cavs.c
Go to the documentation of this file.
1 /*
2  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3  * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "golomb.h"
31 #include "mathops.h"
32 #include "cavs.h"
33 
34 static const uint8_t alpha_tab[64] = {
35  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
36  4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
37  22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
38  46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
39 };
40 
41 static const uint8_t beta_tab[64] = {
42  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
43  2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
44  6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
45  15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
46 };
47 
48 static const uint8_t tc_tab[64] = {
49  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
51  2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
52  5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
53 };
54 
57 static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
58 
59 static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
60 static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
61 static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
62 static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
63 
64 /*****************************************************************************
65  *
66  * in-loop deblocking filter
67  *
68  ****************************************************************************/
69 
70 static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
71 {
72  if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
73  return 2;
74  if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
75  return 1;
76  if (b) {
77  mvP += MV_BWD_OFFS;
78  mvQ += MV_BWD_OFFS;
79  if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
80  return 1;
81  } else {
82  if (mvP->ref != mvQ->ref)
83  return 1;
84  }
85  return 0;
86 }
87 
88 #define SET_PARAMS \
89  alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; \
90  beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0, 63)]; \
91  tc = tc_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)];
92 
105 void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
106 {
107  uint8_t bs[8];
108  int qp_avg, alpha, beta, tc;
109  int i;
110 
111  /* save un-deblocked lines */
112  h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
113  h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
114  h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
115  memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
116  memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
117  memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
118  for (i = 0; i < 8; i++) {
119  h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
120  h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
121  h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
122  h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
123  }
124  if (!h->loop_filter_disable) {
125  /* determine bs */
126  if (mb_type == I_8X8)
127  memset(bs, 2, 8);
128  else{
129  memset(bs, 0, 8);
130  if (ff_cavs_partition_flags[mb_type] & SPLITV) {
131  bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
132  bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
133  }
134  if (ff_cavs_partition_flags[mb_type] & SPLITH) {
135  bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
136  bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
137  }
138  bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
139  bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
140  bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
141  bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
142  }
143  if (AV_RN64(bs)) {
144  if (h->flags & A_AVAIL) {
145  qp_avg = (h->qp + h->left_qp + 1) >> 1;
146  SET_PARAMS;
147  h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
148  h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
149  h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
150  }
151  qp_avg = h->qp;
152  SET_PARAMS;
153  h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
