18 #ifndef __ESCRIPT_LOCALOPS_H__ 19 #define __ESCRIPT_LOCALOPS_H__ 27 #ifdef ESYS_USE_BOOST_ACOS 28 #include <boost/math/complex/acos.hpp> 32 # define M_PI 3.14159265358979323846 92 return std::max(std::abs(x),std::abs(y));
121 return std::isnan(d);
132 return std::isnan( real(d) ) || std::isnan( imag(d) );
184 const T trA=(A00+A11)/2.;
185 const T A_00=A00-trA;
186 const T A_11=A11-trA;
187 const T s=sqrt(A01*A01-A_00*A_11);
225 const DataTypes::real_t q=(A02_2*A_11+A12_2*A_00+A01_2*A_22)-(A_00*A_11*A_22+2*A01*A12*A02);
234 *ev2=trA+2.*sq_p*cos(alpha_3);
235 *ev1=trA-2.*sq_p*cos(alpha_3+
M_PI/3.);
236 *ev0=trA-2.*sq_p*cos(alpha_3-
M_PI/3.);
275 if (absA00>m || absA01>m) {
317 A21-IA20*A01,A22-IA20*A02,&TEMP0,&TEMP1);
318 *V0=-(A10*TEMP0+A20*TEMP1);
351 if (
fabs((*ev0)-(*ev1))<tol*max_ev) {
369 }
else if (TEMP0>0.) {
400 s=1./sqrt((*V0)*(*V0)+(*V1)*(*V1)+(*V2)*(*V2));
405 s=-1./sqrt((*V0)*(*V0)+(*V1)*(*V1)+(*V2)*(*V2));
411 s=1./sqrt((*V1)*(*V1)+(*V2)*(*V2));
415 s=-1./sqrt((*V1)*(*V1)+(*V2)*(*V2));
465 &TEMP_V00,&TEMP_V10,&TEMP_V01,&TEMP_V11,tol);
479 }
else if (A00>TEMP_EV1) {
512 max_ev=max_ev>absev2 ? max_ev : absev2;
516 if (max_d<=tol*max_ev) {
530 vectorInKernel3__nonZeroA00(S00,A01,A02,A01,A11-(*ev0),A12,A02,A12,A22-(*ev0),V00,V10,V20);
531 }
else if (absA02<m) {
532 vectorInKernel3__nonZeroA00(A01,A11-(*ev0),A12,S00,A01,A02,A02,A12,A22-(*ev0),V00,V10,V20);
534 vectorInKernel3__nonZeroA00(A02,A12,A22-(*ev0),S00,A01,A02,A01,A11-(*ev0),A12,V00,V10,V20);
540 vectorInKernel3__nonZeroA00(T00,A01,A02,A01,A11-(*ev2),A12,A02,A12,A22-(*ev2),V02,V12,V22);
541 }
else if (absA02<m) {
542 vectorInKernel3__nonZeroA00(A01,A11-(*ev2),A12,T00,A01,A02,A02,A12,A22-(*ev2),V02,V12,V22);
544 vectorInKernel3__nonZeroA00(A02,A12,A22-(*ev2),T00,A01,A02,A01,A11-(*ev2),A12,V02,V12,V22);
551 *V01=(*V10)*(*V22)-(*V12)*(*V20);
552 *V11=(*V20)*(*V02)-(*V00)*(*V22);
553 *V21=(*V00)*(*V12)-(*V02)*(*V10);
561 template <
class LEFT,
class RIGHT,
class RES>
565 if (transpose == 0) {
566 for (
int i=0; i<SL; i++) {
567 for (
int j=0; j<SR; j++) {
569 for (
int l=0; l<SM; l++) {
570 sum += A[i+SL*l] * B[l+SM*j];
576 else if (transpose == 1) {
577 for (
int i=0; i<SL; i++) {
578 for (
int j=0; j<SR; j++) {
580 for (
int l=0; l<SM; l++) {
581 sum += A[i*SM+l] * B[l+SM*j];
587 else if (transpose == 2) {
588 for (
int i=0; i<SL; i++) {
589 for (
int j=0; j<SR; j++) {
591 for (
int l=0; l<SM; l++) {
592 sum += A[i+SL*l] * B[l*SR+j];
600 #if defined (_WIN32) && !defined(__INTEL_COMPILER) 636 #ifdef ESYS_USE_BOOST_ACOS 637 return boost::math::acos(x);
665 template <
typename IN>
692 for (
int i = 0; i < size; ++i) {
693 argRes[i] = std::real(arg1[i]);
697 for (
int i = 0; i < size; ++i) {
698 argRes[i] = std::imag(arg1[i]);
702 for (
size_t i = 0; i < size; ++i) {
703 argRes[i] = (
fabs(arg1[i])<=tol);
707 for (
size_t i = 0; i < size; ++i) {
708 argRes[i] = (
fabs(arg1[i])>tol);
712 for (
size_t i = 0; i < size; ++i) {
713 argRes[i] =
abs_f(arg1[i]);
