# -*- coding: utf-8 -*-
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""This module contains functions and methods that relate to the DataInfo class
which provides a container for informational attributes as well as summary info
methods.
A DataInfo object is attached to the Quantity, SkyCoord, and Time classes in
astropy. Here it allows those classes to be used in Tables and uniformly carry
table column attributes such as name, format, dtype, meta, and description.
"""
# Note: these functions and classes are tested extensively in astropy table
# tests via their use in providing mixin column info, and in
# astropy/tests/test_info for providing table and column info summary data.
from __future__ import absolute_import, division, print_function
import os
import sys
import weakref
from copy import deepcopy
import numpy as np
from functools import partial
import warnings
import re
from collections import OrderedDict
from ..extern import six
from ..utils.compat import NUMPY_LT_1_8
# Tuple of filterwarnings kwargs to ignore when calling info
IGNORE_WARNINGS = (dict(category=RuntimeWarning,
module=r'numpy\.lib\.nanfunctions'),)
STRING_TYPE_NAMES = {(False, 'S'): 'str', # not PY3
(False, 'U'): 'unicode',
(True, 'S'): 'bytes', # PY3
(True, 'U'): 'str'}
def dtype_info_name(dtype):
"""Return a human-oriented string name of the ``dtype`` arg.
This can be use by astropy methods that present type information about
a data object.
The output is mostly equivalent to ``dtype.name`` which takes the form
<type_name>[B] where <type_name> is like ``int`` or ``bool`` and [B] is an
optional number of bits which gets included only for numeric types.
For bytes, string and unicode types, the output is shown below, where <N>
is the number of characters. This representation corresponds to the Python
type that matches the dtype::
Numpy S<N> U<N>
Python 2 str<N> unicode<N>
Python 3 bytes<N> str<N>
Parameters
----------
dtype: str, np.dtype, type
Input dtype as an object that can be converted via np.dtype()
Returns
-------
dtype_info_name: str
String name of ``dtype``
"""
dtype = np.dtype(dtype)
if dtype.kind in ('S', 'U'):
length = re.search(r'(\d+)', dtype.str).group(1)
type_name = STRING_TYPE_NAMES[(six.PY3, dtype.kind)]
out = type_name + length
else:
out = dtype.name
return out
def data_info_factory(names, funcs):
"""
Factory to create a function that can be used as an ``option``
for outputting data object summary information.
Examples
--------
>>> from astropy.utils.data_info import data_info_factory
>>> from astropy.table import Column
>>> c = Column([4., 3., 2., 1.])
>>> mystats = data_info_factory(names=['min', 'median', 'max'],
... funcs=[np.min, np.median, np.max])
>>> c.info(option=mystats)
min = 1.0
median = 2.5
max = 4.0
n_bad = 0
length = 4
Parameters
----------
names: list
List of information attribute names
funcs: list
List of functions that compute the corresponding information attribute
Returns
-------
func: function
Function that can be used as a data info option
"""
def func(dat):
outs = []
for name, func in zip(names, funcs):
try:
if isinstance(func, six.string_types):
out = getattr(dat, func)()
else:
out = func(dat)
except:
outs.append('--')
else:
outs.append(str(out))
return OrderedDict(zip(names, outs))
return func
def _get_data_attribute(dat, attr=None):
"""
Get a data object attribute for the ``attributes`` info summary method
"""
if attr == 'class':
val = type(dat).__name__
elif attr == 'dtype':
val = dtype_info_name(dat.info.dtype)
elif attr == 'shape':
datshape = dat.shape[1:]
val = datshape if datshape else ''
else:
val = getattr(dat.info, attr)
if val is None:
val = ''
return str(val)
class DataInfo(object):
"""
Descriptor that data classes use to add an ``info`` attribute for storing
data attributes in a uniform and portable way. Note that it *must* be
called ``info`` so that the DataInfo() object can be stored in the
``instance`` using the ``info`` key. Because owner_cls.x is a descriptor,
Python doesn't use __dict__['x'] normally, and the descriptor can safely
store stuff there. Thanks to http://nbviewer.ipython.org/urls/
gist.github.com/ChrisBeaumont/5758381/raw/descriptor_writeup.ipynb for
this trick that works for non-hashable classes.
Parameters
----------
bound : bool, default=False
If True this is a descriptor attribute in a class definition, else it
is a DataInfo() object that is bound to a data object instance.
