We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00209421, .00102208) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00607423, .0428198) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.00672027, .0150359}, {.00646136, .00511728}, {.00703571, .00815284}, ------------------------------------------------------------------------ {.00679531, .0119784}, {.00717019, .0162493}, {.00784492, .015569}, ------------------------------------------------------------------------ {.00804559, .00995295}, {.00755096, .00916027}, {.00595742, .00651991}, ------------------------------------------------------------------------ {.00752704, .00982423}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0071108768 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0107560155 o7 : RR (of precision 53) |
The object testTimeForLLLonSyzygies is a method function with options.