x, pos = -1, envir = as.environment(pos), mode = "any",
inherits = TRUE)
mget(x, envir = as.environment(-1), mode = "any", ifnotfound,
inherits = FALSE)
dynGet(x, ifnotfound = , minframe = 1L, inherits = FALSE)
Arguments
X For get, an object name (given as a character string).
For mget, a character vector of object names.
pos, envir where to look for the object (see ‘Details’); if omitted search as if the name of
the object appeared unquoted in an expression.
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?
ifnotfound For mget, a 1ist of values to be used if the item is not found: it will be coerced
to a list if necessary.
For dynGet any R object, e.g., a call to stop().
minframe integer specifying the minimal frame number to look into.
Details

The pos argument can specify the environment in which to look for the object in any of several ways:
as a positive integer (the position in the search list); as the character string name of an element in
the search list; or as an environment (including using sys.frame to access the currently active
function calls). The default of -1 indicates the current environment of the call to get. The envir
argument is an alternative way to specify an environment.

These functions look to see if each of the name(s) x have a value bound to it in the specified environ-
ment. If inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment and the
‘R Language Definition” manual for details about the structure of environments and their enclosures.

If mode is specified then only objects of that type are sought. mode here is a mixture of the meanings
of typeof and mode: "function” covers primitive functions and operators, "numeric”, "integer"

and "double" all refer to any numeric type, "symbol” and "name" are equivalent but "language”
must be used (and not "call” or " (").

getDLLRegisteredRoutines 247

For mget, the values of mode and ifnotfound can be either the same length as x or of length 1. The
argument ifnotfound must be a list containing either the value to use if the requested item is not
found or a function of one argument which will be called if the item is not found, with argument
the name of the item being requested.

dynGet () is somewhat experimental and to be used inside another function. It looks for an object
in the callers, i.e., the sys. frame()s of the function. Use with caution.
Value

For get, the object found. If no object is found an error results.

For mget, a named list of objects (found or specified via ifnotfound).

Note

The reverse (or “inverse”) of a <-get(nam) is assign(nam, a), assigning a to name nam.

inherits = TRUE is the default for get in R but not for S where it had a different meaning.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

exists for checking whether an object exists; get@ for an efficient way of both checking existence
and getting an object.
assign, the inverse of get (), see above.

Use getAnywhere for searching for an object anywhere, including in other namespaces, and
getFromNamespace to find an object in a specific namespace.

Examples
get ("%0%")
test mget

el <- new.env()
mget(letters, el, ifnotfound = as.list(LETTERS))

getDLLRegisteredRoutines
Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e. .C, .Call, .Fortran and .External.

248

Usage

getDLLRegisteredRoutines

getDLLRegisteredRoutines(dll, addNames = TRUE)

Arguments

dll

addNames

Details

a character string or DLLInfo object. The character string specifies the file
name of the DLL of interest, and is given without the file name extension
(e.g., the “.d11’ or ‘.so’) and with no directory/path information. So a file
‘MyPackage/libs/MyPackage.so’ would be specified as ‘MyPackage’.

The DLLInfo objects can be obtained directly in calls to dyn.load and
library.dynam, or can be found after the DLL has been loaded using
getLoadedDLLs, which returns a list of DLLInfo objects (index-able by DLL
file name).

The DLLInfo approach avoids any ambiguities related to two DLLs having the
same name but corresponding to files in different directories.

a logical value. If this is TRUE, the elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSE, these names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolInfo objects in the lists.

This takes the registration information after it has been registered and processed by the R internals.
In other words, it uses the extended information.

There is print methods for the class, which prints only the types which have registered routines.

Value

A list of class "DLLRegisteredRoutines” with four elements corresponding to the routines

registered for the

.C, .Call, .Fortran and .External interfaces. Each is a list (of class

"NativeRoutinelList"”) with as many elements as there were routines registered for that interface.

Each element identifies a routine and is an object of class "NativeSymbolInfo”. An object of this
class has the following fields:

name

address

dll

numParameters

Author(s)

the registered name of the routine (not necessarily the name in the C code).

the memory address of the routine as resolved in the loaded DLL. This may be
NULL if the symbol has not yet been resolved.

an object of class DLLInfo describing the DLL. This is same for all elements
returned.

the number of arguments the native routine is to be called with.

Duncan Temple Lang <duncan@wald.ucdavis.edu>

getLoadedDLLs 249

References

‘Writing R Extensions Manual® for symbol registration.
R News, Volume 1/3, September 2001. "In search of C/C++ & Fortran Symbols"

See Also

getLoadedDLLs, getNativeSymbolInfo for information on the entry points listed.

Examples

dlls <- getLoadedDLLs()
getDLLRegisteredRoutines(dlls[["base”]1])

getDLLRegisteredRoutines("”stats")

getLoadedDLLs Get DLLs Loaded in Current Session

Description

This function provides a way to get a list of all the DLLs (see dyn. load) that are currently loaded
in the R session.

Usage
getLoadedDLLs ()

Details

This queries the internal table that manages the DLLs.

Value

An object of class "DLLInfoList"” which is a 1ist with an element corresponding to each DLL
that is currently loaded in the session. Each element is an object of class "DLLInfo" which has the
following entries.

name the abbreviated name.
path the fully qualified name of the loaded DLL.

dynamicLookup a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of class "DLLHandle".

Note that the class DLLInfo has a method for $ which can be used to resolve native symbols
within that DLL. Therefore, one must access the R-level elements described above using [[,
e.g. x[["name"]] or x[["handle"]1].

250 getNativeSymbollnfo

Note

We are starting to use the handle elements in the DLL object to resolve symbols more directly in
R.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>.

See Also

getDLLRegisteredRoutines, getNativeSymbolInfo

Examples

getLoadedDLLs ()

utils::tail(getLoadedDLLs(), 2) # the last 2 loaded ones, still a DLLInfolList

getNativeSymbolInfo Obtain a Description of one or more Native (C/Fortran) Symbols

Description

This finds and returns a description of one or more dynamically loaded or ‘exported’ built-in native
symbols. For each name, it returns information about the name of the symbol, the library in which
it is located and, if available, the number of arguments it expects and by which interface it should
be called (i.e .Call, .C, .Fortran, or .External). Additionally, it returns the address of the
symbol and this can be passed to other C routines. Specifically, this provides a way to explicitly
share symbols between different dynamically loaded package libraries. Also, it provides a way to
query where symbols were resolved, and aids diagnosing strange behavior associated with dynamic
resolution.

Usage

getNativeSymbolInfo(name, PACKAGE, unlist = TRUE,
withRegistrationInfo = FALSE)

Arguments
name the name(s) of the native symbol(s).
PACKAGE an optional argument that specifies to which DLL to restrict the search for this
symbol. If this is "base”, we search in the R executable itself.
unlist a logical value which controls how the result is returned if the function is called

with the name of a single symbol. If unlist is TRUE and the number of symbol
names in name is one, then the NativeSymbolInfo object is returned. If it is
FALSE, then a list of NativeSymbolInfo objects is returned. This is ignored if
the number of symbols passed in name is more than one. To be compatible with
earlier versions of this function, this defaults to TRUE.

getNativeSymbollnfo 251

withRegistrationInfo
a logical value indicating whether, if TRUE, to return information that was reg-
istered with R about the symbol and its parameter types if such information is
available, or if FALSE to return just the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces (.Call,
etc.). If the symbol has been explicitly registered by the DLL in which it is contained, information
about the number of arguments and the interface by which it should be called will be returned.
Otherwise, a generic native symbol object is returned.

Value

Generally, a list of NativeSymbolInfo elements whose elements can be indexed by the elements
of name in the call. Each NativeSymbolInfo object is a list containing the following elements:

name the name of the symbol, as given by the name argument.

address if withRegistrationInfo is FALSE, this is the native memory address of the
symbol which can be used to invoke the routine, and also to compare with other
symbol addresses. This is an external pointer object and of class NativeSymbol.
If withRegistrationInfo is TRUE and registration information is available for
the symbol, then this is an object of class RegisteredNativeSymbol and is
a reference to an internal data type that has access to the routine pointer and
registration information. This too can be used in calls to .Call, .C, .Fortran
and .External.

dll a list containing 3 elements:

name the short form of the library name which can be used as the value of the
PACKAGE argument in the different native interface functions.

path the fully qualified name of the DLL.

dynamicLookup alogical value indicating whether dynamic resolution is used
when looking for symbols in this library, or only registered routines can be
located.

If the routine was explicitly registered by the dynamically loaded library, the list contains a fourth
field

numParameters the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should be
invoked.

If any of the symbols is not found, an error is raised.

If name contains only one symbol name and unlist is TRUE, then the single NativeSymbolInfo is
returned rather than the list containing that one element.

252 gettext

Note

The third element of the NativeSymbolInfo objects was renamed from package to dll in R
version 3.6.0, for consistency with the names of the NativeSymbolInfo objects returned by
getDLLRegisteredRoutines().

Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routines and R functions in a
similar manner, such as when passing an R function to C code that makes callbacks to that function
at different points in its computation (e.g., n1s). Additionally, we can resolve the symbol just once
and avoid resolving it repeatedly or using the internal cache.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN Routines”,
R-News, volume 1, number 3, 2001, p20-23 (https://www.r-project.org/doc/Rnews/Rnews_
2001-3.pdf).

See Also

getDLLRegisteredRoutines, is.loaded, .C, .Fortran, .External, .Call, dyn.load.

gettext Translate Text Messages

Description

If Native Language Support was enabled in this build of R, attempt to translate character vectors or
set where the translations are to be found.

Usage

gettext(..., domain = NULL)

ngettext(n, msgl, msg2, domain = NULL)

bindtextdomain(domain, dirname = NULL)

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

gettext 253

Arguments
One or more character vectors.

domain The ‘domain’ for the translation.

n a non-negative integer.

msg1 the message to be used in English for n = 1.

msg2 the message to be used in English forn=0,2,3,....

dirname The directory in which to find translated message catalogs for the domain.
Details

If domain is NULL or "", and gettext or ngettext is called from a function in the namespace of
package pkg the domain is set to "R-pkg". Otherwise there is no default domain.

If a suitable domain is found, each character string is offered for translation, and replaced by its
translation into the current language if one is found. The value (logical) NA suppresses any transla-
tion.

Conventionally the domain for R warning/error messages in package pkg is "R-pkg”, and that for
C-level messages is "pkg".

For gettext, leading and trailing whitespace is ignored when looking for the translation.

ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU Gettext Manual. The string
will often contain a single instance of %d to be used in sprintf. If English is used, msg1 is returned
if n == 1 and msg2 in all other cases.

bindtextdomain is a wrapper for the C function of the same name: your system may have a man
page for it. With a non-NULL dirname it specifies where to look for message catalogues: with
domain = NULL it returns the current location.

Value

For gettext, a character vector, one element per string in If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.

For ngettext, a character string.

For bindtextdomain, a character string giving the current base directory, or NULL if setting it failed.

See Also

stop and warning make use of gettext to translate messages.

xgettext for extracting translatable strings from R source files.

Examples
bindtextdomain("R") # non-null if and only if NLS is enabled
for(n in 0:3)

print(sprintf(ngettext(n, "%d variable has missing values”,
"%d variables have missing values"),

254 getwd

n))

Not run:

for translation, those strings should appear in R-pkg.pot as

msgid "%d variable has missing values”

msgid_plural "%d variables have missing values”

msgstr[o] ""

msgstr[1] ""

End(Not run)

miss <- c("one”, "or", "another")

cat(ngettext(length(miss), "variable”, "variables"),
paste(sQuote(miss), collapse = ", "),
ngettext(length(miss), "contains”, "contain"), "missing values\n")

better for translators would be to use
cat(sprintf(ngettext(length(miss),
"variable %s contains missing values\n",
"variables %s contain missing values\n"),
paste(sQuote(miss), collapse = ", ")))

getwd Get or Set Working Directory

Description

getwd returns an absolute filepath representing the current working directory of the R process;
setwd(dir) is used to set the working directory to dir.

Usage

getwd()
setwd(dir)

Arguments

dir A character string: tilde expansion will be done.

Value

getwd returns a character string or NULL if the working directory is not available. On Windows the
path returned will use / as the path separator and be encoded in UTF-8. The path will not have a
trailing / unless it is the root directory (of a drive or share on Windows).

setwd returns the current directory before the change, invisibly and with the same conventions as
getwd. It will give an error if it does not succeed (including if it is not implemented).

gl 255

Note

Note that the return value is said to be an absolute filepath: there can be more than one repre-
sentation of the path to a directory and on some OSes the value returned can differ after changing
directories and changing back to the same directory (for example if symbolic links have been tra-
versed).

See Also

list.files for the contents of a directory.

normalizePath for a ‘canonical’ path name.

Examples

(WD <- getwd())
if (!is.null(WD)) setwd(WD)

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = nxk, labels = seq_len(n), ordered = FALSE)

Arguments
n an integer giving the number of levels.
k an integer giving the number of replications.
length an integer giving the length of the result.
labels an optional vector of labels for the resulting factor levels.
ordered a logical indicating whether the result should be ordered or not.
Value

The result has levels from 1 to n with each value replicated in groups of length k out to a total length
of length.

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor ().

256 grep

Examples

First control, then treatment:
gl(2, 8, labels = c("Control”, "Treat"))
20 alternating 1s and 2s

gl(2, 1, 20)
alternating pairs of 1s and 2s
gl(2, 2, 20)
grep Pattern Matching and Replacement
Description

grep, grepl, regexpr, gregexpr and regexec search for matches to argument pattern within
each element of a character vector: they differ in the format of and amount of detail in the results.

sub and gsub perform replacement of the first and all matches respectively.

Usage

grep(pattern, x, ignore.case
fixed = FALSE, useBytes

FALSE, perl = FALSE, value = FALSE,
FALSE, invert = FALSE)

grepl(pattern, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

sub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gsub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexpr(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gregexpr(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexec(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

Arguments

pattern character string containing a regular expression (or character string for fixed =
TRUE) to be matched in the given character vector. Coerced by as.character
to a character string if possible. If a character vector of length 2 or more is
supplied, the first element is used with a warning. Missing values are allowed
except for regexpr and gregexpr.

grep 257

X, text a character vector where matches are sought, or an object which can be coerced
by as.character to a character vector. Long vectors are supported.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

perl logical. Should Perl-compatible regexps be used?

value if FALSE, a vector containing the (integer) indices of the matches determined

by grep is returned, and if TRUE, a vector containing the matching elements
themselves is returned.

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all conflicting
arguments.

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

invert logical. If TRUE return indices or values for elements that do not match.

replacement a replacement for matched pattern in sub and gsub. Coerced to character if

possible. For fixed = FALSE this can include backreferences "\1"” to "\9" to
parenthesized subexpressions of pattern. For perl = TRUE only, it can also
contain "\U" or "\L" to convert the rest of the replacement to upper or lower
case and "\E" to end case conversion. If a character vector of length 2 or more
is supplied, the first element is used with a warning. If NA, all elements in the
result corresponding to matches will be set to NA.

Details
Arguments which should be character strings or character vectors are coerced to character if possi-
ble.

Each of these functions operates in one of three modes:

1. fixed = TRUE: use exact matching.
2. perl = TRUE: use Perl-style regular expressions.
3. fixed = FALSE,perl = FALSE: use POSIX 1003.2 extended regular expressions (the default).

See the help pages on regular expression for details of the different types of regular expressions.

The two *sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences. If replacement contains backreferences which are not
defined in pattern the result is undefined (but most often the backreference is taken to be "").

For regexpr, gregexpr and regexec it is an error for pattern to be NA, otherwise NA is permitted
and gives an NA match.

The main effect of useBytes is to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales, but for regexpr it changes the interpretation of the output. It inhibits the
conversion of inputs with marked encodings, and is forced if any input is found which is marked as
"bytes” (see Encoding).

Caseless matching does not make much sense for bytes in a multibyte locale, and you should expect
it only to work for ASCII characters if useBytes = TRUE.

regexpr and gregexpr with perl = TRUE allow Python-style named captures, but not for long
vector inputs.

258 grep

Invalid inputs in the current locale are warned about up to 5 times.

Caseless matching with perl = TRUE for non-ASCII characters depends on the PCRE library being
compiled with ‘Unicode property support’: an external library might not be.

Value

grep(value = FALSE) returns a vector of the indices of the elements of x that yielded a match (or
not, for invert = TRUE). This will be an integer vector unless the input is a long vector, when it will
be a double vector.

grep(value = TRUE) returns a character vector containing the selected elements of x (after coer-
cion, preserving names but no other attributes).

grepl returns a logical vector (match or not for each element of x).

sub and gsub return a character vector of the same length and with the same attributes as x (after
possible coercion to character). Elements of character vectors x which are not substituted will be
returned unchanged (including any declared encoding). If useBytes = FALSE a non-ASCII substi-
tuted result will often be in UTF-8 with a marked encoding (e.g., if there is a UTF-8 input, and in a
multibyte locale unless fixed = TRUE). Such strings can be re-encoded by enc2native.

regexpr returns an integer vector of the same length as text giving the starting position of the first
match or —1 if there is none, with attribute "match.length”, an integer vector giving the length
of the matched text (or —1 for no match). The match positions and lengths are in characters unless
useBytes = TRUE is used, when they are in bytes (as they are for an ASCII-only matching: in either
case an attribute useBytes with value TRUE is set on the result). If named capture is used there are
further attributes "capture.start”, "capture.length” and "capture.names”.

gregexpr returns a list of the same length as text each element of which is of the same form as the
return value for regexpr, except that the starting positions of every (disjoint) match are given.

regexec returns a list of the same length as text each element of which is either —1 if there is
no match, or a sequence of integers with the starting positions of the match and all substrings cor-
responding to parenthesized subexpressions of pattern, with attribute "match.length” a vector
giving the lengths of the matches (or —1 for no match). The interpretation of positions and length
and the attributes follows regexpr.

Where matching failed because of resource limits (especially for PCRE) this is regarded as a non-
match, usually with a warning.

Warning

The POSIX 1003.2 mode of gsub and gregexpr does not work correctly with repeated word-
boundaries (e.g., pattern = "\b"). Use perl = TRUE for such matches (but that may not work as
expected with non-ASCII inputs, as the meaning of ‘word’ is system-dependent).

Performance considerations

If you are doing a lot of regular expression matching, including on very long strings, you will want
to consider the options used. Generally PCRE will be faster than the default regular expression
engine, and fixed = TRUE faster still (especially when each pattern is matched only a few times).

If you are working in a single-byte locale and have marked UTF-8 strings that are representable
in that locale, convert them first as just one UTF-8 string will force all the matching to be done in
Unicode, which attracts a penalty of around 3 x for the default POSIX 1003.2 mode.

grep 259

If you can make use of useBytes = TRUE, the strings will not be checked before matching, and the
actual matching will be faster. Often byte-based matching suffices in a UTF-8 locale since byte
patterns of one character never match part of another.

PCRE-based matching by default puts additional effort into ‘studying’ the compiled pattern when
x/text has length at least 10. As from R 3.4.0 that study may use the PCRE JIT compiler on plat-
forms where it is available (see pcre_config). The details are controlled by options PCRE_study
and PCRE_use_JIT. (Some timing comparisons can be seen by running file ‘tests/PCRE.R’ in the
R sources (and perhaps installed).) People working with PCRE and very long strings can adjust
the maximum size of the JIT stack by setting environment variable R_PCRE_JIT_STACK_MAXSIZE
before JIT is used to a value between 1 and 1000 in MB: the default is 64. (Then it would usually
be wise to set the option PCRE_limit_recursion.)

Source

The C code for POSIX-style regular expression matching has changed over the years. As from
R 2.10.0 (Oct 2009) the TRE library of Ville Laurikari (http://laurikari.net/tre/) is used.
The POSIX standard does give some room for interpretation, especially in the handling of invalid
regular expressions and the collation of character ranges, so the results will have changed slightly
over the years.

For Perl-style matching PCRE (http://www.pcre.org) is used: again the results may depend
(slightly) on the version of PCRE in use.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (grep)

See Also

regular expression (aka regexp) for the details of the pattern specification.

regmatches for extracting matched substrings based on the results of regexpr, gregexpr and
regexec.

glob2rx to turn wildcard matches into regular expressions.
agrep for approximate matching.

charmatch, pmatch for partial matching, match for matching to whole strings, startsWith for
matching of initial parts of strings.

tolower, toupper and chartr for character translations.

apropos uses regexps and has more examples.

grepRaw for matching raw vectors.

Options PCRE_1imit_recursion, PCRE_study and PCRE_use_JIT.

extSoftVersion for the versions of regex and PCRE libraries in use, pcre_config for more details
for PCRE.

http://laurikari.net/tre/
http://www.pcre.org

260

Examples

grep("[a-z]", letters)

txt <- c("arm”,"foot”,"lefroo", "bafoobar")
if(length(i <- grep(”"foo”, txt)))
cat("'foo' appears at least once in\n\t"”, txt, "\n")
i#2and 4
txt[i]

Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled'
gsub("(Lab1)", "\\1_\\1_", "abc and ABC")

n n

txt <- c("The", "licenses”, "for"”, "most"”, "software”, "are",
"designed”, "to", "take", "away"”, "your"”, "freedom”,
lltoll’ Ilsharell’ Ilandll’ "Change”, ”it.“,
" "By", "contrast,”, "the"”, "GNU", "General"”, "Public”, "License”,
"is", "intended”, "to", "guarantee”, "your", "freedom”, "to",
"share”, "and", "change", "free"”, "software”, "--",
"to", "make", "sure", "the", "software”, "is",
"free", "for", "all"”, "its", "users")

(i <- grep("[gul”, txt)) # indices
stopifnot(txt[i] == grep("[gul”, txt, value = TRUE))

Note that in locales such as en_US this includes B as the

collation order is aAbBcCdDe ...

(ot <~ sub("[b-e]","”.", txt))

txt[ot != gsub("[b-e]","”.", txt)J#- gsub does "global” substitution

txt[gsub("g","#", txt) !=
gsub("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr("en”, txt)
gregexpr(”e", txt)

Using grepl() for filtering
Find functions with argument names matching "warn":
findArgs <- function(env, pattern) {
nms <- ls(envir = as.environment(env))
nms <- nms[is.na(match(nms, c("F","T")))] # <-- work around "checking hack”
aa <- sapply(nms, function(.) { o <- get(.)
if(is.function(o)) names(formals(o)) })
iw <- sapply(aa, function(a) any(grepl(pattern, a, ignore.case=TRUE)))
aaliw]
3

findArgs("package:base”, "warn")

trim trailing white space
str <- "Now is the time
sub(" +$", "", str) ## spaces only

what is considered 'white space' depends on the locale.
sub("[[:space:]1]1+$", "", str) ## white space, POSIX-style

n

&rep

grep 261

what PCRE considered white space changed in version 8.34: see ?regex
sub("\\s+$", "", str, perl = TRUE) ## PCRE-style white space

capitalizing

txt <- "a test of capitalizing”

gsub (" (\\w) (\\w*) " "\AUNNINNLNN2", txt, perl=TRUE)
gsub("\\b(\\w) ", "\\UN\T", txt, perl=TRUE)

txt2 <- "useRs may fly into JFK or laGuardia”
gsub (" (O\\wW) O\\w=) (\\w) ", "\AUNNTIANENA2N\NUNN3", txt2, perl=TRUE)
sub (" (O\\w) (O\\wx) (\\w) 75 "NNUNNTNNENN2\\UNN3", txt2, perl=TRUE)

named capture
notables <- c(” Ben Franklin and Jefferson Davis”,
"\tMillard Fillmore")
name groups 'first' and 'last'
name.rex <- "(?<first>[[:upper:]]1[[:1lower:]1+) (?<last>[[:upper:]]1[[:lower:]11+)"
(parsed <- regexpr(name.rex, notables, perl = TRUE))
gregexpr(name.rex, notables, perl = TRUE)[[2]]
parse.one <- function(res, result) {
m <- do.call(rbind, lapply(seq_along(res), function(i) {
if(result[i] == -1) return("")
st <- attr(result, "capture.start”)[i,]
substring(res[i], st, st + attr(result, "capture.length”)[i, 1 - 1)
m
colnames(m) <- attr(result, "capture.names")
m

}

parse.one(notables, parsed)

Decompose a URL into its components.
Example by LT (http://www.cs.uiowa.edu/~luke/R/regexp.html).
x <- "http://stat.umn.edu:80/xyz"
m <- regexec("*((L*:1+)://)?2([*: /1) (: ([O-9]+))?(/.*)", Xx)
m
regmatches(x, m)
Element 3 is the protocol, 4 is the host, 6 is the port, and 7
is the path. We can use this to make a function for extracting the
parts of a URL:
URL_parts <- function(x) {
m <- regexec("*(([*:1+)://)?2([*:/1+) (: ([O-91+))?(/.*%)", x)
parts <- do.call(rbind,
lapply(regmatches(x, m), ‘[*, c(3L, 4L, 6L, 7L)))
colnames(parts) <- c("protocol”,"host”,"port”,"path”)
parts
3
URL_parts(x)

There is no gregexec() yet, but one can emulate it by running
regexec() on the regmatches obtained via gregexpr(). E.g.:
pattern <- "([[:alpha:]]1+)([[:digit:]1]+)"

s <- "Test: A1 BC23 DEF456"

lapply(regmatches(s, gregexpr(pattern, s)),

262 grepRaw

function(e) regmatches(e, regexec(pattern, e)))

grepRaw Pattern Matching for Raw Vectors

Description

grepRaw searches for substring pattern matches within a raw vector x.

