# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from ..extern import six
import sys
from math import sqrt, pi, exp, log, floor
from abc import ABCMeta, abstractmethod
import numpy as np
from .. import constants as const
from ..utils.misc import isiterable, deprecated
from .. import units as u
from ..utils.state import ScienceState, ScienceStateAlias
from . import parameters
# Originally authored by Andrew Becker (becker@astro.washington.edu),
# and modified by Neil Crighton (neilcrighton@gmail.com) and Roban
# Kramer (robanhk@gmail.com).
# Many of these adapted from Hogg 1999, astro-ph/9905116
# and Linder 2003, PRL 90, 91301
__all__ = ["FLRW", "LambdaCDM", "FlatLambdaCDM", "wCDM", "FlatwCDM",
"Flatw0waCDM", "w0waCDM", "wpwaCDM", "w0wzCDM", "get_current",
"set_current", "WMAP5", "WMAP7", "WMAP9", "Planck13",
"default_cosmology"]
__doctest_requires__ = {'*': ['scipy.integrate']}
# Some conversion constants -- useful to compute them once here
# and reuse in the initialization rather than have every object do them
# Note that the call to cgs is actually extremely expensive,
# so we actually skip using the units package directly, and
# hardwire the conversion from mks to cgs. This assumes that constants
# will always return mks by default -- if this is made faster for simple
# cases like this, it should be changed back.
# Note that the unit tests should catch it if this happens
H0units_to_invs = (u.km / (u.s * u.Mpc)).to(1.0 / u.s)
sec_to_Gyr = u.s.to(u.Gyr)
# const in critical density in cgs units (g cm^-3)
critdens_const = 3. / (8. * pi * const.G.value * 1000)
arcsec_in_radians = pi / (3600. * 180)
arcmin_in_radians = pi / (60. * 180)
# Radiation parameter over c^2 in cgs (g cm^-3 K^-4)
a_B_c2 = 4e-3 * const.sigma_sb.value / const.c.value ** 3
# Boltzmann constant in eV / K
kB_evK = const.k_B.to(u.eV / u.K)
class CosmologyError(Exception):
pass
class Cosmology(object):
""" Placeholder for when a more general Cosmology class is
implemented. """
@six.add_metaclass(ABCMeta)
[docs]class FLRW(Cosmology):
""" A class describing an isotropic and homogeneous
(Friedmann-Lemaitre-Robertson-Walker) cosmology.
This is an abstract base class -- you can't instantiate
examples of this class, but must work with one of its
subclasses such as `LambdaCDM` or `wCDM`.
Parameters
----------
H0 : float or scalar `~astropy.units.Quantity`
Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]
Om0 : float
Omega matter: density of non-relativistic matter in units of the
critical density at z=0.
Ode0 : float
Omega dark energy: density of dark energy in units of the critical
density at z=0.
Tcmb0 : float or scalar `~astropy.units.Quantity`
Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725.
Setting this to zero will turn off both photons and neutrinos (even
massive ones)
Neff : float
Effective number of Neutrino species. Default 3.04.
m_nu : `~astropy.units.Quantity`
Mass of each neutrino species. If this is a scalar Quantity, then all
neutrino species are assumed to have that mass. Otherwise, the mass of
each species. The actual number of neutrino species (and hence the
number of elements of m_nu if it is not scalar) must be the floor of
Neff. Usually this means you must provide three neutrino masses unless
you are considering something like a sterile neutrino.
name : str
Optional name for this cosmological object.
Notes
-----
Class instances are static -- you can't change the values
of the parameters. That is, all of the attributes above are
read only.
"""
def __init__(self, H0, Om0, Ode0, Tcmb0=2.725, Neff=3.04,
m_nu=u.Quantity(0.0, u.eV), name=None):
# all densities are in units of the critical density
self._Om0 = float(Om0)
if self._Om0 < 0.0:
raise ValueError("Matter density can not be negative")
self._Ode0 = float(Ode0)
self._Neff = float(Neff)
if self._Neff < 0.0:
raise ValueError("Effective number of neutrinos can "
"not be negative")
self.name = name
# Tcmb may have units
self._Tcmb0 = u.Quantity(Tcmb0, unit=u.K, dtype=np.float)
if not self._Tcmb0.isscalar:
raise ValueError("Tcmb0 is a non-scalar quantity")
# Hubble parameter at z=0, km/s/Mpc
self._H0 = u.Quantity(H0, unit=u.km / u.s / u.Mpc, dtype=np.float)
if not self._H0.isscalar:
raise ValueError("H0 is a non-scalar quantity")
# 100 km/s/Mpc * h = H0 (so h is dimensionless)
self._h = self._H0.value / 100.
# Hubble distance
self._hubble_distance = (const.c / self._H0).to(u.Mpc)
# H0 in s^-1; don't use units for speed
H0_s = self._H0.value * H0units_to_invs
# Hubble time; again, avoiding units package for speed
self._hubble_time = u.Quantity(sec_to_Gyr / H0_s, u.Gyr)
# critical density at z=0 (grams per cubic cm)
cd0value = critdens_const * H0_s ** 2
self._critical_density0 = u.Quantity(cd0value, u.g / u.cm ** 3)
# Load up neutrino masses. Note: in Py2.x, floor is floating
self._nneutrinos = int(floor(self._Neff))
# We are going to share Neff between the neutrinos equally.
# In detail this is not correct, but it is a standard assumption
# because propertly calculating it is a) complicated b) depends
# on the details of the massive nuetrinos (e.g., their weak
# interactions, which could be unusual if one is considering sterile
# neutrinos)
self._massivenu = False
if self._nneutrinos > 0 and self._Tcmb0.value > 0:
self._neff_per_nu = self._Neff / self._nneutrinos
# We can't use the u.Quantity constructor as we do above
# because it doesn't understand equivalencies
if not isinstance(m_nu, u.Quantity):
raise ValueError("m_nu must be a Quantity")
m_nu = m_nu.to(u.eV, equivalencies=u.mass_energy())
# Now, figure out if we have massive neutrinos to deal with,
# and, if so, get the right number of masses
# It is worth the effort to keep track of massless ones seperately
# (since they are quite easy to deal with, and a common use case
# is to set only one neutrino to have mass)
if m_nu.isscalar:
# Assume all neutrinos have the same mass
if m_nu.value == 0:
self._nmasslessnu = self._nneutrinos
self._nmassivenu = 0
else:
self._massivenu = True
self._nmasslessnu = 0
self._nmassivenu = self._nneutrinos
self._massivenu_mass = (m_nu.value *
np.ones(self._nneutrinos))
else:
# Make sure we have the right number of masses
# -unless- they are massless, in which case we cheat a little
if m_nu.value.min() < 0:
raise ValueError("Invalid (negative) neutrino mass"
" encountered")
if m_nu.value.max() == 0:
self._nmasslessnu = self._nneutrinos
self._nmassivenu = 0
else:
self._massivenu = True
if len(m_nu) != self._nneutrinos:
raise ValueError("Unexpected number of neutrino masses")
# Segregate out the massless ones
try:
# Numpy < 1.6 doesn't have count_nonzero
self._nmasslessnu = np.count_nonzero(m_nu.value == 0)
except AttributeError:
self._nmasslessnu = len(np.nonzero(m_nu.value == 0)[0])
self._nmassivenu = self._nneutrinos - self._nmasslessnu
w = np.nonzero(m_nu.value > 0)[0]
self._massivenu_mass = m_nu[w]
# Compute photon density, Tcmb, neutrino parameters
# Tcmb0=0 removes both photons and neutrinos, is handled
# as a special case for efficiency
if self._Tcmb0.value > 0:
# Compute photon density from Tcmb
self._Ogamma0 = a_B_c2 * self._Tcmb0.value ** 4 /\
self._critical_density0.value
# Compute Neutrino temperature
# The constant in front is (4/11)^1/3 -- see any
# cosmology book for an explanation -- for example,
# Weinberg 'Cosmology' p 154 eq (3.1.21)
self._Tnu0 = 0.7137658555036082 * self._Tcmb0
# Compute Neutrino Omega and total relativistic component
# for massive neutrinos
if self._massivenu:
nu_y = self._massivenu_mass / (kB_evK * self._Tnu0)
self._nu_y = nu_y.value
self._Onu0 = self._Ogamma0 * self.nu_relative_density(0)
else:
# This case is particularly simple, so do it directly
# The 0.2271... is 7/8 (4/11)^(4/3) -- the temperature
# bit ^4 (blackbody energy density) times 7/8 for
# FD vs. BE statistics.
self._Onu0 = 0.22710731766 * self._Neff * self._Ogamma0
else:
self._Ogamma0 = 0.0
self._Tnu0 = u.Quantity(0.0, u.K)
self._Onu0 = 0.0
# Compute curvature density
self._Ok0 = 1.0 - self._Om0 - self._Ode0 - self._Ogamma0 - self._Onu0
def _namelead(self):
""" Helper function for constructing __repr__"""
if self.name is None:
return "{0}(".format(self.__class__.__name__)
else:
return "{0}(name=\"{1}\", ".format(self.__class__.__name__,
self.name)
def __repr__(self):
retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Ode0={3:.3g}, "\
"Tcmb0={4:.4g}, Neff={5:.3g}, m_nu={6})"
return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0,
self._Tcmb0, self._Neff, self.m_nu)
# Set up a set of properties for H0, Om0, Ode0, Ok0, etc. for user access.
# Note that we don't let these be set (so, obj.Om0 = value fails)
@property
def H0(self):
""" Return the Hubble constant as an `~astropy.units.Quantity` at z=0"""
return self._H0
@property
def Om0(self):
""" Omega matter; matter density/critical density at z=0"""
return self._Om0
@property
def Ode0(self):
""" Omega dark energy; dark energy density/critical density at z=0"""
return self._Ode0
@property
def Ok0(self):
""" Omega curvature; the effective curvature density/critical density
at z=0"""
return self._Ok0
@property
def Tcmb0(self):
""" Temperature of the CMB as `~astropy.units.Quantity` at z=0"""
return self._Tcmb0
@property
def Tnu0(self):
""" Temperature of the neutrino background as `~astropy.units.Quantity` at z=0"""
return self._Tnu0
@property
def Neff(self):
""" Number of effective neutrino species"""
return self._Neff
@property
def has_massive_nu(self):
""" Does this cosmology have at least one massive neutrino species?"""
if self._Tnu0.value == 0:
return False
return self._massivenu
@property
def m_nu(self):
""" Mass of neutrino species"""
if self._Tnu0.value == 0:
return None
if not self._massivenu:
# Only massless
return u.Quantity(np.zeros(self._nmasslessnu), u.eV,
dtype=np.float)
if self._nmasslessnu == 0:
# Only massive
return u.Quantity(self._massivenu_mass, u.eV,
dtype=np.float)
# A mix -- the most complicated case
numass = np.append(np.zeros(self._nmasslessnu),
self._massivenu_mass.value)
return u.Quantity(numass, u.eV, dtype=np.float)
@property
def h(self):
""" Dimensionless Hubble constant: h = H_0 / 100 [km/sec/Mpc]"""
return self._h
@property
def hubble_time(self):
""" Hubble time as `~astropy.units.Quantity`"""
return self._hubble_time
@property
def hubble_distance(self):
""" Hubble distance as `~astropy.units.Quantity`"""
return self._hubble_distance
@property
def critical_density0(self):
""" Critical density as `~astropy.units.Quantity` at z=0"""
return self._critical_density0
@property
def Ogamma0(self):
""" Omega gamma; the density/critical density of photons at z=0"""
return self._Ogamma0
@property
def Onu0(self):
""" Omega nu; the density/critical density of neutrinos at z=0"""
return self._Onu0
@abstractmethod
[docs] def w(self, z):
""" The dark energy equation of state.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
w : ndarray, or float if input scalar
The dark energy equation of state
Notes
------
The dark energy equation of state is defined as
:math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the
pressure at redshift z and :math:`\\rho(z)` is the density
at redshift z, both in units where c=1.
This must be overridden by subclasses.
"""
raise NotImplementedError("w(z) is not implemented")
[docs] def Om(self, z):
""" Return the density parameter for non-relativistic matter
at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
Om : ndarray, or float if input scalar
The density of non-relativistic matter relative to the critical
density at each redshift.
"""
if isiterable(z):
z = np.asarray(z)
return self._Om0 * (1. + z) ** 3 * self.inv_efunc(z) ** 2
[docs] def Ok(self, z):
""" Return the equivalent density parameter for curvature
at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
Ok : ndarray, or float if input scalar
The equivalent density parameter for curvature at each redshift.
"""
if isiterable(z):
z = np.asarray(z)
# Common enough case to be worth checking explicitly
if self._Ok0 == 0:
return np.zeros(np.asanyarray(z).shape, dtype=np.float)
else:
if self._Ok0 == 0:
return 0.0
return self._Ok0 * (1. + z) ** 2 * self.inv_efunc(z) ** 2
[docs] def Ode(self, z):
""" Return the density parameter for dark energy at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
Ode : ndarray, or float if input scalar
The density of non-relativistic matter relative to the critical
density at each redshift.
"""
if isiterable(z):
z = np.asarray(z)
# Common case worth checking
if self._Ode0 == 0:
return np.zeros(np.asanyarray(z).shape, dtype=np.float)
else:
if self._Ode0 == 0:
return 0.0
return self._Ode0 * self.de_density_scale(z) * self.inv_efunc(z) ** 2
[docs] def Ogamma(self, z):
""" Return the density parameter for photons at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
Ogamma : ndarray, or float if input scalar
The energy density of photons relative to the critical
density at each redshift.
"""
if isiterable(z):
z = np.asarray(z)
return self._Ogamma0 * (1. + z) ** 4 * self.inv_efunc(z) ** 2
[docs] def Onu(self, z):
""" Return the density parameter for massless neutrinos at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
Onu : ndarray, or float if input scalar
The energy density of photons relative to the critical
density at each redshift. Note that this includes their
kinetic energy (if they have mass), so it is not equal to
the commonly used :math:`\\sum \\frac{m_{\\nu}}{94 eV}`,
which does not include kinetic energy.
"""
if isiterable(z):
z = np.asarray(z)
if self._Onu0 == 0:
return np.zeros(np.asanyarray(z).shape, dtype=np.float)
else:
if self._Onu0 == 0:
return 0.0
return self.Ogamma(z) * self.nu_relative_density(z)
[docs] def Tcmb(self, z):
""" Return the CMB temperature at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
Tcmb : `~astropy.units.Quantity`
The temperature of the CMB in K.
"""
if isiterable(z):
z = np.asarray(z)
return self._Tcmb0 * (1. + z)
[docs] def Tnu(self, z):
""" Return the neutrino temperature at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
Tnu : `~astropy.units.Quantity`
The temperature of the cosmic neutrino background in K.
"""
if isiterable(z):
z = np.asarray(z)
return self._Tnu0 * (1. + z)
[docs] def nu_relative_density(self, z):
""" Neutrino density function relative to the energy density in
photons.
Parameters
----------
z : array like
Redshift
Returns
-------
f : ndarray, or float if z is scalar
The neutrino density scaling factor relative to the density
in photons at each redshift
Notes
-----
The density in neutrinos is given by
.. math::
\\rho_{\\nu} \\left(a\\right) = 0.2271 \\, N_{eff} \\,
f\\left(m_{\\nu} a / T_{\\nu 0} \\right) \\,
\\rho_{\\gamma} \\left( a \\right)
where
.. math::
f \\left(y\\right) = \\frac{120}{7 \\pi^4}
\\int_0^{\\infty} \\, dx \\frac{x^2 \\sqrt{x^2 + y^2}}
{e^x + 1}
assuming that all neutrino species have the same mass.
If they have different masses, a similar term is calculated
for each one. Note that f has the asymptotic behavior :math:`f(0) = 1`.
