"""
This module contains functionality for reading and writing an ASE
Atoms object in VASP POSCAR format.
"""
import os
import re
import numpy as np
import ase.units
from ase import Atoms
from ase.utils import basestring, reader, writer
from ase.io.utils import ImageIterator, ImageChunk
__all__ = ['read_vasp', 'read_vasp_out', 'iread_vasp_out',
'read_vasp_xdatcar', 'read_vasp_xml',
'write_vasp']
# Denotes end of Ionic step for OUTCAR reading
_OUTCAR_SCF_DELIM = 'FREE ENERGIE OF THE ION-ELECTRON SYSTEM'
def get_atomtypes(fname):
"""Given a file name, get the atomic symbols.
The function can get this information from OUTCAR and POTCAR
format files. The files can also be compressed with gzip or
bzip2.
"""
atomtypes = []
if fname.find('.gz') != -1:
import gzip
f = gzip.open(fname)
elif fname.find('.bz2') != -1:
import bz2
f = bz2.BZ2File(fname)
else:
f = open(fname)
for line in f:
if line.find('TITEL') != -1:
atomtypes.append(line.split()[3].split('_')[0].split('.')[0])
return atomtypes
def atomtypes_outpot(posfname, numsyms):
"""Try to retrieve chemical symbols from OUTCAR or POTCAR
If getting atomtypes from the first line in POSCAR/CONTCAR fails, it might
be possible to find the data in OUTCAR or POTCAR, if these files exist.
posfname -- The filename of the POSCAR/CONTCAR file we're trying to read
numsyms -- The number of symbols we must find
"""
import os.path as op
import glob
# First check files with exactly same name except POTCAR/OUTCAR instead
# of POSCAR/CONTCAR.
fnames = [posfname.replace('POSCAR', 'POTCAR').replace('CONTCAR',
'POTCAR')]
fnames.append(posfname.replace('POSCAR', 'OUTCAR').replace('CONTCAR',
'OUTCAR'))
# Try the same but with compressed files
fsc = []
for fn in fnames:
fsc.append(fn + '.gz')
fsc.append(fn + '.bz2')
for f in fsc:
fnames.append(f)
# Finally try anything with POTCAR or OUTCAR in the name
vaspdir = op.dirname(posfname)
fs = glob.glob(vaspdir + '*POTCAR*')
for f in fs:
fnames.append(f)
fs = glob.glob(vaspdir + '*OUTCAR*')
for f in fs:
fnames.append(f)
tried = []
files_in_dir = os.listdir('.')
for fn in fnames:
if fn in files_in_dir:
tried.append(fn)
at = get_atomtypes(fn)
if len(at) == numsyms:
return at
raise IOError('Could not determine chemical symbols. Tried files ' +
str(tried))
def get_atomtypes_from_formula(formula):
"""Return atom types from chemical formula (optionally prepended
with and underscore).
"""
from ase.symbols import string2symbols
symbols = string2symbols(formula.split('_')[0])
atomtypes = [symbols[0]]
for s in symbols[1:]:
if s != atomtypes[-1]:
atomtypes.append(s)
return atomtypes
[docs]@reader
def read_vasp(filename='CONTCAR'):
"""Import POSCAR/CONTCAR type file.
Reads unitcell, atom positions and constraints from the POSCAR/CONTCAR
file and tries to read atom types from POSCAR/CONTCAR header, if this fails
the atom types are read from OUTCAR or POTCAR file.
"""
from ase.constraints import FixAtoms, FixScaled
from ase.data import chemical_symbols
f = filename
# The first line is in principle a comment line, however in VASP
# 4.x a common convention is to have it contain the atom symbols,
# eg. "Ag Ge" in the same order as later in the file (and POTCAR
# for the full vasp run). In the VASP 5.x format this information
# is found on the fifth line. Thus we save the first line and use
# it in case we later detect that we're reading a VASP 4.x format
# file.
line1 = f.readline()
lattice_constant = float(f.readline().split()[0])
# Now the lattice vectors
a = []
for ii in range(3):
s = f.readline().split()
floatvect = float(s[0]), float(s[1]), float(s[2])
a.append(floatvect)
basis_vectors = np.array(a) * lattice_constant
# Number of atoms. Again this must be in the same order as
# in the first line
# or in the POTCAR or OUTCAR file
atom_symbols = []
numofatoms = f.readline().split()