Usage

grepRaw(pattern, x, offset = 1L, ignore.case = FALSE,
value = FALSE, fixed = FALSE, all = FALSE, invert = FALSE)

Arguments
pattern raw vector containing a regular expression (or fixed pattern for fixed = TRUE) to
be matched in the given raw vector. Coerced by charToRaw to a character string
if possible.
X a raw vector where matches are sought, or an object which can be coerced by
charToRaw to a raw vector. Long vectors are not supported.
ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.
offset An integer specifying the offset from which the search should start. Must be
positive. The beginning of line is defined to be at that offset so "*" will match
there.
value logical. Determines the return value: see ‘Value’.
fixed logical. If TRUE, pattern is a pattern to be matched as is.
all logical. If TRUE all matches are returned, otherwise just the first one.
invert logical. If TRUE return indices or values for elements that do nor match. Ignored
(with a warning) unless value = TRUE.
Details

Unlike grep, seeks matching patterns within the raw vector x . This has implications especially in
the all = TRUE case, e.g., patterns matching empty strings are inherently infinite and thus may lead
to unexpected results.

The argument invert is interpreted as asking to return the complement of the match, which is
only meaningful for value = TRUE. Argument of fset determines the start of the search, not of the
complement. Note that invert = TRUE with all = TRUE will split x into pieces delimited by the
pattern including leading and trailing empty strings (consequently the use of regular expressions
with "*" or "$" in that case may lead to less intuitive results).

Some combinations of arguments such as fixed = TRUE with value = TRUE are supported but are
less meaningful.

groupGeneric 263

Value

grepRaw(value = FALSE) returns an integer vector of the offsets at which matches have occurred.
If all = FALSE then it will be either of length zero (no match) or length one (first matching position).

grepRaw(value = TRUE, all = FALSE) returns a raw vector which is either empty (no match) or the
matched part of x.

grepRaw(value = TRUE, all = TRUE) returns a (potentially empty) list of raw vectors corresponding
to the matched parts.

Source

The TRE library of Ville Laurikari (http://laurikari.net/tre/) is used except for fixed =
TRUE.

See Also

regular expression (aka regexp) for the details of the pattern specification.

grep for matching character vectors.

Examples

grepRaw(”no match”, "textText”) # integer(@): no match
grepRaw("adf"”, "adadfadfdfadadf”) # 3 - the first match
grepRaw("adf"”, "adadfadfdfadadf”, all=TRUE, fixed=TRUE)
[1] 3 6 13 -- three matches

groupGeneric S3 Group Generic Functions

Description

Group generic methods can be defined for four pre-specified groups of functions, Math, Ops,
Summary and Complex. (There are no objects of these names in base R, but there are in the methods
package.)

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)

Ops(el, e2)

Complex(z)

Summary(..., na.rm = FALSE)

http://laurikari.net/tre/

264 groupGeneric
Arguments
X, z, el, e2 objects.
further arguments passed to methods.
na.rm logical: should missing values be removed?
Details

There are four groups for which S3 methods can be written, namely the "Math"”, "Ops”, "Summary"”
and "Complex” groups. These are not R objects in base R, but methods can be supplied for them
and base R contains factor, data. frame and difftime methods for the first three groups. (There
is also a ordered method for Ops, POSIXt and Date methods for Math and Ops, package_version
methods for Ops and Summary, as well as a ts method for Ops in package stats.)

1. Group "Math":

e abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

* exp, log, expml, logip,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

e lgamma, gamma, digamma, trigamma
* cumsum, cumprod, cummax, cummin

Members of this group dispatch on x. Most members accept only one argument, but members
log, round and signif accept one or two arguments, and trunc accepts one or more.

. Group "Ops":
L T L A N A Yo
° II&I" Illll’ II!I'
L] ”::" ”!:”’ ”<”’ ”<:”’ ">:”, ">”

k)

This group contains both binary and unary operators (+, - and !): when a unary operator is
encountered the Ops method is called with one argument and e2 is missing.

The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Ops method. If a method is found for just one argument or the same method is found
for both, it is used. If different methods are found, there is a warning about ‘incompatible
methods’: in that case or if no method is found for either argument the internal method is
used.

Note that the data.frame methods for the comparison ("Compare”: ==, <, ...) and logic
("Logic": & | and !) operators return a logical matrix instead of a data frame, for convenience
and back compatibility.

If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group "Summary”:

groupGeneric 265

e all, any
e sum, prod
* min, max

* range
Members of this group dispatch on the first argument supplied.
4. Group "Complex":
e Arg, Conj, Im, Mod, Re

Members of this group dispatch on z.

Note that a method will be used for one of these groups or one of its members only if it corresponds
to a "class” attribute, as the internal code dispatches on oldClass and not on class. This is for
efficiency: having to dispatch on, say, Ops. integer would be too slow.

The number of arguments supplied for primitive members of the "Math” group generic methods is
not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

Technical Details

These functions are all primitive and internal generic.

The details of method dispatch and variables such as .Generic are discussed in the help for
UseMethod. There are a few small differences:

* For the operators of group Ops, the object .Method is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was
selected, the corresponding element is "".)

* Object .Group records the group used for dispatch (if a specific method is used this is "").

Note

Package methods does contain objects with these names, which it has re-used in confusing similar
(but different) ways. See the help for that package.

References
Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

methods for methods of non-internal generic functions.

S4groupGeneric for group generics for S4 methods.

266 grouping

Examples

require(utils)

d.fr <- data.frame(x = 1:9, y = stats::rnorm(9))
class(1 + d.fr) == "data.frame" ##-- add to d.f.

methods("Math")

methods("0Ops")

methods ("Summary")
methods("Complex"”) # none in base R

grouping Grouping Permutation

Description

grouping returns a permutation which rearranges its first argument such that identical values are
adjacent to each other. Also returned as attributes are the group-wise partitioning and the maximum
group size.

Usage

grouping(...)

Arguments

a sequence of numeric, character or logical vectors, all of the same length, or a
classed R object.

Details

The function partially sorts the elements so that identical values are adjacent. NA values come last.
This is guaranteed to be stable, so ties are preserved, and if the data are already grouped/sorted, the
grouping is unchanged. This is useful for aggregation and is particularly fast for character vectors.

Under the covers, the "radix” method of order is used, and the same caveats apply, including
restrictions on character encodings and lack of support for long vectors (those with 23! or more
elements). Real-valued numbers are slightly rounded to account for numerical imprecision.

Like order, for a classed R object the grouping is based on the result of xtfrm.

Value

An object of class "grouping”, the representation of which should be considered experimental and
subject to change. It is an integer vector with two attributes:

ends subscripts in the result corresponding to the last member of each group

maxgrpn the maximum group size

gzcon 267

See Also

order, xtfrm.

Examples

(ii <- grouping(x <- c(1, 1, 3:1, 1:4, 3), y <= ¢c(9, 9:1), z <- c(2, 1:9)))
6 5 2 1 7 410 8 3 9
rbind(x, vy, z)[, iil

gzcon (De)compress 1/0 Through Connections

Description
gzcon provides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Standard gzip headers are assumed.

Usage
gzcon(con, level = 6, allowNonCompressed = TRUE, text = FALSE)

Arguments
con a connection.
level integer between 0 and 9, the compression level when writing.
allowNonCompressed
logical. When reading, should non-compressed input be allowed?
text logical. Should the connection be text-oriented? This is distinct from the mode
of the connection (must always be binary). If TRUE, pushBack works on the
connection, otherwise readBin and friends apply.
Details

If con is open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to reading
from the original connection if allowNonCompressed is true, otherwise an error.

Compressed output will contain embedded NUL bytes, and so con is not permitted to be a
textConnection opened with open = "w". Use a writable rawConnection to compress data into a
variable.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection. For this reason, the new connection needs to be closed explicitly.
Value

An object inheriting from class "connection”. This is the same connection number as supplied,
but with a modified internal structure. It has binary mode.

268 hexmode

See Also

gzfile

Examples

Uncompress a data file from a URL

z <- gzcon(url("http://www.stats.ox.ac.uk/pub/datasets/csb/ch12.dat.gz"))
read.table can only read from a text-mode connection.

raw <- textConnection(readlLines(z))

close(z)

dat <- read.table(raw)

close(raw)

dat[1:4,]

gzfile and gzcon can inter-work.
Of course here one would use gzfile, but file() can be replaced by
any other connection generator.

zzfil <- tempfile(fileext = ".gz")
zz <- gzfile(zzfil, "w")
cat("TITLE extra line”, "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzcon(file(zzfil, "rb")))
close(zz)
unlink(zzfil)
zzfil2 <- tempfile(fileext = ".gz")
zz <- gzcon(file(zzfil2, "wb"))
cat("TITLE extra line”, "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzfile(zzfil2))
close(zz)
unlink(zzfil2)
hexmode Display Numbers in Hexadecimal
Description

Convert or print integers in hexadecimal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage
as.hexmode (x)

S3 method for class 'hexmode'
as.character(x, ...)

hexmode

269

S3 method for class 'hexmode'
format(x, width = NULL, upper.case = FALSE, ...)

S3 method for class 'hexmode'

print(x, ...)

Arguments

X

width

upper.case

Details

An object, for the methods inheriting from class "hexmode”.

NULL or a positive integer specifying the minimum field width to be used, with
padding by leading zeroes.

a logical indicating whether to use upper-case letters or lower-case letters (de-
fault).

further arguments passed to or from other methods.

Class "hexmode” consists of integer vectors with that class attribute, used merely to ensure that they

are printed in hex.

If width = NULL (the default), the output is padded with leading zeroes to the smallest width needed
for all the non-missing elements.

as.hexmode can convert integers (of type "integer"” or "double”) and character vectors whose
elements contain only 0-9, a-f, A-F (or are NA) to class "hexmode”.

There is a ! method and methods for | and &:

these recycle their arguments to the length of the longer and then apply the operators bitwise to each

element.

See Also

octmode, sprintf for other options in converting integers to hex, strtoi to convert hex strings to

integers.

Examples

i <- as.hexmode("7fffffff")

i; class(i)

identical(as.integer(i), .Machine$integer.max)

hm <- as.hexmode(c(NA, 1)); hm

as.integer(hm)

270 Hyperbolic

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent (or ‘area cosine’, etc).

Usage

cosh(x)
sinh(x)
tanh(x)
acosh(x)
asinh(x)
atanh(x)

Arguments

X a numeric or complex vector

Details

These are internal generic primitive functions: methods can be defined for them individually or via
the Math group generic.

Branch cuts are consistent with the inverse trigonometric functions asin ef seq, and agree with those
defined in Abramowitz and Stegun, figure 4.7, page 86. The behaviour actually on the cuts follows
the C99 standard which requires continuity coming round the endpoint in a counter-clockwise di-
rection.

S4 methods

All are S4 generic functions: methods can be defined for them individually or via the Math group
generic.

References

Abramowitz, M. and Stegun, 1. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

See Also

The trigonometric functions, cos, sin, tan, and their inverses acos, asin, atan.

The logistic distribution function plogis is a shifted version of tanh() for numeric x.

iconv 271

iconv Convert Character Vector between Encodings

Description

This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-

ternationalization’.
Usage
iconv(x, from = "", to = "", sub = NA, mark = TRUE, toRaw = FALSE)
iconvlist()
Arguments
X A character vector, or an object to be converted to a character vector
by as.character, or a list with NULL and raw elements as returned by
iconv(toRaw = TRUE).
from A character string describing the current encoding.
to A character string describing the target encoding.
sub character string. If not NA it is used to replace any non-convertible bytes in the
input. (This would normally be a single character, but can be more.) If "byte”,
the indication is "<xx>" with the hex code of the byte.
mark logical, for expert use. Should encodings be marked?
toRaw logical. Should a list of raw vectors be returned rather than a character vector?
Details

The names of encodings and which ones are available are platform-dependent. All R platforms
support "" (for the encoding of the current locale), "latin1" and "UTF-8". Generally case is
ignored when specifying an encoding.

On most platforms iconvlist provides an alphabetical list of the supported encodings. On others,
the information is on the man page for iconv(5) or elsewhere in the man pages (but beware that
the system command iconv may not support the same set of encodings as the C functions R calls).
Unfortunately, the names are rarely supported across all platforms.

Elements of x which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returned as NA unless sub is specified.

Most versions of iconv will allow transliteration by appending ‘//TRANSLIT’ to the to encoding:
see the examples.

Encoding "ASCII" is accepted, and on most systems "C" and "POSIX" are synonyms for ASCII.

Any encoding bits (see Encoding) on elements of x are ignored: they will always be translated as
if from encoding from even if declared otherwise. enc2native and enc2utf8 provide alternatives
which do take declared encodings into account.

272 iconv

Note that implementations of iconv typically do not do much validity checking and will often
mis-convert inputs which are invalid in encoding from.

Value

If toRaw = FALSE (the default), the value is a character vector of the same length and the same
attributes as x (after conversion to a character vector).

If mark = TRUE (the default) the elements of the result have a declared encoding if to is "latin1”
or "UTF-8", or if to="" and the current locale’s encoding is detected as Latin-1 (or its superset
CP1252 on Windows) or UTF-8.

If toRaw = TRUE, the value is a list of the same length and the same attributes as x whose elements
are either NULL (if conversion fails) or a raw vector.

For iconvlist(), a character vector (typically of a few hundred elements) of known encoding
names.

Implementation Details

There are three main implementations of iconv in use. Linux’s C runtime ‘glibc’ contains one.
Several platforms supply GNU ‘libiconv’, including macOS, FreeBSD and Cygwin, in some cases
with additional encodings. On Windows we use a version of Yukihiro Nakadaira’s ‘win_iconv’,
which is based on Windows’ codepages. (We have added many encoding names for compatibil-
ity with other systems.) All three have iconvlist, ignore case in encoding names and support
*//TRANSLIT’ (but with different results, and for ‘win_iconv’ currently a ‘best fit’ strategy is used
except for to = "ASCII").

Most commercial Unixes contain an implemetation of iconv but none we have encountered have
supported the encoding names we need: the “R Installation and Administration Manual” recom-
mends installing GNU ‘libiconv’ on Solaris and AIX, for example.

There are other implementations, e.g. NetBSD has used one from the Citrus project (which does
not support ‘//TRANSLIT’) and there is an older FreeBSD port (‘libiconv’ is usually used there):
it has not been reported whether or not these work with R.

Note that you cannot rely on invalid inputs being detected, especially for to = "ASCII" where some
implementations allow 8-bit characters and pass them through unchanged or with transliteration.

Some of the implementations have interesting extra encodings: for example GNU ‘libiconv’ al-
lows to = "C99" to use ‘\uxxxx’ escapes for non-ASCII characters.

Byte Order Marks

most commonly known as ‘BOMs’.

Encodings using character units which are more than one byte in size can be written on a file in
either big-endian or little-endian order: this applies most commonly to UCS-2, UTF-16 and UTF-
32/UCS-4 encodings. Some systems will write the Unicode character U+FEFF at the beginning of a
file in these encodings and perhaps also in UTF-8. In that usage the character is known as a BOM,
and should be handled during input (see the ‘Encodings’ section under connection: re-encoded
connections have some special handling of BOMs). The rest of this section applies when this has
not been done so x starts with a BOM.

iconv 273

Implementations will generally interpret a BOM for from given as one of "UCS-2", "UTF-16" and
"UTF-32". Implementations differ in how they treat BOMs in x in other from encodings: they may
be discarded, returned as character U+FEFF or regarded as invalid.

Note

The only reasonably portable name for the ISO 8859-15 encoding, commonly known as ‘Latin 9°,
is "latin-9": some platforms support "latin9” but GNU ‘libiconv’ does not.

Encoding names "utf8”, "mac” and "macroman” are not portable. "utf8" is converted to "UTF-8"
for from and to by iconv, but not for e.g. fileEncoding arguments. "macintosh” is the official
(and most widely supported) name for ‘Mac Roman’ (https://en.wikipedia.org/wiki/Mac_
0S_Roman).

See Also

localeToCharset, file.

Examples

In principle, as not all systems have iconvlist
try(utils::head(iconvlist(), n = 50))

Not run:

convert from Latin-2 to UTF-8: two of the glibc iconv variants.
iconv(x, "IS0_8859-2", "UTF-8")

iconv(x, "LATIN2", "UTF-8")

End(Not run)

Both x below are in latinl and will only display correctly in a
locale that can represent and display latini.

x <- "fa\xE7ile”

Encoding(x) <- "latinl1”

X

charToRaw(xx <- iconv(x, "latin1", "UTF-8"))
XX

iconv(x, "latin1", "ASCII") # NA
iconv(x, "latin1", "ASCII", "?") # "fa?ile”
iconv(x, "latin1", "ASCII", "") # "faile”

iconv(x, "latin1”, "ASCII", "byte") # "fa<e7>ile”

Extracts from old R help files (they are nowadays in UTF-8)

x <= c("Ekstr\xf8m"”, "J\xf6reskog"”, "bi\xdfchen Z\xfcrcher")
Encoding(x) <- "latinl”

X

try(iconv(x, "latin1", "ASCII//TRANSLIT")) # platform-dependent
iconv(x, "latin1", "ASCII", sub = "byte")

and for Windows' 'Unicode'

str(xx <- iconv(x, "latinl1”, "UTF-16LE"”, toRaw = TRUE))
iconv(xx, "UTF-16LE", "UTF-8")

https://en.wikipedia.org/wiki/Mac_OS_Roman
https://en.wikipedia.org/wiki/Mac_OS_Roman

274 icuSetCollate
icuSetCollate Setup Collation by ICU
Description
Controls the way collation is done by ICU (an optional part of the R build).
Usage
icuSetCollate(...)
icuGetCollate(type = c("actual”, "valid"))
Arguments
Named arguments, see ‘Details’.
type character string: can be abbreviated. Either the actual locale in use for collation
or the most specific locale which would be valid.
Details

Optionally, R can be built to collate character strings by ICU (http://site.icu-project.org).
For such systems, icuSetCollate can be used to tune the way collation is done. On other builds
calling this function does nothing, with a warning.

Possible arguments are

locale: A character string such as "da_DK" giving the language and country whose collation rules
are to be used. If present, this should be the first argument.

case_first: "upper”, "lower” or "default”, asking for upper- or lower-case characters to be
sorted first. The default is usually lower-case first, but not in all languages (not under the
default settings for Danish, for example).

alternate_handling: Controls the handling of ‘variable’ characters (mainly punctuation and
symbols). Possible values are "non_ignorable"” (primary strength) and "shifted” (qua-
ternary strength).

strength: Which components should be used? Possible values "primary”, "secondary”,
"tertiary" (default), "quaternary"” and "identical”.

french_collation: In a French locale the way accents affect collation is from right to left,
whereas in most other locales it is from left to right. Possible values "on", "off" and
"default”.

normalization: Should strings be normalized? Possible values are "on" and "off" (default).
This affects the collation of composite characters.

case_level: An additional level between secondary and tertiary, used to distinguish large and
small Japanese Kana characters. Possible values "on"” and "of f" (default).

hiragana_quaternary: Possible values "on" (sort Hiragana first at quaternary level) and "off".

http://site.icu-project.org

icuSetCollate 275

Only the first three are likely to be of interest except to those with a detailed understanding of
collation and specialized requirements.

Some special values are accepted for locale:

"none”: ICU is not used for collation: the OS’s collation services are used instead.

"ASCII": ICU is not used for collation: the C function strcmp is used instead, which should sort
byte-by-byte in (unsigned) numerical order.

"default"”: obtains the locale from the OS as is done at the start of the session. If environment
variable R_ICU_LOCALE is set to a non-empty value, its value is used rather than consulting the
OS, unless environment variable LC_ALL is set to C’ (or unset but LC_COLLATE is set to ’C’).

nn o n

,"root": the ‘root’ collation: see http://www.unicode.org/reports/tr35/
tr35-collation.html#Root_Collation.

For the specifications of ‘real’ ICU locales, see http://userguide.icu-project.org/locale.
Note that ICU does not report that a locale is not supported, but falls back to its idea of ‘best fit’
(which could be rather different and is reported by icuGetCollate("actual”), often "root").
Most English locales fall back to "root” as although e.g. "en_GB" is a valid locale (at least on
some platforms), it contains no special rules for collation. Note that "C" is not a supported ICU
locale and hence R_ICU_LOCALE should never be set to "C".

Some examples are case_level = "on",strength = "primary” to ignore accent differences and
alternate_handling = "shifted” to ignore space and punctuation characters.

Initially ICU will not be used for collation if the OS is set to use the C locale for collation and
R_ICU_LOCALE is not set. Once this function is called with a value for locale, ICU will be used
until it is called again with locale = "none"”. ICU will not be used once Sys.setlocale is called
with a "C" value for LC_ALL or LC_COLLATE, even if R_ICU_LOCALE is set. ICU will be used again
honoring R_ICU_LOCALE once Sys.setlocale is called to set a different collation order. Environ-
ment variables LC_ALL (or LC_COLLATE) take precedence over R_ICU_LOCALE if and only if they
are set to 'C’. Due to the interaction with other ways of setting the collation order, R_ICU_LOCALE
should be used with care and only when needed.

All customizations are reset to the default for the locale if 1ocale is specified: the collation engine
is reset if the OS collation locate category is changed by Sys.setlocale.

Value

For icuGetCollate, a character string describing the ICU locale in use (which may be reported as
"ICU not in use"). The ‘actual’ locale may be simpler than the requested locale: for example "da”
rather than "da_DK": English locales are likely to report "root”.

Note

ICU is used by default wherever it is available: this include macOS, Solaris and many Linux instal-
lations. As it works internally in UTF-8, it will be most efficient in UTF-8 locales.

It is optional on Windows: if R has been built against ICU, it will only be used if environment
variable R_ICU_LOCALE is set or once icuSetCollate is called to select the locale (as ICU and
Windows differ in their idea of locale names). Note that icuSetCollate(locale = "default”)
should work reasonably well for R >=3.2.0 and Windows Vista/Server 2008 and later (but finds the
system default ignoring environment variables such as LC_COLLATE).

http://www.unicode.org/reports/tr35/tr35-collation.html#Root_Collation
http://www.unicode.org/reports/tr35/tr35-collation.html#Root_Collation
http://userguide.icu-project.org/locale

276 identical

See Also

Comparison, sort.
capabilities for whether ICU is available; extSoftVersion for its version.

The ICU user guide chapter on collation (http://userguide.icu-project.org/collation).

Examples

These examples depend on having ICU available, and on the locale.
As we don't know the current settings, we can only reset to the default.
if(capabilities("ICU")) {

print(icuGetCollate())

print(icuGetCollate("valid"))

x <= c("Aarhus", "aarhus", "safe", "test"”, "Zoo")
print(sort(x))

icuSetCollate(case_first = "upper"”); print(sort(x))
icuSetCollate(case_first = "lower"); print(sort(x))

Danish collates upper-case-first and with 'aa' as a single letter
icuSetCollate(locale = "da_DK", case_first = "default”); print(sort(x))
Estonian collates Z between S and T

icuSetCollate(locale "et_EE"); print(sort(x))
icuSetCollate(locale = "default"); print(icuGetCollate("valid"))
3
identical Test Objects for Exact Equality
Description

The safe and reliable way to test two objects for being exactly equal. It returns TRUE in this case,
FALSE in every other case.

Usage

identical(x, y, num.eq = TRUE, single.NA = TRUE, attrib.as.set = TRUE,
ignore.bytecode = TRUE, ignore.environment = FALSE,
ignore.srcref = TRUE)

Arguments
X,y any R objects.
num. eq logical indicating if (double and complex non-NA) numbers should be compared
using == (‘equal’), or by bitwise comparison. The latter (non-default) differen-
tiates between -0 and +0.
single.NA logical indicating if there is conceptually just one numeric NA and one NaN;

single.NA = FALSE differentiates bit patterns.

http://userguide.icu-project.org/collation

identical 277

attrib.as.set logical indicating if attributes of x and y should be treated as unordered
tagged pairlists (“sets”); this currently also applies to slots of S4 objects. It
may well be too strict to set attrib.as.set = FALSE.
ignore.bytecode
logical indicating if byte code should be ignored when comparing closures.
ignore.environment
logical indicating if their environments should be ignored when comparing clo-
sures.

ignore.srcref logical indicating if their "srcref” attributes should be ignored when compar-
ing closures.

Details

A call to identical is the way to test exact equality in if and while statements, as well as in
logical expressions that use &% or | |. In all these applications you need to be assured of getting a
single logical value.

Users often use the comparison operators, such as == or !=, in these situations. It looks natural,
but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expected x and y to be of length 1, but it happened that one of them was not, you will not
get a single FALSE. Similarly, if one of the arguments is NA, the result is also NA. In either case, the
expression if (x ==y).... won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations in identical are also reliable and usually fast. There should never be an error.
The only known way to kill identical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

If single.NA is true, as by default, identical sees NaN as different from NA_real_, but all NaNs
are equal (and all NA of the same type are equal).

Character strings are regarded as identical if they are in different marked encodings but would agree
when translated to UTF-8.

If attrib.as.set is true, as by default, comparison of attributes view them as a set (and not a
vector, so order is not tested).

If ignore.bytecode is true (the default), the compiled bytecode of a function (see cmpfun) will
be ignored in the comparison. If it is false, functions will compare equal only if they are copies of
the same compiled object (or both are uncompiled). To check whether two different compiles are
equal, you should compare the results of disassemble().

You almost never want to use identical on datetimes of class "POSIX1t": not only can different
times in the different time zones represent the same time and time zones have multiple names, but
several of the components are optional.

Note that identical(x,y,FALSE,FALSE,FALSE,FALSE) pickily tests for exact equality.

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

278 identical

Author(s)
John Chambers and R Core

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ; Comparison for operators that generate ele-
mentwise comparisons. isTRUE is a simple wrapper based on identical.