154  h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
155 
156  if (h->flags & B_AVAIL) {
157  qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
158  SET_PARAMS;
159  h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
160  h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
161  h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
162  }
163  }
164  }
165  h->left_qp = h->qp;
166  h->top_qp[h->mbx] = h->qp;
167 }
168 
169 #undef SET_PARAMS
170 
171 /*****************************************************************************
172  *
173  * spatial intra prediction
174  *
175  ****************************************************************************/
176 
178  uint8_t **left, int block)
179 {
180  int i;
181 
182  switch (block) {
183  case 0:
184  *left = h->left_border_y;
185  h->left_border_y[0] = h->left_border_y[1];
186  memset(&h->left_border_y[17], h->left_border_y[16], 9);
187  memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
188  top[17] = top[16];
189  top[0] = top[1];
190  if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
191  h->left_border_y[0] = top[0] = h->topleft_border_y;
192  break;
193  case 1:
194  *left = h->intern_border_y;
195  for (i = 0; i < 8; i++)
196  h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
197  memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
198  h->intern_border_y[0] = h->intern_border_y[1];
199  memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
200  if (h->flags & C_AVAIL)
201  memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
202  else
203  memset(&top[9], top[8], 9);
204  top[17] = top[16];
205  top[0] = top[1];
206  if (h->flags & B_AVAIL)
207  h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
208  break;
209  case 2:
210  *left = &h->left_border_y[8];
211  memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
212  top[17] = top[16];
213  top[0] = top[1];
214  if (h->flags & A_AVAIL)
215  top[0] = h->left_border_y[8];
216  break;
217  case 3:
218  *left = &h->intern_border_y[8];
219  for (i = 0; i < 8; i++)
220  h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
221  memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
222  memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
223  memset(&top[9], top[8], 9);
224  break;
225  }
226 }
227 
229 {
230  /* extend borders by one pixel */
231  h->left_border_u[9] = h->left_border_u[8];
232  h->left_border_v[9] = h->left_border_v[8];
233  h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
234  h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
235  if (h->mbx && h->mby) {
236  h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
237  h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
238  } else {
239  h->left_border_u[0] = h->left_border_u[1];
240  h->left_border_v[0] = h->left_border_v[1];
241  h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
242  h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
243  }
244 }
245 
246 static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
247 {
248  int y;
249  uint64_t a = AV_RN64(&top[1]);
250  for (y = 0; y < 8; y++) {
251  *((uint64_t *)(d + y * stride)) = a;
252  }
253 }
254 
255 static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
256 {
257  int y;
258  uint64_t a;
259  for (y = 0; y < 8; y++) {
260  a = left[y + 1] * 0x0101010101010101ULL;
261  *((uint64_t *)(d + y * stride)) = a;
262  }
263 }
264 
265 static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
266 {
267  int y;
268  uint64_t a = 0x8080808080808080ULL;
269  for (y = 0; y < 8; y++)
270  *((uint64_t *)(d + y * stride)) = a;
271 }
272 
273 static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
274 {
275  int x, y, ia;
276  int ih = 0;
277  int iv = 0;
279 
280  for (x = 0; x < 4; x++) {
281  ih += (x + 1) * (top [5 + x] - top [3 - x]);
282  iv += (x + 1) * (left[5 + x] - left[3 - x]);
283  }
284  ia = (top[8] + left[8]) << 4;
285  ih = (17 * ih + 16) >> 5;
286  iv = (17 * iv + 16) >> 5;
287  for (y = 0; y < 8; y++)
288  for (x = 0; x < 8; x++)
289  d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
290 }
291 
292 #define LOWPASS(ARRAY,INDEX) \
293  ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
294 
