# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Implements rotations, including spherical rotations as defined in WCS Paper II
[1]_
`RotateNative2Celestial` and `RotateCelestial2Native` follow the convention in
WCS Paper II to rotate to/from a native sphere and the celestial sphere.
The implementation uses `EulerAngleRotation`. The model parameters are
three angles: the longitude (``lon``) and latitude (``lat``) of the fiducial point
in the celestial system (``CRVAL`` keywords in FITS), and the longitude of the celestial
pole in the native system (``lon_pole``). The Euler angles are ``lon+90``, ``90-lat``
and ``-(lon_pole-90)``.
References
----------
.. [1] Calabretta, M.R., Greisen, E.W., 2002, A&A, 395, 1077 (Paper II)
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
import math
import numpy as np
from .core import Model
from .parameters import Parameter
__all__ = ['RotateCelestial2Native', 'RotateNative2Celestial', 'Rotation2D',
'EulerAngleRotation']
class _EulerRotation(object):
"""
Base class which does the actual computation.
"""
def _create_matrix(self, phi, theta, psi, axes_order):
matrices = []
for angle, axis in zip([phi, theta, psi], axes_order):
matrix = np.zeros((3, 3), dtype=np.float)
if axis == 'x':
mat = self.rotation_matrix_from_angle(angle)
matrix[0, 0] = 1
matrix[1:, 1:] = mat
elif axis == 'y':
mat = self.rotation_matrix_from_angle(-angle)
matrix[1, 1] = 1
matrix[0, 0] = mat[0, 0]
matrix[0, 2] = mat[0, 1]
matrix[2, 0] = mat[1, 0]
matrix[2, 2] = mat[1, 1]
elif axis == 'z':
mat = self.rotation_matrix_from_angle(angle)
matrix[2, 2] = 1
matrix[:2, :2] = mat
else:
raise ValueError("Expected axes_order to be a combination of characters"
"'x', 'y' and 'z', got {0}".format(
set(axes_order).difference(self.axes)))
matrices.append(matrix)
return np.dot(matrices[2], np.dot(matrices[1], matrices[0]))
@staticmethod
def spherical2cartesian(alpha, delta):
alpha = np.deg2rad(alpha)
delta = np.deg2rad(delta)
x = np.cos(alpha) * np.cos(delta)
y = np.cos(delta) * np.sin(alpha)
z = np.sin(delta)
return np.array([x, y, z])
@staticmethod
def cartesian2spherical(x, y, z):
h = np.hypot(x, y)
alpha = np.rad2deg(np.arctan2(y, x))
delta = np.rad2deg(np.arctan2(z, h))
return alpha, delta
@staticmethod
def rotation_matrix_from_angle(angle):
"""
Clockwise rotation matrix.
Parameters
----------
angle : float
Rotation angle in radians.
"""
return np.array([[math.cos(angle), math.sin(angle)],
[-math.sin(angle), math.cos(angle)]])
def evaluate(self, alpha, delta, phi, theta, psi, axes_order):
shape = None
if isinstance(alpha, np.ndarray) and alpha.ndim == 2:
alpha = alpha.flatten()
delta = delta.flatten()
shape = alpha.shape
inp = self.spherical2cartesian(alpha, delta)
matrix = self._create_matrix(phi, theta, psi, axes_order)
result = np.dot(matrix, inp)
a, b = self.cartesian2spherical(*result)
if shape is not None:
a.shape = shape
b.shape = shape
return a, b
[docs]class EulerAngleRotation(_EulerRotation, Model):
"""
Implements Euler angle intrinsic rotations.
Rotates one coordinate system into another (fixed) coordinate system.
All coordinate systems are right-handed. The sign of the angles is
determined by the right-hand rule..
Parameters
----------
phi, theta, psi : float
"proper" Euler angles in deg
axes_order : str
A 3 character string, a combination of 'x', 'y' and 'z',
where each character denotes an axis in 3D space.
"""
inputs = ('alpha', 'delta')
outputs = ('alpha', 'delta')
phi = Parameter(default=0, getter=np.rad2deg, setter=np.deg2rad)
theta = Parameter(default=0, getter=np.rad2deg, setter=np.deg2rad)
psi = Parameter(default=0, getter=np.rad2deg, setter=np.deg2rad)
def __init__(self, phi, theta, psi, axes_order, **kwargs):
self.axes = ['x', 'y', 'z']
if len(axes_order) != 3:
raise TypeError(
"Expected axes_order to be a character sequence of length 3,"
"got {0}".format(axes_order))
unrecognized = set(axes_order).difference(self.axes)
if unrecognized:
raise ValueError("Unrecognized axis label {0}; "
"should be one of {1} ".format(unrecognized, self.axes))
self.axes_order = axes_order
super(EulerAngleRotation, self).__init__(phi=phi, theta=theta, psi=psi, **kwargs)
def inverse(self):
return self.__class__(phi=-self.psi,
theta=-self.theta,
psi=-self.phi,
axes_order=self.axes_order[::-1])
[docs] def evaluate(self, alpha, delta, phi, theta, psi):
shape = None
if isinstance(alpha, np.ndarray) and alpha.ndim == 2:
alpha = alpha.flatten()
delta = delta.flatten()
shape = alpha.shape
inp = self.spherical2cartesian(alpha, delta)
matrix = self._create_matrix(phi, theta, psi, self.axes_order)
result = np.dot(matrix, inp)
a, b = self.cartesian2spherical(*result)
if shape is not None:
a.shape = shape
b.shape = shape
return a, b
class _SkyRotation(_EulerRotation, Model):
"""
Base class for RotateNative2Celestial and RotateCelestial2Native.