# Check whether we have a VASP 4.x or 5.x format file. If the
# format is 5.x, use the fifth line to provide information about
# the atomic symbols.
vasp5 = False
try:
int(numofatoms[0])
except ValueError:
vasp5 = True
atomtypes = numofatoms
numofatoms = f.readline().split()
# check for comments in numofatoms line and get rid of them if necessary
commentcheck = np.array(['!' in s for s in numofatoms])
if commentcheck.any():
# only keep the elements up to the first including a '!':
numofatoms = numofatoms[:np.arange(len(numofatoms))[commentcheck][0]]
if not vasp5:
# Split the comment line (first in the file) into words and
# try to compose a list of chemical symbols
from ase.formula import Formula
import re
atomtypes = []
for word in line1.split():
word_without_delims = re.sub(r"-|_|,|\.|=|[0-9]|^", "", word)
if len(word_without_delims) < 1:
continue
try:
atomtypes.extend(list(Formula(word_without_delims)))
except ValueError:
#print(atomtype, e, 'is comment')
pass
# Now the list of chemical symbols atomtypes must be formed.
# For example: atomtypes = ['Pd', 'C', 'O']
numsyms = len(numofatoms)
if len(atomtypes) < numsyms:
# First line in POSCAR/CONTCAR didn't contain enough symbols.
# Sometimes the first line in POSCAR/CONTCAR is of the form
# "CoP3_In-3.pos". Check for this case and extract atom types
if len(atomtypes) == 1 and '_' in atomtypes[0]:
atomtypes = get_atomtypes_from_formula(atomtypes[0])
else:
atomtypes = atomtypes_outpot(f.name, numsyms)
else:
try:
for atype in atomtypes[:numsyms]:
if atype not in chemical_symbols:
raise KeyError
except KeyError:
atomtypes = atomtypes_outpot(f.name, numsyms)
for i, num in enumerate(numofatoms):
numofatoms[i] = int(num)
[atom_symbols.append(atomtypes[i]) for na in range(numofatoms[i])]
# Check if Selective dynamics is switched on
sdyn = f.readline()
selective_dynamics = sdyn[0].lower() == 's'
# Check if atom coordinates are cartesian or direct
if selective_dynamics:
ac_type = f.readline()
else:
ac_type = sdyn
cartesian = ac_type[0].lower() == 'c' or ac_type[0].lower() == 'k'
tot_natoms = sum(numofatoms)
atoms_pos = np.empty((tot_natoms, 3))
if selective_dynamics:
selective_flags = np.empty((tot_natoms, 3), dtype=bool)
for atom in range(tot_natoms):
ac = f.readline().split()
atoms_pos[atom] = (float(ac[0]), float(ac[1]), float(ac[2]))
if selective_dynamics:
curflag = []
for flag in ac[3:6]:
curflag.append(flag == 'F')
selective_flags[atom] = curflag
if cartesian:
atoms_pos *= lattice_constant
atoms = Atoms(symbols=atom_symbols, cell=basis_vectors, pbc=True)
if cartesian:
atoms.set_positions(atoms_pos)
else:
atoms.set_scaled_positions(atoms_pos)
if selective_dynamics:
constraints = []
indices = []
for ind, sflags in enumerate(selective_flags):
if sflags.any() and not sflags.all():
constraints.append(FixScaled(atoms.get_cell(), ind, sflags))
elif sflags.all():
indices.append(ind)
if indices:
constraints.append(FixAtoms(indices))
if constraints:
atoms.set_constraint(constraints)
return atoms
class OUTCARChunk(ImageChunk):
def __init__(self, lines, header_data):
self.lines = lines
self.header_data = header_data
def build(self):
return _read_outcar_frame(self.lines, self.header_data)
def _read_outcar_frame(lines, header_data):
from ase.calculators.singlepoint import (SinglePointDFTCalculator,
SinglePointKPoint)
mag_x = None
mag_y = None
mag_z = None
magmoms = None
magmom = None
stress = None
efermi = None
symbols = header_data['symbols']
constraints = header_data['constraints']
natoms = header_data['natoms']
# nkpts = header_data['nkpts']
nbands = header_data['nbands']
kpt_weights = header_data['kpt_weights']
ibzkpts = header_data['ibzkpts']
atoms = Atoms(symbols=symbols, pbc=True, constraint=constraints)
cl = _outcar_check_line # Aliasing
spinc = 0 # Spin component
kpts = []
forces = np.zeros((natoms, 3))
positions = np.zeros((natoms, 3))
f_n = np.zeros(nbands) # kpt occupations
eps_n = np.zeros(nbands) # kpt eigenvalues
# Parse each atoms object
for n, line in enumerate(lines):
line = line.strip()
if 'direct lattice vectors' in line:
cell = []
for i in range(3):
parts = cl(lines[n + i + 1]).split()
cell += [list(map(float, parts[0:3]))]
atoms.set_cell(cell)
elif 'magnetization (x)' in line:
# Magnetization in both collinear and non-collinear
nskip = 4 # Skip some lines
mag_x = [float(cl(lines[n + i + nskip]).split()[-1])
for i in range(natoms)]
