Module BatNumber

module BatNumber: sig .. end
A common interface for numbers.
Author(s): Gabriel Scherer, David Teller

exception Overflow
Arithmetic overflow.

This kind of exception is raised by "safe" numeric modules whenever the number which should be returned is too large to be represented.

Non-"safe" numeric modules will return a result which depends on the internal representation. For instance, with module Int, max_num + 1 returns min_num. By opposition, with module Safe_int, max_num + 1 raises Overflow.

exception NaN
Not a Number

This kind of exception is raised by "safe" modules whenever the number which should be returned is not a number.

For instance, with module Safe_float, 0.0 / 0.0 raises NaN. By opposition, with module Float, 0.0 / 0.0 does not interrupt computation and returns a special value nan.

type 'a numeric = {
   zero : 'a;
   one : 'a;
   neg : 'a -> 'a;
   succ : 'a -> 'a;
   pred : 'a -> 'a;
   abs : 'a -> 'a;
   add : 'a -> 'a -> 'a;
   sub : 'a -> 'a -> 'a;
   mul : 'a -> 'a -> 'a;
   div : 'a -> 'a -> 'a;
   modulo : 'a -> 'a -> 'a;
   pow : 'a -> 'a -> 'a;
   compare : 'a -> 'a -> int;
   of_int : int -> 'a;
   to_int : 'a -> int;
   of_string : string -> 'a;
   to_string : 'a -> string;
   of_float : float -> 'a;
   to_float : 'a -> float;
}
The smallest set of operations supported by every set of numbers.

This is presented as record to permit lightweight typeclass-style computation.

module type Infix = sig .. end
The infix operators available with any type of numbers
module type Compare = sig .. end
And if you are ready to drop generic comparison operators, then you can open this one as well
module type RefOps = sig .. end
Reference operators ala C.
module type Numeric = sig .. end
The full set of operations of a type of numbers
module type Bounded = sig .. end
module type Discrete = sig .. end

Utilities

module type NUMERIC_BASE = sig .. end
The smallest set of operations supported by every set of numbers

Automated definition of infix operators for a given numeric type, so that you can open it without poluting your namespace. (apart from the type bat__infix_t)
module MakeInfix: 
functor (Base : NUMERIC_BASE) -> Infix with type bat__infix_t = Base.t

Automated definition of infix comparison operators for a given numeric type, so that you can open it only when you mean it. (apart from the type bat__compare_t)
module MakeCompare: 
functor (Base : NUMERIC_BASE) -> Compare with type bat__compare_t = Base.t
module MakeRefOps: 
functor (Base : NUMERIC_BASE) -> RefOps with type bat__refops_t = Base.t
Automated definition of reference operators for a given numeric type

Automated definition of operators for a given numeric type. You will only need this if you develop your own numeric modules.
module MakeNumeric: 
functor (Base : NUMERIC_BASE) -> Numeric with type t = Base.t
val generic_pow : zero:'a ->
one:'a ->
div_two:('a -> 'a) ->
mod_two:('a -> 'a) -> mul:('a -> 'a -> 'a) -> 'a -> 'a -> 'a