Main MRPT website > C++ reference for MRPT 1.3.2
CObservation3DRangeScan_project3D_impl.h
Go to the documentation of this file.
1 /* +---------------------------------------------------------------------------+
2  | Mobile Robot Programming Toolkit (MRPT) |
3  | http://www.mrpt.org/ |
4  | |
5  | Copyright (c) 2005-2015, Individual contributors, see AUTHORS file |
6  | See: http://www.mrpt.org/Authors - All rights reserved. |
7  | Released under BSD License. See details in http://www.mrpt.org/License |
8  +---------------------------------------------------------------------------+ */
9 #ifndef CObservation3DRangeScan_project3D_impl_H
10 #define CObservation3DRangeScan_project3D_impl_H
11 
12 #include <mrpt/utils/round.h> // round()
13 
14 namespace mrpt {
15 namespace obs {
16 namespace detail {
17  // Auxiliary functions which implement SSE-optimized proyection of 3D point cloud:
18  template <class POINTMAP> void do_project_3d_pointcloud(const int H,const int W,const float *kys,const float *kzs,const mrpt::math::CMatrix &rangeImage, mrpt::utils::PointCloudAdapter<POINTMAP> &pca);
19  template <class POINTMAP> void do_project_3d_pointcloud_SSE2(const int H,const int W,const float *kys,const float *kzs,const mrpt::math::CMatrix &rangeImage, mrpt::utils::PointCloudAdapter<POINTMAP> &pca);
20 
21  template <class POINTMAP>
23  CObservation3DRangeScan & src_obs,
24  POINTMAP & dest_pointcloud,
25  const bool takeIntoAccountSensorPoseOnRobot,
26  const mrpt::poses::CPose3D * robotPoseInTheWorld,
27  const bool PROJ3D_USE_LUT)
28  {
29  using namespace mrpt::math;
30 
31  if (!src_obs.hasRangeImage) return;
32 
33  mrpt::utils::PointCloudAdapter<POINTMAP> pca(dest_pointcloud);
34 
35  // ------------------------------------------------------------
36  // Stage 1/3: Create 3D point cloud local coordinates
37  // ------------------------------------------------------------
38  const int W = src_obs.rangeImage.cols();
39  const int H = src_obs.rangeImage.rows();
40  const size_t WH = W*H;
41 
42  // Reserve memory for 3D points:
43  pca.resize(WH);
44 
45  if (src_obs.range_is_depth)
46  {
47  // range_is_depth = true
48 
49  // Use cached tables?
50  if (PROJ3D_USE_LUT)
51  {
52  // Use LUT:
53  if (src_obs.m_3dproj_lut.prev_camParams!=src_obs.cameraParams || WH!=size_t(src_obs.m_3dproj_lut.Kys.size()))
54  {
55  src_obs.m_3dproj_lut.prev_camParams = src_obs.cameraParams;
56  src_obs.m_3dproj_lut.Kys.resize(WH);
57  src_obs.m_3dproj_lut.Kzs.resize(WH);
58 
59  const float r_cx = src_obs.cameraParams.cx();
60  const float r_cy = src_obs.cameraParams.cy();
61  const float r_fx_inv = 1.0f/src_obs.cameraParams.fx();
62  const float r_fy_inv = 1.0f/src_obs.cameraParams.fy();
63 
64  float *kys = &src_obs.m_3dproj_lut.Kys[0];
65  float *kzs = &src_obs.m_3dproj_lut.Kzs[0];
66  for (int r=0;r<H;r++)
67  for (int c=0;c<W;c++)
68  {
69  *kys++ = (r_cx - c) * r_fx_inv;
70  *kzs++ = (r_cy - r) * r_fy_inv;
71  }
72  } // end update LUT.