# XXX: !!!Uncomment these lines when non-collinear spin is supported!!!
# Remember to check that format fits!
# elif 'magnetization (y)' in line:
# # Non-collinear spin
# nskip = 4 # Skip some lines
# mag_y = [float(cl(lines[n + i + nskip]).split()[-1])
# for i in range(natoms)]
# elif 'magnetization (z)' in line:
# # Non-collinear spin
# nskip = 4 # Skip some lines
# mag_z = [float(cl(lines[n + i + nskip]).split()[-1])
# for i in range(natoms)]
elif 'number of electron' in line:
parts = cl(line).split()
if len(parts) > 5 and parts[0].strip() != "NELECT":
i = parts.index('magnetization') + 1
magmom = parts[i:]
if len(magmom) == 1:
# Collinear spin
magmom = float(magmom[0])
# XXX: !!!Uncomment these lines when non-collinear spin is supported!!!
# Remember to check that format fits!
# else:
# # Non-collinear spin
# # Make a (3,) dim array
# magmom = np.array(list(map(float, magmom)))
elif 'in kB ' in line:
stress = -np.asarray([float(a) for a in cl(line).split()[2:]])
stress = stress[[0, 1, 2, 4, 5, 3]] * 1e-1 * ase.units.GPa
elif 'POSITION ' in line:
nskip = 2
for i in range(natoms):
parts = list(map(float, cl(lines[n + i + nskip]).split()))
positions[i] = parts[0:3]
forces[i] = parts[3:6]
atoms.set_positions(positions, apply_constraint=False)
elif 'E-fermi :' in line:
parts = line.split()
efermi = float(parts[2])
elif 'spin component' in line:
# Update spin component for kpts
# Make spin be in [0, 1], VASP writes 1 or 2
tmp = int(line.split()[-1]) - 1
if tmp < spinc:
# if NWRITE=3, we write KPTS after every electronic step,
# so we just reset it, since we went from spin=2 to spin=1
# in the same ionic step.
# XXX: Only read it at last electronic step
kpts = []
spinc = tmp
elif 'k-point ' in line:
if 'plane waves' in line:
# Can happen if we still have part of header
continue
# Parse all kpts and bands
parts = line.split()
ikpt = int(parts[1]) - 1 # Make kpt idx start from 0
w = kpt_weights[ikpt]
nskip = 2
for i in range(nbands):
parts = lines[n + i + nskip].split()
eps_n[i] = float(parts[1])
f_n[i] = float(parts[2])
kpts.append(SinglePointKPoint(w, spinc, ikpt,
eps_n=eps_n, f_n=f_n))
elif _OUTCAR_SCF_DELIM in line:
# Last section before next ionic step
nskip = 2
parts = cl(lines[n + nskip]).strip().split()
energy_free = float(parts[4]) # Force consistent
nskip = 4
parts = cl(lines[n + nskip]).strip().split()
energy_zero = float(parts[6]) # Extrapolated to 0 K
# For debugging
# assert len(kpts) == 0 or len(kpts) == (spinc + 1) * nkpts
if mag_x is not None:
if mag_y is not None:
# Non-collinear
assert len(mag_x) == len(mag_y) == len(mag_z)
magmoms = np.zeros((len(atoms), 3))
magmoms[:, 0] = mag_x
magmoms[:, 1] = mag_y
magmoms[:, 2] = mag_z
else:
# Collinear
magmoms = np.array(mag_x)
atoms.set_calculator(
SinglePointDFTCalculator(atoms,
energy=energy_zero,
free_energy=energy_free,
ibzkpts=ibzkpts,
forces=forces,
efermi=efermi,
magmom=magmom,
magmoms=magmoms,
stress=stress))
atoms.calc.name = 'vasp'
atoms.calc.kpts = kpts
return atoms
def _outcar_check_line(line):
"""Auxiliary check line function for OUTCAR numeric formatting.