295 static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
296 {
297  int x, y;
298  for (y = 0; y < 8; y++)
299  for (x = 0; x < 8; x++)
300  d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
301 }
302 
303 static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
304 {
305  int x, y;
306  for (y = 0; y < 8; y++)
307  for (x = 0; x < 8; x++)
308  d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
309 }
310 
311 static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
312 {
313  int x, y;
314  for (y = 0; y < 8; y++)
315  for (x = 0; x < 8; x++)
316  if (x == y)
317  d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
318  else if (x > y)
319  d[y * stride + x] = LOWPASS(top, x - y);
320  else
321  d[y * stride + x] = LOWPASS(left, y - x);
322 }
323 
324 static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
325 {
326  int x, y;
327  for (y = 0; y < 8; y++)
328  for (x = 0; x < 8; x++)
329  d[y * stride + x] = LOWPASS(left, y + 1);
330 }
331 
332 static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
333 {
334  int x, y;
335  for (y = 0; y < 8; y++)
336  for (x = 0; x < 8; x++)
337  d[y * stride + x] = LOWPASS(top, x + 1);
338 }
339 
340 #undef LOWPASS
341 
342 static inline void modify_pred(const int8_t *mod_table, int *mode)
343 {
344  *mode = mod_table[*mode];
345  if (*mode < 0) {
346  av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
347  *mode = 0;
348  }
349 }
350 
351 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
352 {
353  /* save pred modes before they get modified */
354  h->pred_mode_Y[3] = h->pred_mode_Y[5];
355  h->pred_mode_Y[6] = h->pred_mode_Y[8];
356  h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
357  h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
358 
359  /* modify pred modes according to availability of neighbour samples */
360  if (!(h->flags & A_AVAIL)) {
363  modify_pred(left_modifier_c, pred_mode_uv);
364  }
365  if (!(h->flags & B_AVAIL)) {
368  modify_pred(top_modifier_c, pred_mode_uv);
369  }
370 }
371 
372 /*****************************************************************************
373  *
374  * motion compensation
375  *
376  ****************************************************************************/
377 
378 static inline void mc_dir_part(AVSContext *h, AVFrame *pic,
379  int chroma_height,int delta,int list,uint8_t *dest_y,
380  uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
381  int src_y_offset,qpel_mc_func *qpix_op,
383 {
384  const int mx= mv->x + src_x_offset*8;
385  const int my= mv->y + src_y_offset*8;
386  const int luma_xy= (mx&3) + ((my&3)<<2);
387  uint8_t * src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
388  uint8_t * src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
389  uint8_t * src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
390  int extra_width = 0;
391  int extra_height= extra_width;
392  int emu=0;
393  const int full_mx= mx>>2;
394  const int full_my= my>>2;
395  const int pic_width = 16*h->mb_width;
396  const int pic_height = 16*h->mb_height;
397 
398  if (!pic->data[0])
399  return;
400  if(mx&7) extra_width -= 3;
401  if(my&7) extra_height -= 3;
402 
403  if( full_mx < 0-extra_width
404  || full_my < 0-extra_height
405  || full_mx + 16/*FIXME*/ > pic_width + extra_width
406  || full_my + 16/*FIXME*/ > pic_height + extra_height){
407  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
408  16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
409  src_y= h->edge_emu_buffer + 2 + 2*h->l_stride;
410  emu=1;
411  }
412 
413  qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
414 
415  if(emu){
416  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb, h->c_stride,
417  9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
418  src_cb= h->edge_emu_buffer;
419  }
420  chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
421 
422  if(emu){
423  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr, h->c_stride,
424  9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
425  src_cr= h->edge_emu_buffer;
426  }
427  chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
428 }
429 
430 static inline void mc_part_std(AVSContext *h,int chroma_height,int delta,
