IT++ Logo
Classes | Enumerations | Functions
Miscellaneous Communications Functions

Classes

class  itpp::EXIT
 EXtrinsic Information Transfer (EXIT) chart. More...
 
class  itpp::Multilateration
 Multilateration class for 3D indoor localization More...
 
class  itpp::STC
 Space Time block Codes (STC) class. More...
 

Enumerations

enum  itpp::Multilateration::Type { itpp::Multilateration::MULTI_FAILURE = -1, itpp::Multilateration::MULTI_SPHERICAL, itpp::Multilateration::MULTI_HYPERBOLIC, itpp::Multilateration::MULTI_HYBRID }
 Multilateration types as detected from user input (method binary vector) More...
 
enum  Type {
  Unknown, V_BLAST_MxN, imp_V_BLAST_MxN, Alamouti_2xN,
  Switched_Alamouti_4xN, Double_Alamouti_4xN, Jafarkhani_4xN, Golden_2x2,
  Damen_2x2, ortho34_3xN, LD36_3xN, LD37_3xN,
  LD39_3xN
}
 

Functions

bmat itpp::graycode (int m)
 Generate Gray code of blocklength m.The codes are contained as binary codewords {0,1} in the rows of the returned matrix. See also the gray() function in math/scalfunc.h.
 
int itpp::hamming_distance (const bvec &a, const bvec &b)
 Calculate the Hamming distance between a and b.
 
int itpp::weight (const bvec &a)
 Calculate the Hamming weight of a.
 
vec itpp::waterfilling (const vec &alpha, double P)
 Compute the water-filling solutionThis function computes the solution of the water-filling problem

\[ \max_{p_0,...,p_{n-1}} \sum_{i=0}^{n-1} \log\left(1+p_i\alpha_i\right) \]

subject to

\[ \sum_{i=0}^{n-1} p_i \le P \]

. More...

 

Detailed Description

Enumeration Type Documentation

Multilateration types as detected from user input (method binary vector)

Enumerator
MULTI_FAILURE 

the algorithm has failed

MULTI_SPHERICAL 

spherical multilateration

MULTI_HYPERBOLIC 

hyperbolic multilateration

MULTI_HYBRID 

hybrid multilateration

Definition at line 89 of file multilateration.h.

Function Documentation

ITPP_EXPORT vec itpp::waterfilling ( const vec &  alpha,
double  P 
)

Compute the water-filling solutionThis function computes the solution of the water-filling problem

\[ \max_{p_0,...,p_{n-1}} \sum_{i=0}^{n-1} \log\left(1+p_i\alpha_i\right) \]

subject to

\[ \sum_{i=0}^{n-1} p_i \le P \]

.

Parameters
alphavector of $\alpha_0,...,\alpha_{n-1}$ gains (must have strictly positive elements)
Ppower constraint
Returns
vector of power allocations $p_0,...,p_{n-1}$

The computational complexity of the method is $O(n^2)$ at most

Definition at line 82 of file commfunc.cpp.

References it_assert, and itpp::length().

SourceForge Logo

Generated on Tue Aug 4 2015 05:47:44 for IT++ by Doxygen 1.8.9.1