# -*- coding: utf-8 -*-
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module defines the `Quantity` object, which represents a number with some
associated units. `Quantity` objects support operations like ordinary numbers,
but will deal with unit conversions internally.
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
# Standard library
import numbers
import numpy as np
# AstroPy
from ..extern import six
from .core import (Unit, dimensionless_unscaled, UnitBase, UnitsError,
get_current_unit_registry)
from ..utils import lazyproperty
from ..utils.compat.misc import override__dir__
from ..utils.misc import isiterable
from .utils import validate_power
__all__ = ["Quantity"]
def _can_cast(arg, dtype):
"""
This is needed for compatibility with Numpy < 1.6, in which ``can_cast``
can only take a dtype or type as its first argument.
"""
return np.can_cast(getattr(arg, 'dtype', type(arg)), dtype)
_UNIT_NOT_INITIALISED = "(Unit not initialised)"
def _can_have_arbitrary_unit(value):
"""Test whether the items in value can have arbitrary units
Numbers whose value does not change upon a unit change, i.e.,
zero, infinity, or not-a-number
Parameters
----------
value : number or array
Returns
-------
`True` if each member is either zero or not finite, `False` otherwise
"""
return np.all(np.logical_or(np.equal(value, 0.), ~np.isfinite(value)))
class QuantityIterator(object):
"""
Flat iterator object to iterate over Quantities
A `QuantityIterator` iterator is returned by ``q.flat`` for any Quantity
``q``. It allows iterating over the array as if it were a 1-D array,
either in a for-loop or by calling its `next` method.
Iteration is done in C-contiguous style, with the last index varying the
fastest. The iterator can also be indexed using basic slicing or
advanced indexing.
See Also
--------
Quantity.flatten : Returns a flattened copy of an array.
Notes
-----
`QuantityIterator` is inspired by `~numpy.ma.core.MaskedIterator`.
It is not exported by the `units` module. Instead of instantiating a
`QuantityIterator` directly, use `Quantity.flat`.
"""
def __init__(self, q):
self._quantity = q
self._dataiter = q.view(np.ndarray).flat
def __iter__(self):
return self
def __getitem__(self, indx):
out = self._dataiter.__getitem__(indx)
if not isinstance(out, np.ndarray):
out = out.__array__()
out = out.view(type(self._quantity))
out._unit = self._quantity.unit
return out
def __setitem__(self, index, value):
self._dataiter[index] = self._quantity._to_own_unit(value)
def __next__(self):
"""
Return the next value, or raise StopIteration.
"""
out = next(self._dataiter)
return self._quantity.__quantity_instance__(out, self._quantity.unit)
next = __next__
[docs]class Quantity(np.ndarray):
""" A `Quantity` represents a number with some associated unit.
Parameters
----------
value : number, `Quantity` object, or sequence of `Quantity` objects.
The numerical value of this quantity in the units given by
unit. If a `Quantity` or sequence of them, creates a new
`Quantity` object, converting to `unit` units as needed.
unit : `~astropy.units.UnitBase` instance, str
An object that represents the unit associated with the input value.
Must be an `~astropy.units.UnitBase` object or a string parseable by
the `units` package.
dtype : ~numpy.dtype, optional
The dtype of the resulting Numpy array or scalar that will
hold the value. If not provided, is is determined
automatically from the input value.
copy : bool, optional
If `True` (default), then the value is copied. Otherwise, a copy
will only be made if `__array__` returns a copy, if obj is a
nested sequence, or if a copy is needed to satisfy `dtype`.
(The `False` option is intended mostly for internal use, to speed
up initialization where it is known a copy has been made already.
Use with care.)
Raises
------
TypeError
If the value provided is not a Python numeric type.
TypeError
If the unit provided is not either a `Unit` object or a parseable
string unit.