431  uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
432  int x_offset, int y_offset,qpel_mc_func *qpix_put,
433  h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
434  h264_chroma_mc_func chroma_avg, cavs_vector *mv)
435 {
436  qpel_mc_func *qpix_op= qpix_put;
437  h264_chroma_mc_func chroma_op= chroma_put;
438 
439  dest_y += 2*x_offset + 2*y_offset*h->l_stride;
440  dest_cb += x_offset + y_offset*h->c_stride;
441  dest_cr += x_offset + y_offset*h->c_stride;
442  x_offset += 8*h->mbx;
443  y_offset += 8*h->mby;
444 
445  if(mv->ref >= 0){
446  AVFrame *ref = h->DPB[mv->ref].f;
447  mc_dir_part(h, ref, chroma_height, delta, 0,
448  dest_y, dest_cb, dest_cr, x_offset, y_offset,
449  qpix_op, chroma_op, mv);
450 
451  qpix_op= qpix_avg;
452  chroma_op= chroma_avg;
453  }
454 
455  if((mv+MV_BWD_OFFS)->ref >= 0){
456  AVFrame *ref = h->DPB[0].f;
457  mc_dir_part(h, ref, chroma_height, delta, 1,
458  dest_y, dest_cb, dest_cr, x_offset, y_offset,
459  qpix_op, chroma_op, mv+MV_BWD_OFFS);
460  }
461 }
462 
463 void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type) {
464  if(ff_cavs_partition_flags[mb_type] == 0){ // 16x16
465  mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
470  }else{
471  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
476  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
481  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
486  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
491  }
492 }
493 
494 /*****************************************************************************
495  *
496  * motion vector prediction
497  *
498  ****************************************************************************/
499 
500 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp) {
501  int den = h->scale_den[src->ref];
502 
503  *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
504  *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
505 }
506 
507 static inline void mv_pred_median(AVSContext *h, cavs_vector *mvP,
508  cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC) {
509  int ax, ay, bx, by, cx, cy;
510  int len_ab, len_bc, len_ca, len_mid;
511 
512  /* scale candidates according to their temporal span */
513  scale_mv(h, &ax, &ay, mvA, mvP->dist);
514  scale_mv(h, &bx, &by, mvB, mvP->dist);
515  scale_mv(h, &cx, &cy, mvC, mvP->dist);
516  /* find the geometrical median of the three candidates */
517  len_ab = abs(ax - bx) + abs(ay - by);
518  len_bc = abs(bx - cx) + abs(by - cy);
519  len_ca = abs(cx - ax) + abs(cy - ay);
520  len_mid = mid_pred(len_ab, len_bc, len_ca);
521  if(len_mid == len_ab) {
522  mvP->x = cx;
523  mvP->y = cy;
524  } else if(len_mid == len_bc) {
525  mvP->x = ax;
526  mvP->y = ay;
527  } else {
528  mvP->x = bx;
529  mvP->y = by;
530  }
531 }
532 
533 void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
534  enum cavs_mv_pred mode, enum cavs_block size, int ref) {
535  cavs_vector *mvP = &h->mv[nP];
536  cavs_vector *mvA = &h->mv[nP-1];
537  cavs_vector *mvB = &h->mv[nP-4];
538  cavs_vector *mvC = &h->mv[nC];
539  const cavs_vector *mvP2 = NULL;
540 
541  mvP->ref = ref;
542  mvP->dist = h->dist[mvP->ref];
543  if(mvC->ref == NOT_AVAIL)
544  mvC = &h->mv[nP-5]; // set to top-left (mvD)
545  if((mode == MV_PRED_PSKIP) &&
546  ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
547  ((mvA->x | mvA->y | mvA->ref) == 0) ||
548  ((mvB->x | mvB->y | mvB->ref) == 0) )) {
549  mvP2 = &un_mv;
550  /* if there is only one suitable candidate, take it */
551  } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
552  mvP2= mvA;
553  } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
554  mvP2= mvB;
555  } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
556  mvP2= mvC;
557  } else if(mode == MV_PRED_LEFT && mvA->ref == ref){
558  mvP2= mvA;
559  } else if(mode == MV_PRED_TOP && mvB->ref == ref){
560  mvP2= mvB;
561  } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
562  mvP2= mvC;
563  }
564  if(mvP2){
565  mvP->x = mvP2->x;
566  mvP->y = mvP2->y;
567  }else
568  mv_pred_median(h, mvP, mvA, mvB, mvC);
569 
570  if(mode < MV_PRED_PSKIP) {
571  mvP->x += get_se_golomb(&h->gb);
572  mvP->y += get_se_golomb(&h->gb);
573  }
574  set_mvs(mvP,size);