Examples

identical(1, NULL) ## FALSE -- don't try this with ==
identical(1, 1.) ## TRUE in R (both are stored as doubles)
identical(1, as.integer(1)) ## FALSE, stored as different types

x <= 1.0; y <- 0.99999999999

how to test for object equality allowing for numeric fuzz :
(E <- all.equal(x, y))

isTRUE(E) # which is simply defined to just use

identical (TRUE, E)

If all.equal thinks the objects are different, it returns a
character string, and the above expression evaluates to FALSE

even for unusual R objects :
identical(.GlobalEnv, environment())

HHE - Pickyness Flags : --——---—=---—=--———--——--———-

the infamous example:

identical(@., -0.) # TRUE, i.e. not differentiated
identical(@., -0., num.eq = FALSE)

similar:

identical(NaN, -NaN) # TRUE

identical(NaN, -NaN, single.NA = FALSE) # differ on bit-level

##H# For functions ("closure”s): ——---——=---———-——-mm——mm oo
W s

f <- function(x) x

.f.‘

g <- compiler::cmpfun(f)

g

identical(f, g) # TRUE, as bytecode is ignored by default
identical(f, g, ignore.bytecode=FALSE) # FALSE: bytecode differs

GLM families contain several functions, some of which share an environment:
pl <- poisson() ; p2 <- poisson()

identical(p1, p2) # FALSE

identical(p1, p2, ignore.environment=TRUE) # TRUE

identity 279

in interactive use, the 'keep.source' option is typically true:

op <- options(keep.source = TRUE) # and so, these have differing "srcref” :
f1 <= function() {3}

f2 <= function() {3}

identical (f1,f2)# ignore.srcref= TRUE : TRUE

identical (f1,f2, ignore.srcref=FALSE)# FALSE

options(op) # revert to previous state

identity Identity Function

Description

A trivial identity function returning its argument.

Usage

identity(x)

Arguments

X an R object.

See Also

diag creates diagonal matrices, including identity ones.

ifelse Conditional Element Selection

Description
ifelse returns a value with the same shape as test which is filled with elements selected from
either yes or no depending on whether the element of test is TRUE or FALSE.

Usage

ifelse(test, yes, no)

Arguments
test an object which can be coerced to logical mode.
yes return values for true elements of test.

no return values for false elements of test.

280 ifelse

Details

If yes or no are too short, their elements are recycled. yes will be evaluated if and only if any
element of test is true, and analogously for no.

Missing values in test give missing values in the result.

Value

A vector of the same length and attributes (including dimensions and "class"”) as test and data
values from the values of yes or no. The mode of the answer will be coerced from logical to
accommodate first any values taken from yes and then any values taken from no.

Warning

The mode of the result may depend on the value of test (see the examples), and the class attribute
(see oldClass) of the result is taken from test and may be inappropriate for the values selected
from yes and no.

Sometimes it is better to use a construction such as
(tmp <- yes; tmp[!test] <- no[!test]; tmp)

, possibly extended to handle missing values in test.

Further note that if(test) yes else no is much more efficient and often much preferable to
ifelse(test,yes,no) whenever test is a simple true/false result, i.e., when length(test) ==
1.

The srcref attribute of functions is handled specially: if test is a simple true result and yes
evaluates to a function with srcref attribute, ifelse returns yes including its attribute (the same
applies to a false test and no argument). This functionality is only for backwards compatibility,
the form if (test) yes else no should be used whenever yes and no are functions.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
if.

Examples

x <- c(6:-4)
sqrt(x) #- gives warning
sqrt(ifelse(x >= 0, x, NA)) # no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqrt(x), NA)

ifelse() strips attributes

integer 281

This is important when working with Dates and factors

x <- seq(as.Date("2000-02-29"), as.Date("2004-10-04"), by = "1 month")
has many "yyyy-mm-29", but a few "yyyy-03-01" in the non-leap years
y <- ifelse(as.POSIX1t(x)$mday == 29, x, NA)

head(y) # not what you expected ... ==> need restore the class attribute:
class(y) <- class(x)
y

This is a (not atypical) case where it is better *not* to use ifelse(),
but rather the more efficient and still clear:

y2 <- X

y2[as.POSIX1t(x)$mday != 29] <- NA

which gives the same as ifelse()+class() hack:

stopifnot(identical(y2, y))

example of different return modes (and 'test' alone determining length):
yes <- 1:3

no <- pi*(1:4)

utils::str(ifelse(NA, yes, no)) # logical, length 1

utils::str(ifelse(TRUE, yes, no)) # integer, length 1

utils::str(ifelse(FALSE, yes, no)) # double, length 1

integer Integer Vectors

Description

Creates or tests for objects of type "integer”.

Usage

integer(length = 0)
as.integer(x, ...)
is.integer(x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
(small) integer data can be represented exactly and compactly.

Note that current implementations of R use 32-bit integers for integer vectors, so the range of
representable integers is restricted to about £2 x 10°: doubles can hold much larger integers
exactly.

282 integer

Value

integer creates a integer vector of the specified length. Each element of the vector is equal to .

as.integer attempts to coerce its argument to be of integer type. The answer will be NA unless
the coercion succeeds. Real values larger in modulus than the largest integer are coerced to NA
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values
are truncated towards zero (i.e., as.integer(x) equals trunc(x) there), and imaginary parts of
complex numbers are discarded (with a warning). Character strings containing optional whitespace
followed by either a decimal representation or a hexadecimal representation (starting with @x or @X)
can be converted, as well as any allowed by the platform for real numbers. Like as. vector it strips
attributes including names. (To ensure that an object x is of integer type without stripping attributes,
use storage.mode(x) <-"integer".)

is.integer returns TRUE or FALSE depending on whether its argument is of integer type or not,
unless it is a factor when it returns FALSE.

Note

is.integer(x) does not test if x contains integer numbers! For that, use round, as in the function
is.wholenumber(x) in the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

numeric, storage.mode.

round (and ceiling and floor on that help page) to convert to integral values.

Examples

as.integer() truncates:
X <= pi * c(-1:1, 10)
as.integer(x)

is.integer(1) # is FALSE !

is.wholenumber <-
function(x, tol = .Machine$double.eps*@.5) abs(x - round(x)) < tol
is.wholenumber(1) # is TRUE
(x <- seq(1, 5, by = 0.5))
is.wholenumber(x) #--> TRUE FALSE TRUE ...

interaction 283

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The result of
interaction is always unordered.

Usage
interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)
Arguments
the factors for which interaction is to be computed, or a single list giving those
factors.
drop if drop is TRUE, unused factor levels are dropped from the result. The default is
to retain all factor levels.
sep string to construct the new level labels by joining the constituent ones.
lex.order logical indicating if the order of factor concatenation should be lexically or-
dered.
Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined by sep which is . by default.

By default, when lex.order = FALSE, the levels are ordered so the level of the first factor varies
fastest, then the second and so on. This is the reverse of lexicographic ordering (which you can get
by lex.order = TRUE), and differs from :. (It is done this way for compatibility with S.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

n,n

factor; : where f:g is similar to interaction(f,g,sep=":") when f and g are factors.

Examples

a <- gl(2, 4, 8)
b <- gl(2, 2, 8, labels = c("ctrl”, "treat"))
s <- gl(2, 1, 8, labels = c("M", "F"))
interaction(a, b)
interaction(a, b, s, sep = ":")
stopifnot(identical(a:s,
interaction(a, s, sep = ":", lex.order = TRUE)),

284 interactive

identical(a:s:b,
interaction(a, s, b, sep =

n,.n

, lex.order = TRUE)))

interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive()

Details

An interactive R session is one in which it is assumed that there is a human operator to interact
with, so for example R can prompt for corrections to incorrect input or ask what to do next or if it
is OK to move to the next plot.

GUI consoles will arrange to start R in an interactive session. When R is run in a terminal (via
Rterm.exe on Windows), it assumes that it is interactive if ‘stdin’ is connected to a (pseudo-
)terminal and not if ‘stdin’ is redirected to a file or pipe. Command-line options ‘--interactive’
(Unix) and ‘--ess’ (Windows, Rterm.exe) override the default assumption. (On a Unix-alike,
whether the readline command-line editor is used is not overridden by ‘--interactive’.)

Embedded uses of R can set a session to be interactive or not.

Internally, whether a session is interactive determines

* how some errors are handled and reported, e.g. see stop and options(”showWarnCalls").

 whether one of ‘--save’, ‘--no-save’ or ‘--vanilla’ is required, and if R ever asks whether
to save the workspace.

» the choice of default graphics device launched when needed and by dev.new: see
options("device")

» whether graphics devices ever ask for confirmation of a new page.

In addition, R’s own R code makes use of interactive(): for example help, debugger and
install.packages do.

Note

This is a primitive function.

See Also

source, .First

Examples

.First <- function() if(interactive()) x11()

Internal 285

Internal Call an Internal Function

Description

.Internal performs a call to an internal code which is built in to the R interpreter.

Only true R wizards should even consider using this function, and only R developers can add to the
list of internal functions.

Usage
.Internal(call)
Arguments
call a call expression
See Also

.Primitive, .External (the nearest equivalent available to users).

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Details

The following primitive and internal functions are generic, i.e., you can write methods for them:
L, LL 8, [<-, [[<-, $<-,

length, length<-, dimnames, dimnames<-, dim, dim<-, names, names<-, levels<-,
c,unlist, cbind, rbind,

as.character, as.complex, as.double, as.integer, as.logical, as.raw, as.vector,
is.array, is.matrix, is.na, is.nan, is.numeric, rep, seq.int (which dispatches methods
for "seq") and xtfrm

In addition, is.name is a synonym for is. symbol and dispatches methods for the latter. Similarly,
as.numeric is a synonym for as.double and dispatches methods for the latter, i.e., S3 methods
are for as.double, whereas S4 methods are to be written for as.numeric.

Note that all of the group generic functions are also internal/primitive and allow methods to be
written for them.

286 invisible

.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic and
not group generic. Currently as.vector, cbind, rbind and unlist are the internal non-primitive
functions which are internally generic.

For efficiency, internal dispatch only occurs on objects, that is those for which is.object returns
true.

See Also

methods for the methods which are available.

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible(x)

Arguments

X an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

withVisible, return, function.

Examples

These functions both return their argument
f1 <= function(x) x

f2 <- function(x) invisible(x)

f1(1) # prints

f2(1) # does not

is.finite 287

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length as x, indicating which elements are
finite (not infinite and not missing) or infinite.

Inf and -Inf are positive and negative infinity whereas NaN means ‘Not a Number’. (These apply to
numeric values and real and imaginary parts of complex values but not to values of integer vectors.)
Inf and NaN are reserved words in the R language.

Usage

is.finite(x)
is.infinite(x)
is.nan(x)

Inf
NaN

Arguments

X R object to be tested: the default methods handle atomic vectors.

Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x[j] is finite
(i.e., it is not one of the values NA, NaN, Inf or -Inf) and FALSE otherwise. Complex numbers are
finite if both the real and imaginary parts are.

is.infinite returns a vector of the same length as x the jth element of which is TRUE if x[j]
is infinite (i.e., equal to one of Inf or -Inf) and FALSE otherwise. This will be false unless x is
numeric or complex. Complex numbers are infinite if either the real or the imaginary part is.

is.nan tests if a numeric value is NaN. Do not test equality to NaN, or even use identical, since
systems typically have many different NaN values. One of these is used for the numeric missing
value NA, and is.nan is false for that value. A complex number is regarded as NaN if either the real
or imaginary part is NaN but not NA. All elements of logical, integer and raw vectors are considered
not to be NaN.

All three functions accept NULL as input and return a length zero result. The default methods accept
character and raw vectors, and return FALSE for all entries. Prior to R version 2.14.0 they accepted
all input, returning FALSE for most non-numeric values; cases which are not atomic vectors are now
signalled as errors.

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethods.

288 is.finite

Value

A logical vector of the same length as x: dim, dimnames and names attributes are preserved.

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to work
properly with +/-Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a proper
mathematical limit.

Computations involving NaN will return NaN or perhaps NA: which of those two is not guaranteed
and may depend on the R platform (since compilers may re-order computations).

References

The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.
https://en.wikipedia.org/wiki/NaN.

D. Goldberg (1991) What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys, 23(1).

Postscript version available at http://www.validlab.com/goldberg/paper.ps Extended PDF
version at http://www.validlab.com/goldberg/paper.pdf

The C99 function isfinite is used for is.finite.

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric and complex.

Arithmetic, double.

Examples

pi / @ ## = Inf a non-zero number divided by zero creates infinity
0/ 0 ## = NaN

1/0 + 1/0 # Inf
1/@ - 1/@ # NaN

stopifnot(
1/0 == Inf,
1/Inf == 0
)
sin(Inf)
cos(Inf)

tan(Inf)

https://en.wikipedia.org/wiki/NaN
http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf

is.function 289

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage

is.function(x)
is.primitive(x)

Arguments
X an R object.

Details
is.primitive(x) tests if x is a primitive function, i.e, if typeof(x) is either "builtin"” or
"special”.

Value

TRUE if x is a (primitive) function, and FALSE otherwise.

Examples

is.function(1) # FALSE

is.function (is.primitive) # TRUE: it is a function, but ..
is.primitive(is.primitive) # FALSE: it's not a primitive one, whereas
is.primitive(is.function) # TRUE: that one xis*

is.language Is an Object a Language Object?

Description

is.language returns TRUE if x is a variable name, a call, or an expression.

Usage

is.language(x)

Arguments

X object to be tested.

290 is.object

Note

A name is also known as ‘symbol’, from its type (typeof), see is.symbol.

If typeof (x) == "language”, then is.language(x) is always true, but the reverse does not hold
as expressions or names y also fulfill is.language(y), see the examples.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

11 <- list(a = expression(x*2 - 2*x + 1), b = as.name("Jim"),
c = as.expression(exp(1)), d = call("sin", pi))

sapply (11, typeof)

sapply(1l, mode)

stopifnot(sapply(1ll, is.language))

is.object Is an Object ‘internally classed’?

Description

A function rather for internal use. It returns TRUE if the object x has the R internal OBJECT bit set,
and FALSE otherwise. The OBJECT bit is set when a "class” attribute is added and removed when
that attribute is removed, so this is a very efficient way to check if an object has a class attribute.
(S4 objects always should.)

Usage

is.object(x)

Arguments

X object to be tested.

Note

This is a primitive function.

See Also

class, and methods.

isS4.

is.R 291

Examples

is.object(1) # FALSE
is.object(as.factor(1:3)) # TRUE

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage

is.R(O)

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS. In order

for code to be runnable in both R and S dialects previous to S-PLUS 8.0, your code must either
define is.R or use it as

if (exists("is.R") && is.function(is.R) && is.R()) {
R-specific code

}else {

S-version of code

}

Value

is.Rreturns TRUE if we are using R and FALSE otherwise.

See Also

R.version, system.

Examples

x <- stats::runif(20); small <- x < 0.4
In the early years of R, 'which()' only existed in R:
if(is.R()) which(small) else seq(along = small)[small]

292 is.recursive

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x is of an atomic type (or NULL) and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic(x)
is.recursive(x)

Arguments
X object to be tested.
Details
is.atomic is true for the atomic types ("logical”, "integer"”, "numeric”, "complex”,

"character” and "raw") and NULL.

Most types of objects are regarded as recursive. Exceptions are the atomic types, NULL, symbols
(as given by as.name), S4 objects with slots, external pointers, and—rarely visible from R—weak
references and byte code, see typeof.

It is common to call the atomic types ‘atomic vectors’, but note that is.vector imposes further
restrictions: an object can be atomic but not a vector (in that sense).

These are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

is.list, is.language, etc, and the demo("is.things").

Examples

require(stats)

is.a.r <- function(x) c(is.atomic(x), is.recursive(x))

is.a.r(c(a =1, b = 3)) # TRUE FALSE
is.a.r(listQ)) # FALSE TRUE - a list is a list
is.a.r(list(2)) # FALSE TRUE
is.a.r(1lm) # FALSE TRUE

is.single 293

is.a.r(y ~ x) # FALSE TRUE
is.a.r(expression(x+1)) # FALSE TRUE
is.a.r(quote(exp)) # FALSE FALSE
is.single Is an Object of Single Precision Type?
Description

is.single reports an error. There are no single precision values in R.

Usage

is.single(x)

Arguments

X object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

is.unsorted Test if an Object is Not Sorted

Description

Test if an object is not sorted (in increasing order), without the cost of sorting it.

Usage

is.unsorted(x, na.rm = FALSE, strictly = FALSE)

Arguments
X an R object with a class or a numeric, complex, character, logical or raw vector.
na.rm logical. Should missing values be removed before checking?
strictly logical indicating if the check should be for strictly increasing values.

Value

A length-one logical value. All objects of length O or 1 are sorted. Otherwise, the result will be NA
except for atomic vectors and objects with an S3 class (where the >= or > method is used to compare
x[1] with x[i-1] for i in 2:1ength(x)) or with an S4 class where you have to provide a method
for is.unsorted().

294 ISOdatetime

Note

This function is designed for objects with one-dimensional indices, as described above. Data
frames, matrices and other arrays may give surprising results.

See Also

sort, order.

ISOdatetime Date-time Conversion Functions from Numeric Representations

Description

Convenience wrappers to create date-times from numeric representations.

Usage

ISOdatetime(year, month, day, hour, min, sec, tz = "")
ISOdate(year, month, day, hour = 12, min = @, sec = @, tz = "GMT")

Arguments

year, month, day
numerical values to specify a day.
hour, min, sec numerical values for a time within a day. Fractional seconds are allowed.

nn

tz A time zone specification to be used for the conversion. is the current time
zone and "GMT" is UTC. Invalid values are most commonly treated as UTC, on
some platforms with a warning.

Details

ISOdatetime and ISOdate are convenience wrappers for strptime that differ only in their defaults
and that ISOdate sets UTC as the time zone. For dates without times it would normally be better to
use the "Date” class.

The main arguments will be recycled using the usual recycling rules.

Because these make use of strptime, only years in the range @:9999 are accepted.

Value

An object of class "POSIXct".

See Also

DateTimeClasses for details of the date-time classes; strptime for conversions from character
strings.

sS4 295

isS4 Test for an S4 object

Description

Tests whether the object is an instance of an S4 class.

Usage
isS4(object)
asS4(object, flag = TRUE, complete = TRUE)
asS3(object, flag = TRUE, complete = TRUE)
Arguments
object Any R object.
flag Optional, logical: indicate direction of conversion.
complete Optional, logical: whether conversion to S3 is completed. Not usually needed,
but see the details section.
Details

Note that isS4 does not rely on the methods package, so in particular it can be used to detect the
need to require that package.

asS3 uses the value of complete to control whether an attempt is made to transform object into a
valid object of the implied S3 class. If complete is TRUE, then an object from an S4 class extending
an S3 class will be transformed into an S3 object with the corresponding S3 class (see S3Part).
This includes classes extending the pseudo-classes array and matrix: such objects will have their
class attribute set to NULL.

isS4 is primitive.

Value

isS4 always returns TRUE or FALSE according to whether the internal flag marking an S4 object has
been turned on for this object.

asS4 and asS3 will turn this flag on or off, and asS3 will set the class from the objects .S3Class
slot if one exists. Note that asS3 will not turn the object into an S3 object unless there is a valid
conversion; that is, an object of type other than "S4" for which the S4 object is an extension, unless
argument complete is FALSE.

See Also

is.object for a more general test; Introduction for general information on S4; Classes_Details for
more on S4 class definitions.

296 isSymmetric
Examples

isS4(pi) # FALSE
isS4(getClass("MethodDefinition")) # TRUE

isSymmetric Test if a Matrix or other Object is Symmetric (Hermitian)

Description
Generic function to test if object is symmetric or not. Currently only a matrix method is imple-
mented, where a complex matrix Z must be “Hermitian” for isSymmetric(Z) to be true.

Usage

isSymmetric(object, ...)
S3 method for class 'matrix'
isSymmetric(object, tol = 100 * .Machine$double.eps,

toll = 8 * tol, ...)
Arguments
object any R object; a matrix for the matrix method.
tol numeric scalar >= 0. Smaller differences are not considered, see
all.equal.numeric.
tol1 numeric scalar >= 0. isSymmetric.matrix() ‘pre-tests’ the first and last few
rows for fast detection of ‘obviously’ asymmetric cases with this tolerance. Set-
ting it to length zero will skip the pre-tests.
further arguments passed to methods; the matrix method passes these to
all.equal. If the row and column names of object are allowed to differ for
the symmetry check do use check.attributes = FALSE!
Details

The matrix method is used inside eigen by default to test symmetry of matrices up to rounding
error, using all.equal. It might not be appropriate in all situations.

Note that a matrix m is only symmetric if its rownames and colnames are identical. Consider using
unname(m).

Value

logical indicating if object is symmetric or not.

See Also

eigen which calls isSymmetric when its symmetric argument is missing.

Jjitter 297

Examples

isSymmetric(D3 <- diag(3)) # -> TRUE

D3[2, 1] <- 1e-100

D3

isSymmetric(D3) # TRUE

isSymmetric(D3, tol = @) # FALSE for zero-tolerance

Complex Matrices - Hermitian or not
Z <- sqgrt(matrix(-1:2 + @i, 2)); Z <- t(Conj(Z)) %*% Z

YA

isSymmetric(Z) # TRUE

isSymmetric(Z + 1) # TRUE

isSymmetric(Z + 1i) # FALSE -- a Hermitian matrix has a *real* diagonal

colnames(D3) <- c("X", "Y", "Z")
isSymmetric(D3) # FALSE (as row and column names differ)
isSymmetric(D3, check.attributes=FALSE) # TRUE (as names are not checked)

jitter Jitter’ (Add Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter(x, factor = 1, amount = NULL)

Arguments
X numeric vector to which jitter should be added.
factor numeric.
amount numeric; if positive, used as amount (see below), otherwise, if = @ the default is
factor x z/50.
Default (NULL): factor x d/5 where d is about the smallest difference between
x values.
Details

The result, say r, is r <-x + runif(n,-a,a) where n <-length(x) and a is the amount argument
(if specified).

Let z <-max(x) -min(x) (assuming the usual case). The amount a to be added is either provided
as positive argument amount or otherwise computed from z, as follows:

If amount == @, we set a <-factor x z/50 (same as S).

If amount is NULL (default), we set a <-factor x d/5 where d is the smallest difference between
adjacent unique (apart from fuzz) x values.

298 kappa

Value
jitter(x,...) returns a numeric of the same length as x, but with an amount of noise added in
order to break ties.

Author(s)
Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods for Data
Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

rug which you may want to combine with jitter.

Examples

round(jitter(c(rep(1, 3), rep(1.2, 4), rep(3, 3))), 3)
These two 'fail' with S-plus 3.x:

jitter(rep(Q, 7))

jitter(rep(10000, 5))

kappa Compute or Estimate the Condition Number of a Matrix

Description
The condition number of a regular (square) matrix is the product of the norm of the matrix and the
norm of its inverse (or pseudo-inverse), and hence depends on the kind of matrix-norm.

kappa() computes by default (an estimate of) the 2-norm condition number of a matrix or of the R
matrix of a) R decomposition, perhaps of a linear fit. The 2-norm condition number can be shown
to be the ratio of the largest to the smallest non-zero singular value of the matrix.

rcond () computes an approximation of the reciprocal condition number, see the details.

Usage

kappa(z, ...)
Default S3 method:
kappa(z, exact = FALSE,

norm = NULL, method = c("qr"”, "direct”), ...)
S3 method for class 'lm'
kappa(z, ...)

S3 method for class 'qr'
kappa(z, ...)

kappa 299
.kappa_tri(z, exact = FALSE, LINPACK = TRUE, norm = NULL, ...)
rcond(x, norm = c("0","I","1"), triangular = FALSE, ...)
Arguments
z, X A matrix or a the result of qr or a fit from a class inheriting from "1m".
exact logical. Should the result be exact?
norm character string, specifying the matrix norm with respect to which the condition
number is to be computed, see also norm. For rcond, the default is "0"”, meaning
the One- or 1-norm. The (currently only) other possible value is "I" for the
infinity norm.
method a partially matched character string specifying the method to be used; "qr" is
the default for back-compatibility, mainly.
triangular logical. If true, the matrix used is just the lower triangular part of z.
LINPACK logical. If true and z is not complex, the LINPACK routine dtrco() is called;
otherwise the relevant LAPACK routine is.
further arguments passed to or from other methods; for kappa.*(), notably
LINPACK when norm is not "2".
Details

For kappa(), if exact = FALSE (the default) the 2-norm condition number is estimated by a cheap
approximation. However, the exact calculation (via svd) is also likely to be quick enough.

Note that the 1- and Inf-norm condition numbers are much faster to calculate, and rcond() com-
putes these reciprocal condition numbers, also for complex matrices, using standard Lapack rou-

tines.

kappa and rcond are different interfaces to partly identical functionality.

.kappa_tri is an internal function called by kappa.qr and kappa.default.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value

The condition number, kappa, or an approximation if exact = FALSE.

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name de-
scribed in Chambers (1992).

Source

The LAPACK routines DTRCON and ZTRCON and the LINPACK routine DTRCO.

LAPACK and LINPACK are from http://www.netlib.org/lapack and http://www.netlib.
org/linpack and their guides are listed in the references.

http://www.netlib.org/lapack
http://www.netlib.org/linpack
http://www.netlib.org/linpack

300 kronecker

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

See Also

norm; svd for the singular value decomposition and qr for the QR one.