"""
_stats = ['mean', 'std', 'min', 'max']
attrs_from_parent = set()
attr_names = set(['name', 'unit', 'dtype', 'format', 'description', 'meta'])
_attrs_no_copy = set()
_info_summary_attrs = ('dtype', 'shape', 'unit', 'format', 'description', 'class')
_parent = None
def __init__(self, bound=False):
# If bound to a data object instance then create the dict of attributes
# which stores the info attribute values.
if bound:
self._attrs = dict((attr, None) for attr in self.attr_names)
def __get__(self, instance, owner_cls):
if instance is None:
# This is an unbound descriptor on the class
info = self
else:
info = instance.__dict__.get('info')
if info is None:
info = instance.__dict__['info'] = self.__class__(bound=True)
info._parent = instance
return info
def __set__(self, instance, value):
if instance is None:
# This is an unbound descriptor on the class
raise ValueError('cannot set unbound descriptor')
if isinstance(value, DataInfo):
info = instance.__dict__['info'] = self.__class__(bound=True)
for attr in info.attr_names - info.attrs_from_parent - info._attrs_no_copy:
info._attrs[attr] = deepcopy(getattr(value, attr))
else:
raise TypeError('info must be set with a DataInfo instance')
def __getstate__(self):
return self._attrs
def __setstate__(self, state):
self._attrs = state
def __getattr__(self, attr):
if attr.startswith('_'):
return super(DataInfo, self).__getattribute__(attr)
if attr in self.attrs_from_parent:
return getattr(self._parent, attr)
try:
value = self._attrs[attr]
except KeyError:
super(DataInfo, self).__getattribute__(attr) # Generate AttributeError
# Weak ref for parent table
if attr == 'parent_table' and callable(value):
value = value()
# Mixins have a default dtype of Object if nothing else was set
if attr == 'dtype' and value is None:
value = np.dtype('O')
return value
def __setattr__(self, attr, value):
propobj = getattr(self.__class__, attr, None)
# If attribute is taken from parent properties and there is not a
# class property (getter/setter) for this attribute then set
# attribute directly in parent.
if attr in self.attrs_from_parent and not isinstance(propobj, property):
setattr(self._parent, attr, value)
return
# Check if there is a property setter and use it if possible.
if isinstance(propobj, property):
if propobj.fset is None:
raise AttributeError("can't set attribute")
propobj.fset(self, value)
return
# Private attr names get directly set
if attr.startswith('_'):
super(DataInfo, self).__setattr__(attr, value)
return
# Finally this must be an actual data attribute that this class is handling.
if attr not in self.attr_names:
raise AttributeError("attribute must be one of {0}".format(self.attr_names))
if attr == 'parent_table':
value = None if value is None else weakref.ref(value)
self._attrs[attr] = value
info_summary_attributes = staticmethod(
data_info_factory(names=_info_summary_attrs,
funcs=[partial(_get_data_attribute, attr=attr)
for attr in _info_summary_attrs]))
# No nan* methods in numpy < 1.8
info_summary_stats = staticmethod(
data_info_factory(names=_stats,
funcs=[getattr(np, ('' if NUMPY_LT_1_8 else 'nan') + stat)
for stat in _stats]))
def __call__(self, option='attributes', out=''):
"""
Write summary information about data object to the ``out`` filehandle.
By default this prints to standard output via sys.stdout.
The ``option` argument specifies what type of information
to include. This can be a string, a function, or a list of
strings or functions. Built-in options are:
- ``attributes``: data object attributes like ``dtype`` and ``format``
- ``stats``: basic statistics: min, mean, and max
If a function is specified then that function will be called with the
data object as its single argument. The function must return an
OrderedDict containing the information attributes.
If a list is provided then the information attributes will be
appended for each of the options, in order.