717 for (
size_t i = 0; i < size; ++i) {
718 argRes[i] = std::arg(arg1[i]);
722 std::ostringstream oss;
723 oss <<
"Unsupported unary operation=";
727 oss <<
" (Was expecting an operation with real results)";
734 template <
typename OUT,
typename IN>
751 for (
size_t i = 0; i < size; ++i) {
760 template <
class IN,
typename OUT>
770 for (
size_t i = 0; i < size; ++i) {
771 argRes[i] = -arg1[i];
775 for (
size_t i = 0; i < size; ++i) {
776 argRes[i] = sin(arg1[i]);
780 for (
size_t i = 0; i < size; ++i) {
781 argRes[i] = cos(arg1[i]);
785 for (
size_t i = 0; i < size; ++i) {
786 argRes[i] = tan(arg1[i]);
790 for (
size_t i = 0; i < size; ++i) {
791 argRes[i] = asin(arg1[i]);
795 for (
size_t i = 0; i < size; ++i) {
800 for (
size_t i = 0; i < size; ++i) {
801 argRes[i] = atan(arg1[i]);
805 for (
size_t i = 0; i < size; ++i) {
806 argRes[i] = std::abs(arg1[i]);
810 for (
size_t i = 0; i < size; ++i) {
811 argRes[i] = sinh(arg1[i]);
815 for (
size_t i = 0; i < size; ++i) {
816 argRes[i] = cosh(arg1[i]);
820 for (
size_t i = 0; i < size; ++i) {
821 argRes[i] = tanh(arg1[i]);
825 for (
size_t i = 0; i < size; ++i) {
830 for (
size_t i = 0; i < size; ++i) {
831 argRes[i] = asinh(arg1[i]);
835 for (
size_t i = 0; i < size; ++i) {
836 argRes[i] = acosh(arg1[i]);
840 for (
size_t i = 0; i < size; ++i) {
841 argRes[i] = atanh(arg1[i]);
845 for (
size_t i = 0; i < size; ++i) {
846 argRes[i] = log10(arg1[i]);
850 for (
size_t i = 0; i < size; ++i) {
851 argRes[i] = log(arg1[i]);
855 for (
size_t i = 0; i < size; ++i) {
860 for (
size_t i = 0; i < size; ++i) {
861 argRes[i] = exp(arg1[i]);
865 for (
size_t i = 0; i < size; ++i) {
866 argRes[i] = sqrt(arg1[i]);
870 for (
size_t i = 0; i < size; ++i) {
875 for (
size_t i = 0; i < size; ++i) {
880 for (
size_t i = 0; i < size; ++i) {
885 for (
size_t i = 0; i < size; ++i) {
890 for (
size_t i = 0; i < size; ++i) {
891 argRes[i] = conjugate<OUT,IN>(arg1[i]);
895 for (
size_t i = 0; i < size; ++i) {
896 argRes[i] = 1.0/arg1[i];
900 for (
size_t i = 0; i < size; ++i) {
901 argRes[i] =
fabs(arg1[i])<=tol;
905 for (
size_t i = 0; i < size; ++i) {
906 argRes[i] =
fabs(arg1[i])>tol;
911 std::ostringstream oss;
912 oss <<
"Unsupported unary operation=";
926 #endif // __ESCRIPT_LOCALOPS_H__ Definition: ES_optype.h:45
DataTypes::real_t calc_sign(DataTypes::real_t x)
Definition: ArrayOps.h:617
DataTypes::real_t calc_erf(DataTypes::real_t x)
Definition: ArrayOps.h:604
DataTypes::real_t second_argument_type
Definition: ArrayOps.h:79
Definition: ES_optype.h:39
void tensor_unary_array_operation_real(const size_t size, const IN *arg1, DataTypes::real_t *argRes, escript::ES_optype operation, DataTypes::real_t tol=0)
Definition: ArrayOps.h:683
const std::string & opToString(ES_optype op)
Definition: ES_optype.cpp:88
Definition: ES_optype.h:38
void tensor_unary_promote(const size_t size, const DataTypes::real_t *arg1, DataTypes::cplx_t *argRes)
Definition: ArrayOps.h:747
Definition: ES_optype.h:42