See issue #179, https://gitlab.com/ase/ase/issues/179
Only call in cases we need the numeric values
"""
if re.search('[0-9]-[0-9]', line):
line = re.sub('([0-9])-([0-9])', r'\1 -\2', line)
return line
def _read_outcar_header(fd):
# Get the directory of the OUTCAR we are reading
wdir = os.path.dirname(fd.name)
# Try and see if we can get constraints
if os.path.isfile(os.path.join(wdir, 'CONTCAR')):
constraints = read_vasp(os.path.join(wdir, 'CONTCAR')).constraints
elif os.path.isfile(os.path.join(wdir, 'POSCAR')):
constraints = read_vasp(os.path.join(wdir, 'POSCAR')).constraints
else:
constraints = None
cl = _outcar_check_line # Aliasing
species = []
natoms = 0
species_num = []
symbols = []
nkpts = 0
nbands = 0
kpt_weights = []
ibzkpts = []
# Get atomic species
for line in fd:
line = line.strip()
if 'POTCAR:' in line:
temp = line.split()[2]
for c in ['.', '_', '1']:
if c in temp:
temp = temp[0:temp.find(c)]
species += [temp]
elif 'ions per type' in line:
species = species[:len(species) // 2]
parts = cl(line).split()
ntypes = min(len(parts) - 4, len(species))
for ispecies in range(ntypes):
species_num += [int(parts[ispecies + 4])]
natoms += species_num[-1]
for iatom in range(species_num[-1]):
symbols += [species[ispecies]]
elif 'NKPTS' in line:
parts = cl(line).split()
nkpts = int(parts[3])
nbands = int(parts[-1])
elif 'k-points in reciprocal lattice and weights' in line:
# Get kpoint weights
for _ in range(nkpts):
parts = next(fd).strip().split()
ibzkpts.append(list(map(float, parts[0:3])))
kpt_weights.append(float(parts[-1]))
elif 'Iteration' in line:
# Start of SCF cycle
header_data = dict(
natoms=natoms,
symbols=symbols,
constraints=constraints,
nkpts=nkpts,
nbands=nbands,
kpt_weights=np.array(kpt_weights),
ibzkpts=np.array(ibzkpts))
return header_data
# Incomplete OUTCAR, we can't determine atoms
raise IOError('Incomplete OUTCAR')
def outcarchunks(fd):
# First we get header info
header_data = _read_outcar_header(fd)
while True:
try:
# Build chunk which contains 1 complete atoms object
lines = []
while True:
line = next(fd)
lines.append(line)
if _OUTCAR_SCF_DELIM in line:
# Add 4 more lines to include energy
for _ in range(4):
lines.append(next(fd))
break
except StopIteration:
# End of file
return
yield OUTCARChunk(lines, header_data)
def iread_vasp_out(filename, index=-1):
"""Import OUTCAR type file, as a generator."""
it = ImageIterator(outcarchunks)
return it(filename, index=index)
[docs]@reader
def read_vasp_out(filename='OUTCAR', index=-1):
"""Import OUTCAR type file.
Reads unitcell, atom positions, energies, and forces from the OUTCAR file
and attempts to read constraints (if any) from CONTCAR/POSCAR, if present.
"""
f = filename
g = iread_vasp_out(f, index=index)
# Code borrowed from formats.py:read
if isinstance(index, (slice, basestring)):
# Return list of atoms
return list(g)
else:
# Return single atoms object
return next(g)
[docs]@reader
def read_vasp_xdatcar(filename='XDATCAR', index=-1):
"""Import XDATCAR file
Reads all positions from the XDATCAR and returns a list of
Atoms objects. Useful for viewing optimizations runs
from VASP5.x
Constraints ARE NOT stored in the XDATCAR, and as such, Atoms
objects retrieved from the XDATCAR will not have constraints set.