"""
lon = Parameter(default=0, getter=np.rad2deg, setter=np.deg2rad)
lat = Parameter(default=0, getter=np.rad2deg, setter=np.deg2rad)
lon_pole = Parameter(default=0, getter=np.rad2deg, setter=np.deg2rad)
def __init__(self, lon, lat, lon_pole, **kwargs):
super(_SkyRotation, self).__init__(lon, lat, lon_pole, **kwargs)
self.axes_order = 'zxz'
def _evaluate(self, phi, theta, lon, lat, lon_pole):
alpha, delta = super(_SkyRotation, self).evaluate(phi, theta, lon, lat,
lon_pole, self.axes_order)
mask = alpha < 0
if isinstance(mask, np.ndarray):
alpha[mask] +=360
else:
alpha +=360
return alpha, delta
[docs]class RotateNative2Celestial(_SkyRotation):
"""
Transform from Native to Celestial Spherical Coordinates.
Parameters
----------
lon : float
Celestial longitude of the fiducial point.
lat : float
Celestial latitude of the fiducial point.
lon_pole : float
Longitude of the celestial pole in the native system.
"""
# angles in degrees on the native sphere
inputs = ('phi_N', 'theta_N')
outputs = ('alpha_C', 'delta_C')
def __init__(self, lon, lat, lon_pole, **kwargs):
super(RotateNative2Celestial, self).__init__(lon, lat, lon_pole, **kwargs)
[docs] def evaluate(self, phi_N, theta_N, lon, lat, lon_pole):
# Convert to Euler angles
phi = lon_pole - np.pi / 2
theta = - (np.pi / 2 - lat)
psi = -(np.pi / 2 + lon)
alpha_C, delta_C = super(RotateNative2Celestial, self)._evaluate(phi_N, theta_N,
phi, theta, psi)
return alpha_C, delta_C
@property
def inverse(self):
# convert to angles on the celestial sphere
return RotateCelestial2Native(self.lon, self.lat, self.lon_pole)
[docs]class RotateCelestial2Native(_SkyRotation):
"""
Transform from Celestial to Native Spherical Coordinates.
Parameters
----------
lon : float
Celestial longitude of the fiducial point.
lat : float
Celestial latitude of the fiducial point.
lon_pole : float
Longitude of the celestial pole in the native system.
"""
# angles in degrees on the celestial sphere
inputs = ('alpha_C', 'delta_C')
# angles in degrees on the native sphere
outputs = ('phi_N', 'theta_N')
def __init__(self, lon, lat, lon_pole, **kwargs):
super(RotateCelestial2Native, self).__init__(lon, lat, lon_pole, **kwargs)
[docs] def evaluate(self, alpha_C, delta_C, lon, lat, lon_pole):
# Convert to Euler angles
phi = (np.pi / 2 + lon)
theta = (np.pi / 2 - lat)
psi = -(lon_pole - np.pi / 2)
phi_N, theta_N = super(RotateCelestial2Native, self)._evaluate(alpha_C, delta_C,
phi, theta, psi)
return phi_N, theta_N
@property
def inverse(self):
return RotateNative2Celestial(self.lon, self.lat, self.lon_pole)
[docs]class Rotation2D(Model):
"""
Perform a 2D rotation given an angle in degrees.
Positive angles represent a counter-clockwise rotation and vice-versa.
Parameters
----------
angle : float
angle of rotation in deg
"""
inputs = ('x', 'y')
outputs = ('x', 'y')
angle = Parameter(default=0.0, getter=np.rad2deg, setter=np.deg2rad)
@property
def inverse(self):
"""Inverse rotation."""
return self.__class__(angle=-self.angle)
@classmethod
[docs] def evaluate(cls, x, y, angle):
"""
Apply the rotation to a set of 2D Cartesian coordinates given as two
lists--one for the x coordinates and one for a y coordinates--or a
single coordinate pair.
"""
if x.shape != y.shape:
raise ValueError("Expected input arrays to have the same shape")
# Note: If the original shape was () (an array scalar) convert to a
# 1-element 1-D array on output for consistency with most other models
orig_shape = x.shape or (1,)
inarr = np.array([x.flatten(), y.flatten()])
result = np.dot(cls._compute_matrix(angle), inarr)
x, y = result[0], result[1]
x.shape = y.shape = orig_shape
return x, y
@staticmethod
def _compute_matrix(angle):
return np.array([[math.cos(angle), -math.sin(angle)],
[math.sin(angle), math.cos(angle)]],
dtype=np.float64)