Examples

kappa(x1 <- cbind(1, 1:10)) # 15.71
kappa(x1, exact = TRUE) # 13.68
kappa(x2 <- cbind(x1, 2:11)) # high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

sv9 <- svd(h9 <- hilbert(9))$ d

kappa(h9) # pretty high!

kappa(h9, exact = TRUE) == max(sv9) / min(sv9)

kappa(h9, exact = TRUE) / kappa(h9) # 0.677 (i.e., rel.error = 32%)

kronecker Kronecker Products on Arrays

Description

Computes the generalised kronecker product of two arrays, X and Y.

Usage
kronecker (X, Y, FUN = "%" make.dimnames = FALSE, ...)
X %x% Y
Arguments
X A vector or array.
Y A vector or array.
FUN a function; it may be a quoted string.

make.dimnames Provide dimnames that are the product of the dimnames of X and Y.

optional arguments to be passed to FUN.

http://www.netlib.org/lapack/lug/lapack_lug.html

110n_info 301

Details

If X and Y do not have the same number of dimensions, the smaller array is padded with dimensions
of size one. The returned array comprises submatrices constructed by taking X one term at a time
and expanding that term as FUN(x,Y,...).

%x% is an alias for kronecker (where FUN is hardwired to "*").

Value

An array A with dimensions dim(X) * dim(Y).

Author(s)

Jonathan Rougier

References

Shayle R. Searle (1982) Matrix Algebra Useful for Statistics. John Wiley and Sons.

See Also

outer, on which kronecker is built and %*% for usual matrix multiplication.

Examples

simple scalar multiplication
(M <- matrix(1:6, ncol = 2))
kronecker(4, M)

Block diagonal matrix:
kronecker(diag(1, 3), M)

ask for dimnames
fred <- matrix(1:12, 3, 4, dimnames = 1ist(LETTERS[1:3], LETTERS[4:71))
bill <- c("happy” = 100, "sad" = 1000)

kronecker(fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat” = 3, "dog" = 4))
kronecker(fred, bill, make.dimnames = TRUE)

110n_info Localization Information

Description

Report on localization information.

Usage
11on_info()

302 labels

Value

A list with three logical components:

MBCS If a multi-byte character set in use?
UTF-8 Is this a UTF-8 locale?
Latin-1 Is this a Latin-1 locale?

See Also

Sys.getlocale, localeconv

Examples

11on_info()

labels Find Labels from Object

Description

Find a suitable set of labels from an object for use in printing or plotting, for example. A generic

function.
Usage
labels(object, ...)
Arguments
object Any R object: the function is generic.
further arguments passed to or from other methods.
Value

A character vector or list of such vectors. For a vector the results is the names or seq_along(x)
and for a data frame or array it is the dimnames (with NULL expanded to seq_len(d[i])).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

lapply

303

lapply

Apply a Function over a List or Vector

Description

lapply returns a list of the same length as X, each element of which is the result of applying FUN to
the corresponding element of X.

sapply is a user-friendly version and wrapper of lapply by default returning a vector, ma-
trix or, if simplify = "array"”, an array if appropriate, by applying simplify2array().
sapply(x,f,simplify = FALSE,USE.NAMES = FALSE) is the same as lapply(x,f).

vapply is similar to sapply, but has a pre-specified type of return value, so it can be safer (and
sometimes faster) to use.

replicate is a wrapper for the common use of sapply for repeated evaluation of an expression
(which will usually involve random number generation).

simplify2array() is the utility called from sapply () when simplify is not false and is similarly
called from mapply().

Usage

lapply(X, FUN,

sapply (X, FUN,

)

., simplify = TRUE, USE.NAMES = TRUE)

vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)

replicate(n, expr, simplify = "array")

simplify2array(x, higher = TRUE)

Arguments

X

FUN

simplify

USE .NAMES

FUN.VALUE

a vector (atomic or list) or an expression object. Other objects (including
classed objects) will be coerced by base: :as.list.

the function to be applied to each element of X: see ‘Details’. In the case of
functions like +, %*%, the function name must be backquoted or quoted.

optional arguments to FUN.

logical or character string; should the result be simplified to a vector, matrix
or higher dimensional array if possible? For sapply it must be named and
not abbreviated. The default value, TRUE, returns a vector or matrix if appro-
priate, whereas if simplify = "array” the result may be an array of “rank”
(=length(dim(.))) one higher than the result of FUN(X[[i]1]).

logical; if TRUE and if X is character, use X as names for the result unless it had
names already. Since this argument follows . . . its name cannot be abbreviated.

a (generalized) vector; a template for the return value from FUN. See ‘Details’.

304 lapply

n integer: the number of replications.

expr the expression (a language object, usually a call) to evaluate repeatedly.

X a list, typically returned from lapply ().

higher logical; if true, simplify2array() will produce a (“higher rank”) array when

appropriate, whereas higher = FALSE would return a matrix (or vector) only.
These two cases correspond to sapply(x,simplify = "array") or simplify
= TRUE, respectively.

Details

FUN is found by a call to match. fun and typically is specified as a function or a symbol (e.g., a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call to 1lapply.

Function FUN must be able to accept as input any of the elements of X. If the latter is an atomic
vector, FUN will always be passed a length-one vector of the same type as X.

Arguments in ... cannot have the same name as any of the other arguments, and care may be
needed to avoid partial matching to FUN. In general-purpose code it is good practice to name the
first two arguments X and FUN if . . . is passed through: this both avoids partial matching to FUN and
ensures that a sensible error message is given if arguments named X or FUN are passed through

Simplification in sapply is only attempted if X has length greater than zero and if the return values
from all elements of X are all of the same (positive) length. If the common length is one the result
is a vector, and if greater than one is a matrix with a column corresponding to each element of X.

Simplification is always done in vapply. This function checks that all values of FUN are compatible
with the FUN. VALUE, in that they must have the same length and type. (Types may be promoted to a
higher type within the ordering logical < integer < double < complex, but not demoted.)

Users of S4 classes should pass a list to lapply and vapply: the internal coercion is done by the
as.list in the base namespace and not one defined by a user (e.g., by setting S4 methods on the
base function).

lapply and vapply are primitive functions.

Value

For lapply, sapply(simplify = FALSE) and replicate(simplify = FALSE), a list.

For sapply(simplify = TRUE) and replicate(simplify = TRUE): if X has length zero or n = 9,
an empty list. Otherwise an atomic vector or matrix or list of the same length as X (of length n for
replicate). If simplification occurs, the output type is determined from the highest type of the
return values in the hierarchy NULL < raw < logical < integer < double < complex < character <
list < expression, after coercion of pairlists to lists.

vapply returns a vector or array of type matching the FUN.VALUE. If 1ength(FUN.VALUE) ==1 a
vector of the same length as X is returned, otherwise an array. If FUN.VALUE is not an array, the
result is a matrix with length(FUN.VALUE) rows and length(X) columns, otherwise an array a
with dim(a) == c(dim(FUN.VALUE), length(X)).

The (Dim)names of the array value are taken from the FUN. VALUE if it is named, otherwise from the
result of the first function call. Column names of the matrix or more generally the names of the last
dimension of the array value or names of the vector value are set from X as in sapply.

lapply 305

Note
sapply(*,simplify = FALSE,USE.NAMES = FALSE) is equivalent to lapply(*).

For historical reasons, the calls created by lapply are unevaluated, and code has been writ-
ten (e.g., bquote) that relies on this. This means that the recorded call is always of the form
FUN(XLLil]l,...), with i replaced by the current (integer or double) index. This is not normally
a problem, but it can be if FUN uses sys.call or match.call or if it is a primitive function that
makes use of the call. This means that it is often safer to call primitive functions with a wrapper, so
that e.g. lapply (11, function(x) is.numeric(x)) is required to ensure that method dispatch for
is.numeric occurs correctly.

If expr is a function call, be aware of assumptions about where it is evaluated, and in particular
what . .. might refer to. You can pass additional named arguments to a function call as additional
named arguments to replicate: see ‘Examples’.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply, tapply, mapply for applying a function to multiple arguments, and rapply for a recursive
version of lapply(), eapply for applying a function to each entry in an environment.

Examples

require(stats); require(graphics)

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
lapply(x, mean)
median and quartiles for each list element
lapply(x, quantile, probs = 1:3/4)
sapply(x, quantile)
i39 <- sapply(3:9, seq) # list of vectors
sapply(i39, fivenum)
vapply(i39, fivenum,
c(Min. = @, "1st Qu."” = @, Median = @, "3rd Qu."” = 0, Max. = 0))

sapply(*, "array") -- artificial example

(v <= structure(10*(5:8), names = LETTERS[1:4]))

f2 <- function(x, y) outer(rep(x, length.out = 3), y)

(a2 <- sapply(v, f2, y = 2%(1:5), simplify = "array"))

a.2 <- vapply(v, f2, outer(1:3, 1:5), y = 2%(1:5))

stopifnot(dim(a2) == c¢(3,5,4), all.equal(a2, a.2),
identical(dimnames(a2), list(NULL,NULL,LETTERS[1:41)))

hist(replicate(100, mean(rexp(10))))

use of replicate() with parameters:
foo <- function(x =1, y = 2) c(x, y)

306 Last.value

does not work: bar <- function(n, ...) replicate(n, foo(...))
bar <- function(n, x) replicate(n, foo(x = x))
bar(5, x = 3)
Last.value Value of Last Evaluated Expression
Description

The value of the internal evaluation of a top-level R expression is always assigned to .Last.value
(in package:base) before further processing (e.g., printing).

Usage

.Last.value

Details

The value of a top-level assignment is put in .Last.value, unlike S.

Do not assign to .Last.value in the workspace, because this will always mask the object of the
same name in package:base.

See Also

eval

Examples

These will not work correctly from example(),

but they will in make check or if pasted in,

as example() does not run them at the top level
gamma(1:15) # think of some intensive calculation...
fac14 <- .Last.value # keep them

library("splines”) # returns invisibly
.Last.value # shows what library(.) above returned

La_library 307

La_library LAPACK Library

Description

Report the name of the shared object file with LAPACK implementation in use.

Usage
La_library()

Value

nn

A character vector of length one ("" when the name is not known). The value can be used as an indi-
cation of which LAPACK implementation is in use. Typically, the R version of LAPACK will appear as
libRlapack.so (1ibRlapack.dylib), depending on how R was built. Note that 1ibRlapack.so
(1ibRlapack.dylib) may also be shown for an external LAPACK implementation that had been
copied, hard-linked or renamed by the system administrator. Otherwise, the shared object file will
be given and its path/name may indicate the vendor/version. The detection does not work on Win-
dows.

See Also

extSoftVersion for versions of other third-party software including BLAS.

La_version for the version of LAPACK in use.

Examples

La_library()

La_version LAPACK Version

Description

Report the version of LAPACK in use.

Usage

La_version()

Value

A character vector of length one.

308 length

See Also

extSoftVersion for versions of other third-party software.

La_library for binary/executable file with LAPACK in use.

Examples

La_version()

length Length of an Object

Description
Get or set the length of vectors (including lists) and factors, and of any other R object for which a
method has been defined.

Usage

length(x)
length(x) <- value

Arguments

X an R object. For replacement, a vector or factor.

value a non-negative integer or double (which will be rounded down).
Details

Both functions are generic: you can write methods to handle specific classes of objects, see Inter-
nalMethods. length<- has a "factor” method.

The replacement form can be used to reset the length of a vector. If a vector is shortened, extra
values are discarded and when a vector is lengthened, it is padded out to its new length with NAs
(nul for raw vectors).

Both are primitive functions.

Value

The default method for length currently returns a non-negative integer of length 1, except for
vectors of more than 23! — 1 elements, when it returns a double.

For vectors (including lists) and factors the length is the number of elements. For an environment
it is the number of objects in the environment, and NULL has length 0. For expressions and pairlists
(including language objects and dotlists) it is the length of the pairlist chain. All other objects
(including functions) have length one: note that for functions this differs from S.

The replacement form removes all the attributes of x except its names, which are adjusted (and if
necessary extended by "").

lengths 309

Warning

Package authors have written methods that return a result of length other than one (Formula) and
that return a vector of type double (Matrix), even with non-integer values (earlier versions of sets).
Where a single double value is returned that can be represented as an integer it is returned as a
length-one integer vector.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

nchar for counting the number of characters in character vectors, lengths for getting the length of
every element in a list.

Examples
length(diag(4)) # =16 (4 x 4)
length(options()) # 12 or more
length(y ~ x1 + x2 + x3) # 3

length(expression(x, {y <- x*2; y+2}, x*y)) # 3

from example(warpbreaks)
require(stats)

fm1 <- 1m(breaks ~ wool * tension, data = warpbreaks)
length(fm1$call) # 3, Im() and two arguments.
length(formula(fm1)) # 3, ~ lhs rhs

lengths Lengths of List or Vector Elements

Description
Get the length of each element of a 1ist or atomic vector (is.atomic) as an integer or numeric
vector.

Usage

lengths(x, use.names = TRUE)

Arguments

X a list, list-like such as an expression or an atomic vector (for which the result
is trivial).

use.names logical indicating if the result should inherit the names from x.

https://CRAN.R-project.org/package=Formula
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=sets

310 lengths

Details

This function loops over x and returns a compatible vector containing the length of each element in
x. Effectively, length(x[[i]]) is called for all i, so any methods on length are considered.

Value

A non-negative integer of length length(x), except when any element has a length of more than
231 _ 1 elements, when it returns a double vector. When use.names is true, the names are taken
from the names on x, if any.

Note

One raison d’étre of lengths(x) is its use as a more efficient version of sapply(x,length) and
similar *apply calls to length. This is the reason why x may be an atomic vector, even though
lengths(x) is trivial in that case.

See Also

length for getting the length of any R object.

Examples

require(stats)

summarize by month

1 <- split(airquality$0zone, airquality$Month)

avgOz <- lapply(l, mean, na.rm=TRUE)

merge result

airquality$avgOz <- rep(unlist(avgOz, use.names=FALSE), lengths(l))
but this is safer and cleaner, but can be slower
airquality$avgOz <- unsplit(avgOz, airquality$Month)

should always be true, except when a length does not fit in 32 bits
stopifnot(identical(lengths(l), vapply(l, length, integer(iL))))

empty lists are not a problem
x <= list()
stopifnot(identical(lengths(x), integer()))

nor are "list-like" expressions:
lengths(expression(u, v, 1+ 0:9))

and we should dispatch to length methods

f <= c(rep(1, 3), rep(2, 6), 3)

dates <- split(as.POSIX1t(Sys.time() + 1:10), f)
stopifnot(identical(lengths(dates), vapply(dates, length, integer(1L))))

levels 311

levels Levels Attributes

Description
levels provides access to the levels attribute of a variable. The first form returns the value of the
levels of its argument and the second sets the attribute.

Usage

levels(x)
levels(x) <- value

Arguments
X an object, for example a factor.
value A valid value for 1levels(x). For the default method, NULL or a character vector.
For the factor method, a vector of character strings with length at least the
number of levels of x, or a named list specifying how to rename the levels.
Details

Both the extractor and replacement forms are generic and new methods can be written for them.
The most important method for the replacement function is that for factors.

For the factor replacement method, a NA in value causes that level to be removed from the levels
and the elements formerly with that level to be replaced by NA.

Note that for a factor, replacing the levels via levels(x) <-value is not the same as (and is pre-
ferred to) attr(x, "levels") <-value.

The replacement function is primitive.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

nlevels, relevel, reorder.

Examples

assign individual levels
x <- gl(2, 4, 8)
levels(x)[1] <- "low”
levels(x)[2] <- "high”

X

312 libcurl Version

or as a group

y <- gl(2, 4, 8)

levels(y) <- c("low”, "high")
y

combine some levels

z <- gl(3, 2, 12, labels = c("apple”, "salad"”, "orange"))
z

levels(z) <- c("fruit”, "veg", "fruit")

z

same, using a named list
z <- gl(3, 2, 12, labels = c("apple”, "salad", "orange"))

z

levels(z) <- list("fruit” = c("apple”,"orange"),
Mvegll = llsaladll)

z

we can add levels this way:
f <- factor(c("a",”"b"))
levels(f) <- c("c”", "a", "b")
f‘

f <- factor(c("a","b"))
levels(f) <- list(C = "C", A = "a", B = "b")
.F

libcurlversion Report Version of libcurl

Description

Report version of 1ibcurl in use.

Usage

libcurlVersion()

Value

nn

A character string, with value the 1ibcurl version in use or "" if none is. If 1ibcurl is available,

has attributes

ssl_version A character string naming the SSL/TLS implementation and version, possi-
bly "none”. It is intended for the version of OpenSSL used, but not all
implementations of libcurl use OpenSSL — for example macOS reports
"SecureTranspart”, its wrapper for SSL/TLS.

libssh_version A character string naming the 1ibssh version, which may or may not be avail-
able (it is used for e.g. scp and sftp protocols). Where present, something like
"libssh2/1.5.0".

libPaths 313

protocols A character vector of the names of supported protocols, also known as ‘schemes’
when part of a URL.

Warning

In late 2017 a libcurl installation was seen divided into two libraries, libcurl and
libcurl-feature, and the first had been updated but not the second. As the compiled function
recording the version was in the latter, the version reported by libcurlVersion was misleading.

See Also

extSoftVersion for versions of other third-party software.
curlGetHeaders, download. file and url for functions which (optionally) use libcurl.

http://curl.haxx.se/docs/sslcerts.html and http://curl.haxx.se/docs/
ssl-compared.html for more details on SSL versions (the current standard being known as
TLS). Normally libcurl used with R uses SecureTransport on macOS, OpenSSL on Windows
and GnuTLS, NSS or OpenSSL on Unix-alikes. (At the time of writing Debian-based Linuxen use
GnuTLS and RedHat-based ones use NSS, but it has been announced that Fedora 27 will switch to
OpenSSL.)

Examples

libcurlVersion()

libPaths Search Paths for Packages

Description

.libPaths gets/sets the library trees within which packages are looked for.

Usage

.libPaths(new)

.Library
.Library.site

Arguments

new a character vector with the locations of R library trees. Tilde expansion
(path.expand) is done, and if any element contains one of *?[, globbing is
done where supported by the platform: see Sys.glob.

http://curl.haxx.se/docs/sslcerts.html
http://curl.haxx.se/docs/ssl-compared.html
http://curl.haxx.se/docs/ssl-compared.html

314 libPaths

Details
.Library is a character string giving the location of the default library, the ‘library’ subdirectory
of R_HOME.

.Library.site is a (possibly empty) character vector giving the locations of the site libraries, by
default the ‘site-library’ subdirectory of R_HOME (which may not exist).

.libPaths is used for getting or setting the library trees that R knows about (and hence uses when
looking for packages). If called with argument new, the library search path is set to the existing
directories in unique(c(new, .Library.site,.Library)) and this is returned. If given no argu-
ment, a character vector with the currently active library trees is returned.

How paths new with a trailing slash are treated is OS-dependent. On a POSIX filesystem existing
directories can usually be specified with a trailing slash: on Windows filepaths with a trailing slash
(or backslash) are invalid and so will never be added to the library search path.

The library search path is initialized at startup from the environment variable R_LIBS (which should
be a colon-separated list of directories at which R library trees are rooted) followed by those in
environment variable R_LIBS_USER. Only directories which exist at the time will be included.

By default R_LIBS is unset, and R_LIBS_USER is set to directory
‘R/R.version$platform-library/x.y’ of the home directory (or ‘Library/R/x.y/library’
for CRAN macOS builds), for R x.y.z.

.Library.site can be set via the environment variable R_LIBS_SITE (as a non-empty colon-
separated list of library trees).

Both R_LIBS_USER and R_LIBS_SITE feature possible expansion of specifiers for R version specific
information as part of the startup process. The possible conversion specifiers all start with a ‘%’
and are followed by a single letter (use ‘%%’ to obtain ‘%’), with currently available conversion
specifications as follows:

‘%V’ R version number including the patchlevel (e.g., ‘2.5.0").

“%v’ R version number excluding the patchlevel (e.g., ‘2.5").

“%p’ the platform for which R was built, the value of R.version$platform.

‘%0’ the underlying operating system, the value of R.version$os.

‘%a’ the architecture (CPU) R was built on/for, the value of R.version$arch.

(See version for details on R version information.)

Function . libPaths always uses the values of .Library and .Library.site in the base names-
pace. .Library.site can be set by the site in ‘Rprofile.site’, which should be followed by a
callto .1libPaths(.1libPaths()) to make use of the updated value.

For consistency, the paths are always normalized by normalizePath(winslash="/").

Value

A character vector of file paths.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

library

See Also

library

Examples

315

.libPaths() # all library trees R knows about

library

Loading/Attaching and Listing of Packages

Description

library and require load and attach add-on packages.

Usage

library(package, help, pos = 2, lib.loc = NULL,

character.only = FALSE, logical.return = FALSE,
warn.conflicts, quietly = FALSE,

verbose = getOption("verbose"),

mask .ok, exclude, include.only,
attach.required = missing(include.only))

require(package, lib.loc = NULL, quietly = FALSE,

warn.conflicts,

character.only = FALSE,

mask .ok, exclude, include.only,
attach.required = missing(include.only))

conflictRules(pkg, mask.ok = NULL, exclude = NULL)

Arguments

package,

pos

lib.loc

help the name of a package, given as a name or literal character string, or a character
string, depending on whether character.only is FALSE (default) or TRUE.

the position on the search list at which to attach the loaded namespace. Can also
be the name of a position on the current search list as given by search().

a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known to
.libPaths (). Non-existent library trees are silently ignored.

character.only a logical indicating whether package or help can be assumed to be character

logical

strings.

.return logical. If it is TRUE, FALSE or TRUE is returned to indicate success.

316

library

warn.conflicts logical. If TRUE, warnings are printed about conflicts from attaching the
new package. A conflict is a function masking a function, or a non-function
masking a non-function. The default is TRUE unless specified as FALSE in the
conflicts.policy option.

verbose a logical. If TRUE, additional diagnostics are printed.

quietly alogical. If TRUE, no message confirming package attaching is printed, and most
often, no errors/warnings are printed if package attaching fails.

pkg character string naming a package.
mask . ok character vector of names of objects that can mask objects on the search path
without signaling an error when strict conflict checking is enabled

exclude,include.only
character vector of names of objects to exclude or include in the attached frame.
Only one of these arguments may be used in a call to library or require.

attach.required

logical specifying whether required packages listed in the Depends clause of the
DESCRIPTION file should be attached automatically.

Details

library(package) and require(package) both load the namespace of the package with name
package and attach it on the search list. require is designed for use inside other functions; it returns
FALSE and gives a warning (rather than an error as library() does by default) if the package does
not exist. Both functions check and update the list of currently attached packages and do not reload
a namespace which is already loaded. (If you want to reload such a package, call detach(unload =
TRUE) or unloadNamespace first.) If you want to load a package without attaching it on the search
list, see requireNamespace.

To suppress messages during the loading of packages use suppressPackageStartupMessages:
this will suppress all messages from R itself but not necessarily all those from package authors.

If library is called with no package or help argument, it lists all available packages in the
libraries specified by lib.loc, and returns the corresponding information in an object of class
"libraryIQR". (The structure of this class may change in future versions.) Use .packages(all
= TRUE) to obtain just the names of all available packages, and installed.packages() for even
more information.

library(help = somename) computes basic information about the package somename, and returns
this in an object of class "packageInfo”. (The structure of this class may change in future versions.)
When used with the default value (NULL) for 1ib. loc, the attached packages are searched before
the libraries.

Value

Normally library returns (invisibly) the list of attached packages, but TRUE or FALSE if
logical.return is TRUE. When called as library() it returns an object of class "libraryIQR”,
and for library(help=), one of class "packageInfo”.

require returns (invisibly) a logical indicating whether the required package is available.

library 317

Conflicts

Handling of conflicts depends on the setting of the conflicts.policy option. If this option is not
set, then conflicts result in warning messages if the argument warn. conflicts is TRUE. If the option
is set to the character string "strict”, then all unresolved conflicts signal errors. Conflicts can be
resolved using the mask.ok, exclude, and include.only arguments to library and require.
Defaults for mask. ok and exclude can be specified using conflictRules.

If the conflicts.policy option is set to the string "depends.ok” then conflicts resulting from
attaching declared dependencies will not produce errors, but other conflicts will. This is likely to be
the best setting for most users wanting some additional protection against unexpected conflicts.

The policy can be tuned further by specifying the conflicts.policy option as a named list with
the following fields:

error: logical; if TRUE treat unresolved conflicts as errors.
warn: logical; unless FALSE issue a warning message when conflicts are found.

generics.ok: logical; if TRUE ignore conflicts created by defining S4 generics for functions on the
search path.

depends.ok: logical; if TRUE do not treat conflicts with required packages as errors.

can.mask: character vector of names of packages that are allowed to be masked. These would
typically be base packages attached by default.

Licenses

Some packages have restrictive licenses, and there is a mechanism to allow users to be aware of such
licenses. If getOption(”checkPackagelLicense”) == TRUE, then at first use of a package with a
not-known-to-be-FOSS (see below) license the user is asked to view and accept the license: a list
of accepted licenses is stored in file ‘~/.R/1licensed’. In a non-interactive session it is an error to
use such a package whose license has not already been recorded as accepted.

As from R 3.4.0 the license check is done when the namespace is loaded.

Free or Open Source Software (FOSS, e.g. https://en.wikipedia.org/wiki/F0SS) packages
are determined by the same filters used by available.packages but applied to just the current
package, not its dependencies.

There can also be a site-wide file ‘R_HOME/etc/licensed.site’ of packages (one per line).