escript::DataTypes::real_t fabs(const escript::DataTypes::cplx_t c)
Definition: ArrayOps.h:644
Definition: ES_optype.h:47
Definition: ES_optype.h:41
void eigenvalues1(const DataTypes::real_t A00, DataTypes::real_t *ev0)
solves a 1x1 eigenvalue A*V=ev*V problem
Definition: ArrayOps.h:160
Definition: ES_optype.h:56
DataTypes::real_t operator()(DataTypes::real_t x, DataTypes::real_t y) const
Definition: ArrayOps.h:74
Definition: AbstractContinuousDomain.cpp:22
Definition: ES_optype.h:48
void transpose(const VEC &in, const DataTypes::ShapeType &inShape, typename VEC::size_type inOffset, VEC &ev, const DataTypes::ShapeType &evShape, typename VEC::size_type evOffset, int axis_offset)
Transpose each data point of this Data object around the given axis.
Definition: DataVectorOps.h:342
#define M_PI
Definition: ArrayOps.h:32
void eigenvalues_and_eigenvectors3(const DataTypes::real_t A00, const DataTypes::real_t A01, const DataTypes::real_t A02, const DataTypes::real_t A11, const DataTypes::real_t A12, const DataTypes::real_t A22, DataTypes::real_t *ev0, DataTypes::real_t *ev1, DataTypes::real_t *ev2, DataTypes::real_t *V00, DataTypes::real_t *V10, DataTypes::real_t *V20, DataTypes::real_t *V01, DataTypes::real_t *V11, DataTypes::real_t *V21, DataTypes::real_t *V02, DataTypes::real_t *V12, DataTypes::real_t *V22, const DataTypes::real_t tol)
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A. Eigenvectors are ordered by increasing valu...
Definition: ArrayOps.h:450
Definition: ES_optype.h:74
DataTypes::real_t fsign(DataTypes::real_t x)
Definition: ArrayOps.h:102
DataTypes::real_t calc_gezero(const DataTypes::real_t &x)
Definition: ArrayOps.h:655
Definition: ES_optype.h:51
Definition: ES_optype.h:37
Definition: ES_optype.h:62
DataTypes::real_t calc_ltzero(const DataTypes::real_t &x)
Definition: ArrayOps.h:659
DataTypes::real_t abs_f(IN i)
Definition: ArrayOps.h:666
DataTypes::real_t operator()(DataTypes::real_t x, DataTypes::real_t y) const
Definition: ArrayOps.h:59
Definition: ES_optype.h:40
DataTypes::real_t calc_lezero(const DataTypes::real_t &x)
Definition: ArrayOps.h:662
Definition: ES_optype.h:60
void eigenvalues2(const T A00, const T A01, const T A11, T *ev0, T *ev1)
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A
Definition: ArrayOps.h:182
Definition: ES_optype.h:75
Definition: ES_optype.h:49
Definition: ES_optype.h:57
void normalizeVector3(DataTypes::real_t *V0, DataTypes::real_t *V1, DataTypes::real_t *V2)
nomalizes a 3-d vector such that length is one and first non-zero component is positive.
Definition: ArrayOps.h:396
void scale(dim_t N, double *x, double a)
x = a*x
Definition: PasoUtil.h:93
Return the absolute maximum value of the two given values.
Definition: ArrayOps.h:88
DataTypes::real_t result_type
Definition: ArrayOps.h:80
Definition: ES_optype.h:54
DataTypes::real_t result_type
Definition: ArrayOps.h:96
ES_optype
Definition: ES_optype.h:26
Return the minimum value of the two given values.