73 
74  ASSERT_EQUAL_(WH,size_t(src_obs.m_3dproj_lut.Kys.size()))
75  ASSERT_EQUAL_(WH,size_t(src_obs.m_3dproj_lut.Kzs.size()))
76  float *kys = &src_obs.m_3dproj_lut.Kys[0];
77  float *kzs = &src_obs.m_3dproj_lut.Kzs[0];
78 
79  #if MRPT_HAS_SSE2
80  if ((W & 0x07)==0)
81  do_project_3d_pointcloud_SSE2(H,W,kys,kzs,src_obs.rangeImage,pca);
82  else do_project_3d_pointcloud(H,W,kys,kzs,src_obs.rangeImage,pca); // if image width is not 8*N, use standard method
83  #else
84  do_project_3d_pointcloud(H,W,kys,kzs,src_obs.rangeImage,pca);
85  #endif
86  }
87  else
88  {
89  // Without LUT:
90  const float r_cx = src_obs.cameraParams.cx();
91  const float r_cy = src_obs.cameraParams.cy();
92  const float r_fx_inv = 1.0f/src_obs.cameraParams.fx();
93  const float r_fy_inv = 1.0f/src_obs.cameraParams.fy();
94  size_t idx=0;
95  for (int r=0;r<H;r++)
96  for (int c=0;c<W;c++)
97  {
98  const float Kz = (r_cy - r) * r_fy_inv;
99  const float Ky = (r_cx - c) * r_fx_inv;
100  const float D = src_obs.rangeImage.coeff(r,c);
101  pca.setPointXYZ(idx++,
102  D, // x
103  Ky * D, // y
104  Kz * D // z
105  );
106  }
107  }
108  }
109  else
110  {
111  /* range_is_depth = false :
112  * Ky = (r_cx - c)/r_fx
113  * Kz = (r_cy - r)/r_fy
114  *
115  * x(i) = rangeImage(r,c) / sqrt( 1 + Ky^2 + Kz^2 )
116  * y(i) = Ky * x(i)
117  * z(i) = Kz * x(i)
118  */
119  const float r_cx = src_obs.cameraParams.cx();
120  const float r_cy = src_obs.cameraParams.cy();
121  const float r_fx_inv = 1.0f/src_obs.cameraParams.fx();
122  const float r_fy_inv = 1.0f/src_obs.cameraParams.fy();
123  size_t idx=0;
124  for (int r=0;r<H;r++)
125  for (int c=0;c<W;c++)
126  {
127  const float Ky = (r_cx - c) * r_fx_inv;
128  const float Kz = (r_cy - r) * r_fy_inv;
129  const float D = src_obs.rangeImage.coeff(r,c);
130  pca.setPointXYZ(idx++,
131  D / std::sqrt(1+Ky*Ky+Kz*Kz), // x
132  Ky * D, // y
133  Kz * D // z
134  );
135  }
136  }
137 
138  // -------------------------------------------------------------
139  // Stage 2/3: Project local points into RGB image to get colors
140  // -------------------------------------------------------------
141  if (src_obs.hasIntensityImage)
142  {
143  const int imgW = src_obs.intensityImage.getWidth();
144  const int imgH = src_obs.intensityImage.getHeight();
145  const bool hasColorIntensityImg = src_obs.intensityImage.isColor();
146 
147  const float cx = src_obs.cameraParamsIntensity.cx();
148  const float cy = src_obs.cameraParamsIntensity.cy();
149  const float fx = src_obs.cameraParamsIntensity.fx();
150  const float fy = src_obs.cameraParamsIntensity.fy();
151 
152  // Unless we are in a special case (both depth & RGB images coincide)...
153  const bool isDirectCorresp = src_obs.doDepthAndIntensityCamerasCoincide();
154 
155  // ...precompute the inverse of the pose transformation out of the loop,
156  // store as a 4x4 homogeneous matrix to exploit SSE optimizations below:
158  if (!isDirectCorresp)
159  {
164  R_inv,t_inv);
165 
166  T_inv(3,3)=1;
167  T_inv.block<3,3>(0,0)=R_inv.cast<float>();
168  T_inv.block<3,1>(0,3)=t_inv.cast<float>();
169  }
170 
171  Eigen::Matrix<float,4,1> pt_wrt_color, pt_wrt_depth;
172  pt_wrt_depth[3]=1;
173 
174  int img_idx_x=0, img_idx_y=0; // projected pixel coordinates, in the RGB image plane
175  mrpt::utils::TColor pCol;
176 
177  // For each local point:
178  for (size_t i=0;i<WH;i++)
179  {
180  bool pointWithinImage = false;
181  if (isDirectCorresp)
182  {
183  pointWithinImage=true;
184  img_idx_x++;
185  if (img_idx_x>=imgW) {
186  img_idx_x=0;
187  img_idx_y++;
188  }
189  }
190  else
191  {
192  // Project point, which is now in "pca" in local coordinates wrt the depth camera, into the intensity camera:
193  pca.getPointXYZ(i,pt_wrt_depth[0],pt_wrt_depth[1],pt_wrt_depth[2]);
194  pt_wrt_color.noalias() = T_inv*pt_wrt_depth;
195 
196  // Project to image plane:
197  if (pt_wrt_color[2]) {
198  img_idx_x = mrpt::utils::round( cx + fx * pt_wrt_color[0]/pt_wrt_color[2] );
199  img_idx_y = mrpt::utils::round( cy + fy * pt_wrt_color[1]/pt_wrt_color[2] );
200  pointWithinImage=
201  img_idx_x>=0 && img_idx_x<imgW &&
202  img_idx_y>=0 && img_idx_y<imgH;
203  }
204  }
205 
206  if (pointWithinImage)
207  {
208  if (hasColorIntensityImg) {
209  const uint8_t *c= src_obs.intensityImage.get_unsafe(img_idx_x, img_idx_y, 0);
210  pCol.R = c[2];
211  pCol.G = c[1];
212  pCol.B = c[0];
213  }
214  else{
215  uint8_t c= *src_obs.intensityImage.get_unsafe(img_idx_x, img_idx_y, 0);
216  pCol.R = pCol.G = pCol.B = c;
217  }
218  }
219  else
220  {
221  pCol.R = pCol.G = pCol.B = 255;
222  }
223  // Set color:
224  pca.setPointRGBu8(i,pCol.R,pCol.G,pCol.B);
225  } // end for each point
226  } // end if src_obs has intensity image
227 
228  // ...