Formal methods

library takes some further actions when package methods is attached (as it is by default). Pack-
ages may define formal generic functions as well as re-defining functions in other packages (notably
base) to be generic, and this information is cached whenever such a namespace is loaded after meth-
ods and re-defined functions (implicit generics) are excluded from the list of conflicts. The caching
and check for conflicts require looking for a pattern of objects; the search may be avoided by defin-
ing an object .noGenerics (with any value) in the namespace. Naturally, if the package does have
any such methods, this will prevent them from being used.

https://en.wikipedia.org/wiki/FOSS

318 library

Note

library and require can only load/attach an installed package, and this is detected by having a
‘DESCRIPTION’ file containing a ‘Built:’ field.

Under Unix-alikes, the code checks that the package was installed under a similar operating sys-
tem as given by R.version$platform (the canonical name of the platform under which R was
compiled), provided it contains compiled code. Packages which do not contain compiled code
can be shared between Unix-alikes, but not to other OSes because of potential problems with
line endings and OS-specific help files. If sub-architectures are used, the OS similarity is not
checked since the OS used to build may differ (e.g. 1386-pc-linux-gnu code can be built on
an x86_64-unknown-1inux-gnu OS).

The package name given to library and require must match the name given in the package’s
‘DESCRIPTION’ file exactly, even on case-insensitive file systems such as are common on Windows
and macOS.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.1libPaths, .packages.

attach, detach, search, objects, autoload, requireNamespace, library.dynam, data,
install.packages and installed.packages; INSTALL, REMOVE.

The initial set of packages attached is set by options(defaultPackages=): see also Startup.

Examples
library() # list all available packages
library(lib.loc = .Library) # list all packages in the default library
library(help = splines) # documentation on package 'splines'’
library(splines) # attach package 'splines'
require(splines) # the same
search() # "splines”, too

detach("package:splines”)

if the package name is in a character vector, use

pkg <- "splines”

library(pkg, character.only = TRUE)

detach(pos = match(paste("”package”, pkg, sep = ":"), search()))

require(pkg, character.only = TRUE)

detach(pos = match(paste("”package”, pkg, sep = ":"), search()))
require(nonexistent) # FALSE
Not run:

if you want to mask as little as possible, use
library(mypkg, pos = "package:base")

library.dynam

End(Not run)

319

library.dynam

Loading DLLs from Packages

Description

Load the specified file of compiled code if it has not been loaded already, or unloads it.

Usage

library.dynam(chname, package, lib.loc,

verbose = getOption("”verbose"),
file.ext = .Platform$dynlib.ext, ...)

library.dynam.unload(chname, libpath,

.dynLibs(new)

Arguments

chname

package
lib.loc
libpath

verbose

file.ext

new

Details

verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext)

a character string naming a DLL (also known as a dynamic shared object or
library) to load.

a character vector with the name of package.
a character vector describing the location of R library trees to search through.
the path to the loaded package whose DLL is to be unloaded.

a logical value indicating whether an announcement is printed on the console
before loading the DLL. The default value is taken from the verbose entry in the
system options.

[}

the extension (including ‘.’ if used) to append to the file name to specify the
library to be loaded. This defaults to the appropriate value for the operating
system.

additional arguments needed by some libraries that are passed to the call to
dyn.load to control how the library and its dependencies are loaded.

alist of "DLLInfo" objects corresponding to the DLLs loaded by packages. Can
be missing.

See dyn. load for what sort of objects these functions handle.

library.dynamis designed to be used inside a package rather than at the command line, and should
really only be used inside .onLoad. The system-specific extension for DLLs (e.g., *.so’ or ‘.s1’
on Unix-alike systems, ‘.d11’ on Windows) should not be added.

320 library.dynam

library.dynam.unload is designed for use in .onUnload: it unloads the DLL and updates the
value of .dynLibs()

.dynLibs is used for getting (with no argument) or setting the DLLs which are currently loaded by
packages (using library.dynam).

Value

If chname is not specified, library.dynam returns an object of class "DLLInfolList" corresponding
to the DLLs loaded by packages.

If chname is specified, an object of class "DLLInfo" that identifies the DLL and which can be used
in future calls is returned invisibly. Note that the class "DLLInfo"” has a method for $ which can be
used to resolve native symbols within that DLL.

library.dynam.unload invisibly returns an object of class "DLLInfo" identifying the DLL suc-
cessfully unloaded.

.dynLibs returns an object of class "DLLInfolList” corresponding corresponding to its current
value.

Warning

Do not use dyn.unload on a DLL loaded by library.dynam: use library.dynam.unload to
ensure that . dynLibs gets updated. Otherwise a subsequent call to 1ibrary.dynam will be told the
object is already loaded.

Note that whether or not it is possible to unload a DLL and then reload a revised version of the same
file is OS-dependent: see the ‘Value’ section of the help for dyn.unload.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

getLoadedDLLs for information on "DLLInfo" and "DLLInfolList" objects.
.onLoad, library, dyn.load, .packages, .libPaths
SHLIB for how to create suitable DLLs.

Examples

Which DLLs were dynamically loaded by packages?
library.dynam()

More on library.dynam.unload() :

require(nlme)

nlme:::.onUnload # shows library.dynam.unload() call
detach("package:nlme"”) # by default, unload=FALSE , so,
tail(library.dynam(), 2)# nlme still there

How to unload the DLL ?

license 321

Best is to unload the namespace, unloadNamespace("nlme")

If we need to do it separately which should be exceptional:
pd.file <- attr(packageDescription("nlme"”), "file")
library.dynam.unload("nlme", libpath = sub("/Meta.*", '', pd.file))
tail(library.dynam(), 2)# 'nlme' is gone now
unloadNamespace(”"nlme”) # now gives warning

license The R License Terms

Description

The license terms under which R is distributed.

Usage

license()
licence()

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE, either Version 2, June
1991 or Version 3, June 2007. A copy of the version 2 license is in file ‘R_HOME/doc/COPYING’
and can be viewed by RShowDoc(”COPYING"). Version 3 of the license can be displayed by
RShowDoc ("GPL-3").

A small number of files (some of the API header files) are distributed under the LESSER
GNU GENERAL PUBLIC LICENSE, version 2.1 or later. A copy of this license is in file
‘$R_SHARE_DIR/licenses/LGPL-2.1" and can be viewed by RShowDoc("LGPL-2.1"). Version
3 of the license can be displayed by RShowDoc ("LGPL-3").

list Lists — Generic and Dotted Pairs

Description

Functions to construct, coerce and check for both kinds of R lists.

Usage

list(...)
pairlist(...)

as.list(x, ...)
S3 method for class 'environment'
as.list(x, all.names = FALSE, sorted = FALSE, ...)

322 list

as.pairlist(x)

is.list(x)
is.pairlist(x)

alist(...)
Arguments
objects, possibly named.
X object to be coerced or tested.
all.names a logical indicating whether to copy all values or (default) only those whose
names do not begin with a dot.
sorted a logical indicating whether the names of the resulting list should be sorted (in-
creasingly). Note that this is somewhat costly, but may be useful for comparison
of environments.
Details

Almost all lists in R internally are Generic Vectors, whereas traditional dotted pair lists (as in LISP)
remain available but rarely seen by users (except as formals of functions).

The arguments to 1ist or pairlist are of the form value or tag = value. The functions return
a list or dotted pair list composed of its arguments with each value either tagged or untagged,
depending on how the argument was specified.

alist handles its arguments as if they described function arguments. So the values are not evalu-
ated, and tagged arguments with no value are allowed whereas 1ist simply ignores them. alist is
most often used in conjunction with formals.

as.list attempts to coerce its argument to a list. For functions, this returns the concatenation of
the list of formal arguments and the function body. For expressions, the list of constituent elements
is returned. as.list is generic, and as the default method calls as.vector(mode = "1ist") for
a non-list, methods for as.vector may be invoked. as.list turns a factor into a list of one-
element factors. Attributes may be dropped unless the argument already is a list or expression.
(This is inconsistent with functions such as as.character which always drop attributes, and is for
efficiency since lists can be expensive to copy.)

is.list returns TRUE if and only if its argument is a list or a pairlist of length > 0.
is.pairlist returns TRUE if and only if the argument is a pairlist or NULL (see below).

The "environment” method for as.list copies the name-value pairs (for names not beginning
with a dot) from an environment to a named list. The user can request that all named objects are
copied. Unless sorted = TRUE, the list is in no particular order (the order depends on the order
of creation of objects and whether the environment is hashed). No enclosing environments are
searched. (Objects copied are duplicated so this can be an expensive operation.) Note that there is
an inverse operation, the as.environment () method for list objects.

An empty pairlist, pairlist() is the same as NULL. This is different from 1ist(): some but not all
operations will promote an empty pairlist to an empty list.

list.files 323

as.pairlistis implemented as as.vector(x, "pairlist”), and hence will dispatch methods for
the generic function as.vector. Lists are copied element-by-element into a pairlist and the names
of the list used as tags for the pairlist: the return value for other types of argument is undocumented.

list,is.list and is.pairlist are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

vector("list"”,length) for creation of a list with empty components; c, for concatenation;
formals. unlist is an approximate inverse to as.list().

‘plotmath’ for the use of list in plot annotation.

Examples

require(graphics)

create a plotting structure
pts <- list(x = cars[,1]1, y = cars[,2])
plot(pts)

is.pairlist(.Options) # a user-level pairlist

"pre-allocate” an empty list of length 5
vector("list"”, 5)

Argument lists

f <- function() x

Note the specification of a argument:
formals(f) <- al <- alist(x =, y =2+3, ... =)
f

al

n "

environment->list coercion

el <- new.env()
el$a <- 10
elsh <- 20
as.list(el)

list.files List the Files in a Directory/Folder

Description

These functions produce a character vector of the names of files or directories in the named direc-
tory.

324 list.files
Usage
list.files(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
dir(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
list.dirs(path = ".", full.names = TRUE, recursive = TRUE)
Arguments
path a character vector of full path names; the default corresponds to the working
directory, getwd(). Tilde expansion (see path.expand) is performed. Missing
values will be ignored.
pattern an optional regular expression. Only file names which match the regular expres-
sion will be returned.
all.files a logical value. If FALSE, only the names of visible files are returned. If TRUE,
all file names will be returned.
full.names a logical value. If TRUE, the directory path is prepended to the file names to give
a relative file path. If FALSE, the file names (rather than paths) are returned.
recursive logical. Should the listing recurse into directories?

ignore.case

include.dirs

no..

Value

logical. Should pattern-matching be case-insensitive?

logical. Should subdirectory names be included in recursive listings? (They
always are in non-recursive ones).

logical. Should both ”." and ". ." be excluded also from non-recursive listings?

A character vector containing the names of the files in the specified directories (empty if there were
no files). If a path does not exist or is not a directory or is unreadable it is skipped, with a warning.

The files are sorted in alphabetical order, on the full path if full.names = TRUE.

list.dirs implicitly has all.files = TRUE, and if recursive = TRUE, the answer includes path
itself (provided it is a readable directory).

Note

File naming conventions are platform dependent. The pattern matching works with the case of file
names as returned by the OS.

On a POSIX filesystem recursive listings will follow symbolic links to directories.

Author(s)

Ross Thaka, Brian Ripley

list2env 325

See Also

file.info, file.access and files for many more file handling functions and file.choose for
interactive selection.

glob2rx to convert wildcards (as used by system file commands and shells) to regular expressions.

Sys.glob for wildcard expansion on file paths.

Examples

list.files(R.home())

Only files starting with a-1 or r

Note that a-1 is locale-dependent, but using case-insensitive

matching makes it unambiguous in English locales

dir("../..", pattern = "*[a-1r]", full.names = TRUE, ignore.case = TRUE)

list.dirs(R.home("doc"))
list.dirs(R.home("doc"), full.names = FALSE)

list2env From A List, Build or Add To an Environment

Description
From a named list x, create an environment containing all list components as objects, or “multi-
assign” from x into a pre-existing environment.

Usage

list2env(x, envir = NULL, parent = parent.frame(),
hash = (length(x) > 100), size = max(29L, length(x)))

Arguments
X a list, where names(x) must not contain empty ("") elements.
envir an environment or NULL.
parent (for the case envir =NULL): a parent frame aka enclosing environment, see
new.env.
hash (for the case envir = NULL): logical indicating if the created environment should
use hashing, see new.env.
size (in the case envir = NULL, hash = TRUE): hash size, see new.env.
Details

This will be very slow for large inputs unless hashing is used on the environment.

Environments must have uniquely named entries, but named lists need not: where the list has du-
plicate names it is the last element with the name that is used. Empty names throw an error.

326 load

Value

An environment, either newly created (as by new. env) if the envir argument was NULL, otherwise
the updated environment envir. Since environments are never duplicated, the argument envir is
also changed.

Author(s)

Martin Maechler

See Also

environment, new.env, as.environment; further, assign.

The (semantical) “inverse”: as.list.environment.

Examples

L <- list(a=1, b =2:4, p=pi, ff = gl(3, 4, labels = LETTERS[1:31))
e <- list2env(L)
1s(e)
stopifnot(ls(e) == sort(names(L)),
identical(Lb, eb)) # "$" working for environments as for lists

consistency, when we do the inverse:
11 <- as.list(e) # -> dispatching to the as.list.environment() method
rbind(names(L), names(l1l)) # not in the same order, typically,
but the same content:
stopifnot(identical(L [sort.list(names(L))1],
11[sort.list(names(11))1))

now add to e -- can be seen as a fast "multi-assign”:
list2env(list(abc = LETTERS, note = "just an example”,
df = data.frame(x = rnorm(20), y = rbinom(20, 1, pr = 0.2))),
envir = e)
utils::1s.str(e)

load Reload Saved Datasets

Description

Reload datasets written with the function save.

Usage

load(file, envir = parent.frame(), verbose = FALSE)

load 327
Arguments
file a (readable binary-mode) connection or a character string giving the name of the
file to load (when tilde expansion is done).
envir the environment where the data should be loaded.
verbose should item names be printed during loading?
Details

load can load R objects saved in the current or any earlier format. It can read a compressed file
(see save) directly from a file or from a suitable connection (including a call to url).

A not-open connection will be opened in mode "rb"” and closed after use. Any connection other
than a gzfile or gzcon connection will be wrapped in gzcon to allow compressed saves to be
handled: note that this leaves the connection in an altered state (in particular, binary-only), and that
it needs to be closed explicitly (it will not be garbage-collected).

Only R objects saved in the current format (used since R 1.4.0) can be read from a connection. If
no input is available on a connection a warning will be given, but any input not in the current format
will result in a error.

Loading from an earlier version will give a warning about the ‘magic number’: magic numbers
1971:1977 are from R < 0.99.0, and RD[ABX]1 from R 0.99.0 to R 1.3.1. These are all obsolete,
and you are strongly recommended to re-save such files in a current format.

The verbose argument is mainly intended for debugging. If it is TRUE, then as objects from the file
are loaded, their names will be printed to the console. If verbose is set to an integer value greater
than one, additional names corresponding to attributes and other parts of individual objects will also
be printed. Larger values will print names to a greater depth.

Objects can be saved with references to namespaces, usually as part of the environment of a function
or formula. Such objects can be loaded even if the namespace is not available: it is replaced by a
reference to the global environment with a warning. The warning identifies the first object with
such a reference (but there may be more than one).

Value

A character vector of the names of objects created, invisibly.

Warning

Saved R objects are binary files, even those saved with ascii = TRUE, so ensure that they are trans-
ferred without conversion of end of line markers. load tries to detect such a conversion and gives
an informative error message.

load(<file>) replaces all existing objects with the same names in the current environment (typi-
cally your workspace, .GlobalEnv) and hence potentially overwrites important data. It is consider-
ably safer to use envir = to load into a different environment, or to attach(file) which load()s
into a new entry in the search path.

See Also

save, download. file; further attach as wrapper for load().

For other interfaces to the underlying serialization format, see unserialize and readRDS.

328 locales

Examples

save all data

xx <- pi # to ensure there is some data
save(list = ls(all = TRUE), file= "all.rda")
rm(xx)

restore the saved values to the current environment
local({

load("all.rda")

1s()
»

xx <- exp(1:3)

restore the saved values to the user's workspace

load("all.rda") ## which is here xequivalentx* to

load("all.rda", .GlobalEnv)

This however annihilates all objects in .GlobalEnv with the same names !
xx # no longer exp(1:3)

rm(xx)
attach(”all.rda") # safer and will warn about masked objects w/ same name in .GlobalEnv
1s(pos = 2)

also typically need to cleanup the search path:
detach("file:all.rda")

clean up (the example):
unlink(”all.rda")

Not run:

con <- url("http://some.where.net/R/data/example.rda")
print the value to see what objects were created.
print(load(con))

close(con) # url() always opens the connection

End(Not run)

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale for the R process.

Usage

Sys.getlocale(category = "LC_ALL")
Sys.setlocale(category = "LC_ALL", locale = "")

locales 329

Arguments
category character string. The following categories should always be supported:
"LC_ALL", "LC_COLLATE", "LC_CTYPE", "LC_MONETARY", "LC_NUMERIC" and
"LC_TIME". Some systems (not Windows) will also support "LC_MESSAGES",
"LC_PAPER" and "LC_MEASUREMENT".
locale character string. A valid locale name on the system in use. Normally "" (the
default) will pick up the default locale for the system.
Details

The locale describes aspects of the internationalization of a program. Initially most aspects of the
locale of R are set to "C" (which is the default for the C language and reflects North-American
usage — also known as "POSIX"). R sets "LC_CTYPE" and "LC_COLLATE", which allow the use
of a different character set and alphabetic comparisons in that character set (including the use of
sort), "LC_MONETARY" (for use by Sys.localeconv) and "LC_TIME" may affect the behaviour of
as.POSIX1t and strptime and functions which use them (but not date).

The first seven categories described here are those specified by POSIX. "LC_MESSAGES" will be "C"
on systems that do not support message translation, and is not supported on Windows. Trying to
use an unsupported category is an error for Sys.setlocale.

Note that setting category "LC_ALL" sets only categories "LC_COLLATE", "LC_CTYPE",
"LC_MONETARY" and "LC_TIME".

Attempts to set an invalid locale are ignored. There may or may not be a warning, depending on the
Os.

Attempts to change the character set (by Sys.setlocale("LC_CTYPE",), if that implies a different
character set) during a session may not work and are likely to lead to some confusion.

Note that the LANGUAGE environment variable has precedence over "LC_MESSAGES" in selecting the
language for message translation on most R platforms.

On platforms where ICU is used for collation the locale used for collation can be reset by
icuSetCollate. Except on Windows, the initial setting is taken from the "LC_COLLATE" category,
and it is reset when this is changed by a call to Sys.setlocale.

Value

A character string of length one describing the locale in use (after setting for Sys.setlocale), or
an empty character string if the current locale settings are invalid or NULL if locale information is
unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a single locale
name or a set of locale names separated by "/" (Solaris, macOS) or ";" (Windows, Linux). For
portability, it is best to query categories individually: it is not necessarily the case that the result of
foo <-Sys.getlocale() can be used in Sys.setlocale("LC_ALL",locale = f00).

Available locales

On most Unix-alikes the POSIX shell command locale -a will list the ‘available public’ locales.
What that means is platform-dependent. On recent Linuxen this may mean ‘available to be installed’
as on some RPM-based systems the locale data is in separate RPMs. On Debian/Ubuntu the set of

330 locales

available locales is managed by OS-specific facilities such as locale-gen and locale -a lists those
currently enabled.

For Windows, Microsoft moves its documentation frequently so a Web search is the best way to
find current information.

Warning

Setting "LC_NUMERIC" to any value other than "C"” may cause R to function anomalously, so gives
a warning. Input conversions in R itself are unaffected, but the reading and writing of ASCII save
files will be, as may packages which do their own input/output.

Setting it temporarily on a Unix-alike to produce graphical or text output may work well enough,
but options(OutDec) is often preferable.

Almost all the output routines used by R itself under Windows ignore the setting of "LC_NUMERIC"
since they make use of the Trio library which is not internationalized.

Note

Changing the values of locale categories whilst R is running ought to be noticed by the OS services,
and usually is but exceptions have been seen (usually in collation services).

See Also

strptime for uses of category = "LC_TIME". Sys. localeconv for details of numerical and mon-
etary representations.

110n_info gives some summary facts about the locale and its encoding.

The ‘R Installation and Administration’ manual for background on locales and how to find out
locale names on your system.

Examples

Sys.getlocale()

Sys.getlocale("LC_TIME")

Not run:

Sys.setlocale("LC_TIME", "de") # Solaris: details are 0S-dependent
Sys.setlocale("LC_TIME"”, "de_DE") # Many Unix-alikes
Sys.setlocale("LC_TIME", "de_DE.UTF-8") # Linux, macOS, other Unix-alikes
Sys.setlocale("LC_TIME"”, "de_DE.utf8") # some Linux versions
Sys.setlocale("LC_TIME", "German"”) # Windows

End(Not run)
Sys.getlocale("LC_PAPER") # may or may not be set

Not run:

Sys.setlocale("LC_COLLATE", "C") # turn off locale-specific sorting,
usually (but not on all platforms)

End(Not run)

log 331

log Logarithms and Exponentials

Description

log computes logarithms, by default natural logarithms, 1og1@ computes common (i.e., base 10)
logarithms, and log2 computes binary (i.e., base 2) logarithms. The general form log(x,base)
computes logarithms with base base.

log1p(x) computes log(1 + x) accurately also for || < 1.
exp computes the exponential function.

expm1(x) computes exp(x) — 1 accurately also for |z| < 1.

Usage

log(x, base = exp(1))
logb(x, base = exp(1))
logl0(x)
log2(x)

log1p(x)

exp(x)
expm1(x)

Arguments

X a numeric or complex vector.

base a positive or complex number: the base with respect to which logarithms are
computed. Defaults to e=exp(1).

Details

All except logb are generic functions: methods can be defined for them individually or via the Math
group generic.

log10 and log? are only convenience wrappers, but logs to bases 10 and 2 (whether computed via
log or the wrappers) will be computed more efficiently and accurately where supported by the OS.
Methods can be set for them individually (and otherwise methods for log will be used).

logb is a wrapper for 1log for compatibility with S. If (S3 or S4) methods are set for 1log they will
be dispatched. Do not set S4 methods on logb itself.

All except log are primitive functions.

332 Logic

Value

A vector of the same length as x containing the transformed values. 1og(®) gives -Inf, and log(x)
for negative values of x is NaN. exp(-Inf) is @.

For complex inputs to the log functions, the value is a complex number with imaginary part in the
range [—, 7r]: which end of the range is used might be platform-specific.

S4 methods

exp, expm1, log, 1log10, log2 and log1p are S4 generic and are members of the Math group generic.

Note that this means that the S4 generic for 1og has a signature with only one argument, x, but that
base can be passed to methods (but will not be used for method selection). On the other hand, if
you only set a method for the Math group generic then base argument of log will be ignored for
your class.

Source

log1p and expm1 may be taken from the operating system, but if not available there then they are
based on the Fortran subroutine dlnrel by W. Fullerton of Los Alamos Scientific Laboratory (see
http://www.netlib.org/slatec/fnlib/dlnrel.f) and (for small x) a single Newton step for
the solution of log1p(y) = x respectively.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (for log, 1og10 and exp.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (for logb.)

See Also

Trig, sqgrt, Arithmetic.

Examples

log(exp(3))
loglo(le7) # =7

X <= 10*-(1+2%1:9)
cbind(x, log(1+x), loglp(x), exp(x)-1, expml(x))

Logic Logical Operators

Description

These operators act on raw, logical and number-like vectors.

http://www.netlib.org/slatec/fnlib/dlnrel.f

Logic 333

Usage

I X

&y
&& y
'y
[y
xor(x, y)

X X X X

isTRUE (x)
isFALSE(x)

Arguments

X,y raw, logical or ‘number-like’ vectors (i.e., of types double (class numeric),
integer and complex), or objects for which methods have been written.

Details

! indicates logical negation (NOT).

& and && indicate logical AND and | and || indicate logical OR. The shorter form performs ele-
mentwise comparisons in much the same way as arithmetic operators. The longer form evaluates
left to right examining only the first element of each vector. Evaluation proceeds only until the
result is determined. The longer form is appropriate for programming control-flow and typically
preferred in if clauses.

xor indicates elementwise exclusive OR.

iSTRUE(x) is the same as { is.logical(x) && length(x) ==1&& !is.na(x) && x }; isFALSE()
is defined analogously. Consequently, if (isTRUE(cond)) may be preferable to if (cond) because
of NAs.

In earlier R versions, isTRUE <-function(x) identical(x, TRUE), had the drawback to be false
e.g., for x <-c(val = TRUE).

Numeric and complex vectors will be coerced to logical values, with zero being false and all non-
zero values being true. Raw vectors are handled without any coercion for !, &, | and xor, with these
operators being applied bitwise (so ! is the 1s-complement).

The operators !, & and | are generic functions: methods can be written for them individually or via
the Ops (or S4 Logic, see below) group generic function. (See Ops for how dispatch is computed.)

NA is a valid logical object. Where a component of x or y is NA, the result will be NA if the outcome
is ambiguous. In other words NA & TRUE evaluates to NA, but NA & FALSE evaluates to FALSE. See the
examples below.

See Syntax for the precedence of these operators: unlike many other languages (including S) the
AND and OR operators do not have the same precedence (the AND operators have higher prece-
dence than the OR operators).

Value

For !, a logical or raw vector(for raw x) of the same length as x: names, dims and dimnames are
copied from x, and all other attributes (including class) if no coercion is done.

334 Logic

For |, & and xor a logical or raw vector. If involving a zero-length vector the result has length
zero. Otherwise, the elements of shorter vectors are recycled as necessary (with a warning when
they are recycled only fractionally). The rules for determining the attributes of the result are rather
complicated. Most attributes are taken from the longer argument, the first if they are of the same
length. Names will be copied from the first if it is the same length as the answer, otherwise from
the second if that is. For time series, these operations are allowed only if the series are compatible,
when the class and tsp attribute of whichever is a time series (the same, if both are) are used. For
arrays (and an array result) the dimensions and dimnames are taken from first argument if it is an
array, otherwise the second.