"""
# Need to set a class-level default for _equivalencies, or
# Constants can not initialize properly
_equivalencies = []
__array_priority__ = 10000
def __new__(cls, value, unit=None, dtype=None, copy=True):
if unit is not None:
# convert unit first, to avoid multiple string->unit conversions
unit = Unit(unit)
if isinstance(value, Quantity):
if unit is not None and unit is not value.unit:
value = value.to(unit)
copy = False # copy already made
if copy or dtype is not None:
return np.array(value, dtype=dtype, copy=copy, subok=True)
else:
return value
elif (not isinstance(value, np.ndarray) and isiterable(value) and
all(isinstance(v, Quantity) for v in value)):
if unit is None:
unit = value[0].unit
value = [q.to(unit).value for q in value]
copy = False # copy already made
else:
if unit is None:
unit = dimensionless_unscaled
value = np.array(value, dtype=dtype, copy=copy)
# check that array contains numbers or long int objects
if (value.dtype.kind in 'OSU' and
not (value.dtype.kind == 'O' and
isinstance(value.item(() if value.ndim == 0 else 0),
numbers.Number))):
raise TypeError("The value must be a valid Python or "
"Numpy numeric type.")
value = value.view(cls)
value._unit = unit
return value
def __array_finalize__(self, obj):
if isinstance(obj, Quantity):
self._unit = obj._unit
def __array_prepare__(self, obj, context=None):
# This method gets called by Numpy whenever a ufunc is called on the
# array. The object passed in ``obj`` is an empty version of the
# output array which we can e.g. change to an array sub-class, add
# attributes to, etc. After this is called, then the ufunc is called
# and the values in this empty array are set.
# If no context is set, just return the input
if context is None:
return obj
# Find out which ufunc is being used
function = context[0]
from .quantity_helper import UNSUPPORTED_UFUNCS, UFUNC_HELPERS
# Check whether we even support this ufunc
if function in UNSUPPORTED_UFUNCS:
raise TypeError("Cannot use function '{0}' with quantities"
.format(function.__name__))
# Now find out what arguments were passed to the ufunc, usually, this
# will include at least the present object, and another, which could
# be a Quantity, or a Numpy array, etc. when using two-argument ufuncs.
args = context[1][:function.nin]
units = [getattr(arg, 'unit', None) for arg in args]
# If the ufunc is supported, then we call a helper function (defined
# in quantity_helper.py) which returns the scale by which the inputs
# should be multiplied before being passed to the ufunc, as well as
# the unit the output from the ufunc will have.
if function in UFUNC_HELPERS:
scales, result_unit = UFUNC_HELPERS[function](function, *units)
else:
raise TypeError("Unknown ufunc {0}. Please raise issue on "
"https://github.com/astropy/astropy"
.format(function.__name__))
if any(scale == 0. for scale in scales):
# for two-argument ufuncs with a quantity and a non-quantity,
# the quantity normally needs to be dimensionless, *except*
# if the non-quantity can have arbitrary unit, i.e., when it
# is all zero, infinity or NaN. In that case, the non-quantity
# can just have the unit of the quantity
# (this allows, e.g., `q > 0.` independent of unit)
maybe_arbitrary_arg = args[scales.index(0.)]
if _can_have_arbitrary_unit(maybe_arbitrary_arg):
scales = [1., 1.]
else:
raise UnitsError("Can only apply '{0}' function to "
"dimensionless quantities when other "
"argument is not a quantity (unless the "
"latter is all zero/infinity/nan)"
.format(function.__name__))
# In the case of np.power, the unit itself needs to be modified by an
# amount that depends on one of the input values, so we need to treat
# this as a special case.
# TODO: find a better way to deal with this case
if function is np.power and result_unit is not None:
if units[1] is None:
p = args[1]
else:
p = args[1].to(dimensionless_unscaled).value
result_unit = result_unit ** validate_power(p)
# We now prepare the output object
if self is obj: # happens if the output object is self, which happens
# for in-place operations such as q1 += q2
# In some cases, the result of a ufunc should be a plain Numpy
# array, which we can't do if we are doing an in-place operation.
if result_unit is None:
raise TypeError("Cannot store non-quantity output from {0} "
"function in Quantity object"
.format(function.__name__))