This method returns :math:`0.2271 f` using an
analytical fitting formula given in Komatsu et al. 2011, ApJS 192, 18.
"""
# See Komatsu et al. 2011, eq 26 and the surrounding discussion
# However, this is modified to handle multiple neutrino masses
# by computing the above for each mass, then summing
prefac = 0.22710731766 # 7/8 (4/11)^4/3 -- see any cosmo book
# The massive and massless contribution must be handled seperately
# But check for common cases first
if not self._massivenu:
if np.isscalar(z):
return prefac * self._Neff
else:
return prefac * self._Neff *\
np.ones(np.asanyarray(z).shape, dtype=np.float)
p = 1.83
invp = 1.0 / p
if np.isscalar(z):
curr_nu_y = self._nu_y / (1.0 + z) # only includes massive ones
rel_mass_per = (1.0 + (0.3173 * curr_nu_y) ** p) ** invp
rel_mass = rel_mass_per.sum() + self._nmasslessnu
else:
z = np.asarray(z)
retarr = np.empty_like(z)
curr_nu_y = self._nu_y / (1. + np.expand_dims(z, axis=-1))
rel_mass_per = (1. + (0.3173 * curr_nu_y) ** p) ** invp
rel_mass = rel_mass_per.sum(-1) + self._nmasslessnu
return prefac * self._neff_per_nu * rel_mass
def _w_integrand(self, ln1pz):
""" Internal convenience function for w(z) integral."""
# See Linder 2003, PRL 90, 91301 eq (5)
# Assumes scalar input, since this should only be called
# inside an integral
z = exp(ln1pz) - 1.0
return 1.0 + self.w(z)
[docs] def de_density_scale(self, z):
""" Evaluates the redshift dependence of the dark energy density.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
I : ndarray, or float if input scalar
The scaling of the energy density of dark energy with redshift.
Notes
-----
The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`,
and is given by
.. math::
I = \\exp \\left( 3 \int_{a}^1 \\frac{ da^{\\prime} }{ a^{\\prime} }
\\left[ 1 + w\\left( a^{\\prime} \\right) \\right] \\right)
It will generally helpful for subclasses to overload this method if
the integral can be done analytically for the particular dark
energy equation of state that they implement.
"""
# This allows for an arbitrary w(z) following eq (5) of
# Linder 2003, PRL 90, 91301. The code here evaluates
# the integral numerically. However, most popular
# forms of w(z) are designed to make this integral analytic,
# so it is probably a good idea for subclasses to overload this
# method if an analytic form is available.
#
# The integral we actually use (the one given in Linder)
# is rewritten in terms of z, so looks slightly different than the
# one in the documentation string, but it's the same thing.
from scipy.integrate import quad
if isiterable(z):
z = np.asarray(z)
ival = np.array([quad(self._w_integrand, 0, log(1 + redshift))[0]
for redshift in z])
return np.exp(3 * ival)
else:
ival = quad(self._w_integrand, 0, log(1 + z))[0]
return exp(3 * ival)
[docs] def efunc(self, z):
""" Function used to calculate H(z), the Hubble parameter.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
E : ndarray, or float if input scalar
The redshift scaling of the Hubble constant.
Notes
-----
The return value, E, is defined such that :math:`H(z) = H_0 E`.
It is not necessary to override this method, but if de_density_scale
takes a particularly simple form, it may be advantageous to.
"""
if isiterable(z):
z = np.asarray(z)
Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0
if self._massivenu:
Or = self._Ogamma0 * (1 + self.nu_relative_density(z))
else:
Or = self._Ogamma0 + self._Onu0
zp1 = 1.0 + z
return np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) +
Ode0 * self.de_density_scale(z))
[docs] def inv_efunc(self, z):
"""Inverse of efunc.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
E : ndarray, or float if input scalar
The redshift scaling of the inverse Hubble constant.
"""
# Avoid the function overhead by repeating code
if isiterable(z):
z = np.asarray(z)
Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0
if self._massivenu:
Or = self._Ogamma0 * (1 + self.nu_relative_density(z))
else:
Or = self._Ogamma0 + self._Onu0
zp1 = 1.0 + z
return 1.0 / np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) +
Ode0 * self.de_density_scale(z))
def _tfunc(self, z):
""" Integrand of the lookback time.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
I : ndarray, or float if input scalar
The integrand for the lookback time
References
----------
Eqn 30 from Hogg 1999.
"""
if isiterable(z):
zp1 = 1.0 + np.asarray(z)
else:
zp1 = 1. + z
return 1.0 / (zp1 * self.efunc(z))
def _xfunc(self, z):
""" Integrand of the absorption distance.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
X : ndarray, or float if input scalar
The integrand for the absorption distance
References
----------
See Hogg 1999 section 11.
"""
if isiterable(z):
zp1 = 1.0 + np.asarray(z)
else:
zp1 = 1. + z
return zp1 ** 2 / self.efunc(z)
[docs] def H(self, z):
""" Hubble parameter (km/s/Mpc) at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
H : `~astropy.units.Quantity`
Hubble parameter at each input redshift.
"""
return self._H0 * self.efunc(z)
[docs] def scale_factor(self, z):
""" Scale factor at redshift ``z``.
The scale factor is defined as :math:`a = 1 / (1 + z)`.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
a : ndarray, or float if input scalar
Scale factor at each input redshift.
"""
if isiterable(z):
z = np.asarray(z)
return 1. / (1. + z)
[docs] def lookback_time(self, z):
""" Lookback time in Gyr to redshift ``z``.
The lookback time is the difference between the age of the
Universe now and the age at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar
Returns
-------
t : `~astropy.units.Quantity`
Lookback time in Gyr to each input redshift.
See Also
--------
z_at_value : Find the redshift corresponding to a lookback time.
"""
from scipy.integrate import quad
if not isiterable(z):
return self._hubble_time * quad(self._tfunc, 0, z)[0]
out = np.array([quad(self._tfunc, 0, redshift)[0] for redshift in z])
return self._hubble_time * np.array(out)
[docs] def age(self, z):
""" Age of the universe in Gyr at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
t : `~astropy.units.Quantity`
The age of the universe in Gyr at each input redshift.
See Also
--------
z_at_value : Find the redshift corresponding to an age.
"""
from scipy.integrate import quad
if not isiterable(z):
return self._hubble_time * quad(self._tfunc, z, np.inf)[0]
out = [quad(self._tfunc, redshift, np.inf)[0] for redshift in z]
return self._hubble_time * np.array(out)
[docs] def critical_density(self, z):
""" Critical density in grams per cubic cm at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
rho : `~astropy.units.Quantity`
Critical density in g/cm^3 at each input redshift.
"""
return self._critical_density0 * (self.efunc(z)) ** 2
[docs] def comoving_distance(self, z):
""" Comoving line-of-sight distance in Mpc at a given
redshift.
The comoving distance along the line-of-sight between two
objects remains constant with time for objects in the Hubble
flow.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
d : ndarray, or float if input scalar
Comoving distance in Mpc to each input redshift.
"""
from scipy.integrate import quad
if not isiterable(z):
return self._hubble_distance * quad(self.inv_efunc, 0, z)[0]
out = [quad(self.inv_efunc, 0, redshift)[0] for redshift in z]
return self._hubble_distance * np.array(out)
[docs] def comoving_transverse_distance(self, z):
""" Comoving transverse distance in Mpc at a given redshift.
This value is the transverse comoving distance at redshift ``z``
corresponding to an angular separation of 1 radian. This is
the same as the comoving distance if omega_k is zero (as in
the current concordance lambda CDM model).
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
d : `~astropy.units.Quantity`
Comoving transverse distance in Mpc at each input redshift.
Notes
-----
This quantity also called the 'proper motion distance' in some
texts.
"""
Ok0 = self._Ok0
dc = self.comoving_distance(z)
if Ok0 == 0:
return dc
sqrtOk0 = sqrt(abs(Ok0))
dh = self._hubble_distance
if Ok0 > 0:
return dh / sqrtOk0 * np.sinh(sqrtOk0 * dc.value / dh.value)
else:
return dh / sqrtOk0 * np.sin(sqrtOk0 * dc.value / dh.value)
[docs] def angular_diameter_distance(self, z):
""" Angular diameter distance in Mpc at a given redshift.