"""
f = filename
images = list()
cell = np.eye(3)
atomic_formula = str()
while True:
comment_line = f.readline()
if "Direct configuration=" not in comment_line:
try:
lattice_constant = float(f.readline())
except Exception:
# XXX: When would this happen?
break
xx = [float(x) for x in f.readline().split()]
yy = [float(y) for y in f.readline().split()]
zz = [float(z) for z in f.readline().split()]
cell = np.array([xx, yy, zz]) * lattice_constant
symbols = f.readline().split()
numbers = [int(n) for n in f.readline().split()]
total = sum(numbers)
atomic_formula = ''.join('{:s}{:d}'.format(sym, numbers[n])
for n, sym in enumerate(symbols))
f.readline()
coords = [np.array(f.readline().split(), np.float)
for ii in range(total)]
image = Atoms(atomic_formula, cell=cell, pbc=True)
image.set_scaled_positions(np.array(coords))
images.append(image)
if not index:
return images
else:
return images[index]
def __get_xml_parameter(par):
"""An auxiliary function that enables convenient extraction of
parameter values from a vasprun.xml file with proper type
handling.
"""
def to_bool(b):
if b == 'T':
return True
else:
return False
to_type = {'int': int,
'logical': to_bool,
'string': str,
'float': float}
text = par.text
if text is None:
text = ''
# Float parameters do not have a 'type' attrib
var_type = to_type[par.attrib.get('type', 'float')]
try:
if par.tag == 'v':
return list(map(var_type, text.split()))
else:
return var_type(text.strip())
except ValueError:
# Vasp can sometimes write "*****" due to overflow
return None
[docs]def read_vasp_xml(filename='vasprun.xml', index=-1):
"""Parse vasprun.xml file.
Reads unit cell, atom positions, energies, forces, and constraints
from vasprun.xml file
"""
import xml.etree.ElementTree as ET
from ase.constraints import FixAtoms, FixScaled
from ase.calculators.singlepoint import (SinglePointDFTCalculator,
SinglePointKPoint)
from ase.units import GPa
from collections import OrderedDict
tree = ET.iterparse(filename, events=['start', 'end'])
atoms_init = None
calculation = []
ibz_kpts = None
kpt_weights = None
parameters = OrderedDict()
try:
for event, elem in tree:
if event == 'end':
if elem.tag == 'kpoints':
for subelem in elem.iter(tag='generation'):
kpts_params = OrderedDict()
parameters['kpoints_generation'] = kpts_params
for par in subelem.iter():
if par.tag in ['v', 'i']:
parname = par.attrib['name'].lower()
kpts_params[parname] = __get_xml_parameter(par)
kpts = elem.findall("varray[@name='kpointlist']/v")
ibz_kpts = np.zeros((len(kpts), 3))
for i, kpt in enumerate(kpts):
ibz_kpts[i] = [float(val) for val in kpt.text.split()]
kpt_weights = elem.findall('varray[@name="weights"]/v')
kpt_weights = [float(val.text) for val in kpt_weights]
elif elem.tag == 'parameters':
for par in elem.iter():
if par.tag in ['v', 'i']:
parname = par.attrib['name'].lower()
parameters[parname] = __get_xml_parameter(par)
elif elem.tag == 'atominfo':
species = []
for entry in elem.find("array[@name='atoms']/set"):
species.append(entry[0].text.strip())
natoms = len(species)
elif (elem.tag == 'structure' and
elem.attrib.get('name') == 'initialpos'):
cell_init = np.zeros((3, 3), dtype=float)
for i, v in enumerate(elem.find(
"crystal/varray[@name='basis']")):
cell_init[i] = np.array([
float(val) for val in v.text.split()])
scpos_init = np.zeros((natoms, 3), dtype=float)
for i, v in enumerate(elem.find(
"varray[@name='positions']")):
scpos_init[i] = np.array([
float(val) for val in v.text.split()])
constraints = []
fixed_indices = []
for i, entry in enumerate(elem.findall(
"varray[@name='selective']/v")):
flags = (np.array(entry.text.split() ==
np.array(['F', 'F', 'F'])))
if flags.all():
fixed_indices.append(i)
elif flags.any():
constraints.append(FixScaled(cell_init, i, flags))
if fixed_indices:
constraints.append(FixAtoms(fixed_indices))
atoms_init = Atoms(species,
cell=cell_init,
scaled_positions=scpos_init,
constraint=constraints,
pbc=True)
elif elem.tag == 'dipole':
dblock = elem.find('v[@name="dipole"]')
if dblock is not None:
dipole = np.array([float(val)
for val in dblock.text.split()])
elif event == 'start' and elem.tag == 'calculation':
calculation.append(elem)
except ET.ParseError as parse_error:
if atoms_init is None:
raise parse_error
if calculation[-1].find('energy') is None:
calculation = calculation[:-1]
if not calculation:
yield atoms_init
if calculation:
if isinstance(index, int):
steps = [calculation[index]]
else:
steps = calculation[index]
else:
steps = []
for step in steps:
# Workaround for VASP bug, e_0_energy contains the wrong value
# in calculation/energy, but calculation/scstep/energy does not
# include classical VDW corrections. So, first calculate
# e_0_energy - e_fr_energy from calculation/scstep/energy, then
# apply that correction to e_fr_energy from calculation/energy.
lastscf = step.findall('scstep/energy')[-1]
try:
lastdipole = step.findall('scstep/dipole')[-1]
except:
lastdipole = None
de = (float(lastscf.find('i[@name="e_0_energy"]').text) -
float(lastscf.find('i[@name="e_fr_energy"]').text))
free_energy = float(step.find('energy/i[@name="e_fr_energy"]').text)
energy = free_energy + de
cell = np.zeros((3, 3), dtype=float)
for i, vector in enumerate(step.find(
'structure/crystal/varray[@name="basis"]')):
cell[i] = np.array([float(val) for val in vector.text.split()])
scpos = np.zeros((natoms, 3), dtype=float)
for i, vector in enumerate(step.find(
'structure/varray[@name="positions"]')):
scpos[i] = np.array([float(val) for val in vector.text.split()])
forces = None
fblocks = step.find('varray[@name="forces"]')
if fblocks is not None:
forces = np.zeros((natoms, 3), dtype=float)
for i, vector in enumerate(fblocks):
forces[i] = np.array([float(val)
for val in vector.text.split()])
stress = None
sblocks = step.find('varray[@name="stress"]')
if sblocks is not None:
stress = np.zeros((3, 3), dtype=float)
for i, vector in enumerate(sblocks):
stress[i] = np.array([float(val)
for val in vector.text.split()])
stress *= -0.1 * GPa
stress = stress.reshape(9)[[0, 4, 8, 5, 2, 1]]
dipole = None
if lastdipole is not None:
dblock = lastdipole.find('v[@name="dipole"]')
if dblock is not None:
dipole = np.zeros((1, 3), dtype=float)
dipole = np.array([float(val) for val in dblock.text.split()])
dblock = step.find('dipole/v[@name="dipole"]')
if dblock is not None:
dipole = np.zeros((1, 3), dtype=float)
dipole = np.array([float(val) for val in dblock.text.split()])
efermi = step.find('dos/i[@name="efermi"]')
if efermi is not None:
efermi = float(efermi.text)
kpoints = []
for ikpt in range(1, len(ibz_kpts) + 1):
kblocks = step.findall(
'eigenvalues/array/set/set/set[@comment="kpoint %d"]' % ikpt)
if kblocks is not None:
for spin, kpoint in enumerate(kblocks):
eigenvals = kpoint.findall('r')
eps_n = np.zeros(len(eigenvals))
f_n = np.zeros(len(eigenvals))
for j, val in enumerate(eigenvals):
val = val.text.split()
eps_n[j] = float(val[0])
f_n[j] = float(val[1])
if len(kblocks) == 1:
f_n *= 2
kpoints.append(SinglePointKPoint(kpt_weights[ikpt - 1],
spin, ikpt, eps_n, f_n))
if len(kpoints) == 0:
kpoints = None
atoms = atoms_init.copy()
atoms.set_cell(cell)
atoms.set_scaled_positions(scpos)
atoms.set_calculator(
SinglePointDFTCalculator(atoms, energy=energy, forces=forces,
stress=stress, free_energy=free_energy,
ibzkpts=ibz_kpts,
efermi=efermi, dipole=dipole))
atoms.calc.name = 'vasp'
atoms.calc.kpts = kpoints
atoms.calc.parameters = parameters
yield atoms
[docs]@writer
def write_vasp(filename, atoms, label='', direct=False, sort=None,
symbol_count=None, long_format=True, vasp5=False,
ignore_constraints=False):
"""Method to write VASP position (POSCAR/CONTCAR) files.