# If the Quantity has an integer dtype, in-place operations are
# dangerous because in some cases the quantity will be e.g.
# decomposed, which involves being scaled by a float, but since
# the array is an integer the output then gets converted to an int
# and truncated.
if(any(not _can_cast(arg, obj.dtype) for arg in args) or
np.any(np.array(scales, dtype=obj.dtype) != np.array(scales))):
raise TypeError("Arguments cannot be cast safely to inplace "
"output with dtype={0}".format(self.dtype))
result = self # no view needed since we return the object itself
# in principle, if self is also an argument, it could be rescaled
# here, since it won't be needed anymore. But maybe not change
# inputs before the calculation even if they will get destroyed
else: # normal case: set up output as a Quantity
result = self.__quantity_view__(obj, result_unit)
# We now need to treat the case where the inputs have to be scaled -
# the issue is that we can't actually scale the inputs since that
# would be changing the objects passed to the ufunc, which would not
# be expected by the user.
if any(scale != 1. for scale in scales):
# If self is both output and input (which happens for in-place
# operations), input will get overwritten with junk. To avoid
# that, hide it in a new object
if self is obj and any(self is arg for arg in args):
# but with two outputs it would become unhidden too soon
# [ie., np.modf(q1, q1, other)]. Bail.
if context[2] < function.nout - 1:
raise TypeError("Cannot apply multi-output {0} function "
"to quantities with in-place replacement "
"of an input by any but the last output."
.format(function.__name__))
# If self is already contiguous, we don't need to do
# an additional copy back into the original array, so
# we store it in `result._result`. Otherwise, we
# store it in `result._contiguous`. `__array_wrap__`
# knows how to handle putting either form back into
# the original array.
if self.flags['C_CONTIGUOUS']:
result = self.copy()
result._result = self
else:
result._contiguous = self.copy()
# ensure we remember the scales we need
result._scales = scales
# unit output will get (setting _unit could prematurely change input)
result._result_unit = result_unit
return result
def __array_wrap__(self, obj, context=None):
if context is not None:
if hasattr(obj, '_result_unit'):
result_unit = obj._result_unit
del obj._result_unit
else:
result_unit = None
# We now need to re-calculate quantities for which the input
# needed to be scaled.
if hasattr(obj, '_scales'):
scales = obj._scales
del obj._scales
# For in-place operations, input will get overwritten with
# junk. To avoid that, we hid it in a new object in
# __array_prepare__ and retrieve it here.
if hasattr(obj, '_result'):
obj = obj._result
elif hasattr(obj, '_contiguous'):
obj[()] = obj._contiguous
del obj._contiguous
# take array view to which output can be written without
# getting back here
obj_array = obj.view(np.ndarray)
# Find out which ufunc was called and with which inputs
function = context[0]
args = context[1][:function.nin]
# Set the inputs, rescaling as necessary
inputs = []
for arg, scale in zip(args, scales):
if scale != 1.:
inputs.append(arg.value * scale)
else: # for scale==1, input is not necessarily a Quantity
inputs.append(getattr(arg, 'value', arg))
# For output arrays that require scaling, we can reuse the
# output array to perform the scaling in place, as long as the
# array is not integral. Here, we set the obj_array to `None`
# when it can not be used to store the scaled result.
if(result_unit is not None and
any(not _can_cast(scaled_arg, obj_array.dtype)
for scaled_arg in inputs)):
obj_array = None
# Re-compute the output using the ufunc
if function.nin == 1:
if function.nout == 1:
out = function(inputs[0], obj_array)
else: # 2-output function (np.modf, np.frexp); 1 input
if context[2] == 0:
out, _ = function(inputs[0], obj_array, None)
else:
_, out = function(inputs[0], None, obj_array)
else:
out = function(inputs[0], inputs[1], obj_array)
if obj_array is None:
if not isinstance(out, np.ndarray): # array scalar; cannot view
return self.__quantity_instance__(out, result_unit)
else:
obj = self.__quantity_view__(out, result_unit)
if result_unit is None: # return a plain array
obj = obj.view(np.ndarray)
else:
obj._unit = result_unit
return obj
def __deepcopy__(self, memo):
# If we don't define this, ``copy.deepcopy(quantity)`` will
# return a bare Numpy array.
return self.copy()
def __quantity_view__(self, obj, unit):
"""
Overridden by subclasses to change what kind of view is
created based on the output unit of an operation.
Parameters
----------
obj : ndarray
The array to create a view of
unit : UnitBase
The unit of the resulting object. It doesn't not need to
be assigned to the view, but it can be used to select a
Quantity subclass.
Returns
-------
view : Quantity subclass
"""
return obj.view(Quantity)
def __quantity_instance__(self, val, unit, **kwargs):
"""
Overridden by subclasses to impact what kind of instance is
created based on the output unit of an operation.