For | |, & and isTRUE, a length-one logical vector.

S4 methods

!, & and | are S4 generics, the latter two part of the Logic group generic (and hence methods need
argument names e, e2).

Note

The elementwise operators are sometimes called as functions as e.g. *&" (x,y): see the description
of how argument-matching is done in Ops.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

TRUE or logical.
any and all for OR and AND on many scalar arguments.
Syntax for operator precedence.

bitwAnd for bitwise versions for integer vectors.

Examples

y <= 1 + (x <- stats::rpois(50, lambda = 1.5) / 4 - 1)
x[(x >0) & (x < 1)] # all x values between @ and 1
if (any(x == @) || any(y == 0)) "zero encountered”

construct truth tables :

x <- c(NA, FALSE, TRUE)
names(x) <- as.character(x)
outer(x, x, "&") ## AND table
outer(x, x, "|") ## OR table

logical 335

logical Logical Vectors

Description

Create or test for objects of type "logical”, and the basic logical constants.

Usage

TRUE
FALSE
T; F

logical(length = @)
as.logical(x, ...)
is.logical(x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

TRUE and FALSE are reserved words denoting logical constants in the R language, whereas T and F
are global variables whose initial values set to these. All four are logical(1) vectors.

Logical vectors are coerced to integer vectors in contexts where a numerical value is required, with
TRUE being mapped to 1L, FALSE to OL and NA to NA_integer_.

Value

logical creates a logical vector of the specified length. Each element of the vector is equal to
FALSE.

as.logical attempts to coerce its argument to be of logical type. For factors, this uses
the levels (labels). Like as.vector it strips attributes including names. Character strings
c("T","TRUE", "True","true") are regarded as true, c("F","FALSE","False","false") as
false, and all others as NA.

is.logical returns TRUE or FALSE depending on whether its argument is of logical type or not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

336 LongVectors

See Also

NA, the other logical constant.

LongVectors Long Vectors

Description

Vectors of 23! or more elements were added in R 3.0.0.

Details

231

Prior to R 3.0.0, all vectors in R were restricted to at most — 1 elements and could be indexed

by integer vectors.

Currently all atomic (raw, logical, integer, numeric, complex, character) vectors, lists and expres-
sions can be much longer on 64-bit platforms: such vectors are referred to as ‘long vectors’ and
have a slightly different internal structure. In theory they can contain up to 252 elements, but ad-
dress space limits of current CPUs and OSes will be much smaller. Such objects will have a length
that is expressed as a double, and can be indexed by double vectors.

Arrays (including matrices) can be based on long vectors provided each of their dimensions is at
most 231 — 1: thus there are no 1-dimensional long arrays.

R code typically only needs minor changes to work with long vectors, maybe only checking that
as.integer is not used unnecessarily for e.g. lengths. However, compiled code typically needs
quite extensive changes. Note that the .C and .Fortran interfaces do not accept long vectors, so
.Call (or similar) has to be used.

Because of the storage requirements (a minimum of 64 bytes per character string), character vectors
are only going to be usable if they have a small number of distinct elements, and even then factors
will be more efficient (4 bytes per element rather than 8). So it is expected that most of the usage of
long vectors will be integer vectors (including factors) and numeric vectors.

Matrix algebra

It is now possible to use m x n matrices with more than 2 billion elements. Whether matrix algebra
(including %*%, crossprod, svd, gr, solve and eigen) will actually work is somewhat implemen-
tation dependent, including the Fortran compiler used and if an external BLAS or LAPACK is used.

An efficient parallel BLAS implementation will often be important to obtain usable performance.
For example on one particular platform chol on a 47,000 square matrix took about 5 hours with
the internal BLAS, 21 minutes using an optimized BLAS on one core, and 2 minutes using an
optimized BLAS on 16 cores.

lower.tri 337

lower.tri Lower and Upper Triangular Part of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entries TRUE in the lower or upper

triangle.
Usage
lower.tri(x, diag = FALSE)
upper.tri(x, diag = FALSE)
Arguments
X a matrix or other R object with length(dim(x)) == 2. For back compatibility
reasons, when the above is not fulfilled, as.matrix(x) is called first.
diag logical. Should the diagonal be included?
See Also

diag, matrix; further row and col on which lower.tri() and upper.tri() are built.

Examples

(m2 <- matrix(1:20, 4, 5))
lower.tri(m2)
m2[lower.tri(m2)] <- NA
m2

1s List Objects

Description

1s and objects return a vector of character strings giving the names of the objects in the specified
environment. When invoked with no argument at the top level prompt, 1s shows what data sets
and functions a user has defined. When invoked with no argument inside a function, 1s returns the
names of the function’s local variables: this is useful in conjunction with browser.

Usage

ls(name, pos = -1L, envir = as.environment(pos),
all.names = FALSE, pattern, sorted = TRUE)
objects(name, pos= -1L, envir = as.environment(pos),
all.names = FALSE, pattern, sorted = TRUE)

338

Arguments

name

pos

envir

all.names

pattern

sorted

Details

Is

which environment to use in listing the available objects. Defaults to the current
environment. Although called name for back compatibility, in fact this argument
can specify the environment in any form; see the ‘Details’ section.

an alternative argument to name for specifying the environment as a position in
the search list. Mostly there for back compatibility.

an alternative argument to name for specifying the environment. Mostly there
for back compatibility.

a logical value. If TRUE, all object names are returned. If FALSE, names which
begin with a ‘.’ are omitted.

an optional regular expression. Only names matching pattern are returned.
glob2rx can be used to convert wildcard patterns to regular expressions.

logical indicating if the resulting character should be sorted alphabetically.
Note that this is part of 1s() may take most of the time.

The name argument can specify the environment from which object names are taken in one of several
forms: as an integer (the position in the search list); as the character string name of an element in
the search list; or as an explicit environment (including using sys.frame to access the currently
active function calls). By default, the environment of the call to 1s or objects is used. The pos
and envir arguments are an alternative way to specify an environment, but are primarily there for

back compatibility.

Note that the order of strings for sorted = TRUE is locale dependent, see Sys.getlocale. If sorted
= FALSE the order is arbitrary, depending if the environment is hashed, the order of insertion of

objects,

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

glob2rx for converting wildcard patterns to regular expressions.

1s.str for a long listing based on str. apropos (or find) for finding objects in the whole search
path; grep for more details on ‘regular expressions’; class, methods, etc., for object-oriented

programming.

Examples

.0b <=1
ls(pattern = "0")

ls(pattern= "0", all.names = TRUE) # also shows ".[foo]"

shows an empty

list because inside myfunc no variables are defined

myfunc <- function() {1s()}

make.names 339

myfunc()

define a local variable inside myfunc
myfunc <- function() {y <- 1; 1s(Q)}

myfunc() # shows "y"
make.names Make Syntactically Valid Names
Description

Make syntactically valid names out of character vectors.

Usage
make.names(names, unique = FALSE, allow_ = TRUE)
Arguments
names character vector to be coerced to syntactically valid names. This is coerced to
character if necessary.
unique logical; if TRUE, the resulting elements are unique. This may be desired for, e.g.,
column names.
allow_ logical. For compatibility with R prior to 1.9.0.
Details

A syntactically valid name consists of letters, numbers and the dot or underline characters and starts
with a letter or the dot not followed by a number. Names such as " . 2way" are not valid, and neither
are the reserved words.

The definition of a letter depends on the current locale, but only ASCII digits are considered to be
digits.

The character "X" is prepended if necessary. All invalid characters are translated to ”.". A miss-
ing value is translated to "NA". Names which match R keywords have a dot appended to them.

Duplicated values are altered by make.unique.

Value
A character vector of same length as names with each changed to a syntactically valid name, in the
current locale’s encoding.

Warning

Some OSes, notably FreeBSD, report extremely incorrect information about which characters are
alphabetic in some locales (typically, all multi-byte locales including UTF-8 locales). However, R
provides substitutes on Windows, macOS and AIX.

340 make.unique

Note

Prior to R version 1.9.0, underscores were not valid in variable names, and code that relies on them
being converted to dots will no longer work. Use allow_ = FALSE for back-compatibility.

allow_ = FALSE is also useful when creating names for export to applications which do not allow
underline in names (for example, S-PLUS and some DBMSs).

See Also

make.unique, names, character, data. frame.

Examples
make.names(c("a and b", "a-and-b"), unique = TRUE)
"a.and.b” "a.and.b.1”
make.names(c("a and b", "a_and_b"), unique = TRUE)

"a.and.b" "a_and_b"

make.names(c("a and b", "a_and_b"), unique = TRUE, allow_ = FALSE)
"a.and.b"” "a.and.b.1”

make.names(c("", "X"), unique = TRUE)

"X.1" "X" currently; R up to 3.0.2 gave "X" "X.1"

state.name[make.names(state.name) != state.name] # those 10 with a space
make.unique Make Character Strings Unique
Description

Makes the elements of a character vector unique by appending sequence numbers to duplicates.

Usage

make.unique(names, sep = ".")
Arguments

names a character vector

sep a character string used to separate a duplicate name from its sequence number.
Details

The algorithm used by make.unique has the property that make.unique(c(A,B)) ==
make.unique(c(make.unique(A),B)).

In other words, you can append one string at a time to a vector, making it unique each time, and get
the same result as applying make.unique to all of the strings at once.

If character vector A is already unique, then make.unique(c(A,B)) preserves A.

mapply 341

Value
A character vector of same length as names with duplicates changed, in the current locale’s encod-
ing.

Author(s)

Thomas P. Minka

See Also

make . names

Examples
make.unique(c("a", "a", "a"))
make.unique(c(make.unique(c("a", "a")), "a"))
make.unique(c("a"”, "a", "a.2", "a"))
make.unique(c(make.unique(c("a"”, "a")), "a.2", "a"))

Now show a bit where this is used :
trace(make.unique)
Applied in data.frame() constructions:
(d1 <- data.frame(x =1, x = 2, x = 3)) # direct
d2 <- data.frame(data.frame(x = 1, x = 2), x = 3) # pairwise
stopifnot(identical(dl, d2),
colnames(d1l) == c("x", "x.1", "x.2"))
untrace(make.unique)

mapply Apply a Function to Multiple List or Vector Arguments

Description

mapply is a multivariate version of sapply. mapply applies FUN to the first elements of each
...argument, the second elements, the third elements, and so on. Arguments are recycled if neces-

sary.

Usage

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

342

Arguments

FUN

MoreArgs

SIMPLIFY

USE .NAMES

Details

mapply

function to apply, found via match. fun.

arguments to vectorize over (vectors or lists of strictly positive length, or all of
zero length). See also ‘Details’.

a list of other arguments to FUN.

logical or character string; attempt to reduce the result to a vector, matrix or
higher dimensional array; see the simplify argument of sapply.

logical; use names if the first . . . argument has names, or if it is a character vector,
use that character vector as the names.

mapply calls FUN for the values of . . . (re-cycled to the length of the longest, unless any have length

zero), followed by

the arguments given in MoreArgs. The arguments in the call will be named if

. or MoreArgs are named.

Arguments with classes in ... will be accepted, and their subsetting and length methods will be

used.

Value

A list, or for SIMPL

See Also

IFY = TRUE, a vector, array or list.

sapply, after which mapply () is modelled.

outer, which applies a vectorized function to all combinations of two arguments.

Examples
mapply(rep, 1:4,
mapply(rep, times

mapply(rep, times

4:1)
=1:4, x = 4:1)

= 1:4, MoreArgs = list(x = 42))

mapply(function(x, y) seg_len(x) + vy,

c(a= 1,
c(A =10,

word <- function(

b =2, c=3), # names from first
B =20, C=-10))

C, k) paste(rep.int(C, k), collapse = "")

utils::str(mapply(word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE))

margin.table 343

margin.table Compute table margin

Description

For a contingency table in array form, compute the sum of table entries for a given index.

Usage

margin.table(x, margin = NULL)

Arguments

X an array

margin index number (1 for rows, etc.)
Details

This is really just apply (x,margin, sum) packaged up for newbies, except that if margin has length
zero you get sum(x).

Value
The relevant marginal table. The class of x is copied to the output table, except in the summation
case.

Author(s)

Peter Dalgaard

See Also

prop.table and addmargins.

Examples

m <- matrix(1:4, 2)
margin.table(m, 1)
margin.table(m, 2)

344

match

mat.or.vec

Create a Matrix or a Vector

Description

mat.or.vec creates an nr by nc zero matrix if nc is greater than 1, and a zero vector of length nr

if nc equals 1.

Usage

mat.or.vec(nr, nc)

Arguments

nr, nc

Examples

mat.or.vec(3, 1)
mat.or.vec(3, 2)

numbers of rows and columns.

match

Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%in% is a more intuitive interface as a binary operator, which returns a logical vector indicating if
there is a match or not for its left operand.

Usage

match(x, table,

X %in% table

Arguments

X
table

nomatch

incomparables

nomatch = NA_integer_, incomparables = NULL)

vector or NULL: the values to be matched. Long vectors are supported.
vector or NULL: the values to be matched against. Long vectors are not supported.

the value to be returned in the case when no match is found. Note that it is
coerced to integer.

a vector of values that cannot be matched. Any value in x matching a value
in this vector is assigned the nomatch value. For historical reasons, FALSE is
equivalent to NULL.

match 345

Details

%in% is currently defined as
"%in%" <-function(x,table) match(x,table,nomatch =0) >0

Factors, raw vectors and lists are converted to character vectors, and then x and table are coerced
to a common type (the later of the two types in R’s ordering, logical < integer < numeric < complex
< character) before matching. If incomparables has positive length it is coerced to the common

type.
Matching for lists is potentially very slow and best avoided except in simple cases.

Exactly what matches what is to some extent a matter of definition. For all types, NA matches NA
and no other value. For real and complex values, NaN values are regarded as matching any other NaN
value, but not matching NA, where for complex x, real and imaginary parts must match both (unless
containing at least one NA).

Character strings will be compared as byte sequences if any input is marked as "bytes”, and oth-
erwise are regarded as equal if they are in different encodings but would agree when translated to
UTEF-8 (see Encoding).

That %in% never returns NA makes it particularly useful in if conditions.

Value

A vector of the same length as x.

match: Aninteger vector giving the position in table of the first match if there is a match, otherwise
nomatch.

If x[i] is found to equal table[j] then the value returned in the i-th position of the return value
is j, for the smallest possible j. If no match is found, the value is nomatch.

%in%: A logical vector, indicating if a match was located for each element of x: thus the values are
TRUE or FALSE and never NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

pmatch and charmatch for (partial) string matching, match.arg, etc for function argument match-
ing. findInterval similarly returns a vector of positions, but finds numbers within intervals, rather
than exact matches.

is.element for an S-compatible equivalent of %in%.

unique (and duplicated) are using the same definitions of “match” or “equality” as match(), and
these are less strict than ==, e.g., for NA and NaN in numeric or complex vectors, or for strings with
different encodings, see also above.

346

Examples

The intersection of two sets can be defined via match():

Simple version:

intersect <- function(x, y) y[match(x, y, nomatch = 0)]
intersect # the R function in base is slightly more careful

intersect(1:10, 7:20)

1:10 %in% c(1,3,5,9)

sstr <- c("c”,"ab","B","bba","c" NA,"@","bla","a","Ba","%")
sstrsstr %in% c(letters, LETTERS)]

"%w/0%" <- function(x, y) x[!x %in% y] #-- x without y

(1:10) %w/0% c(3,7,12)

Note that setdiff() is very similar and typically makes more sense:
c(1:6,7:2) %w/0% c(3,7,12) # -> keeps duplicates
c(3,7,12)) # -> unique values

setdiff(c(1:6,7:2),

Illuminating example about NA matching

r <- c(1, NA, NaN)

zN <- c(complex(real = NA , imaginary

complex(real =

r , imaginary

zM <- cbind(Re=Re(zN), Im=Im(zN), match
rownames(zM) <- format(zN)
zM ##--> many "NA's" (= 1) and the four

length(zN) # 12

r), complex(real = r , imaginary =
NaN), complex(real = NaN, imaginary
= match(zN, zN))

non-NA's (3 different ones, at 7,9,10)

unique(zN) # the "NA" and the 3 different non-NA NaN's
stopifnot(identical (unique(zN), zN[c(1, 7,9,10)]1))

very strict equality would have 4 duplicates (of 12):
symnum(outer(zN, zN, Vectorize(identical,c("x","y")),
FALSE, FALSE, FALSE, FALSE))
removing "(very strictly) duplicates”,
i <-¢(5,8,11,12) # we get 8 pairwise non-identicals :
Ixy <- outer(zN[-i], zN[-i], Vectorize(identical,c("x","y")),
FALSE, FALSE, FALSE,FALSE)
stopifnot(identical (Ixy, diag(8) == 1))

match.arg

NA),
r))

match.arg Argument Verification Using Partial Matching

Description

match.arg matches arg against a table of candidate values as specified by choices, where NULL

means to take the first one.

Usage

match.arg(arg, choices, several.ok = FALSE)

match.arg 347

Arguments
arg a character vector (of length one unless several. ok is TRUE) or NULL.
choices a character vector of candidate values
several.ok logical specifying if arg should be allowed to have more than one element.
Details

In the one-argument form match.arg(arg), the choices are obtained from a default setting for
the formal argument arg of the function from which match.arg was called. (Since default argu-
ment matching will set arg to choices, this is allowed as an exception to the ‘length one unless
several.ok is TRUE’ rule, and returns the first element.)

Matching is done using pmatch, so arg may be abbreviated.

Value

The unabbreviated version of the exact or unique partial match if there is one; otherwise, an error
is signalled if several.ok is false, as per default. When several.ok is true and more than one
element of arg has a match, all unabbreviated versions of matches are returned.

See Also

pmatch, match. fun, match.call.

Examples

require(stats)
Extends the example for 'switch'
center <- function(x, type = c("mean”, "median”, "trimmed")) {
type <- match.arg(type)
switch(type,
mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))
3
x <- rcauchy(10)
center(x, "t") # Works
center(x, "med") # Works
try(center(x, "m")) # Error
stopifnot(identical(center(x), center(x, "mean")),
identical(center(x, NULL), center(x, "mean")))

Allowing more than one match:

match.arg(c("gauss”, "rect”, "ep"),
c("gaussian”, "epanechnikov”, "rectangular”, "triangular”),
several.ok = TRUE)

348 match.call

match.call Argument Matching

Description

match.call returns a call in which all of the specified arguments are specified by their full names.

Usage

match.call(definition = sys.function(sys.parent()),
call = sys.call(sys.parent()),
expand.dots = TRUE,
envir = parent.frame(2L))

Arguments
definition a function, by default the function from which match. call is called. See details.
call an unevaluated call to the function specified by definition, as generated by
call.
expand.dots logical. Should arguments matching . .. in the call be included or leftas a . . .
argument?
envir an environment, from which the . .. in call are retrieved, if any.
Details

‘function’ on this help page means an interpreted function (also known as a ‘closure’): match.call
does not support primitive functions (where argument matching is normally positional).

match.call is most commonly used in two circumstances:

* To record the call for later re-use: for example most model-fitting functions record the call as
element call of the list they return. Here the default expand.dots = TRUE is appropriate.

* To pass most of the call to another function, often model. frame. Here the common idiom is
that expand.dots = FALSE is used, and the ... element of the matched call is removed. An
alternative is to explicitly select the arguments to be passed on, as is done in 1m.

Calling match. call outside a function without specifying definition is an error.

Value

An object of class call.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

match.fun 349

See Also

sys.call() is similar, but does not expand the argument names; call, pmatch, match.arg,
match. fun.

Examples

match.call(get, call("get"”, "abc", i = FALSE, p

-> get(x = "abc"”, pos = 3, inherits = FALSE)

fun <- function(x, lower = @, upper = 1) {
structure((x - lower) / (upper - lower), CALL = match.call())

3
fun(4 * atan(1), u = pi)

ED))

match.fun Extract a Function Specified by Name

Description

When called inside functions that take a function as argument, extract the desired function object
while avoiding undesired matching to objects of other types.

Usage

match.fun(FUN, descend = TRUE)

Arguments
FUN item to match as function: a function, symbol or character string. See ‘Details’.
descend logical; control whether to search past non-function objects.

Details

match. fun is not intended to be used at the top level since it will perform matching in the parent of
the caller.

If FUN is a function, it is returned. If it is a symbol (for example, enclosed in backquotes) or a
character vector of length one, it will be looked up using get in the environment of the parent of the
caller. If it is of any other mode, it is attempted first to get the argument to the caller as a symbol
(using substitute twice), and if that fails, an error is declared.

If descend = TRUE, match. fun will look past non-function objects with the given name; otherwise
if FUN points to a non-function object then an error is generated.

This is used in base functions such as apply, lapply, outer, and sweep.

Value

A function matching FUN or an error is generated.

350 MathFun

Bugs
The descend argument is a bit of misnomer and probably not actually needed by anything. It may
go away in the future.

It is impossible to fully foolproof this. If one attaches a list or data frame containing a length-one
character vector with the same name as a function, it may be used (although namespaces will help).

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

See Also

match.arg, get

Examples

Same as get("x"):

match. fun("x"

Overwrite outer with a vector

outer <- 1:5

try(match.fun(outer, descend = FALSE)) #-> Error: not a function
match.fun(outer) # finds it anyway
is.function(match.fun("outer")) # as well

MathFun Miscellaneous Mathematical Functions

Description

abs(x) computes the absolute value of x, sqrt(x) computes the (principal) square root of x, v/z.

The naming follows the standard for computer languages such as C or Fortran.

Usage
abs(x)
sqrt(x)

Arguments

X a numeric or complex vector or array.

Details

These are internal generic primitive functions: methods can be defined for them individually or via
the Math group generic. For complex arguments (and the default method), z, abs(z) == Mod(z)
and sqrt(z) ==z"0.5.

abs(x) returns an integer vector when x is integer or logical.

matmult 351

S4 methods

Both are S4 generic and members of the Math group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic for simple, log for logarithmic, sin for trigonometric, and Special for special math-
ematical functions.

‘plotmath’ for the use of sqrt in plot annotation.

Examples

require(stats) # for spline

require(graphics)

XX <- -9:9

plot(xx, sqrt(abs(xx)), col = "red")
lines(spline(xx, sqrt(abs(xx)), n=101), col = "pink")

matmult Matrix Multiplication

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be promoted to
either a row or column matrix to make the two arguments conformable. If both are vectors of the
same length, it will return the inner product (as a matrix).

Usage
X %*% Yy

Arguments

X,y numeric or complex matrices or vectors.

Details

When a vector is promoted to a matrix, its names are not promoted to row or column names, unlike
as.matrix.

Promotion of a vector to a 1-row or 1-column matrix happens when one of the two choices allows
x and y to get conformable dimensions.

This operator is S4 generic but not S3 generic. S4 methods need to be written for a function of two
arguments named x and y.

352 matrix

Value

A double or complex matrix product. Use drop to remove dimensions which have only one level.

Note

The propagation of NaN/Inf values, precision, and performance of matrix products can be controlled
by options("matprod”).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

For matrix crossproducts, crossprod() and tcrossprod() are typically preferable. matrix,
Arithmetic, diag.

Examples

x <- 1:4
(z <= x %*% x) # scalar ("inner") product (1 x 1 matrix)
drop(z) # as scalar

<- diag(x)

<- matrix(1:12, ncol = 3, nrow = 4)
%*% z

%Bx% X

%*% z

X K < N K

matrix Matrices

Description

matrix creates a matrix from the given set of values.
as.matrix attempts to turn its argument into a matrix.

is.matrix tests if its argument is a (strict) matrix.

Usage

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)

as.matrix(x, ...)
S3 method for class 'data.frame'
as.matrix(x, rownames.force = NA, ...)

is.matrix(x)

matrix 353

Arguments

data an optional data vector (including a list or expression vector). Non-atomic
classed R objects are coerced by as.vector and all attributes discarded.

nrow the desired number of rows.

ncol the desired number of columns.

byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise the
matrix is filled by rows.

dimnames A dimnames attribute for the matrix: NULL or a 1ist of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

X an R object.

additional arguments to be passed to or from methods.

rownames. force logical indicating if the resulting matrix should have character (rather than NULL)
rownames. The default, NA, uses NULL rownames if the data frame has ‘auto-
matic’ row.names or for a zero-row data frame.

Details

If one of nrow or ncol is not given, an attempt is made to infer it from the length of data and the
other parameter. If neither is given, a one-column matrix is returned.

If there are too few elements in data to fill the matrix, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (@ for raw vectors) and
NULL for lists.

is.matrix returns TRUE if x is a vector and has a "dim" attribute of length 2 and FALSE otherwise.
Note that a data. frame is not a matrix by this test. The function is generic: you can write methods
to handle specific classes of objects, see InternalMethods.

as.matrix is a generic function. The method for data frames will return a character matrix if
there is only atomic columns and any non-(numeric/logical/complex) column, applying as.vector
to factors and format to other non-character columns. Otherwise, the usual coercion hierarchy
(logical < integer < double < complex) will be used, e.g., all-logical data frames will be coerced to
a logical matrix, mixed logical-integer will give a integer matrix, etc.

The default method for as.matrix calls as.vector(x), and hence e.g. coerces factors to character
vectors.

When coercing a vector, it produces a one-column matrix, and promotes the names (if any) of the
vector to the rownames of the matrix.

is.matrix is a primitive function.

The print method for a matrix gives a rectangular layout with dimnames or indices. For a list
matrix, the entries of length not one are printed in the form ‘integer, 7’ indicating the type and
length.