This gives the proper (sometimes called 'physical') transverse
distance corresponding to an angle of 1 radian for an object
at redshift ``z``.
Weinberg, 1972, pp 421-424; Weedman, 1986, pp 65-67; Peebles,
1993, pp 325-327.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
d : `~astropy.units.Quantity`
Angular diameter distance in Mpc at each input redshift.
"""
if isiterable(z):
z = np.asarray(z)
return self.comoving_transverse_distance(z) / (1. + z)
[docs] def luminosity_distance(self, z):
""" Luminosity distance in Mpc at redshift ``z``.
This is the distance to use when converting between the
bolometric flux from an object at redshift ``z`` and its
bolometric luminosity.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
d : `~astropy.units.Quantity`
Luminosity distance in Mpc at each input redshift.
See Also
--------
z_at_value : Find the redshift corresponding to a luminosity distance.
References
----------
Weinberg, 1972, pp 420-424; Weedman, 1986, pp 60-62.
"""
if isiterable(z):
z = np.asarray(z)
return (1. + z) * self.comoving_transverse_distance(z)
[docs] def angular_diameter_distance_z1z2(self, z1, z2):
""" Angular diameter distance between objects at 2 redshifts.
Useful for gravitational lensing.
Parameters
----------
z1, z2 : array_like, shape (N,)
Input redshifts. z2 must be large than z1.
Returns
-------
d : `~astropy.units.Quantity`, shape (N,) or single if input scalar
The angular diameter distance between each input redshift
pair.
Raises
------
CosmologyError
If omega_k is < 0.
Notes
-----
This method only works for flat or open curvature
(omega_k >= 0).
"""
# does not work for negative curvature
Ok0 = self._Ok0
if Ok0 < 0:
raise CosmologyError('Ok0 must be >= 0 to use this method.')
outscalar = False
if not isiterable(z1) and not isiterable(z2):
outscalar = True
z1 = np.atleast_1d(z1)
z2 = np.atleast_1d(z2)
if z1.size != z2.size:
raise ValueError('z1 and z2 must be the same size.')
if (z1 > z2).any():
raise ValueError('z2 must greater than z1')
# z1 < z2
if (z2 < z1).any():
z1, z2 = z2, z1
dm1 = self.comoving_transverse_distance(z1).value
dm2 = self.comoving_transverse_distance(z2).value
dh_2 = self._hubble_distance.value ** 2
if Ok0 == 0:
# Common case worth checking
out = (dm2 - dm1) / (1. + z2)
else:
out = ((dm2 * np.sqrt(1. + Ok0 * dm1 ** 2 / dh_2) -
dm1 * np.sqrt(1. + Ok0 * dm2 ** 2 / dh_2)) /
(1. + z2))
if outscalar:
return u.Quantity(out[0], u.Mpc)
return u.Quantity(out, u.Mpc)
[docs] def absorption_distance(self, z):
""" Absorption distance at redshift ``z``.
This is used to calculate the number of objects with some
cross section of absorption and number density intersecting a
sightline per unit redshift path.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
d : float or ndarray
Absorption distance (dimensionless) at each input redshift.
References
----------
Hogg 1999 Section 11. (astro-ph/9905116)
Bahcall, John N. and Peebles, P.J.E. 1969, ApJ, 156L, 7B
"""
from scipy.integrate import quad
if not isiterable(z):
return quad(self._xfunc, 0, z)[0]
out = np.array([quad(self._xfunc, 0, redshift)[0] for redshift in z])
return out
[docs] def distmod(self, z):
""" Distance modulus at redshift ``z``.
The distance modulus is defined as the (apparent magnitude -
absolute magnitude) for an object at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
distmod : `~astropy.units.Quantity`
Distance modulus at each input redshift, in magnitudes
See Also
--------
z_at_value : Find the redshift corresponding to a distance modulus.
"""
# Remember that the luminosity distance is in Mpc
# Abs is necessary because in certain obscure closed cosmologies
# the distance modulus can be negative -- which is okay because
# it enters as the square.
val = 5. * np.log10(abs(self.luminosity_distance(z).value)) + 25.0
return u.Quantity(val, u.mag)
[docs] def comoving_volume(self, z):
""" Comoving volume in cubic Mpc at redshift ``z``.
This is the volume of the universe encompassed by redshifts less
than ``z``. For the case of omega_k = 0 it is a sphere of radius
`comoving_distance` but it is less intuitive
if omega_k is not 0.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
V : `~astropy.units.Quantity`
Comoving volume in :math:`Mpc^3` at each input redshift.
"""
Ok0 = self._Ok0
if Ok0 == 0:
return 4. / 3. * pi * self.comoving_distance(z) ** 3
dh = self._hubble_distance.value # .value for speed
dm = self.comoving_transverse_distance(z).value
term1 = 4. * pi * dh ** 3 / (2. * Ok0) * u.Mpc ** 3
term2 = dm / dh * np.sqrt(1 + Ok0 * (dm / dh) ** 2)
term3 = sqrt(abs(Ok0)) * dm / dh
if Ok0 > 0:
return term1 * (term2 - 1. / sqrt(abs(Ok0)) * np.arcsinh(term3))
else:
return term1 * (term2 - 1. / sqrt(abs(Ok0)) * np.arcsin(term3))
[docs] def differential_comoving_volume(self, z):
"""Differential comoving volume at redshift z.
Useful for calculating the effective comoving volume.
For example, allows for integration over a comoving volume
that has a sensitivity function that changes with redshift.
The total comoving volume is given by integrating
differential_comoving_volume to redshift z
and multiplying by a solid angle.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
dV : `~astropy.units.Quantity`
Differential comoving volume per redshift per steradian at
each input redshift."""
dh = self._hubble_distance
da = self.angular_diameter_distance(z)
zp1 = 1.0 + z
return dh * (zp1 ** 2.0 * da ** 2.0) / u.Quantity(self.efunc(z),
u.steradian)
[docs] def kpc_comoving_per_arcmin(self, z):
""" Separation in transverse comoving kpc corresponding to an
arcminute at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
d : `~astropy.units.Quantity`
The distance in comoving kpc corresponding to an arcmin at each
input redshift.
"""
return (self.comoving_transverse_distance(z).to(u.kpc) *
arcmin_in_radians / u.arcmin)
[docs] def kpc_proper_per_arcmin(self, z):
""" Separation in transverse proper kpc corresponding to an
arcminute at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
d : `~astropy.units.Quantity`
The distance in proper kpc corresponding to an arcmin at each
input redshift.
"""
return (self.angular_diameter_distance(z).to(u.kpc) *
arcmin_in_radians / u.arcmin)
[docs] def arcsec_per_kpc_comoving(self, z):
""" Angular separation in arcsec corresponding to a comoving kpc
at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
theta : `~astropy.units.Quantity`
The angular separation in arcsec corresponding to a comoving kpc
at each input redshift.
"""
return u.arcsec / (self.comoving_transverse_distance(z).to(u.kpc) *
arcsec_in_radians)
[docs] def arcsec_per_kpc_proper(self, z):
""" Angular separation in arcsec corresponding to a proper kpc at
redshift ``z``.
Parameters
----------
z : array_like
Input redshifts. Must be 1D or scalar.
Returns
-------
theta : `~astropy.units.Quantity`
The angular separation in arcsec corresponding to a proper kpc
at each input redshift.
"""
return u.arcsec / (self.angular_diameter_distance(z).to(u.kpc) *
arcsec_in_radians)
[docs]class LambdaCDM(FLRW):
"""FLRW cosmology with a cosmological constant and curvature.
This has no additional attributes beyond those of FLRW.
Parameters
----------
H0 : float or `~astropy.units.Quantity`
Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]
Om0 : float
Omega matter: density of non-relativistic matter in units of the
critical density at z=0.