The parameters are the same as those to `Quantity.__new__`.
"""
return Quantity(val, unit, **kwargs)
def __reduce__(self):
# patch to pickle Quantity objects (ndarray subclasses), see
# http://www.mail-archive.com/numpy-discussion@scipy.org/msg02446.html
object_state = list(super(Quantity, self).__reduce__())
object_state[2] = (object_state[2], self.__dict__)
return tuple(object_state)
def __setstate__(self, state):
# patch to unpickle Quantity objects (ndarray subclasses), see
# http://www.mail-archive.com/numpy-discussion@scipy.org/msg02446.html
nd_state, own_state = state
super(Quantity, self).__setstate__(nd_state)
self.__dict__.update(own_state)
[docs] def to(self, unit, equivalencies=[]):
""" Returns a new `Quantity` object with the specified units.
Parameters
----------
unit : `~astropy.units.UnitBase` instance, str
An object that represents the unit to convert to. Must be
an `~astropy.units.UnitBase` object or a string parseable
by the `units` package.
equivalencies : list of equivalence pairs, optional
A list of equivalence pairs to try if the units are not
directly convertible. See :ref:`unit_equivalencies`.
If not provided or `[]`, class default equivalencies will be used
(none for `~astropy.units.Quantity`, but may be set for subclasses)
If `None`, no equivalencies will be applied at all, not even any
set globally or within a context.
"""
if equivalencies == []:
equivalencies = self._equivalencies
unit = Unit(unit)
new_val = np.asarray(
self.unit.to(unit, self.value, equivalencies=equivalencies))
result = self.__quantity_view__(new_val, unit)
result._unit = unit
return result
@property
[docs] def value(self):
""" The numerical value of this quantity. """
value = self.view(np.ndarray)
if self.shape:
return value
else:
return value.item()
@property
[docs] def unit(self):
"""
A `~astropy.units.UnitBase` object representing the unit of this
quantity.
"""
return self._unit
# this ensures that if we do a view, __repr__ and __str__ do not balk
_unit = None
@property
[docs] def equivalencies(self):
"""
A list of equivalencies that will be applied by default during
unit conversions.
"""
return self._equivalencies
@property
[docs] def si(self):
"""
Returns a copy of the current `Quantity` instance with SI units. The
value of the resulting object will be scaled.
"""
si_unit = self.unit.si
return self.__quantity_instance__(
self.value * si_unit.scale, si_unit / si_unit.scale,
copy=False)
@property
[docs] def cgs(self):
"""
Returns a copy of the current `Quantity` instance with CGS units. The
value of the resulting object will be scaled.
"""
cgs_unit = self.unit.cgs
return self.__quantity_instance__(
self.value * cgs_unit.scale, cgs_unit / cgs_unit.scale,
copy=False)
@lazyproperty
[docs] def isscalar(self):
"""
True if the `value` of this quantity is a scalar, or False if it
is an array-like object.
.. note::
This is subtly different from `numpy.isscalar` in that
`numpy.isscalar` returns False for a zero-dimensional array
(e.g. ``np.array(1)``), while this is True in that case.
"""
from ..utils.misc import isiterable
return not isiterable(self.value)
[docs] def copy(self):
""" Return a copy of this `Quantity` instance """
return self.__class__(self)
# This flag controls whether convenience conversion members, such
# as `q.m` equivalent to `q.to(u.m).value` are available. This is
# not turned on on Quantity itself, but is on some subclasses of
# Quantity, such as `astropy.coordinates.Angle`.
_include_easy_conversion_members = False
@override__dir__
def __dir__(self):
"""
Quantities are able to directly convert to other units that
have the same physical type. This function is implemented in
order to make autocompletion still work correctly in IPython.
"""
if not self._include_easy_conversion_members:
return []
extra_members = set()
equivalencies = Unit._normalize_equivalencies(self.equivalencies)
for equivalent in self.unit._get_units_with_same_physical_type(
equivalencies):
extra_members.update(equivalent.names)
return extra_members
def __getattr__(self, attr):
"""
Quantities are able to directly convert to other units that
have the same physical type.