229 
230  // ------------------------------------------------------------
231  // Stage 3/3: Apply 6D transformations
232  // ------------------------------------------------------------
233  if (takeIntoAccountSensorPoseOnRobot || robotPoseInTheWorld)
234  {
235  mrpt::poses::CPose3D transf_to_apply; // Either ROBOTPOSE or ROBOTPOSE(+)SENSORPOSE or SENSORPOSE
236  if (takeIntoAccountSensorPoseOnRobot)
237  transf_to_apply = src_obs.sensorPose;
238  if (robotPoseInTheWorld)
239  transf_to_apply.composeFrom(*robotPoseInTheWorld, mrpt::poses::CPose3D(transf_to_apply));
240 
241  const mrpt::math::CMatrixFixedNumeric<float,4,4> HM = transf_to_apply.getHomogeneousMatrixVal().cast<float>();
242  Eigen::Matrix<float,4,1> pt, pt_transf;
243  pt[3]=1;
244 
245  for (size_t i=0;i<WH;i++)
246  {
247  pca.getPointXYZ(i,pt[0],pt[1],pt[2]);
248  pt_transf.noalias() = HM*pt;
249  pca.setPointXYZ(i,pt_transf[0],pt_transf[1],pt_transf[2]);
250  }
251  }
252  } // end of project3DPointsFromDepthImageInto
253 
254  // Auxiliary functions which implement proyection of 3D point clouds:
255  template <class POINTMAP>
256  inline void do_project_3d_pointcloud(const int H,const int W,const float *kys,const float *kzs,const mrpt::math::CMatrix &rangeImage, mrpt::utils::PointCloudAdapter<POINTMAP> &pca)
257  {
258  size_t idx=0;
259  for (int r=0;r<H;r++)
260  for (int c=0;c<W;c++)
261  {
262  const float D = rangeImage.coeff(r,c);
263  pca.setPointXYZ(idx++,
264  D, // x
265  *kys++ * D, // y
266  *kzs++ * D // z
267  );
268  }
269  }
270 
271  // Auxiliary functions which implement proyection of 3D point clouds:
272  template <class POINTMAP>
273  inline void do_project_3d_pointcloud_SSE2(const int H,const int W,const float *kys,const float *kzs,const mrpt::math::CMatrix &rangeImage, mrpt::utils::PointCloudAdapter<POINTMAP> &pca)
274  {
275  #if MRPT_HAS_SSE2
276  // Use optimized version:
277  const int W_4 = W >> 2; // /=4 , since we process 4 values at a time.
278  size_t idx=0;
279  MRPT_ALIGN16 float xs[4],ys[4],zs[4];
280  for (int r=0;r<H;r++)
281  {
282  const float *D_ptr = &rangeImage.coeffRef(r,0); // Matrices are 16-aligned
283 
284  for (int c=0;c<W_4;c++)
285  {
286  const __m128 D = _mm_load_ps(D_ptr);
287 
288  const __m128 KY = _mm_load_ps(kys);
289  const __m128 KZ = _mm_load_ps(kzs);
290 
291  _mm_storeu_ps(xs , D);
292  _mm_storeu_ps(ys , _mm_mul_ps(KY,D));
293  _mm_storeu_ps(zs , _mm_mul_ps(KZ,D));
294 
295  D_ptr+=4;
296  kys+=4;
297  kzs+=4;
298  pca.setPointXYZ(idx++,xs[0],ys[0],zs[0]);
299  pca.setPointXYZ(idx++,xs[1],ys[1],zs[1]);
300  pca.setPointXYZ(idx++,xs[2],ys[2],zs[2]);
301  pca.setPointXYZ(idx++,xs[3],ys[3],zs[3]);
302  }
303  }
304  #endif
305  }
306 
307 
308 } // End of namespace
309 } // End of namespace
310 } // End of namespace
311 
312 #endif
#define ASSERT_EQUAL_(__A, __B)
mrpt::utils::TCamera cameraParamsIntensity
Projection parameters of the intensity (graylevel or RGB) camera.