354 maxCol

Note

If you just want to convert a vector to a matrix, something like

dim(x) <- c(nx, ny)
dimnames(x) <- list(row_names, col_names)

will avoid duplicating x.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also
data.matrix, which attempts to convert to a numeric matrix.

A matrix is the special case of a two-dimensional array.

Examples

is.matrix(as.matrix(1:10))
lis.matrix(warpbreaks) # data.frame, NOT matrix!

warpbreaks[1:10,]
as.matrix(warpbreaks[1:10,]1) # using as.matrix.data.frame(.) method

Example of setting row and column names
mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol = 3, byrow
dimnames = list(c("rowl”, "row2"),

C(”C.‘I”, IIC.ZII, IIC.3IV)))

= TRUE,

mdat

maxCol Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

Usage

max.col(m, ties.method = c("random”, "first”, "last"))
Arguments

m numerical matrix

a character string specifying how ties are handled, "random” by default; can be
abbreviated; see ‘Details’.

ties.method

maxCol 355

Details

When ties.method = "random”, as per default, ties are broken at random. In this case, the deter-
mination of a tie assumes that the entries are probabilities: there is a relative tolerance of 105,
relative to the largest (in magnitude, omitting infinity) entry in the row.

If ties.method = "first"”, max.col returns the column number of the first of several maxima in
every row, the same as unname (apply(m, 1,which.max)).
Correspondingly, ties.method = "last” returns the /ast of possibly several indices.

Value

index of a maximal value for each row, an integer vector of length nrow(m).

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer
(4th ed).

See Also

which.max for vectors.

Examples

table(mc <- max.col(swiss)) # mostly "1" and "5", 5 x "2" and once "4"
swiss[unique(print(mr <- max.col(t(swiss)))) , 1 # 3 33 45 45 33 6

set.seed(1) # reproducible example:
(mm <- rbind(x = round(2xstats::runif(12)),

y = round(5*stats::runif(12)),
z = round(8*stats::runif(12))))
Not run:

[,11 0,21 C,3]1 C,41¢C,51¢C,61 (,71 C,8]1 [,91 [,10]1 [,11] [,12]
X 1 1 1 2 Q 2 2 1 1] (] 0
y 3 2 4 2 4 5 2 4 5 1 3 1
z 2 3 0 3 7 3 4 5 4 1 7 5

End(Not run)

column indices of all row maxima :

utils::str(lapply(1:3, function(i) which(mm[i,] == max(mm[i,1))))
max.col(mm) ; max.col(mm) # "random”

max.col(mm, "first”) # -> 46 5

max.col(mm, "last”) # ->7 9 11

356

mean
mean Arithmetic Mean
Description
Generic function for the (trimmed) arithmetic mean.
Usage
mean(x, ...)
Default S3 method:
mean(x, trim = @, na.rm = FALSE, ...)
Arguments
X An R object. Currently there are methods for numeric/logical vectors and date,
date-time and time interval objects. Complex vectors are allowed for trim =@,
only.
trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.
na.rm a logical value indicating whether NA values should be stripped before the com-

putation proceeds.

further arguments passed to or from other methods.

Value

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or
complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer)

or complex, NA_real_ is returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim observa-

tions deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

weighted.mean, mean.POSIXct, colMeans for row and column means.

Examples

X <- c(0:10, 50)
xm <- mean(x)
c(xm, mean(x, trim = 0.10))

memCompress 357

memCompress In-memory Compression and Decompression

Description

In-memory compression or decompression for raw vectors.

Usage
memCompress(from, type = c("gzip", "bzip2", "xz", "none"))
memDecompress (from,
type = c("unknown", "gzip", "bzip2", "xz", "none"),
asChar = FALSE)
Arguments
from A raw vector. For memCompress a character vector will be converted to a raw
vector with character strings separated by "\n".
type character string, the type of compression. May be abbreviated to a single letter,
defaults to the first of the alternatives.
asChar logical: should the result be converted to a character string?
Details

type = "none” passes the input through unchanged, but may be useful if type is a variable.

type = "unknown” attempts to detect the type of compression applied (if any): this will always
succeed for bzip2 compression, and will succeed for other forms if there is a suitable header. It
will auto-detect the ‘magic’ header ("\x1f\x8b") added to files by the gzip program (and to files
written by gzfile), but memCompress does not add such a header.

bzip2 compression always adds a header ("BZh").

Compressing with type = "xz" is equivalent to compressing a file with xz -9e (including adding
the ‘magic’ header): decompression should cope with the contents of any file compressed with xz
version 4.999 and some versions of 1zma. There are other versions, in particular ‘raw’ streams, that
are not currently handled.

All the types of compression can expand the input: for "gzip"” and "bzip2" the maximum expan-
sion is known and so memCompress can always allocate sufficient space. For "xz" it is possible (but
extremely unlikely) that compression will fail if the output would have been too large.

Value

A raw vector or a character string (if asChar = TRUE).

358 memlimits

See Also

connections.
extSoftVersion for the versions of the z1ib, bzip2 and xz libraries in use.

https://en.wikipedia.org/wiki/Data_compression for background on data compression,
http://zlib.net/, https://en.wikipedia.org/wiki/Gzip, http://www.bzip.org/, https:
//en.wikipedia.org/wiki/Bzip2, http://tukaani.org/xz/ and https://en.wikipedia.
org/wiki/Xz for references about the particular schemes used.

Examples

txt <- readlLines(file.path(R.home("doc"”), "COPYING"))
sum(nchar(txt))

txt.gz <- memCompress(txt, "g")

length(txt.gz)

txt2 <- strsplit(memDecompress(txt.gz, "g", asChar = TRUE), "\n")[[1]]
stopifnot(identical (txt, txt2))

txt.bz2 <- memCompress(txt, "b")

length(txt.bz2)

can auto-detect bzip2:

txt3 <- strsplit(memDecompress(txt.bz2, asChar = TRUE), "\n")[[1]1]
stopifnot(identical (txt, txt3))

xz compression is only worthwhile for large objects

txt.xz <- memCompress(txt, "x")

length(txt.xz)

txt3 <- strsplit(memDecompress(txt.xz, asChar = TRUE), "\n")[[1]1]
stopifnot(identical (txt, txt3))

memlimits Query and Set Heap Size Limits

Description

Query and set the maximal size of the vector heap and the maximal number of heap nodes for the
current R process.

Usage
mem.maxVSize(vsize = 0)
mem.maxNSize(nsize = 0)

Arguments
vsize numeric; new size limit in Mb.

nsize numeric; new maximal node number.

https://en.wikipedia.org/wiki/Data_compression
http://zlib.net/
https://en.wikipedia.org/wiki/Gzip
http://www.bzip.org/
https://en.wikipedia.org/wiki/Bzip2
https://en.wikipedia.org/wiki/Bzip2
http://tukaani.org/xz/
https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/Xz

Memory 359

Details

New Limits lower than current usage are ignored. Specifying a size of Inf sets the limit to the
maximal possible value for the platform.

The default maximal values are unlimited on most platforms, but can be adjusted using environment
variables as described in Memory. On macOS a lower default vector heap limit is used to protect
against the R process being killed when macOS over-commits memory.

Adjusting the maximal number of nodes is rarely necessary. Adjusting the vector heap size limit
can be useful on macOS in particular but should be done with caution.

Value

The current or new value, in Mb for mem.maxVSize. Inf is returned if the current value is unlimited.

See Also

Memory.

Memory Memory Available for Data Storage

Description

How R manages its workspace.

Details

R has a variable-sized workspace. There are (rarely-used) command-line options to control its
minimum size, but no longer any to control the maximum size.

R maintains separate areas for fixed and variable sized objects. The first of these is allocated as an
array of cons cells (Lisp programmers will know what they are, others may think of them as the
building blocks of the language itself, parse trees, etc.), and the second are thrown on a heap of
“Veells’ of 8 bytes each. Each cons cell occupies 28 bytes on a 32-bit build of R, (usually) 56 bytes
on a 64-bit build.

The default values are (currently) an initial setting of 350k cons cells and 6Mb of vector heap.
Note that the areas are not actually allocated initially: rather these values are the sizes for trigger-
ing garbage collection. These values can be set by the command line options ‘--min-nsize’ and
‘--min-vsize’ (or if they are not used, the environment variables R_NSIZE and R_VSIZE) when R is
started. Thereafter R will grow or shrink the areas depending on usage, never decreasing below the
initial values. The maximal vector heap size can be set with the environment variable R_MAX_VSIZE.

How much time R spends in the garbage collector will depend on these initial settings and on the
trade-off the memory manager makes, when memory fills up, between collecting garbage to free up
unused memory and growing these areas. The strategy used for growth can be specified by setting
the environment variable R_GC_MEM_GROW to an integer value between 0 and 3. This variable is read
at start-up. Higher values grow the heap more aggressively, thus reducing garbage collection time
but using more memory.

360 Memory-limits

You can find out the current memory consumption (the heap and cons cells used as numbers and
megabytes) by typing gc() at the R prompt. Note that following gcinfo(TRUE), automatic garbage
collection always prints memory use statistics.

3

The command-line option ‘--max-ppsize’ controls the maximum size of the pointer protection
stack. This defaults to 50000, but can be increased to allow deep recursion or large and complicated
calculations to be done. Note that parts of the garbage collection process goes through the full
reserved pointer protection stack and hence becomes slower when the size is increased. Currently
the maximum value accepted is 500000.

See Also

An Introduction to R for more command-line options.
Memory-1imits for the design limitations.

gc for information on the garbage collector and total memory usage, object.size(a) for the (ap-
proximate) size of R object a. memory.profile for profiling the usage of cons cells.

Memory-limits Memory Limits in R

Description

R holds objects it is using in virtual memory. This help file documents the current design limitations
on large objects: these differ between 32-bit and 64-bit builds of R.

Details

Currently R runs on 32- and 64-bit operating systems, and most 64-bit OSes (including Linux,
Solaris, Windows and macOS) can run either 32- or 64-bit builds of R. The memory limits depends
mainly on the build, but for a 32-bit build of R on Windows they also depend on the underlying OS
version.

R holds all objects in virtual memory, and there are limits based on the amount of memory that can
be used by all objects:

* There may be limits on the size of the heap and the number of cons cells allowed — see Memory
— but these are usually not imposed.

* There is a limit on the (user) address space of a single process such as the R executable. This
is system-specific, and can depend on the executable.

* The environment may impose limitations on the resources available to a single process: Win-
dows’ versions of R do so directly.

Error messages beginning cannot allocate vector of size indicate a failure to obtain memory,
either because the size exceeded the address-space limit for a process or, more likely, because the
system was unable to provide the memory. Note that on a 32-bit build there may well be enough
free memory available, but not a large enough contiguous block of address space into which to map
it.

Memory-limits 361

There are also limits on individual objects. The storage space cannot exceed the address limit, and
if you try to exceed that limit, the error message begins cannot allocate vector of length. The
number of bytes in a character string is limited to 23! — 1 ~ 210, which is also the limit on each
dimension of an array.

Unix

The address-space limit is system-specific: 32-bit OSes imposes a limit of no more than 4Gb: it is
often 3Gb. Running 32-bit executables on a 64-bit OS will have similar limits: 64-bit executables
will have an essentially infinite system-specific limit (e.g., 128Tb for Linux on x86_64 cpus).

See the OS/shell’s help on commands such as 1imit or ulimit for how to impose limitations on
the resources available to a single process. For example a bash user could use

ulimit -t 600 -v 4000000
whereas a csh user might use

limit cputime 10m
limit vmemoryuse 4096m

to limit a process to 10 minutes of CPU time and (around) 4Gb of virtual memory. (There are other
options to set the RAM in use, but they are not generally honoured.)

Windows

The address-space limit is 2Gb under 32-bit Windows unless the OS’s default has been changed to
allow more (up to 3Gb). See https://docs.microsoft.com/en-gb/windows/desktop/Memory/
physical-address-extension and https://docs.microsoft.com/en-gb/windows/desktop/
Memory/4-gigabyte-tuning. Under most 64-bit versions of Windows the limit for a 32-bit build
of R is 4Gb: for the oldest ones it is 2Gb. The limit for a 64-bit build of R (imposed by the OS) is
8Th.

It is not normally possible to allocate as much as 2Gb to a single vector in a 32-bit build of R even
on 64-bit Windows because of preallocations by Windows in the middle of the address space.

Under Windows, R imposes limits on the total memory allocation available to a single session as
the OS provides no way to do so: see memory.size and memory.limit.

See Also

object.size(a) for the (approximate) size of R object a.

https://docs.microsoft.com/en-gb/windows/desktop/Memory/physical-address-extension
https://docs.microsoft.com/en-gb/windows/desktop/Memory/physical-address-extension
https://docs.microsoft.com/en-gb/windows/desktop/Memory/4-gigabyte-tuning
https://docs.microsoft.com/en-gb/windows/desktop/Memory/4-gigabyte-tuning

362 merge

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells by SEXPREC type.

Usage

memory.profile()

Details

The current types and their uses are listed in the include file ‘Rinternals.h’.

Value

A vector of counts, named by the types. See typeof for an explanation of types.

See Also

gc for the overall usage of cons cells. Rprofmem and tracemem allow memory profiling of specific
code or objects, but need to be enabled at compile time.

Examples

memory.profile()

merge Merge Two Data Frames

Description
Merge two data frames by common columns or row names, or do other versions of database join
operations.

Usage

merge(x, y, ...)

Default S3 method:
merge(x, Yy, ...)

S3 method for class 'data.frame'
merge(x, y, by = intersect(names(x), names(y)),

merge 363

by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,

sort = TRUE, suffixes = c(”".x",".y"), no.dups = TRUE,
incomparables = NULL, ...)
Arguments
X,y data frames, or objects to be coerced to one.

by, by.x, by.y specifications of the columns used for merging. See ‘Details’.

all logical; all = L is shorthand forall.x =L and all.y = L, where L is either TRUE
or FALSE.
all.x logical; if TRUE, then extra rows will be added to the output, one for each row in

x that has no matching row in y. These rows will have NAs in those columns that
are usually filled with values from y. The default is FALSE, so that only rows
with data from both x and y are included in the output.

all.y logical; analogous to all. x.
sort logical. Should the result be sorted on the by columns?
suffixes a character vector of length 2 specifying the suffixes to be used for making

unique the names of columns in the result which are not used for merging (ap-
pearing in by etc).

no.dups logical indicating that suffixes are appended in more cases to avoid duplicated
column names in the result. This was implicitly false before R version 3.5.0.

incomparables values which cannot be matched. See match. This is intended to be used for
merging on one column, so these are incomparable values of that column.

arguments to be passed to or from methods.

Details

merge is a generic function whose principal method is for data frames: the default method coerces
its arguments to data frames and calls the "data. frame” method.

By default the data frames are merged on the columns with names they both have, but separate
specifications of the columns can be given by by. x and by.y. The rows in the two data frames that
match on the specified columns are extracted, and joined together. If there is more than one match,
all possible matches contribute one row each. For the precise meaning of ‘match’, see match.

Columns to merge on can be specified by name, number or by a logical vector: the name
"row.names"” or the number @ specifies the row names. If specified by name it must correspond
uniquely to a named column in the input.

If by or both by.x and by.y are of length O (a length zero vector or NULL), the result, r, is the
Cartesian product of x and y, i.e., dim(r) = c(nrow(x)*nrow(y),ncol(x) + ncol(y)).

If all. x is true, all the non matching cases of x are appended to the result as well, with NA filled in
the corresponding columns of y; analogously for all.y.

If the columns in the data frames not used in merging have any common names, these have
suffixes (".x" and ".y" by default) appended to try to make the names of the result unique.
If this is not possible, an error is thrown.

If a by. x column name matches one of y, and if no.dups is true (as by default), the y version gets
suffixed as well, avoiding duplicate column names in the result.

364 merge

The complexity of the algorithm used is proportional to the length of the answer.

In SQL database terminology, the default value of all = FALSE gives a natural join, a special case
of an inner join. Specifying all.x = TRUE gives a left (outer) join, all.y = TRUE a right (outer)
Jjoin, and both (all = TRUE) a (full) outer join. DBMSes do not match NULL records, equivalent to
incomparables = NA in R.

Value

A data frame. The rows are by default lexicographically sorted on the common columns, but for
sort = FALSE are in an unspecified order. The columns are the common columns followed by the
remaining columns in x and then those in y. If the matching involved row names, an extra character
column called Row. names is added at the left, and in all cases the result has ‘automatic’ row names.

Note

This is intended to work with data frames with vector-like columns: some aspects work with data
frames containing matrices, but not all.

Currently long vectors are not accepted for inputs, which are thus restricted to less than 2731 rows.
That restriction also applies to the result for 32-bit platforms.

See Also

data.frame, by, cbind.

dendrogram for a class which has a merge method.

Examples

authors <- data.frame(
I(*) : use character columns of names to get sensible sort order
surname = I(c("Tukey"”, "Venables”, "Tierney"”, "Ripley"”, "McNeil")),
nationality = c("US", "Australia”, "US", "UK", "Australia"),
deceased = c("yes"”, rep("no", 4)))
authorN <- within(authors, { name <- surname; rm(surname) 3})
books <- data.frame(
name = I(c("Tukey"”, "Venables"”, "Tierney”,
"Ripley”, "Ripley"”, "McNeil”, "R Core")),
title = c("Exploratory Data Analysis”,
"Modern Applied Statistics ...",
"LISP-STAT",
"Spatial Statistics”, "Stochastic Simulation”,
"Interactive Data Analysis”,
"An Introduction to R"),
other.author = c(NA, "Ripley”, NA, NA, NA, NA,
"Venables & Smith"))

(m@ <- merge(authorN, books))
(m1 <- merge(authors, books, by.x = "surname”, by.y = "name"))
m2 <- merge(books, authors, by.x = "name”", by.y = "surname")
stopifnot(exprs = {

identical(m@, m2[, names(m@)])

message 365

as.character(m1[, 1]) == as.character(m2[, 11)

all.equal(mi[, -11, m2[, -1]1[names(m1)[-1]1 1)

identical(dim(merge(m1, m2, by = NULL)),
c(nrow(m1)*nrow(m2), ncol(m1)+ncol(m2)))

b

"R core” is missing from authors and appears only here :
merge(authors, books, by.x = "surname”, by.y = "name”, all = TRUE)

example of using 'incomparables'

x <- data.frame(kl = c(NA,NA,3,4,5), k2 = c(1,NA,NA,4,5), data = 1:5)
y <- data.frame(kl = c(NA,2,NA,4,5), k2 = c(NA,NA,3,4,5), data
merge(x, y, by = c("k1","k2")) # NA's match

merge(x, y, by = "k1") # NA's match, so 6 rows

merge(x, y, by = "k2", incomparables = NA) # 2 rows

1
—_
a1

~

message Diagnostic Messages

Description

Generate a diagnostic message from its arguments.

Usage

message(..., domain = NULL, appendLF = TRUE)
suppressMessages(expr)

packageStartupMessage(..., domain = NULL, appendLF = TRUE)
suppressPackageStartupMessages(expr)

.makeMessage(..., domain = NULL, appendLF = FALSE)

Arguments

zero or more objects which can be coerced to character (and which are pasted
together with no separator) or (for message only) a single condition object.

domain see gettext. If NA, messages will not be translated, see also the note in stop.
appendLF logical: should messages given as a character string have a newline appended?
expr expression to evaluate.

Details

message is used for generating ‘simple’ diagnostic messages which are neither warnings nor errors,
but nevertheless represented as conditions. Unlike warnings and errors, a final newline is regarded
as part of the message, and is optional. The default handler sends the message to the stderr()
connection.

366 missing

If a condition object is supplied to message it should be the only argument, and further arguments
will be ignored, with a warning.

While the message is being processed, a muffleMessage restart is available.

suppressMessages evaluates its expression in a context that ignores all ‘simple’ diagnostic mes-
sages.

packageStartupMessage is a variant whose messages can be suppressed separately by
suppressPackageStartupMessages. (They are still messages, so can be suppressed by
suppressMessages.)

.makeMessage is a utility used by message, warning and stop to generate a text message from the
. arguments by possible translation (see gettext) and concatenation (with no separator).

See Also

warning and stop for generating warnings and errors; conditions for condition handling and
recovery.

gettext for the mechanisms for the automated translation of text.

Examples

message("ABC", "DEF")
suppressMessages(message("ABC"))

testit <- function() {
message("testing package startup messages”)
packageStartupMessage("initializing ...", appendLF = FALSE)
Sys.sleep(1)
packageStartupMessage(" done")

3

testit()
suppressPackageStartupMessages(testit())
suppressMessages(testit())

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing(x)

Arguments

X a formal argument.

mode 367

Details

missing(x) is only reliable if x has not been altered since entering the function: in particular it will
always be false after x <-match.arg(x).

The example shows how a plotting function can be written to work with either a pair of vectors
giving x and y coordinates of points to be plotted or a single vector giving y values to be plotted
against their indices.

Currently missing can only be used in the immediate body of the function that defines the argument,
not in the body of a nested function or a local call. This may change in the future.

This is a ‘special’ primitive function: it must not evaluate its argument.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

substitute for argument expression; NA for missing values in data.

Examples

myplot <- function(x, y) {
if(missing(y)) {
y <= X
x <= 1:length(y)
}
plot(x, y)

mode The (Storage) Mode of an Object

Description

Get or set the type or storage mode of an object.

Usage

mode (x)

mode(x) <- value
storage.mode(x)
storage.mode(x) <- value

368 mode
Arguments

X any R object.

value a character string giving the desired mode or ‘storage mode’ (type) of the object.
Details

Both mode and storage.mode return a character string giving the (storage) mode of the object —
often the same — both relying on the output of typeof (x), see the example below.
mode (x) <-"newmode” changes the mode of object x to newmode. This is only supported if there is

an appropriate as.newmode function, for example "logical”, "integer”, "double”, "complex”,
" symbol” and "function”. Attributes are

non non non

raw”, "character”, "list", "expression”, "name”,
preserved (but see below).

storage.mode(x) <-"newmode” is a more efficient primitive version of mode<-, which works for
"newmode” which is one of the internal types (see typeof), but not for "single”. Attributes are
preserved.

As storage mode "single"” is only a pseudo-mode in R, it will not be reported by mode or
storage.mode: use attr(object,"”Csingle"”) to examine this. However, mode<- can be used
to set the mode to "single”, which sets the real mode to "double” and the "Csingle" attribute to
TRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that some calls have mode " (" which is S compatible.

Mode names

Modes have the same set of names as types (see typeof) except that

* types "integer” and "double” are returned as "numeric”.
* types "special” and "builtin” are returned as "function”.
* type "symbol” is called mode "name"”.

* type "language” is returned as " (" or "call”.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

typeof for the R-internal ‘mode’, type.convert, attributes.

Examples

require(stats)
sapply(options(), mode)

cex3 <- c(”NULL", "1", "1:1", "1i", "list(1)", "data.frame(x = 1)",
"pairlist(pi)”, "c", "1Im", "formals(Im)[[1]1]", "formals(Ilm)[[2]1]",

NA

369

"y ~ x","expression((1))C[11]", "(y ~ x)L[1]11",
"expression(x <- pi)[[11ICC111")
lex3 <- sapply(cex3, function(x) eval(parse(text = x)))
mex3 <- t(sapply(lex3,

function(x) c(typeof(x), storage.mode(x), mode(x))))

non

dimnames(mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))

mex3

This also makes a local copy of 'pi':
storage.mode(pi) <- "complex”

storage.mode(pi)

rm(pi)

NA

‘Not Available’ / Missing Values

Description

NA is a logical constant of length 1 which contains a missing value indicator. NA can be coerced to
any other vector type except raw. There are also constants NA_integer_, NA_real_, NA_complex_
and NA_character_ of the other atomic vector types which support missing values: all of these are
reserved words in the R language.

The generic function is.na indicates which elements are missing.

The generic function is.na<- sets elements to NA.

The generic function anyNA implements any(is.na(x)) in a possibly faster way (especially for

atomic vectors).

Usage

NA
is.na(x)

anyNA(x, recursive = FALSE)

S3 method for class 'data.frame'

is.na(x)

is.na(x) <- value

Arguments

X

recursive

value

an R object to be tested: the default method for is.na and anyNA handle atomic
vectors, lists, pairlists, and NULL.

logical: should anyNA be applied recursively to lists and pairlists?

a suitable index vector for use with x.

370 NA

Details

The NA of character type is distinct from the string "NA"”. Programmers who need to specify an
explicit missing string should use NA_character_ (rather than "NA") or set elements to NA using
is.na<-.

is.na and anyNA are generic: you can write methods to handle specific classes of objects, see
InternalMethods.

Function is.na<- may provide a safer way to set missingness. It behaves differently for factors,
for example.

Numerical computations using NA will normally result in NA: a possible exception is where NaN is
also involved, in which case either might result (which may depend on the R platform). Logical
computations treat NA as a missing TRUE/FALSE value, and so may return TRUE or FALSE if the
expression does not depend on the NA operand.

The default method for anyNA handles atomic vectors without a class and NULL. It calls
any(is.na(x)) on objects with classes and for recursive = FALSE, on lists and pairlists.

Value

The default method for is. na applied to an atomic vector returns a logical vector of the same length
as its argument X, containing TRUE for those elements marked NA or, for numeric or complex vectors,
NaN, and FALSE otherwise. (A complex value is regarded as NA if either its real or imaginary part is
NA or NaN.) dim, dimnames and names attributes are copied to the result.

The default methods also work for lists and pairlists:

For is.na, elementwise the result is false unless that element is a length-one atomic vector and the
single element of that vector is regarded as NA or NaN (note that any is.na method for the class of
the element is ignored).

anyNA(recursive = FALSE) works the same way as is.na; anyNA(recursive = TRUE) applies
anyNA (with method dispatch) to each element.