"""
if not self._include_easy_conversion_members:
raise AttributeError(
"'{0}' object has no '{1}' member".format(
self.__class__.__name__,
attr))
def get_virtual_unit_attribute():
registry = get_current_unit_registry().registry
to_unit = registry.get(attr, None)
if to_unit is None:
return None
try:
return self.unit.to(
to_unit, self.value, equivalencies=self.equivalencies)
except UnitsError:
return None
value = get_virtual_unit_attribute()
if value is None:
raise AttributeError(
"{0} instance has no attribute '{1}'".format(
self.__class__.__name__, attr))
else:
return value
# Arithmetic operations
def __mul__(self, other):
""" Multiplication between `Quantity` objects and other objects."""
if isinstance(other, (UnitBase, six.string_types)):
return self.__quantity_instance__(self.value, other * self.unit)
return np.multiply(self, other)
def __imul__(self, other):
"""In-place multiplication between `Quantity` objects and others."""
if isinstance(other, (UnitBase, six.string_types)):
self._unit = other * self.unit
return self
return np.multiply(self, other, self)
def __rmul__(self, other):
""" Right Multiplication between `Quantity` objects and other
objects.
"""
return self.__mul__(other)
def __div__(self, other):
""" Division between `Quantity` objects and other objects."""
if isinstance(other, (UnitBase, six.string_types)):
return self.__quantity_instance__(self.value, self.unit / other)
return np.true_divide(self, other)
def __idiv__(self, other):
"""Inplace division between `Quantity` objects and other objects."""
if isinstance(other, (UnitBase, six.string_types)):
self._unit = self.unit / other
return self
return np.true_divide(self, other, self)
def __rdiv__(self, other):
""" Right Division between `Quantity` objects and other objects."""
if isinstance(other, (UnitBase, six.string_types)):
return self.__quantity_instance__(1. / self.value,
other / self.unit, copy=False)
return np.divide(other, self)
def __truediv__(self, other):
""" Division between `Quantity` objects. """
return self.__div__(other)
def __itruediv__(self, other):
""" Division between `Quantity` objects. """
return self.__idiv__(other)
def __rtruediv__(self, other):
""" Division between `Quantity` objects. """
return self.__rdiv__(other)
def __divmod__(self, other):
if isinstance(other, (six.string_types, UnitBase)):
return (self / other, self.__quantity_instance__(
0, dimensionless_unscaled))
other_value = self._to_own_unit(other)
result_tuple = super(Quantity, self.__class__).__divmod__(
self.view(np.ndarray), other_value)
return (self.__quantity_instance__(result_tuple[0],
dimensionless_unscaled, copy=False),
self.__quantity_instance__(result_tuple[1],
self.unit, copy=False))
def __pos__(self):
"""
Plus the quantity. This is implemented in case users use +q where q is
a quantity. (Required for scalar case.)
"""
return self.__quantity_instance__(self.value, unit=self.unit)
# Comparison operations
def __eq__(self, other):
try:
return np.equal(self, other)
except Exception as exc:
if isinstance(other, Quantity):
raise exc
return False
def __ne__(self, other):
try:
return np.not_equal(self, other)
except Exception as exc:
if isinstance(other, Quantity):
raise exc
return True
# other overrides of special functions
def __hash__(self):
return hash(self.value) ^ hash(self.unit)
def __iter__(self):
if self.isscalar:
raise TypeError(
"'{cls}' object with a scalar value is not iterable"
.format(cls=self.__class__.__name__))
# Otherwise return a generator
def quantity_iter():
for val in self.value:
yield self.__quantity_instance__(val, unit=self.unit)
return quantity_iter()
def __getitem__(self, key):
if self.isscalar:
raise TypeError(
"'{cls}' object with a scalar value does not support "
"indexing".format(cls=self.__class__.__name__))
else:
out = self.value[key]
if not isinstance(out, np.ndarray): # array scalar; cannot view
return self.__quantity_instance__(out, self.unit)
out = self.__quantity_view__(out, self.unit)
out._unit = self.unit
return out
def __setitem__(self, i, value):
self.view(np.ndarray).__setitem__(i, self._to_own_unit(value))
def __setslice__(self, i, j, value):
self.view(np.ndarray).__setslice__(i, j, self._to_own_unit(value))
# __contains__ is OK
def __nonzero__(self):
"""Quantities should always be treated as non-False; there is too much
potential for ambiguity otherwise.