Ode0 : float
Omega dark energy: density of the cosmological constant in units of the
critical density at z=0.
Tcmb0 : float or `~astropy.units.Quantity`
Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725.
Neff : float
Effective number of Neutrino species. Default 3.04.
m_nu : `~astropy.units.Quantity`
Mass of each neutrino species. If this is a scalar Quantity, then all
neutrino species are assumed to have that mass. Otherwise, the mass of
each species. The actual number of neutrino species (and hence the
number of elements of m_nu if it is not scalar) must be the floor of
Neff. Usually this means you must provide three neutrino masses unless
you are considering something like a sterile neutrino.
name : str
Optional name for this cosmological object.
Examples
--------
>>> from astropy.cosmology import LambdaCDM
>>> cosmo = LambdaCDM(H0=70, Om0=0.3, Ode0=0.7)
The comoving distance in Mpc at redshift z:
>>> z = 0.5
>>> dc = cosmo.comoving_distance(z)
"""
def __init__(self, H0, Om0, Ode0, Tcmb0=2.725, Neff=3.04,
m_nu=u.Quantity(0.0, u.eV), name=None):
FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name)
[docs] def w(self, z):
"""Returns dark energy equation of state at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
w : ndarray, or float if input scalar
The dark energy equation of state
Notes
------
The dark energy equation of state is defined as
:math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the
pressure at redshift z and :math:`\\rho(z)` is the density
at redshift z, both in units where c=1. Here this is
:math:`w(z) = -1`.
"""
if np.isscalar(z):
return -1.0
else:
return -1.0 * np.ones(np.asanyarray(z).shape, dtype=np.float)
[docs] def de_density_scale(self, z):
""" Evaluates the redshift dependence of the dark energy density.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
I : ndarray, or float if input scalar
The scaling of the energy density of dark energy with redshift.
Notes
-----
The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`,
and in this case is given by :math:`I = 1`.
"""
if np.isscalar(z):
return 1.
else:
return np.ones(np.asanyarray(z).shape, dtype=np.float)
[docs] def efunc(self, z):
""" Function used to calculate H(z), the Hubble parameter.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
E : ndarray, or float if input scalar
The redshift scaling of the Hubble consant.
Notes
-----
The return value, E, is defined such that :math:`H(z) = H_0 E`.
"""
if isiterable(z):
z = np.asarray(z)
# We override this because it takes a particularly simple
# form for a cosmological constant
Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0
if self._massivenu:
Or = self._Ogamma0 * (1. + self.nu_relative_density(z))
else:
Or = self._Ogamma0 + self._Onu0
zp1 = 1.0 + z
return np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0)
[docs] def inv_efunc(self, z):
r""" Function used to calculate :math:`\frac{1}{H_z}`.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
E : ndarray, or float if input scalar
The inverse redshift scaling of the Hubble constant.
Notes
-----
The return value, E, is defined such that :math:`H_z = H_0 /
E`.
"""
if isiterable(z):
z = np.asarray(z)
Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0
if self._massivenu:
Or = self._Ogamma0 * (1 + self.nu_relative_density(z))
else:
Or = self._Ogamma0 + self._Onu0
zp1 = 1.0 + z
return 1.0 / np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0)
[docs]class FlatLambdaCDM(LambdaCDM):
"""FLRW cosmology with a cosmological constant and no curvature.
This has no additional attributes beyond those of FLRW.
Parameters
----------
H0 : float or `~astropy.units.Quantity`
Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]
Om0 : float
Omega matter: density of non-relativistic matter in units of the
critical density at z=0.
Tcmb0 : float or `~astropy.units.Quantity`
Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725.
Neff : float
Effective number of Neutrino species. Default 3.04.
m_nu : `~astropy.units.Quantity`
Mass of each neutrino species. If this is a scalar Quantity, then all
neutrino species are assumed to have that mass. Otherwise, the mass of
each species. The actual number of neutrino species (and hence the
number of elements of m_nu if it is not scalar) must be the floor of
Neff. Usually this means you must provide three neutrino masses unless
you are considering something like a sterile neutrino.
name : str
Optional name for this cosmological object.
Examples
--------
>>> from astropy.cosmology import FlatLambdaCDM
>>> cosmo = FlatLambdaCDM(H0=70, Om0=0.3)
The comoving distance in Mpc at redshift z:
>>> z = 0.5
>>> dc = cosmo.comoving_distance(z)
"""
def __init__(self, H0, Om0, Tcmb0=2.725, Neff=3.04,
m_nu=u.Quantity(0.0, u.eV), name=None):
FLRW.__init__(self, H0, Om0, 0.0, Tcmb0, Neff, m_nu, name=name)
# Do some twiddling after the fact to get flatness
self._Ode0 = 1.0 - self._Om0 - self._Ogamma0 - self._Onu0
self._Ok0 = 0.0
[docs] def efunc(self, z):
""" Function used to calculate H(z), the Hubble parameter.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
E : ndarray, or float if input scalar
The redshift scaling of the Hubble consant.
Notes
-----
The return value, E, is defined such that :math:`H(z) = H_0 E`.
"""
if isiterable(z):
z = np.asarray(z)
# We override this because it takes a particularly simple
# form for a cosmological constant
Om0, Ode0 = self._Om0, self._Ode0
if self._massivenu:
Or = self._Ogamma0 * (1 + self.nu_relative_density(z))
else:
Or = self._Ogamma0 + self._Onu0
zp1 = 1.0 + z
return np.sqrt(zp1 ** 3 * (Or * zp1 + Om0) + Ode0)
[docs] def inv_efunc(self, z):
r"""Function used to calculate :math:`\frac{1}{H_z}`.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
E : ndarray, or float if input scalar
The inverse redshift scaling of the Hubble constant.
Notes
-----
The return value, E, is defined such that :math:`H_z = H_0 / E`.
"""
if isiterable(z):
z = np.asarray(z)
Om0, Ode0 = self._Om0, self._Ode0
if self._massivenu:
Or = self._Ogamma0 * (1. + self.nu_relative_density(z))
else:
Or = self._Ogamma0 + self._Onu0
zp1 = 1.0 + z
return 1.0 / np.sqrt(zp1 ** 3 * (Or * zp1 + Om0) + Ode0)
def __repr__(self):
retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Tcmb0={3:.4g}, "\
"Neff={4:.3g}, m_nu={5})"
return retstr.format(self._namelead(), self._H0, self._Om0,
self._Tcmb0, self._Neff, self.m_nu)
[docs]class wCDM(FLRW):
"""FLRW cosmology with a constant dark energy equation of state
and curvature.
This has one additional attribute beyond those of FLRW.
Parameters
----------
H0 : float or `~astropy.units.Quantity`
Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]
Om0 : float
Omega matter: density of non-relativistic matter in units of the
critical density at z=0.
Ode0 : float
Omega dark energy: density of dark energy in units of the critical
density at z=0.
w0 : float
Dark energy equation of state at all redshifts. This is
pressure/density for dark energy in units where c=1. A cosmological
constant has w0=-1.0.
Tcmb0 : float or `~astropy.units.Quantity`
Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725.
Neff : float
Effective number of Neutrino species. Default 3.04.
m_nu : `~astropy.units.Quantity`
Mass of each neutrino species. If this is a scalar Quantity, then all
neutrino species are assumed to have that mass. Otherwise, the mass of
each species. The actual number of neutrino species (and hence the
number of elements of m_nu if it is not scalar) must be the floor of
Neff. Usually this means you must provide three neutrino masses unless
you are considering something like a sterile neutrino.
name : str
Optional name for this cosmological object.
Examples
--------
>>> from astropy.cosmology import wCDM
>>> cosmo = wCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9)
The comoving distance in Mpc at redshift z:
>>> z = 0.5
>>> dc = cosmo.comoving_distance(z)
"""
def __init__(self, H0, Om0, Ode0, w0=-1., Tcmb0=2.725,
Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None):
FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name)
self._w0 = float(w0)
@property
def w0(self):
""" Dark energy equation of state"""
return self._w0
[docs] def w(self, z):
"""Returns dark energy equation of state at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
w : ndarray, or float if input scalar
The dark energy equation of state
Notes
------
The dark energy equation of state is defined as
:math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the
pressure at redshift z and :math:`\\rho(z)` is the density
at redshift z, both in units where c=1. Here this is
:math:`w(z) = w_0`.