575 }
576 
577 /*****************************************************************************
578  *
579  * macroblock level
580  *
581  ****************************************************************************/
582 
587  int i;
588 
589  /* copy predictors from top line (MB B and C) into cache */
590  for(i=0;i<3;i++) {
591  h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
592  h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
593  }
594  h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
595  h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
596  /* clear top predictors if MB B is not available */
597  if(!(h->flags & B_AVAIL)) {
598  h->mv[MV_FWD_B2] = un_mv;
599  h->mv[MV_FWD_B3] = un_mv;
600  h->mv[MV_BWD_B2] = un_mv;
601  h->mv[MV_BWD_B3] = un_mv;
602  h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
603  h->flags &= ~(C_AVAIL|D_AVAIL);
604  } else if(h->mbx) {
605  h->flags |= D_AVAIL;
606  }
607  if(h->mbx == h->mb_width-1) //MB C not available
608  h->flags &= ~C_AVAIL;
609  /* clear top-right predictors if MB C is not available */
610  if(!(h->flags & C_AVAIL)) {
611  h->mv[MV_FWD_C2] = un_mv;
612  h->mv[MV_BWD_C2] = un_mv;
613  }
614  /* clear top-left predictors if MB D is not available */
615  if(!(h->flags & D_AVAIL)) {
616  h->mv[MV_FWD_D3] = un_mv;
617  h->mv[MV_BWD_D3] = un_mv;
618  }
619 }
620 
627  int i;
628 
629  h->flags |= A_AVAIL;
630  h->cy += 16;
631  h->cu += 8;
632  h->cv += 8;
633  /* copy mvs as predictors to the left */
634  for(i=0;i<=20;i+=4)
635  h->mv[i] = h->mv[i+2];
636  /* copy bottom mvs from cache to top line */
637  h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
638  h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
639  h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
640  h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
641  /* next MB address */
642  h->mbidx++;
643  h->mbx++;
644  if(h->mbx == h->mb_width) { //new mb line
645  h->flags = B_AVAIL|C_AVAIL;
646  /* clear left pred_modes */
647  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
648  /* clear left mv predictors */
649  for(i=0;i<=20;i+=4)
650  h->mv[i] = un_mv;
651  h->mbx = 0;
652  h->mby++;
653  /* re-calculate sample pointers */
654  h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
655  h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
656  h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
657  if(h->mby == h->mb_height) { //frame end
658  return 0;
659  }
660  }
661  return 1;
662 }
663 
664 /*****************************************************************************
665  *
666  * frame level
667  *
668  ****************************************************************************/
669 
671  int i;
672 
673  /* clear some predictors */
674  for(i=0;i<=20;i+=4)
675  h->mv[i] = un_mv;
677  set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
679  set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
680  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
681  h->cy = h->cur.f->data[0];
682  h->cu = h->cur.f->data[1];
683  h->cv = h->cur.f->data[2];
684  h->l_stride = h->cur.f->linesize[0];
685  h->c_stride = h->cur.f->linesize[1];
686  h->luma_scan[2] = 8*h->l_stride;
687  h->luma_scan[3] = 8*h->l_stride+8;
688  h->mbx = h->mby = h->mbidx = 0;
689  h->flags = 0;
690 }
691 
692 /*****************************************************************************
693  *
694  * headers and interface
695  *
696  ****************************************************************************/
697 
704  /* alloc top line of predictors */
705  h->top_qp = av_mallocz( h->mb_width);
706  h->top_mv[0] = av_mallocz((h->mb_width*2+1)*sizeof(cavs_vector));
707  h->top_mv[1] = av_mallocz((h->mb_width*2+1)*sizeof(cavs_vector));
708  h->top_pred_Y = av_mallocz( h->mb_width*2*sizeof(*h->top_pred_Y));
709  h->top_border_y = av_mallocz((h->mb_width+1)*16);
710  h->top_border_u = av_mallocz( h->mb_width * 10);
711  h->top_border_v = av_mallocz( h->mb_width * 10);
712 
713  /* alloc space for co-located MVs and types */
714  h->col_mv = av_mallocz( h->mb_width*h->mb_height*4*sizeof(cavs_vector));
716  h->block = av_mallocz(64*sizeof(DCTELEM));
717 }
718 