"""
return True
if six.PY3:
__bool__ = __nonzero__
def __len__(self):
if self.isscalar:
raise TypeError("'{cls}' object with a scalar value has no "
"len()".format(cls=self.__class__.__name__))
else:
return len(self.value)
# Numerical types
def __float__(self):
if not self.isscalar or not self.unit.is_unity():
raise TypeError('Only dimensionless scalar quantities can be '
'converted to Python scalars')
else:
return float(self.value)
def __int__(self):
if not self.isscalar or not self.unit.is_unity():
raise TypeError('Only dimensionless scalar quantities can be '
'converted to Python scalars')
else:
return int(self.value)
def __index__(self):
if self.isscalar and self.unit.is_unity():
try:
return self.value.__index__()
except:
pass
raise TypeError('Only integer dimensionless scalar quantities '
'can be converted to a Python index')
if six.PY2:
def __long__(self):
if not self.isscalar or not self.unit.is_unity():
raise TypeError('Only dimensionless scalar quantities can be '
'converted to Python scalars')
else:
return long(self.value)
# Display
# TODO: we may want to add a hook for dimensionless quantities?
def __str__(self):
if self.unit is None:
unitstr = _UNIT_NOT_INITIALISED
else:
unitstr = self.unit.to_string()
if unitstr:
unitstr = ' ' + unitstr
return '{0}{1:s}'.format(self.value, unitstr)
def __repr__(self):
prefixstr = '<' + self.__class__.__name__ + ' '
arrstr = np.array2string(self.view(np.ndarray), separator=',',
prefix=prefixstr)
if self.unit is None:
unitstr = _UNIT_NOT_INITIALISED
else:
unitstr = self.unit.to_string()
if unitstr:
unitstr = ' ' + unitstr
return '{0}{1}{2:s}>'.format(prefixstr, arrstr, unitstr)
def _repr_latex_(self):
"""
Generate latex representation of the quantity and its unit.
This is used by the IPython notebook to show it all latexified.
It only works for scalar quantities; for arrays, the standard
reprensation is returned.
Returns
-------
lstr
LaTeX string
"""
if not self.isscalar:
raise NotImplementedError('Cannot represent Quantity arrays '
'in LaTex format')
# Format value
latex_value = "{0:g}".format(self.value)
if "e" in latex_value:
latex_value = latex_value.replace('e', '\\times 10^{') + '}'
# Format unit
# [1:-1] strips the '$' on either side needed for math mode
latex_unit = (self.unit._repr_latex_()[1:-1] # note this is unicode
if self.unit is not None
else _UNIT_NOT_INITIALISED)
return '${0} \; {1}$'.format(latex_value, latex_unit)
def __format__(self, format_spec):
"""
Format quantities using the new-style python formatting codes
as specifiers for the number.
If the format specifier correctly applies itself to the value,
then it is used to format only the value. If it cannot be
applied to the value, then it is applied to the whole string.
"""
try:
value = format(self.value, format_spec)
full_format_spec = "s"
except ValueError:
value = self.value
full_format_spec = format_spec
return format("{0} {1:s}".format(value,
self.unit.to_string()
if self.unit is not None
else _UNIT_NOT_INITIALISED),
full_format_spec)
[docs] def decompose(self, bases=[]):
"""
Generates a new `Quantity` with the units
decomposed. Decomposed units have only irreducible units in
them (see `astropy.units.UnitBase.decompose`).
Parameters
----------
bases : sequence of UnitBase, optional
The bases to decompose into. When not provided,
decomposes down to any irreducible units. When provided,
the decomposed result will only contain the given units.
This will raises a `UnitsError` if it's not possible
to do so.
Returns
-------
newq : `~astropy.units.quantity.Quantity`
A new object equal to this quantity with units decomposed.
"""
return self._decompose(False, bases=bases)
def _decompose(self, allowscaledunits=False, bases=[]):
"""
Generates a new `Quantity` with the units decomposed. Decomposed
units have only irreducible units in them (see
`astropy.units.UnitBase.decompose`).
Parameters
----------
allowscaledunits : bool
If True, the resulting `Quantity` may have a scale factor
associated with it. If False, any scaling in the unit will
be subsumed into the value of the resulting `Quantity`
bases : sequence of UnitBase, optional
The bases to decompose into. When not provided,
decomposes down to any irreducible units. When provided,
the decomposed result will only contain the given units.