"""
if np.isscalar(z):
return self._w0
else:
return self._w0 * np.ones(np.asanyarray(z).shape, dtype=np.float)
[docs] def de_density_scale(self, z):
""" Evaluates the redshift dependence of the dark energy density.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
I : ndarray, or float if input scalar
The scaling of the energy density of dark energy with redshift.
Notes
-----
The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`,
and in this case is given by
:math:`I = \\left(1 + z\\right)^{3\\left(1 + w_0\\right)}`
"""
if isiterable(z):
z = np.asarray(z)
return (1. + z) ** (3. * (1. + self._w0))
[docs] def efunc(self, z):
""" Function used to calculate H(z), the Hubble parameter.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
E : ndarray, or float if input scalar
The redshift scaling of the Hubble consant.
Notes
-----
The return value, E, is defined such that :math:`H(z) = H_0 E`.
"""
if isiterable(z):
z = np.asarray(z)
Om0, Ode0, Ok0, w0 = self._Om0, self._Ode0, self._Ok0, self._w0
if self._massivenu:
Or = self._Ogamma0 * (1. + self.nu_relative_density(z))
else:
Or = self._Ogamma0 + self._Onu0
zp1 = 1.0 + z
return np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) +
Ode0 * zp1 ** (3. * (1. + w0)))
[docs] def inv_efunc(self, z):
r""" Function used to calculate :math:`\frac{1}{H_z}`.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
E : ndarray, or float if input scalar
The inverse redshift scaling of the Hubble constant.
Notes
-----
The return value, E, is defined such that :math:`H_z = H_0 / E`.
"""
if isiterable(z):
z = np.asarray(z)
Om0, Ode0, Ok0, w0 = self._Om0, self._Ode0, self._Ok0, self._w0
if self._massivenu:
Or = self._Ogamma0 * (1. + self.nu_relative_density(z))
else:
Or = self._Ogamma0 + self._Onu0
zp1 = 1.0 + z
return 1.0 / np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) +
Ode0 * zp1 ** (3. * (1. + w0)))
def __repr__(self):
retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Ode0={3:.3g}, w0={4:.3g}, "\
"Tcmb0={5:.4g}, Neff={6:.3g}, m_nu={7})"
return retstr.format(self._namelead(), self._H0, self._Om0,
self._Ode0, self._w0, self._Tcmb0, self._Neff,
self.m_nu)
[docs]class FlatwCDM(wCDM):
"""FLRW cosmology with a constant dark energy equation of state
and no spatial curvature.
This has one additional attribute beyond those of FLRW.
Parameters
----------
H0 : float or `~astropy.units.Quantity`
Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]
Om0 : float
Omega matter: density of non-relativistic matter in units of the
critical density at z=0.
w0 : float
Dark energy equation of state at all redshifts. This is
pressure/density for dark energy in units where c=1. A cosmological
constant has w0=-1.0.
Tcmb0 : float or `~astropy.units.Quantity`
Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725.
Neff : float
Effective number of Neutrino species. Default 3.04.
m_nu : `~astropy.units.Quantity`
Mass of each neutrino species. If this is a scalar Quantity, then all
neutrino species are assumed to have that mass. Otherwise, the mass of
each species. The actual number of neutrino species (and hence the
number of elements of m_nu if it is not scalar) must be the floor of
Neff. Usually this means you must provide three neutrino masses unless
you are considering something like a sterile neutrino.
name : str
Optional name for this cosmological object.
Examples
--------
>>> from astropy.cosmology import FlatwCDM
>>> cosmo = FlatwCDM(H0=70, Om0=0.3, w0=-0.9)
The comoving distance in Mpc at redshift z:
>>> z = 0.5
>>> dc = cosmo.comoving_distance(z)
"""
def __init__(self, H0, Om0, w0=-1., Tcmb0=2.725,
Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None):
FLRW.__init__(self, H0, Om0, 0.0, Tcmb0, Neff, m_nu, name=name)
self._w0 = float(w0)
# Do some twiddling after the fact to get flatness
self._Ode0 = 1.0 - self._Om0 - self._Ogamma0 - self._Onu0
self._Ok0 = 0.0
[docs] def efunc(self, z):
""" Function used to calculate H(z), the Hubble parameter.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
E : ndarray, or float if input scalar
The redshift scaling of the Hubble consant.
Notes
-----
The return value, E, is defined such that :math:`H(z) = H_0 E`.
"""
if isiterable(z):
z = np.asarray(z)
Om0, Ode0, w0 = self._Om0, self._Ode0, self._w0
if self._massivenu:
Or = self._Ogamma0 * (1. + self.nu_relative_density(z))
else:
Or = self._Ogamma0 + self._Onu0
zp1 = 1. + z
return np.sqrt(zp1 ** 3 * (Or * zp1 + Om0) +
Ode0 * zp1 ** (3. * (1 + w0)))
[docs] def inv_efunc(self, z):
r""" Function used to calculate :math:`\frac{1}{H_z}`.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
E : ndarray, or float if input scalar
The inverse redshift scaling of the Hubble constant.
Notes
-----
The return value, E, is defined such that :math:`H_z = H_0 / E`.
"""
if isiterable(z):
z = np.asarray(z)
Om0, Ode0, Ok0, w0 = self._Om0, self._Ode0, self._Ok0, self._w0
if self._massivenu:
Or = self._Ogamma0 * (1. + self.nu_relative_density(z))
else:
Or = self._Ogamma0 + self._Onu0
zp1 = 1. + z
return 1. / np.sqrt(zp1 ** 3 * (Or * zp1 + Om0) +
Ode0 * zp1 ** (3. * (1. + w0)))
def __repr__(self):
retstr = "{0}H0={1:.3g}, Om0={2:.3g}, w0={3:.3g}, Tcmb0={4:.4g}, "\
"Neff={5:.3g}, m_nu={6})"
return retstr.format(self._namelead(), self._H0, self._Om0, self._w0,
self._Tcmb0, self._Neff, self.m_nu)
[docs]class w0waCDM(FLRW):
"""FLRW cosmology with a CPL dark energy equation of state and curvature.
The equation for the dark energy equation of state uses the
CPL form as described in Chevallier & Polarski Int. J. Mod. Phys.
D10, 213 (2001) and Linder PRL 90, 91301 (2003):
:math:`w(z) = w_0 + w_a (1-a) = w_0 + w_a z / (1+z)`.
Parameters
----------
H0 : float or `~astropy.units.Quantity`
Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]
Om0 : float
Omega matter: density of non-relativistic matter in units of the
critical density at z=0.
Ode0 : float
Omega dark energy: density of dark energy in units of the critical
density at z=0.
w0 : float
Dark energy equation of state at z=0 (a=1). This is pressure/density
for dark energy in units where c=1.
wa : float
Negative derivative of the dark energy equation of state with respect
to the scale factor. A cosmological constant has w0=-1.0 and wa=0.0.
Tcmb0 : float or `~astropy.units.Quantity`
Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725.
Neff : float
Effective number of Neutrino species. Default 3.04.
m_nu : `~astropy.units.Quantity`
Mass of each neutrino species. If this is a scalar Quantity, then all
neutrino species are assumed to have that mass. Otherwise, the mass of
each species. The actual number of neutrino species (and hence the
number of elements of m_nu if it is not scalar) must be the floor of
Neff. Usually this means you must provide three neutrino masses unless
you are considering something like a sterile neutrino.
name : str
Optional name for this cosmological object.