Definition: ArrayOps.h:72
void matrix_matrix_product(const int SL, const int SM, const int SR, const LEFT *A, const RIGHT *B, RES *C, int transpose)
Definition: ArrayOps.h:563
Definition: ES_optype.h:55
Definition: ES_optype.h:46
Definition: ES_optype.h:81
void eigenvalues_and_eigenvectors2(const DataTypes::real_t A00, const DataTypes::real_t A01, const DataTypes::real_t A11, DataTypes::real_t *ev0, DataTypes::real_t *ev1, DataTypes::real_t *V00, DataTypes::real_t *V10, DataTypes::real_t *V01, DataTypes::real_t *V11, const DataTypes::real_t tol)
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A. Eigenvectors are ordered by increasing valu...
Definition: ArrayOps.h:341
void vectorInKernel3__nonZeroA00(const DataTypes::real_t A00, const DataTypes::real_t A10, const DataTypes::real_t A20, const DataTypes::real_t A01, const DataTypes::real_t A11, const DataTypes::real_t A21, const DataTypes::real_t A02, const DataTypes::real_t A12, const DataTypes::real_t A22, DataTypes::real_t *V0, DataTypes::real_t *V1, DataTypes::real_t *V2)
returns a non-zero vector in the kernel of [[A00,A01,A02],[A10,A11,A12],[A20,A21,A22]] assuming that ...
Definition: ArrayOps.h:307
void eigenvalues_and_eigenvectors1(const DataTypes::real_t A00, DataTypes::real_t *ev0, DataTypes::real_t *V00, const DataTypes::real_t tol)
solves a 1x1 eigenvalue A*V=ev*V problem for symmetric A
Definition: ArrayOps.h:249
Definition: ES_optype.h:61
Definition: ES_optype.h:76
Return the maximum value of the two given values.
Definition: ArrayOps.h:57
Definition: ES_optype.h:58
std::complex< real_t > cplx_t
complex data type
Definition: DataTypes.h:53
Definition: ES_optype.h:35
bool supports_cplx(escript::ES_optype operation)
Definition: ArrayOps.cpp:25
Definition: ES_optype.h:36
Definition: DataException.h:26
void vectorInKernel2(const DataTypes::real_t A00, const DataTypes::real_t A10, const DataTypes::real_t A01, const DataTypes::real_t A11, DataTypes::real_t *V0, DataTypes::real_t *V1)
returns a non-zero vector in the kernel of [[A00,A01],[A01,A11]] assuming that the kernel dimension i...
Definition: ArrayOps.h:267
DataTypes::real_t calc_gtzero(const DataTypes::real_t &x)
Definition: ArrayOps.h:651
Definition: ES_optype.h:52
Definition: ES_optype.h:44
DataTypes::real_t first_argument_type
Definition: ArrayOps.h:78
Definition: ES_optype.h:43
DataTypes::real_t makeNaN()
returns a NaN.
Definition: ArrayOps.h:141
T second_argument_type
Definition: ArrayOps.h:95
OUT conjugate(const IN i)
Definition: ArrayOps.h:735
Definition: ES_optype.h:59
DataTypes::real_t first_argument_type
Definition: ArrayOps.h:63
void tensor_unary_array_operation(const size_t size, const IN *arg1, OUT *argRes, escript::ES_optype operation, DataTypes::real_t tol=0)
Definition: ArrayOps.h:761
DataTypes::real_t second_argument_type
Definition: ArrayOps.h:64
DataTypes::real_t operator()(T x, T y) const
Definition: ArrayOps.h:90
Definition: ES_optype.h:50
T first_argument_type
Definition: ArrayOps.h:94
bool nancheck(DataTypes::real_t d)
acts as a wrapper to isnan.
Definition: ArrayOps.h:116
bool always_real(escript::ES_optype operation)
Definition: ArrayOps.cpp:65
double real_t
type of all real-valued scalars in escript
Definition: DataTypes.h:50
DataTypes::real_t result_type
Definition: ArrayOps.h:65
DataTypes::real_t calc_acos(DataTypes::real_t x)
Definition: ArrayOps.h:628
void eigenvalues3(const DataTypes::real_t A00, const DataTypes::real_t A01, const DataTypes::real_t A02, const DataTypes::real_t A11, const DataTypes::real_t A12, const DataTypes::real_t A22, DataTypes::real_t *ev0, DataTypes::real_t *ev1, DataTypes::real_t *ev2)
solves a 3x3 eigenvalue A*V=ev*V problem for symmetric A
Definition: ArrayOps.h:206