The data frame method for is.na returns a logical matrix with the same dimensions as the data
frame, and with dimnames taken from the row and column names of the data frame.

anyNA(NULL) is false; is.na(NULL) is logical(@) (no longer warning since R version 3.5.0).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

NaN, is.nan, etc., and the utility function complete.cases.

na.action, na.omit, na.fail on how methods can be tuned to deal with missing values.

name 371

Examples

is.na(c(1, NA)) #> FALSE TRUE
is.na(paste(c(1, NA))) #> FALSE FALSE

(xx <- c(0:4))

is.na(xx) <- c(2, 4)

XX #> 0 NA 2 NA 4
anyNA(xx) # TRUE

Some logical operations do not return NA
c(TRUE, FALSE) & NA
c(TRUE, FALSE) | NA

Measure speed difference in a favourable case:
the difference depends on the platform, on most ca 3x.
X <- 1:10000; x[5000] <- NaN # coerces x to be double
if(require("microbenchmark”)) { # does not work reliably on all platforms
print(microbenchmark(any(is.na(x)), anyNA(x)))
} else {
nSim <- 2*13
print(rbind(is.na = system.time(replicate(nSim, any(is.na(x)))),
anyNA = system.time(replicate(nSim, anyNA(x)))))

anyNA() can work recursively with list()s:

LL <- list(1:5, c(NA, 5:8), c("A","NA"), c("a", NA_character_))
L2 <= LL[c(1,3)]

sapply(LL, anyNA); c(anyNA(LL), anyNA(LL, TRUE))

sapply(L2, anyNA); c(anyNA(L2), anyNA(L2, TRUE))

... lists, and hence data frames, too:
dN <- dd <- USJudgeRatings; dN[3,6] <- NA
anyNA(dd) # FALSE
anyNA(dN) # TRUE

name Names and Symbols

Description

A ‘name’ (also known as a ‘symbol’) is a way to refer to R objects by name (rather than the value
of the object, if any, bound to that name).

as.name and as.symbol are identical: they attempt to coerce the argument to a name.

is.symbol and the identical is.name return TRUE or FALSE depending on whether the argument is
a name or not.

372 name

Usage
as.symbol(x)
is.symbol (x)

as.name(x)
is.name(x)

Arguments

X object to be coerced or tested.

Details

Names are limited to 10,000 bytes (and were to 256 bytes in versions of R before 2.13.0).

as.name first coerces its argument internally to a character vector (so methods for as.character
are not used). It then takes the first element and provided it is not "", returns a symbol of that name
(and if the element is NA_character_, the name is *NA*).

as.name is implemented as as.vector(x, "symbol"), and hence will dispatch methods for the
generic function as.vector.

is.name and is.symbol are primitive functions.

Value

For as.name and as. symbol, an R object of type "symbol” (see typeof).

For is.name and is.symbol, a length-one logical vector with value TRUE or FALSE.

Note

The term ‘symbol’ is from the LISP background of R, whereas ‘name’ has been the standard S term
for this.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, is.language. For the internal object mode, typeof.

plotmath for another use of ‘symbol’.

Examples

an <- as.name("arrg")
is.name(an) # TRUE
mode(an) # name
typeof (an) # symbol

names 373

names The Names of an Object

Description

Functions to get or set the names of an object.

Usage

names (x)
names(x) <- value

Arguments

X an R object.

value a character vector of up to the same length as x, or NULL.
Details

names is a generic accessor function, and names<- is a generic replacement function. The default
methods get and set the "names” attribute of a vector (including a list) or pairlist.

For an environment env, names(env) gives the names of the corresponding list, i.e.,
names(as.list(env,all.names = TRUE)) which are also given by 1ls(env,all.names=
TRUE, sorted = FALSE). If the environment is used as a hash table, names (env) are its “keys”.

If value is shorter than x, it is extended by character NAs to the length of x.

It is possible to update just part of the names attribute via the general rules: see the examples. This
works because the expression there is evaluated as z <-"names<-"(z,"[<-"(names(z),3,"c2")).

The name "" is special: it is used to indicate that there is no name associated with an element of a
(atomic or generic) vector. Subscripting by "" will match nothing (not even elements which have
no name).

A name can be character NA, but such a name will never be matched and is likely to lead to confusion.

Both are primitive functions.

Value

For names, NULL or a character vector of the same length as x. (NULL is given if the object has no
names, including for objects of types which cannot have names.) For an environment, the length is
the number of objects in the environment but the order of the names is arbitrary.

For names<-, the updated object. (Note that the value of names(x) <-value is that of the assign-
ment, value, not the return value from the left-hand side.)

374 nargs

Note

For vectors, the names are one of the attributes with restrictions on the possible values. For pairlists,
the names are the tags and converted to and from a character vector.

For a one-dimensional array the names attribute really is dimnames[[1]].

Formally classed aka “S4” objects typically have slotNames() (and no names()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

slotNames, dimnames.

Examples

print the names attribute of the islands data set
names(islands)

remove the names attribute
names(islands) <- NULL

islands

rm(islands) # remove the copy made

z <- list(a=1, b ="c", c =1:3)

names(z)

change just the name of the third element.
names(z)[3] <- "c2"

z
z <-1:3
names(z)

assign just one name
names(z)[2] <- "b"
z

nargs The Number of Arguments to a Function

Description

When used inside a function body, nargs returns the number of arguments supplied to that function,
including positional arguments left blank.

nchar 375

Usage

nargs()

Details

The count includes empty (missing) arguments, so that foo(x, ,z) will be considered to have three
arguments (see ‘Examples’). This can occur in rather indirect ways, so for example x[] might
dispatch a call to *[. some_method" (x,) which is considered to have two arguments.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args, formals and sys.call.

Examples
tst <- function(a, b = 3, ...) {nargs(Q}
tst() # 0

tst(clicketyclack) # 1 (even non-existing)
tst(cl, a2, rr3) # 3

foo <- function(x, y, z, w) {

cat(”call was ", deparse(match.call()), "\n", sep = "")
nargs()

3

foo() # 0

foo(, , 3) # 3

foo(z = 3) # 1, even though this is the same call

nargs() # not really meaningful

nchar Count the Number of Characters (or Bytes or Width)

Description

nchar takes a character vector as an argument and returns a vector whose elements contain the sizes
of the corresponding elements of x. Internally, it is a generic, for which methods can be defined.

nzchar is a fast way to find out if elements of a character vector are non-empty strings.

376 nchar

Usage

nchar(x, type = "chars”, allowNA = FALSE, keepNA = NA)

nzchar(x, keepNA = FALSE)

Arguments
X character vector, or a vector to be coerced to a character vector. Giving a factor
is an error.
type character string: partial matching to one of c("bytes”,"chars”,"width").
See ‘Details’.
allowNA logical: should NA be returned for invalid multibyte strings or "bytes"-encoded
strings (rather than throwing an error)?
keepNA logical: should NA be returned where ever x is NA? If false, nchar () returns 2, as
that is the number of printing characters used when strings are written to output,
and nzchar() is TRUE. The default for nchar(), NA, means to use keepNA =
TRUE unless type is "width"”. Used to be (implicitly) hard coded to FALSE in R
versions < 3.2.0.
Details

The ‘size’ of a character string can be measured in one of three ways (corresponding to the type
argument):

bytes The number of bytes needed to store the string (plus in C a final terminator which is not
counted).

chars The number of human-readable characters.

width The number of columns cat will use to print the string in a monospaced font. The same as
chars if this cannot be calculated.

These will often be the same, and almost always will be in single-byte locales (but note how type
determines the default for keepNA). There will be differences between the first two with multibyte
character sequences, e.g. in UTF-8 locales.

The internal equivalent of the default method of as.character is performed on x (so there is no
method dispatch). If you want to operate on non-vector objects passing them through deparse first
will be required.

Value

For nchar, an integer vector giving the sizes of each element. For missing values (i.e., NA, i.e.,
NA_character_), nchar() returns NA_integer_ if keepNA is true, and 2, the number of printing
characters, if false.

type = "width" gives (an approximation to) the number of columns used in printing each element
in a terminal font, taking into account double-width, zero-width and ‘composing’ characters.

If allowNA = TRUE and an element is detected as invalid in a multi-byte character set such as UTF-
8, its number of characters and the width will be NA. Otherwise the number of characters will be
non-negative, so !is.na(nchar(x, "chars”,TRUE)) is a test of validity.

nchar 377

A character string marked with "bytes” encoding (see Encoding) has a number of bytes, but nei-
ther a known number of characters nor a width, so the latter two types are NA if allowNA = TRUE,
otherwise an error.

Names, dims and dimnames are copied from the input.

For nzchar, a logical vector of the same length as x, true if and only if the element has non-zero
length; if the element is NA, nzchar () is true when keepNA is false, as by default, and NA otherwise.

Note

This does not by default give the number of characters that will be used to print() the string. Use
encodeString to find that. Where character strings have been marked as UTF-8, the number of
characters and widths will be computed in UTF-8, even though printing may use escapes such as
‘<U+2642>’ in a non-UTF-§ locale.

The concept of ‘width’ is a slippery one even in a monospaced font. Some human languages have
the concept of combining characters, in which two or more characters are rendered together: an
example would be "y\u306", which is two characters of width one: combining characters are given
width zero, and there are other zero-width characters such as the zero-width space "\u200b".

Some East Asian languages have ‘wide’ characters, ideographs which are conventionally printed
across two columns when mixed with ASCII and other ‘narrow’ characters in those languages. The
problem is that whether a computer prints wide characters over two or one columns depends on
the font, with it not being uncommon to use two columns in a font intended for East Asian users
and a single column in a “Western’ font. Unicode has encodings for ‘fullwidth’ versions of ASCII
characters and ‘halfwidth’ versions of Katakana (Japanese) and Hangul (Korean) characters. Then
there is the ‘East Asian Ambiguous class’ (Greek, Cyrillic, signs, some accented Latin chars, etc),
for which the historical practice was to use two columns in East Asia and one elsewhere. The width
quoted by nchar for characters in that class (and some others) depends on the locale, being one
except in some East Asian locales on some OSes (notably Windows).

Control characters are given width zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Unicode Standard Annex #11: East Asian Width. http://www.unicode.org/reports/tri1/

See Also

strwidth giving width of strings for plotting; paste, substr, strsplit

Examples

x <= c("asfef”, "qwerty”, "yuiop["”, "b", "stuff.blah.yech")
nchar(x)
#5 6 6 115

nchar (deparse(mean))
18 17 <-- unless mean differs from base: :mean

http://www.unicode.org/reports/tr11/

378 nlevels

x[3] <= NA; x

nchar(x, keepNA= TRUE) # 5 6 NA 1 15

nchar(x, keepNA=FALSE) # 5 6 2 1 15

stopifnot(identical(nchar(x), nchar(x, keepNA= TRUE)),
identical(nchar(x, "w"), nchar(x, keepNA=FALSE)),
identical(is.na(x), is.na(nchar(x))))

##' nchar() for all three types :

nchars <- function(x, ...)
vapply(c(”"chars”, "bytes”, "width"),
function(tp) nchar(x, tp, ...), integer(length(x)))

nchars(”\u200b”) # in R versions (>= 2015-09-xx):
chars bytes width
#H 1 3 Q

data.frame(x, nchars(x)) ## all three types : same unless for NA
force the same by forcing 'keepNA':

(ncT <- nchars(x, keepNA = TRUE)) ## NA NA NA
(ncF <- nchars(x, keepNA = FALSE))## 2 2 2
stopifnot(apply(ncT, 1, function(.) length(unique(.))) == 1,
apply(ncF, 1, function(.) length(unique(.))) == 1)
nlevels The Number of Levels of a Factor
Description

Return the number of levels which its argument has.

Usage

nlevels(x)

Arguments

X an object, usually a factor.

Details

This is usually applied to a factor, but other objects can have levels.

The actual factor levels (if they exist) can be obtained with the levels function.

Value

The length of 1levels(x), which is zero if x has no levels.

See Also

levels, factor.

noquote

Examples

379

nlevels(gl(3, 7)) # = 3

noquote

Class for ‘no quote’ Printing of Character Strings

Description

Print character strings without quotes.

Usage

noquote(obj, right = FALSE)

S3 method for class 'noquote'

print(x, quote

= FALSE, right = FALSE, ...)

S3 method for class 'noquote'

c(..., recursive = FALSE)
Arguments
obj any R object, typically a vector of character strings.
right optional logical eventually to be passed to print(), wused by
print.default(), indicating whether or not strings should be right aligned.
X an object of class "noquote”.
quote, ... further options passed to next methods, such as print.
recursive for compatibility with the generic c function.
Details

noquote returns its argument as an object of class "noquote”. There is a method for c() and
subscript method (”[.noquote") which ensures that the class is not lost by subsetting. The print
method (print.noquote) prints character strings without quotes ("...").

If right is specified in a call print(x,right=+), it takes precedence over a possible right setting
of x, e.g., created by x <-noquote(*,right=TRUE).

These functions exist both as utilities and as an example of using (S3) class and object orientation.

Author(s)

Martin Maechler <maechler@stat.math.ethz.ch>

See Also

methods, class, print.

380 norm

Examples

letters

ngl <- noquote(letters)
ngl

ngl[1:4] <- "oh"
nql[1:12]

cmp.logical <- function(log.v)
{
Purpose: compact printing of logicals
log.v <- as.logical(log.v)
noquote(if(length(log.v) == @)" ()" else c(".”,"|")[1 + log.vl)
}
cmp.logical(stats::runif(20) > 0.8)

chmat <- as.matrix(format(stackloss)) # a "typical” character matrix
noquote(*, right=TRUE) so it prints exactly like a data frame
chmat <- noquote(chmat, right = TRUE)

chmat

norm Compute the Norm of a Matrix

Description

Computes a matrix norm of x using LAPACK. The norm can be the one ("0") norm, the infinity
("I") norm, the Frobenius ("F") norm, the maximum modulus ("M") among elements of a matrix,
or the “spectral” or "2"-norm, as determined by the value of type.

Usage

norm(x, type = C(”O”, ”I", ”F”, "M”, ,:2”))

Arguments
X numeric matrix; note that packages such as Matrix define more norm() meth-
ods.
type character string, specifying the type of matrix norm to be computed. A character

indicating the type of norm desired.
"0", "o" or "1" specifies the one norm, (maximum absolute column sum);

HIH nin

or "i" specifies the infinity norm (maximum absolute row sum);

"F"or "f" specifies the Frobenius norm (the Euclidean norm of x treated as if
it were a vector);

"M" or "m" specifies the maximum modulus of all the elements in x; and

"2" specifies the “spectral” or 2-norm, which is the largest singular value (svd)
of x.

The default is "0". Only the first character of type[1] is used.

https://CRAN.R-project.org/package=Matrix

normalizePath 381

Details
The base method of norm() calls the Lapack function dlange.
Note that the 1-, Inf- and "M" norm is faster to calculate than the Frobenius one.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value

The matrix norm, a non-negative number.

Source

Except for norm = "2", the LAPACK routine DLANGE.
LAPACK is from http://www.netlib.org/lapack.

References

Anderson, E., et al (1994). LAPACK User’s Guide, 2nd edition, SIAM, Philadelphia.

See Also

rcond for the (reciprocal) condition number.

Examples

(x1 <= cbind(1, 1:10))

norm(x1)

norm(x1, "I")

norm(x1, "M")

stopifnot(all.equal(norm(x1, "F"),
sqrt(sum(x12))))

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h9 <- hilbert(9)

all 5 types of norm:

(nTyp <- eval(formals(base::norm)$type))

sapply(nTyp, norm, x = h9)

normalizePath Express File Paths in Canonical Form

Description

Convert file paths to canonical form for the platform, to display them in a user-understandable form
and so that relative and absolute paths can be compared.

http://www.netlib.org/lapack

382 normalizePath

Usage

normalizePath(path, winslash = "\\", mustWork = NA)

Arguments
path character vector of file paths.
winslash the separator to be used on Windows — ignored elsewhere. Must be one of
C(H/H , ll\\ll>.
mustWork logical: if TRUE then an error is given if the result cannot be determined; if NA
then a warning.
Details

Tilde-expansion (see path.expand) is first done on paths.

Where the Unix-alike platform supports it attempts to turn paths into absolute paths in their canon-
ical form (no ./’, ¢. ./’ nor symbolic links). It relies on the POSIX system function realpath: if
the platform does not have that (we know of no current example) then the result will be an absolute
path but might not be canonical. Even where realpath is used the canonical path need not be
unique, for example via hard links or multiple mounts.

On Windows it converts relative paths to absolute paths, converts short names for path elements
to long names and ensures the separator is that specified by winslash. It will match paths case-
insensitively and return the canonical case. UTF-8-encoded paths not valid in the current locale can
be used.

mustWork = FALSE is useful for expressing paths for use in messages.

Value

A character vector.

If an input is not a real path the result is system-dependent (unless mustWork = TRUE, when this
should be an error). It will be either the corresponding input element or a transformation of it into
an absolute path.

Converting to an absolute file path can fail for a large number of reasons. The most common are

* One of more components of the file path does not exist.

* A component before the last is not a directory, or there is insufficient permission to read the
directory.

* For a relative path, the current directory cannot be determined.
* A symbolic link points to a non-existent place or links form a loop.

* The canonicalized path would be exceed the maximum supported length of a file path.

Note

The canonical form of paths may not be what you expect. For example, on macOS absolute paths
such as ‘/tmp’ and ‘/var’ are symbolic links. On Linux, a path produced by bash process substi-
tution is a symbolic link (such as ‘/proc/fd/63’) to a pipe and there is no canonical form of such
path.

NotYet 383

Examples

random tempdir
cat(normalizePath(c(R.home(), tempdir())), sep = "\n")

NotYet Not Yet Implemented Functions and Unused Arguments

Description

In order to pinpoint missing functionality, the R core team uses these functions for missing R func-
tions and not yet used arguments of existing R functions (which are typically there for compatibility
purposes).

You are very welcome to contribute your code ...

Usage

.NotYetImplemented()
.NotYetUsed(arg, error = TRUE)

Arguments

arg an argument of a function that is not yet used.

error a logical. If TRUE, an error is signalled; if FALSE; only a warning is given.
See Also

the contrary, Deprecated and Defunct for outdated code.

Examples

require(graphics)
barplot(1:5, inside = TRUE) # 'inside' is not yet used

nrow The Number of Rows/Columns of an Array

Description

nrow and ncol return the number of rows or columns present in x. NCOL and NROW do the same
treating a vector as 1-column matrix, even a 0O-length vector, compatibly with as.matrix() or
cbind(), see the example.

384 ns-dblcolon

Usage

nrow(x)
ncol(x)
NCOL (x)
NROW(x)

Arguments

X a vector, array, data frame, or NULL.

Value

an integer of length 1 or NULL, the latter only for ncol and nrow.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (ncol and nrow.)

See Also

dim which returns all dimensions; array, matrix.

Examples

ma <- matrix(1:12, 3, 4)
nrow(ma) # 3
ncol(ma) # 4

ncol(array(1:24, dim = 2:4)) # 3, the second dimension
NCOL(1:12) # 1
NROW(1:12) # 12

as.matrix() produces 1-column matrices from @-length vectors,
and so does cbind() :

dim(as.matrix(numeric())) # @ 1

dim(cbind(numeric())) # ditto

consequently, NCOL(.) gives 1, too :

NCOL (numeric()) # 1 and hence

NCOL (NULL) #1

ns-dblcolon Double Colon and Triple Colon Operators

Description

Accessing exported and internal variables, i.e. R objects (including lazy loaded data sets) in a
namespace.

ns-hooks 385

Usage

pkg: :name
pkg: : :name

Arguments

pkg package name: symbol or literal character string.

name variable name: symbol or literal character string.

Details

For a package pkg, pkg: : name returns the value of the exported variable name in namespace pkg,
whereas pkg: : :name returns the value of the internal variable name. The package namespace will
be loaded if it was not loaded before the call, but the package will not be attached to the search path.

Specifying a variable or package that does not exist is an error.

Note that pkg: : name does not access the objects in the environment package : pkg (which does not
exist until the package’s namespace is attached): the latter may contain objects not exported from
the namespace. It can access datasets made available by lazy-loading.

Note

It is typically a design mistake to use : : : in your code since the corresponding object has probably
been kept internal for a good reason. Consider contacting the package maintainer if you feel the
need to access the object for anything but mere inspection.

See Also

get to access an object masked by another of the same name. loadNamespace, asNamespace for
more about namespaces.

Examples

base::log

base::"+"

Beware -- wuse ':::' at your own risk! (see "Details"”)
stats:::coef.default

ns-hooks Hooks for Namespace Events

Description

Packages can supply functions to be called when loaded, attached, detached or unloaded.

386

ns-hooks

Usage

.onLoad(libname, pkgname)
.onAttach(libname, pkgname)
.onUnload(libpath)
.onDetach(libpath)
.Last.lib(libpath)

Arguments

libname a character string giving the library directory where the package defining the
namespace was found.

pkgname a character string giving the name of the package.

libpath a character string giving the complete path to the package.

Details

After loading, loadNamespace looks for a hook function named .onLoad and calls it (with two
unnamed arguments) before sealing the namespace and processing exports.

When the package is attached (via library or attachNamespace), the hook function .onAttach
is looked for and if found is called (with two unnamed arguments) before the package environment
is sealed.

If a function . onDetach is in the namespace or .Last.1ib is exported from the package, it will be
called (with a single argument) when the package is detached. Beware that it might be called if
.onAttach has failed, so it should be written defensively. (It is called within tryCatch, so errors
will not stop the package being detached.)

If a namespace is unloaded (via unloadNamespace), a hook function .onUnload is run (with a
single argument) before final unloading.

Note that the code in .onLoad and .onUnload should not assume any package except the base
package is on the search path. Objects in the current package will be visible (unless this is circum-
vented), but objects from other packages should be imported or the double colon operator should
be used.

.onLoad, .onUnload, .onAttach and .onDetach are looked for as internal objects in the names-
pace and should not be exported (whereas .Last.1ib should be).

Note that packages are not detached nor namespaces unloaded at the end of an R session unless the
user arranges to do so (e.g., via .Last).

Anything needed for the functioning of the namespace should be handled at load/unload times by the
.onLoad and .onUnload hooks. For example, DLLs can be loaded (unless done by a useDynLib
directive in the ‘NAMESPACE’ file) and initialized in .onLoad and unloaded in .onUnload. Use
.onAttach only for actions that are needed only when the package becomes visible to the user (for
example a start-up message) or need to be run after the package environment has been created.

Good practice

Loading a namespace should where possible be silent, with startup messages given by .onAttach.
These messages (and any essential ones from .onLoad) should use packageStartupMessage so
they can be silenced where they would be a distraction.

ns-load 387

There should be no calls to library nor require in these hooks. The way for a package to load
other packages is via the ‘Depends’ field in the ‘DESCRIPTION’ file: this ensures that the dependence
is documented and packages are loaded in the correct order. Loading a namespace should not
change the search path, so rather than attach a package, dependence of a namespace on another
package should be achieved by (selectively) importing from the other package’s namespace.

Uses of library with argument help to display basic information about the package should use
format on the computed package information object and pass this to packageStartupMessage.

There should be no calls to installed.packages in startup code: it is potentially very slow and
may fail in versions of R before 2.14.2 if package installation is going on in parallel. See its help
page for alternatives.

Compiled code should be loaded (e.g., via library.dynam) in .onLoad or a useDynLib directive
in the ‘NAMESPACE’ file, and not in .onAttach. Similarly, compiled code should not be unloaded
(e.g., via library.dynam.unload) in .Last.1lib nor .onDetach, only in .onUnload.

See Also
setHook shows how users can set hooks on the same events, and lists the sequence of events in-
volving all of the hooks.
reg.finalizer for hooks to be run at the end of a session.

loadNamespace for more about namespaces.

ns-load Loading and Unloading Name Spaces

Description

Functions to load and unload name spaces.

Usage

attachNamespace(ns, pos = 2L, depends = NULL, exclude, include.only)
loadNamespace(package, lib.loc = NULL,

keep.source = getOption("keep.source.pkgs"),

partial = FALSE, versionCheck = NULL,

keep.parse.data = getOption("keep.parse.data.pkgs"))
requireNamespace(package, ..., quietly = FALSE)
loadedNamespaces()
unloadNamespace(ns)
isNamespacelLoaded(name)

Arguments
ns string or name space object.
pos integer specifying position to attach.
depends NULL or a character vector of dependencies to be recorded in object .Depends

in the package.

388 ns-load

package string naming the package/name space to load.
lib.loc character vector specifying library search path.
keep.source Now ignored except during package installation.

keep.parse.data
Ignored except during package installation.

partial logical; if true, stop just after loading code.
versionCheck NULL or a version specification (a list with components op and version).
quietly logical: should progress and error messages be suppressed?

name string or ‘name’, see as.symbol, of a package, e.g., "stats".

exclude, include.only
character vectors; see library.

further arguments to be passed to loadNamespace.

Details

The functions loadNamespace and attachNamespace are usually called implicitly when library
is used to load a name space and any imports needed. However it may be useful at times to call
these functions directly.

loadNamespace loads the specified name space and registers it in an internal data base. A request
to load a name space when one of that name is already loaded has no effect. The arguments have the
same meaning as the corresponding arguments to library, whose help page explains the details of
how a particular installed package comes to be chosen. After loading, loadNamespace looks for a
hook function named . onLoad as an internal variable in the name space (it should not be exported).
Partial loading is used to support installation with lazy-loading.

Optionally the package licence is checked during loading: see section ‘Licens