This will raises a `UnitsError` if it's not possible
to do so.
Returns
-------
newq : `~astropy.units.quantity.Quantity`
A new object equal to this quantity with units decomposed.
"""
new_unit = self.unit.decompose(bases=bases)
if not allowscaledunits and hasattr(new_unit, 'scale'):
# Be careful here because self.value might be an array, so if the
# following is changed, always be sure that the original value is
# not being modified.
new_value = self.value * new_unit.scale
new_unit = new_unit / Unit(new_unit.scale)
return self.__quantity_instance__(new_value, new_unit, copy=False)
else:
return self.__quantity_instance__(self.value, new_unit, copy=True)
# These functions need to be overridden to take into account the units
# Array conversion
# http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#array-conversion
[docs] def item(self, *args):
return self.__quantity_instance__(
self.view(np.ndarray).item(*args), self.unit)
[docs] def list(self):
raise NotImplementedError("cannot make a list of Quantities. Get "
"list of values with q.value.list()")
def _to_own_unit(self, value, check_precision=True):
try:
value = value.to(self.unit).value
except AttributeError:
try:
value = dimensionless_unscaled.to(self.unit, value)
except UnitsError as exc:
if not _can_have_arbitrary_unit(value):
raise exc
if(check_precision and
np.any(np.array(value, self.dtype) != np.array(value))):
raise TypeError("cannot convert value type to array type without "
"precision loss")
return value
[docs] def itemset(self, *args):
if len(args) == 0:
raise ValueError("itemset must have at least one argument")
self.view(np.ndarray).itemset(*(args[:-1] +
(self._to_own_unit(args[1]),)))
[docs] def tostring(self, order='C'):
raise NotImplementedError("cannot write Quantities to string. Write "
"array with q.value.tostring(...).")
[docs] def tofile(self, fid, sep="", format="%s"):
raise NotImplementedError("cannot write Quantities to file. Write "
"array with q.value.tofile(...)")
[docs] def dump(self, file):
raise NotImplementedError("cannot dump Quantities to file. Write "
"array with q.value.dump()")
[docs] def dumps(self):
raise NotImplementedError("cannot dump Quantities to string. Write "
"array with q.value.dumps()")
# astype, byteswap OK as is
# copy done above
# view, getfield, setflags OK as is
[docs] def fill(self, value):
self.view(np.ndarray).fill(self._to_own_unit(value))
# Shape manipulation: resize cannot be done (does not own data), but
# shape, transpose, swapaxes, flatten, ravel, squeeze all OK. Only
# the flat iterator needs to be overwritten, otherwise single items are
# returned as numbers.
@property
def flat(self):
"""A 1-D iterator over the Quantity array.
This returns a `QuantityIterator` instance, which behaves the same as
the `~np.flatiter` instance returned by `~np.ndarray.flat`, and is
similar to, but not a subclass of, Python's built-in iterator object.
"""
return QuantityIterator(self)
@flat.setter
[docs] def flat(self, value):
y = self.ravel()
y[:] = value
# Item selection and manipulation
# take, repeat, sort, compress, diagonal OK
[docs] def put(self, indices, values, mode='raise'):
self.view(np.ndarray).put(indices, self._to_own_unit(values), mode)
[docs] def choose(self, choices, out=None, mode='raise'):
raise NotImplementedError("cannot choose based on quantity. Choose "
"using array with q.value.choose(...)")