void do_project_3d_pointcloud(const int H, const int W, const float *kys, const float *kzs, const mrpt::math::CMatrix &rangeImage, mrpt::utils::PointCloudAdapter< POINTMAP > &pca)
void project3DPointsFromDepthImageInto(CObservation3DRangeScan &src_obs, POINTMAP &dest_pointcloud, const bool takeIntoAccountSensorPoseOnRobot, const mrpt::poses::CPose3D *robotPoseInTheWorld, const bool PROJ3D_USE_LUT)
Declares a class derived from "CObservation" that encapsules a 3D range scan measurement, as from a time-of-flight range camera or any other RGBD sensor.
bool isColor() const
Returns true if the image is RGB, false if it is grayscale.
void getRotationMatrix(mrpt::math::CMatrixDouble33 &ROT) const
Get the 3x3 rotation matrix.
Definition: CPose3D.h:176
size_t getWidth() const
Returns the width of the image in pixels.
mrpt::math::CMatrix rangeImage
If hasRangeImage=true, a matrix of floats with the range data as captured by the camera (in meters) ...
mrpt::utils::TCamera cameraParams
Projection parameters of the depth camera.
double fy() const
Get the value of the focal length y-value (in pixels).
Definition: TCamera.h:158
A numeric matrix of compile-time fixed size.
This base provides a set of functions for maths stuff.
Definition: CArray.h:18
mrpt::poses::CPose3D relativePoseIntensityWRTDepth
Relative pose of the intensity camera wrt the depth camera (which is the coordinates origin for this ...
mrpt::math::CArrayDouble< 3 > m_coords
The translation vector [x,y,z] access directly or with x(), y(), z() setter/getter methods...
Definition: CPose3D.h:81
A RGB color - 8bit.
Definition: TColor.h:25
bool hasRangeImage
true means the field rangeImage contains valid data
An adapter to different kinds of point cloud object.
void do_project_3d_pointcloud_SSE2(const int H, const int W, const float *kys, const float *kzs, const mrpt::math::CMatrix &rangeImage, mrpt::utils::PointCloudAdapter< POINTMAP > &pca)
This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.
mrpt::poses::CPose3D sensorPose
The 6D pose of the sensor on the robot.
void homogeneousMatrixInverse(const MATRIXLIKE1 &M, MATRIXLIKE2 &out_inverse_M)
Efficiently compute the inverse of a 4x4 homogeneous matrix by only transposing the rotation 3x3 part...
A class used to store a 3D pose (a 3D translation + a rotation in 3D).
Definition: CPose3D.h:72
void composeFrom(const CPose3D &A, const CPose3D &B)
Makes "this = A (+) B"; this method is slightly more efficient than "this= A + B;" since it avoids th...
bool hasIntensityImage
true means the field intensityImage contains valid data
unsigned char * get_unsafe(unsigned int col, unsigned int row, unsigned int channel=0) const
Access to pixels without checking boundaries - Use normally the () operator better, which checks the coordinates.
int round(const T value)
Returns the closer integer (int) to x.
Definition: round.h:26
double fx() const
Get the value of the focal length x-value (in pixels).
Definition: TCamera.h:156
mrpt::math::CMatrixDouble44 getHomogeneousMatrixVal() const
Definition: CPose3D.h:173
An adapter to different kinds of point cloud object.
Definition: adapters.h:38
mrpt::utils::CImage intensityImage
If hasIntensityImage=true, a color or gray-level intensity image of the same size than "rangeImage"...
bool doDepthAndIntensityCamerasCoincide() const
Return true if relativePoseIntensityWRTDepth equals the pure rotation (0,0,0,-90deg,0,-90deg) (with a small comparison epsilon)
This class is a "CSerializable" wrapper for "CMatrixFloat".
Definition: CMatrix.h:30
bool range_is_depth
true: Kinect-like ranges: entries of rangeImage are distances along the +X axis; false: Ranges in ran...
double cx() const
Get the value of the principal point x-coordinate (in pixels).
Definition: TCamera.h:152
static TCached3DProjTables m_3dproj_lut
3D point cloud projection look-up-table
#define MRPT_ALIGN16
size_t getHeight() const
Returns the height of the image in pixels.
double cy() const
Get the value of the principal point y-coordinate (in pixels).
Definition: TCamera.h:154



Page generated by Doxygen 1.8.11 for MRPT 1.3.2 SVN:Unversioned directory at Sun May 1 08:45:24 UTC 2016