Writes label, scalefactor, unitcell, # of various kinds of atoms,
positions in cartesian or scaled coordinates (Direct), and constraints
to file. Cartesian coordiantes is default and default label is the
atomic species, e.g. 'C N H Cu'.
"""
from ase.constraints import FixAtoms, FixScaled, FixedPlane, FixedLine
f = filename
if isinstance(atoms, (list, tuple)):
if len(atoms) > 1:
raise RuntimeError('Don\'t know how to save more than ' +
'one image to VASP input')
else:
atoms = atoms[0]
# Check lattice vectors are finite
if np.any(atoms.get_cell_lengths_and_angles() == 0.):
raise RuntimeError(
'Lattice vectors must be finite and not coincident. '
'At least one lattice length or angle is zero.')
# Write atom positions in scaled or cartesian coordinates
if direct:
coord = atoms.get_scaled_positions()
else:
coord = atoms.get_positions()
constraints = atoms.constraints and not ignore_constraints
if constraints:
sflags = np.zeros((len(atoms), 3), dtype=bool)
for constr in atoms.constraints:
if isinstance(constr, FixScaled):
sflags[constr.a] = constr.mask
elif isinstance(constr, FixAtoms):
sflags[constr.index] = [True, True, True]
elif isinstance(constr, FixedPlane):
mask = np.all(np.abs(np.cross(constr.dir, atoms.cell)) < 1e-5,
axis=1)
if sum(mask) != 1:
raise RuntimeError(
'VASP requires that the direction of FixedPlane '
'constraints is parallel with one of the cell axis')
sflags[constr.a] = mask
elif isinstance(constr, FixedLine):
mask = np.all(np.abs(np.cross(constr.dir, atoms.cell)) < 1e-5,
axis=1)
if sum(mask) != 1:
raise RuntimeError(
'VASP requires that the direction of FixedLine '
'constraints is parallel with one of the cell axis')
sflags[constr.a] = ~mask
if sort:
ind = np.argsort(atoms.get_chemical_symbols())
symbols = np.array(atoms.get_chemical_symbols())[ind]
coord = coord[ind]
if constraints:
sflags = sflags[ind]
else:
symbols = atoms.get_chemical_symbols()
# Create a list sc of (symbol, count) pairs
if symbol_count:
sc = symbol_count
else:
sc = []
psym = symbols[0]
count = 0
for sym in symbols:
if sym != psym:
sc.append((psym, count))
psym = sym
count = 1
else:
count += 1
sc.append((psym, count))
# Create the label
if label == '':
for sym, c in sc:
label += '%2s ' % sym
f.write(label + '\n')
# Write unitcell in real coordinates and adapt to VASP convention
# for unit cell
# ase Atoms doesn't store the lattice constant separately, so always
# write 1.0.
f.write('%19.16f\n' % 1.0)
if long_format:
latt_form = ' %21.16f'
else:
latt_form = ' %11.6f'
for vec in atoms.get_cell():
f.write(' ')
for el in vec:
f.write(latt_form % el)
f.write('\n')
# If we're writing a VASP 5.x format POSCAR file, write out the
# atomic symbols
if vasp5:
for sym, c in sc:
f.write(' %3s' % sym)
f.write('\n')
# Numbers of each atom
for sym, count in sc:
f.write(' %3i' % count)
f.write('\n')
if constraints:
f.write('Selective dynamics\n')
if direct:
f.write('Direct\n')
else:
f.write('Cartesian\n')
if long_format:
cform = ' %19.16f'
else:
cform = ' %9.6f'
for iatom, atom in enumerate(coord):
for dcoord in atom:
f.write(cform % dcoord)
if constraints:
for flag in sflags[iatom]:
if flag:
s = 'F'
else:
s = 'T'
f.write('%4s' % s)
f.write('\n')