Examples
--------
>>> from astropy.table import Column
>>> c = Column([1, 2], unit='m', dtype='int32')
>>> c.info()
dtype = int32
unit = m
class = Column
n_bad = 0
length = 2
>>> c.info(['attributes', 'stats'])
dtype = int32
unit = m
class = Column
mean = 1.5
std = 0.5
min = 1
max = 2
n_bad = 0
length = 2
Parameters
----------
option: str, function, list of (str or function)
Info option (default='attributes')
out: file-like object, None
Output destination (default=sys.stdout). If None then the
OrderedDict with information attributes is returned
Returns
-------
info: OrderedDict if out==None else None
"""
if out == '':
out = sys.stdout
dat = self._parent
info = OrderedDict()
name = dat.info.name
if name is not None:
info['name'] = name
options = option if isinstance(option, (list, tuple)) else [option]
for option in options:
if isinstance(option, six.string_types):
if hasattr(self, 'info_summary_' + option):
option = getattr(self, 'info_summary_' + option)
else:
raise ValueError('option={0} is not an allowed information type'
.format(option))
with warnings.catch_warnings():
for ignore_kwargs in IGNORE_WARNINGS:
warnings.filterwarnings('ignore', **ignore_kwargs)
info.update(option(dat))
if hasattr(dat, 'mask'):
n_bad = np.count_nonzero(dat.mask)
else:
try:
n_bad = np.count_nonzero(np.isinf(dat) | np.isnan(dat))
except:
n_bad = 0
info['n_bad'] = n_bad
try:
info['length'] = len(dat)
except TypeError:
pass
if out is None:
return info
for key, val in info.items():
if val != '':
out.write('{0} = {1}'.format(key, val) + os.linesep)
def __repr__(self):
if self._parent is None:
return super(DataInfo, self).__repr__()
out = six.moves.cStringIO()
self.__call__(out=out)
return out.getvalue()
class BaseColumnInfo(DataInfo):
"""
Base info class for anything that can be a column in an astropy
Table. There are at least two classes that inherit from this:
ColumnInfo: for native astropy Column / MaskedColumn objects
MixinInfo: for mixin column objects
Note that this class is defined here so that mixins can use it
without importing the table package.
"""
attr_names = DataInfo.attr_names.union(['parent_table', 'indices'])
_attrs_no_copy = set(['parent_table'])
def iter_str_vals(self):
"""
This is a mixin-safe version of Column.iter_str_vals.
"""
col = self._parent
if self.parent_table is None:
from ..table.column import FORMATTER as formatter
else:
formatter = self.parent_table.formatter
_pformat_col_iter = formatter._pformat_col_iter
for str_val in _pformat_col_iter(col, -1, False, False, {}):
yield str_val
def adjust_indices(self, index, value, col_len):
'''
Adjust info indices after column modification.
Parameters
----------
index : slice, int, list, or ndarray
Element(s) of column to modify. This parameter can
be a single row number, a list of row numbers, an
ndarray of row numbers, a boolean ndarray (a mask),
or a column slice.
value : int, list, or ndarray
New value(s) to insert
col_len : int
Length of the column
'''
if not self.indices:
return
if isinstance(index, slice):
# run through each key in slice
t = index.indices(col_len)
keys = list(range(*t))
elif isinstance(index, np.ndarray) and index.dtype.kind == 'b':
# boolean mask
keys = np.where(index)[0]
else: # single int
keys = [index]
value = np.atleast_1d(value) # turn array(x) into array([x])
if value.size == 1:
# repeat single value
value = list(value) * len(keys)
for key, val in zip(keys, value):
for col_index in self.indices:
col_index.replace(key, self.name, val)
def slice_indices(self, col_slice, item, col_len):
'''
Given a sliced object, modify its indices
to correctly represent the slice.
Parameters
----------
col_slice : Column or mixin
Sliced object
item : slice, list, or ndarray
Slice used to create col_slice
col_len : int
Length of original object
'''
from ..table.sorted_array import SortedArray
if not getattr(self, '_copy_indices', True):
# Necessary because MaskedArray will perform a shallow copy
col_slice.info.indices = []
return col_slice
elif isinstance(item, slice):
col_slice.info.indices = [x[item] for x in self.indices]
elif self.indices:
if isinstance(item, np.ndarray) and item.dtype.kind == 'b':
# boolean mask
item = np.where(item)[0]
threshold = 0.6
# Empirical testing suggests that recreating a BST/RBT index is
# more effective than relabelling when less than ~60% of
# the total number of rows are involved, and is in general
# more effective for SortedArray.
small = len(item) <= 0.6 * col_len
col_slice.info.indices = []
for index in self.indices:
if small or isinstance(index, SortedArray):
new_index = index.get_slice(col_slice, item)
else:
new_index = deepcopy(index)
new_index.replace_rows(item)
col_slice.info.indices.append(new_index)
return col_slice
class MixinInfo(BaseColumnInfo):
pass
class ParentDtypeInfo(MixinInfo):
"""Mixin that gets info.dtype from parent"""
attrs_from_parent = set(['dtype']) # dtype and unit taken from parent