# ensure we do not return indices as quantities
[docs] def argsort(self, axis=-1, kind='quicksort', order=None):
return self.view(np.ndarray).argsort(axis=axis, kind=kind, order=order)
[docs] def searchsorted(self, v, *args, **kwargs):
return np.searchsorted(np.array(self),
self._to_own_unit(v, check_precision=False),
*args, **kwargs) # avoid numpy 1.6 problem
# Calculation
# ensure we do not return indices as quantities
# conj OK
[docs] def argmax(self, axis=None, out=None):
return self.view(np.ndarray).argmax(axis=axis, out=out)
[docs] def argmin(self, axis=None, out=None):
return self.view(np.ndarray).argmin(axis=axis, out=out)
def _prepare_out(self, out=None, unit=None):
if out is None:
return
if not isinstance(out, Quantity):
raise TypeError("out= should be a Quantity instance")
if unit is None:
out._unit = self.unit
else:
out._unit = unit
[docs] def clip(self, a_min, a_max, out=None):
self._prepare_out(out=out)
value = np.clip(self.value, self._to_own_unit(a_min),
self._to_own_unit(a_max), out=out)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None):
self._prepare_out(out=out)
value = np.trace(self.value, offset=offset, axis1=axis1,
axis2=axis2, dtype=None, out=out)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def var(self, axis=None, dtype=None, out=None, ddof=0):
result_unit = self.unit ** 2
self._prepare_out(out=out, unit=result_unit)
value = np.var(self.value, axis=axis, dtype=dtype, out=out, ddof=ddof),
return self.__quantity_instance__(value, result_unit, copy=False)
[docs] def std(self, axis=None, dtype=None, out=None, ddof=0):
self._prepare_out(out=out)
value = np.std(self.value, axis=axis, dtype=dtype, out=out, ddof=ddof)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def mean(self, axis=None, dtype=None, out=None):
self._prepare_out(out=out)
value = np.mean(self.value, axis=axis, dtype=dtype, out=out)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def ptp(self, axis=None, out=None):
self._prepare_out(out=out)
value = np.ptp(self.value, axis=axis, out=out)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def max(self, axis=None, out=None, keepdims=False):
self._prepare_out(out=out)
try:
value = np.max(self.value, axis=axis, out=out, keepdims=keepdims)
except: # numpy < 1.7
value = np.max(self.value, axis=axis, out=out)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def min(self, axis=None, out=None, keepdims=False):
self._prepare_out(out=out)
try:
value = np.min(self.value, axis=axis, out=out, keepdims=keepdims)
except: # numpy < 1.7
value = np.min(self.value, axis=axis, out=out)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def dot(self, b, out=None):
result_unit = self.unit * getattr(b, 'unit', 1.)
self._prepare_out(out=out, unit=result_unit)
try:
value = np.dot(self, b, out=out)
except TypeError: # numpy < 1.7
value = np.dot(self, b)
return self.__quantity_instance__(value, result_unit, copy=False)
[docs] def diff(self, n=1, axis=-1):
value = np.diff(self.value, n=n, axis=axis)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def ediff1d(self, to_end=None, to_begin=None):
value = np.ediff1d(self.value, to_end=to_end, to_begin=to_begin)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def nansum(self, axis=None):
value = np.nansum(self.value, axis=axis)
return self.__quantity_instance__(value, self.unit)
[docs] def sum(self, axis=None, dtype=None, out=None, keepdims=False):
self._prepare_out(out=out)
try:
value = np.sum(self.value, axis=axis, dtype=dtype,
out=out, keepdims=keepdims)
except: # numpy < 1.7
value = np.sum(self.value, axis=axis, dtype=dtype,
out=out)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def cumsum(self, axis=None, dtype=None, out=None):
self._prepare_out(out=out)
value = np.cumsum(self.value, axis=axis, dtype=dtype, out=out)
return self.__quantity_instance__(value, self.unit, copy=False)
[docs] def prod(self, axis=None, dtype=None, out=None, keepdims=False):
if self.unit.is_unity():
self._prepare_out(out=out)
try:
value = np.prod(self.value, axis=axis, dtype=dtype,
out=out, keepdims=keepdims)
except: # numpy < 1.7
value = np.prod(self.value, axis=axis, dtype=dtype,
out=out)
return self.__quantity_instance__(value, self.unit, copy=False)
else:
raise ValueError("cannot use prod on scaled or "
"non-dimensionless Quantity arrays")
[docs] def cumprod(self, axis=None, dtype=None, out=None):
if self.unit.is_unity():
self._prepare_out(out=out)
value = np.cumprod(self.value, axis=axis, dtype=dtype, out=out)
return self.__quantity_instance__(value, self.unit, copy=False)
else:
raise ValueError("cannot use cumprod on scaled or "
"non-dimensionless Quantity arrays")
[docs] def all(self, axis=None, out=None):
raise NotImplementedError("cannot evaluate truth value of quantities. "
"Evaluate array with q.value.all(...)")
[docs] def any(self, axis=None, out=None):
raise NotImplementedError("cannot evaluate truth value of quantities. "
"Evaluate array with q.value.any(...)")