Examples
--------
>>> from astropy.cosmology import w0waCDM
>>> cosmo = w0waCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9, wa=0.2)
The comoving distance in Mpc at redshift z:
>>> z = 0.5
>>> dc = cosmo.comoving_distance(z)
"""
def __init__(self, H0, Om0, Ode0, w0=-1., wa=0., Tcmb0=2.725,
Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None):
FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name)
self._w0 = float(w0)
self._wa = float(wa)
@property
def w0(self):
""" Dark energy equation of state at z=0"""
return self._w0
@property
def wa(self):
""" Negative derivative of dark energy equation of state w.r.t. a"""
return self._wa
[docs] def w(self, z):
"""Returns dark energy equation of state at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
w : ndarray, or float if input scalar
The dark energy equation of state
Notes
------
The dark energy equation of state is defined as
:math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the
pressure at redshift z and :math:`\\rho(z)` is the density
at redshift z, both in units where c=1. Here this is
:math:`w(z) = w_0 + w_a (1 - a) = w_0 + w_a \\frac{z}{1+z}`.
"""
if isiterable(z):
z = np.asarray(z)
return self._w0 + self._wa * z / (1.0 + z)
[docs] def de_density_scale(self, z):
""" Evaluates the redshift dependence of the dark energy density.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
I : ndarray, or float if input scalar
The scaling of the energy density of dark energy with redshift.
Notes
-----
The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`,
and in this case is given by
.. math::
I = \\left(1 + z\\right)^{3 \\left(1 + w_0 + w_a\\right)}
\exp \\left(-3 w_a \\frac{z}{1+z}\\right)
"""
if isiterable(z):
z = np.asarray(z)
zp1 = 1.0 + z
return zp1 ** (3 * (1 + self._w0 + self._wa)) * \
np.exp(-3 * self._wa * z / zp1)
def __repr__(self):
retstr = "{0}H0={1:.3g}, Om0={2:.3g}, "\
"Ode0={3:.3g}, w0={4:.3g}, wa={5:.3g}, Tcmb0={6:.4g}, "\
"Neff={7:.3g}, m_nu={8})"
return retstr.format(self._namelead(), self._H0, self._Om0,
self._Ode0, self._w0, self._wa,
self._Tcmb0, self._Neff, self.m_nu)
[docs]class Flatw0waCDM(w0waCDM):
"""FLRW cosmology with a CPL dark energy equation of state and no curvature.
The equation for the dark energy equation of state uses the
CPL form as described in Chevallier & Polarski Int. J. Mod. Phys.
D10, 213 (2001) and Linder PRL 90, 91301 (2003):
:math:`w(z) = w_0 + w_a (1-a) = w_0 + w_a z / (1+z)`.
Parameters
----------
H0 : float or `~astropy.units.Quantity`
Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]
Om0 : float
Omega matter: density of non-relativistic matter in units of the
critical density at z=0.
w0 : float
Dark energy equation of state at z=0 (a=1). This is pressure/density
for dark energy in units where c=1.
wa : float
Negative derivative of the dark energy equation of state with respect
to the scale factor. A cosmological constant has w0=-1.0 and wa=0.0.
Tcmb0 : float or `~astropy.units.Quantity`
Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725.
Neff : float
Effective number of Neutrino species. Default 3.04.
m_nu : `~astropy.units.Quantity`
Mass of each neutrino species. If this is a scalar Quantity, then all
neutrino species are assumed to have that mass. Otherwise, the mass of
each species. The actual number of neutrino species (and hence the
number of elements of m_nu if it is not scalar) must be the floor of
Neff. Usually this means you must provide three neutrino masses unless
you are considering something like a sterile neutrino.
name : str
Optional name for this cosmological object.
Examples
--------
>>> from astropy.cosmology import Flatw0waCDM
>>> cosmo = Flatw0waCDM(H0=70, Om0=0.3, w0=-0.9, wa=0.2)
The comoving distance in Mpc at redshift z:
>>> z = 0.5
>>> dc = cosmo.comoving_distance(z)
"""
def __init__(self, H0, Om0, w0=-1., wa=0., Tcmb0=2.725,
Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None):
FLRW.__init__(self, H0, Om0, 0.0, Tcmb0, Neff, m_nu, name=name)
# Do some twiddling after the fact to get flatness
self._Ode0 = 1.0 - self._Om0 - self._Ogamma0 - self._Onu0
self._Ok0 = 0.0
self._w0 = float(w0)
self._wa = float(wa)
def __repr__(self):
retstr = "{0}H0={1:.3g}, Om0={2:.3g}, "\
"w0={3:.3g}, Tcmb0={4:.4g}, Neff={5:.3g}, m_nu={6})"
return retstr.format(self._namelead(), self._H0, self._Om0, self._w0,
self._Tcmb0, self._Neff, self.m_nu)
[docs]class wpwaCDM(FLRW):
"""FLRW cosmology with a CPL dark energy equation of state, a pivot
redshift, and curvature.
The equation for the dark energy equation of state uses the
CPL form as described in Chevallier & Polarski Int. J. Mod. Phys.
D10, 213 (2001) and Linder PRL 90, 91301 (2003), but modified
to have a pivot redshift as in the findings of the Dark Energy
Task Force (Albrecht et al. arXiv:0901.0721 (2009)):
:math:`w(a) = w_p + w_a (a_p - a) = w_p + w_a( 1/(1+zp) - 1/(1+z) )`.
Parameters
----------
H0 : float or `~astropy.units.Quantity`
Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]
Om0 : float
Omega matter: density of non-relativistic matter in units of the
critical density at z=0.
Ode0 : float
Omega dark energy: density of dark energy in units of the critical
density at z=0.
wp : float
Dark energy equation of state at the pivot redshift zp. This is
pressure/density for dark energy in units where c=1.
wa : float
Negative derivative of the dark energy equation of state with respect
to the scale factor. A cosmological constant has w0=-1.0 and wa=0.0.
zp : float
Pivot redshift -- the redshift where w(z) = wp
Tcmb0 : float or `~astropy.units.Quantity`
Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725.
Neff : float
Effective number of Neutrino species. Default 3.04.
m_nu : `~astropy.units.Quantity`
Mass of each neutrino species. If this is a scalar Quantity, then all
neutrino species are assumed to have that mass. Otherwise, the mass of
each species. The actual number of neutrino species (and hence the
number of elements of m_nu if it is not scalar) must be the floor of
Neff. Usually this means you must provide three neutrino masses unless
you are considering something like a sterile neutrino.
name : str
Optional name for this cosmological object.
Examples
--------
>>> from astropy.cosmology import wpwaCDM
>>> cosmo = wpwaCDM(H0=70, Om0=0.3, Ode0=0.7, wp=-0.9, wa=0.2, zp=0.4)
The comoving distance in Mpc at redshift z:
>>> z = 0.5
>>> dc = cosmo.comoving_distance(z)
"""
def __init__(self, H0, Om0, Ode0, wp=-1., wa=0., zp=0,
Tcmb0=2.725, Neff=3.04, m_nu=u.Quantity(0.0, u.eV),
name=None):
FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name)
self._wp = float(wp)
self._wa = float(wa)
self._zp = float(zp)
@property
def wp(self):
""" Dark energy equation of state at the pivot redshift zp"""
return self._wp
@property
def wa(self):
""" Negative derivative of dark energy equation of state w.r.t. a"""
return self._wa
@property
def zp(self):
""" The pivot redshift, where w(z) = wp"""
return self._zp
[docs] def w(self, z):
"""Returns dark energy equation of state at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
w : ndarray, or float if input scalar
The dark energy equation of state
Notes
------
The dark energy equation of state is defined as
:math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the
pressure at redshift z and :math:`\\rho(z)` is the density
at redshift z, both in units where c=1. Here this is
:math:`w(z) = w_p + w_a (a_p - a)` where :math:`a = 1/1+z`
and :math:`a_p = 1 / 1 + z_p`.
"""
if isiterable(z):
z = np.asarray(z)
apiv = 1.0 / (1.0 + self._zp)
return self._wp + self._wa * (apiv - 1.0 / (1. + z))
[docs] def de_density_scale(self, z):
""" Evaluates the redshift dependence of the dark energy density.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
I : ndarray, or float if input scalar
The scaling of the energy density of dark energy with redshift.
