|
bool | escript::always_real (escript::ES_optype operation) |
|
DataTypes::real_t | escript::fsign (DataTypes::real_t x) |
|
bool | escript::nancheck (DataTypes::real_t d) |
| acts as a wrapper to isnan. More...
|
|
DataTypes::real_t | escript::makeNaN () |
| returns a NaN. More...
|
|
void | escript::eigenvalues1 (const DataTypes::real_t A00, DataTypes::real_t *ev0) |
| solves a 1x1 eigenvalue A*V=ev*V problem More...
|
|
void | escript::eigenvalues1 (const DataTypes::cplx_t A00, DataTypes::cplx_t *ev0) |
|
template<class T > |
void | escript::eigenvalues2 (const T A00, const T A01, const T A11, T *ev0, T *ev1) |
| solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A More...
|
|
void | escript::eigenvalues3 (const DataTypes::real_t A00, const DataTypes::real_t A01, const DataTypes::real_t A02, const DataTypes::real_t A11, const DataTypes::real_t A12, const DataTypes::real_t A22, DataTypes::real_t *ev0, DataTypes::real_t *ev1, DataTypes::real_t *ev2) |
| solves a 3x3 eigenvalue A*V=ev*V problem for symmetric A More...
|
|
void | escript::eigenvalues_and_eigenvectors1 (const DataTypes::real_t A00, DataTypes::real_t *ev0, DataTypes::real_t *V00, const DataTypes::real_t tol) |
| solves a 1x1 eigenvalue A*V=ev*V problem for symmetric A More...
|
|
void | escript::vectorInKernel2 (const DataTypes::real_t A00, const DataTypes::real_t A10, const DataTypes::real_t A01, const DataTypes::real_t A11, DataTypes::real_t *V0, DataTypes::real_t *V1) |
| returns a non-zero vector in the kernel of [[A00,A01],[A01,A11]] assuming that the kernel dimension is at least 1. More...
|
|
void | escript::vectorInKernel3__nonZeroA00 (const DataTypes::real_t A00, const DataTypes::real_t A10, const DataTypes::real_t A20, const DataTypes::real_t A01, const DataTypes::real_t A11, const DataTypes::real_t A21, const DataTypes::real_t A02, const DataTypes::real_t A12, const DataTypes::real_t A22, DataTypes::real_t *V0, DataTypes::real_t *V1, DataTypes::real_t *V2) |
| returns a non-zero vector in the kernel of [[A00,A01,A02],[A10,A11,A12],[A20,A21,A22]] assuming that the kernel dimension is at least 1 and A00 is non zero. More...
|
|
void | escript::eigenvalues_and_eigenvectors2 (const DataTypes::real_t A00, const DataTypes::real_t A01, const DataTypes::real_t A11, DataTypes::real_t *ev0, DataTypes::real_t *ev1, DataTypes::real_t *V00, DataTypes::real_t *V10, DataTypes::real_t *V01, DataTypes::real_t *V11, const DataTypes::real_t tol) |
| solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A. Eigenvectors are ordered by increasing value and eigen vectors are normalizeVector3d such that length is zero and first non-zero component is positive. More...
|
|
void | escript::normalizeVector3 (DataTypes::real_t *V0, DataTypes::real_t *V1, DataTypes::real_t *V2) |
| nomalizes a 3-d vector such that length is one and first non-zero component is positive. More...
|
|
void | escript::eigenvalues_and_eigenvectors3 (const DataTypes::real_t A00, const DataTypes::real_t A01, const DataTypes::real_t A02, const DataTypes::real_t A11, const DataTypes::real_t A12, const DataTypes::real_t A22, DataTypes::real_t *ev0, DataTypes::real_t *ev1, DataTypes::real_t *ev2, DataTypes::real_t *V00, DataTypes::real_t *V10, DataTypes::real_t *V20, DataTypes::real_t *V01, DataTypes::real_t *V11, DataTypes::real_t *V21, DataTypes::real_t *V02, DataTypes::real_t *V12, DataTypes::real_t *V22, const DataTypes::real_t tol) |
| solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A. Eigenvectors are ordered by increasing value and eigen vectors are normalizeVector3d such that length is zero and first non-zero component is positive. More...
|
|
template<class LEFT , class RIGHT , class RES > |
void | escript::matrix_matrix_product (const int SL, const int SM, const int SR, const LEFT *A, const RIGHT *B, RES *C, int transpose) |
|
DataTypes::real_t | escript::calc_erf (DataTypes::real_t x) |
|
DataTypes::cplx_t | escript::calc_erf (DataTypes::cplx_t x) |
|
DataTypes::real_t | escript::calc_sign (DataTypes::real_t x) |
|
DataTypes::cplx_t | escript::calc_sign (DataTypes::cplx_t x) |
|
DataTypes::real_t | escript::calc_acos (DataTypes::real_t x) |
|
DataTypes::cplx_t | escript::calc_acos (DataTypes::cplx_t x) |
|
escript::DataTypes::real_t | escript::fabs (const escript::DataTypes::cplx_t c) |
|
DataTypes::real_t | escript::calc_gtzero (const DataTypes::real_t &x) |
|
DataTypes::cplx_t | escript::calc_gtzero (const DataTypes::cplx_t &x) |
|
DataTypes::real_t | escript::calc_gezero (const DataTypes::real_t &x) |
|
DataTypes::cplx_t | escript::calc_gezero (const DataTypes::cplx_t &x) |
|
DataTypes::real_t | escript::calc_ltzero (const DataTypes::real_t &x) |
|
DataTypes::cplx_t | escript::calc_ltzero (const DataTypes::cplx_t &x) |
|
DataTypes::real_t | escript::calc_lezero (const DataTypes::real_t &x) |
|
DataTypes::cplx_t | escript::calc_lezero (const DataTypes::cplx_t &x) |
|
template<typename IN > |
DataTypes::real_t | escript::abs_f (IN i) |
|
template<> |
DataTypes::real_t | escript::abs_f (DataTypes::cplx_t i) |
|
template<class IN > |
void | escript::tensor_unary_array_operation_real (const size_t size, const IN *arg1, DataTypes::real_t *argRes, escript::ES_optype operation, DataTypes::real_t tol=0) |
|
template<typename OUT , typename IN > |
OUT | escript::conjugate (const IN i) |
|
template<> |
DataTypes::real_t | escript::conjugate (const DataTypes::real_t r) |
|
template<class IN , typename OUT > |
void | escript::tensor_unary_array_operation (const size_t size, const IN *arg1, OUT *argRes, escript::ES_optype operation, DataTypes::real_t tol=0) |
|
bool | escript::supports_cplx (escript::ES_optype operation) |
|