Notes
-----
The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`,
and in this case is given by
.. math::
a_p = \\frac{1}{1 + z_p}
I = \\left(1 + z\\right)^{3 \\left(1 + w_p + a_p w_a\\right)}
\exp \\left(-3 w_a \\frac{z}{1+z}\\right)
"""
if isiterable(z):
z = np.asarray(z)
zp1 = 1. + z
apiv = 1. / (1. + self._zp)
return zp1 ** (3. * (1. + self._wp + apiv * self._wa)) * \
np.exp(-3. * self._wa * z / zp1)
def __repr__(self):
retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Ode0={3:.3g}, wp={4:.3g}, "\
"wa={5:.3g}, zp={6:.3g}, Tcmb0={7:.4g}, Neff={8:.3g}, "\
"m_nu={9})"
return retstr.format(self._namelead(), self._H0, self._Om0,
self._Ode0, self._wp, self._wa, self._zp,
self._Tcmb0, self._Neff, self.m_nu)
[docs]class w0wzCDM(FLRW):
"""FLRW cosmology with a variable dark energy equation of state
and curvature.
The equation for the dark energy equation of state uses the
simple form: :math:`w(z) = w_0 + w_z z`.
This form is not recommended for z > 1.
Parameters
----------
H0 : float or `~astropy.units.Quantity`
Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]
Om0 : float
Omega matter: density of non-relativistic matter in units of the
critical density at z=0.
Ode0 : float
Omega dark energy: density of dark energy in units of the critical
density at z=0.
w0 : float
Dark energy equation of state at z=0. This is pressure/density for dark
energy in units where c=1. A cosmological constant has w0=-1.0.
wz : float
Derivative of the dark energy equation of state with respect to z.
Tcmb0 : float or `~astropy.units.Quantity`
Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725.
Neff : float
Effective number of Neutrino species. Default 3.04.
m_nu : float or ndarray or `~astropy.units.Quantity`
Mass of each neutrino species, in eV. If this is a float or scalar
Quantity, then all neutrino species are assumed to have that mass. If a
ndarray or array Quantity, then these are the values of the mass of
each species. The actual number of neutrino species (and hence the
number of elements of m_nu if it is not scalar) must be the floor of
Neff. Usually this means you must provide three neutrino masses unless
you are considering something like a sterile neutrino.
name : str
Optional name for this cosmological object.
Examples
--------
>>> from astropy.cosmology import w0wzCDM
>>> cosmo = w0wzCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9, wz=0.2)
The comoving distance in Mpc at redshift z:
>>> z = 0.5
>>> dc = cosmo.comoving_distance(z)
"""
def __init__(self, H0, Om0, Ode0, w0=-1., wz=0., Tcmb0=2.725,
Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None):
FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name)
self._w0 = float(w0)
self._wz = float(wz)
@property
def w0(self):
""" Dark energy equation of state at z=0"""
return self._w0
@property
def wz(self):
""" Derivative of the dark energy equation of state w.r.t. z"""
return self._wz
[docs] def w(self, z):
"""Returns dark energy equation of state at redshift ``z``.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
w : ndarray, or float if input scalar
The dark energy equation of state
Notes
------
The dark energy equation of state is defined as
:math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the
pressure at redshift z and :math:`\\rho(z)` is the density
at redshift z, both in units where c=1. Here this is given by
:math:`w(z) = w_0 + w_z z`.
"""
if isiterable(z):
z = np.asarray(z)
return self._w0 + self._wz * z
[docs] def de_density_scale(self, z):
""" Evaluates the redshift dependence of the dark energy density.
Parameters
----------
z : array_like
Input redshifts.
Returns
-------
I : ndarray, or float if input scalar
The scaling of the energy density of dark energy with redshift.
Notes
-----
The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`,
and in this case is given by
.. math::
I = \\left(1 + z\\right)^{3 \\left(1 + w_0 - w_z\\right)}
\exp \\left(-3 w_z z\\right)
"""
if isiterable(z):
z = np.asarray(z)
zp1 = 1. + z
return zp1 ** (3. * (1. + self._w0 - self._wz)) *\
np.exp(-3. * self._wz * z)
def __repr__(self):
retstr = "{0}H0={1:.3g}, Om0={2:.3g}, "\
"Ode0={3:.3g}, w0={4:.3g}, wz={5:.3g} Tcmb0={6:.4g}, "\
"Neff={7:.3g}, m_nu={8})"
return retstr.format(self._namelead(), self._H0, self._Om0,
self._Ode0, self._w0, self._wz, self._Tcmb0,
self._Neff, self.m_nu)
# Pre-defined cosmologies. This loops over the parameter sets in the
# parameters module and creates a LambdaCDM or FlatLambdaCDM instance
# with the same name as the parameter set in the current module's namespace.
# Note this assumes all the cosmologies in parameters are LambdaCDM,
# which is true at least as of this writing.
for key in parameters.available:
par = getattr(parameters, key)
if par['flat']:
cosmo = FlatLambdaCDM(par['H0'], par['Om0'], Tcmb0=par['Tcmb0'],
Neff=par['Neff'],
m_nu=u.Quantity(par['m_nu'], u.eV),
name=key)
docstr = "%s instance of FlatLambdaCDM cosmology\n\n(from %s)"
cosmo.__doc__ = docstr % (key, par['reference'])
else:
cosmo = LambdaCDM(par['H0'], par['Om0'], par['Ode0'],
Tcmb0=par['Tcmb0'], Neff=par['Neff'],
m_nu=u.Quantity(par['m_nu'], u.eV), name=key)
docstr = "%s instance of LambdaCDM cosmology\n\n(from %s)"
cosmo.__doc__ = docstr % (key, par['reference'])
setattr(sys.modules[__name__], key, cosmo)
# don't leave these variables floating around in the namespace
del key, par, cosmo
#########################################################################
# The science state below contains the current cosmology.
#########################################################################
[docs]class default_cosmology(ScienceState):
"""
The default cosmology to use. To change it::
>>> from astropy.cosmology import default_cosmology, WMAP7
>>> with default_cosmology.set(WMAP7):
... # WMAP7 cosmology in effect
Or, you may use a string::
>>> with default_cosmology.set('WMAP7'):
... # WMAP7 cosmology in effect
"""
_value = 'WMAP9'
@staticmethod
[docs] def get_cosmology_from_string(arg):
""" Return a cosmology instance from a string.
"""
if arg == 'no_default':
cosmo = None
else:
try:
cosmo = getattr(sys.modules[__name__], arg)
except AttributeError:
s = "Unknown cosmology '%s'. Valid cosmologies:\n%s" % (
arg, parameters.available)
raise ValueError(s)
return cosmo
@classmethod
[docs] def validate(cls, value):
if value is None:
value = 'WMAP9'
if isinstance(value, six.string_types):
return cls.get_cosmology_from_string(value)
elif isinstance(value, Cosmology):
return value
else:
raise TypeError("default_cosmology must be a string or Cosmology instance.")
@deprecated('0.4', alternative='astropy.cosmology.default_cosmology.get_cosmology_from_string')
def get_cosmology_from_string(arg):
""" Return a cosmology instance from a string.
"""
return default_cosmology.get_cosmology_from_string(arg)
@deprecated('0.4', alternative='astropy.cosmology.default_cosmology.get')
[docs]def get_current():
""" Get the current cosmology.
If no current has been set, the WMAP9 comology is returned and a
warning is given.
Returns
-------
cosmo : ``Cosmology`` instance
"""
return default_cosmology.get()
@deprecated('0.4', alternative='astropy.cosmology.default_cosmology.set')
[docs]def set_current(cosmo):
""" Set the current cosmology.
Call this with an empty string ('') to get a list of the strings
that map to available pre-defined cosmologies.
Parameters
----------
cosmo : str or ``Cosmology`` instance
The cosmology to use.
"""
return default_cosmology.set(cosmo)
DEFAULT_COSMOLOGY = ScienceStateAlias(
'0.4', 'DEFAULT_COSMOLOGY', 'default_cosmology', default_cosmology)