720  AVSContext *h = avctx->priv_data;
721 
722  ff_dsputil_init(&h->dsp, avctx);
723  ff_videodsp_init(&h->vdsp, 8);
724  ff_cavsdsp_init(&h->cdsp, avctx);
726  h->cdsp.idct_perm);
728 
729  h->avctx = avctx;
730  avctx->pix_fmt= AV_PIX_FMT_YUV420P;
731 
732  h->cur.f = avcodec_alloc_frame();
733  h->DPB[0].f = avcodec_alloc_frame();
734  h->DPB[1].f = avcodec_alloc_frame();
735  if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
736  ff_cavs_end(avctx);
737  return AVERROR(ENOMEM);
738  }
739 
740  h->luma_scan[0] = 0;
741  h->luma_scan[1] = 8;
757  h->mv[ 7] = un_mv;
758  h->mv[19] = un_mv;
759  return 0;
760 }
761 
763  AVSContext *h = avctx->priv_data;
764 
765  if (h->cur.f->data[0])
766  avctx->release_buffer(avctx, h->cur.f);
767  if (h->DPB[0].f->data[0])
768  avctx->release_buffer(avctx, h->DPB[0].f);
769  if (h->DPB[1].f->data[0])
770  avctx->release_buffer(avctx, h->DPB[1].f);
771  avcodec_free_frame(&h->cur.f);
772  avcodec_free_frame(&h->DPB[0].f);
773  avcodec_free_frame(&h->DPB[1].f);
774 
775  av_free(h->top_qp);
776  av_free(h->top_mv[0]);
777  av_free(h->top_mv[1]);
778  av_free(h->top_pred_Y);
779  av_free(h->top_border_y);
780  av_free(h->top_border_u);
781  av_free(h->top_border_v);
782  av_free(h->col_mv);
784  av_free(h->block);
786  return 0;
787 }
cavs_mv_loc
Definition: cavs.h:118
void(* intra_pred_c[7])(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.h:226
uint8_t * top_border_v
Definition: cavs.h:220
uint8_t * top_border_u
Definition: cavs.h:220
void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
Definition: cavs.c:351
uint8_t topleft_border_y
Definition: cavs.h:223
av_cold void ff_dsputil_init(DSPContext *c, AVCodecContext *avctx)
Definition: dsputil.c:2656
AVCodecContext * avctx
Definition: cavs.h:162
#define ff_cropTbl
const uint8_t ff_zigzag_direct[64]
Definition: dsputil.c:59
int size
This structure describes decoded (raw) audio or video data.
Definition: avcodec.h:989
uint8_t * edge_emu_buffer
Definition: cavs.h:234
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:171
void(* cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:33
static int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
Definition: cavs.c:70
static const int8_t left_modifier_c[7]
Definition: cavs.c:61
void(* release_buffer)(struct AVCodecContext *c, AVFrame *pic)
Called to release buffers which were allocated with get_buffer.
Definition: avcodec.h:2259
Definition: cavs.h:60
int16_t x
Definition: cavs.h:142
av_cold int ff_cavs_end(AVCodecContext *avctx)
Definition: cavs.c:762
int mbidx
macroblock coordinates
Definition: cavs.h:182
void(* cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:31
static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:332
cavs_vector * col_mv
Definition: cavs.h:203
#define MAX_NEG_CROP
Definition: dsputil.h:83
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1533
#define A_AVAIL
Definition: cavs.h:37
void ff_cavs_init_mb(AVSContext *h)
initialise predictors for motion vectors and intra prediction
Definition: cavs.c:586
int qp
Definition: cavs.h:213
int loop_filter_disable
Definition: cavs.h:179
int stride
Definition: mace.c:144
void(* cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:32
int left_qp
Definition: cavs.h:186
uint8_t intern_border_y[26]
Definition: cavs.h:222
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
Definition: mem.c:151
cavs_mb
Definition: cavs.h:59
#define MV_BWD_OFFS
Definition: cavs.h:56
int mbx
Definition: cavs.h:182
void(* emulated_edge_mc)(uint8_t *buf, const uint8_t *src, ptrdiff_t linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:50
ScanTable scantable
Definition: cavs.h:216
uint8_t
float delta
#define SPLITH
Definition: cavs.h:53
uint8_t * top_qp
Definition: cavs.h:187
void(* qpel_mc_func)(uint8_t *dst, uint8_t *src, int stride)
Definition: dsputil.h:144
h264_chroma_mc_func avg_h264_chroma_pixels_tab[3]
Definition: dsputil.h:322
static const int8_t left_modifier_l[8]
Definition: cavs.c:59
#define b
Definition: input.c:52
uint8_t * top_border_y
intra prediction is done with un-deblocked samples they are saved here before deblocking the MB ...
Definition: cavs.h:220
av_cold void ff_cavsdsp_init(CAVSDSPContext *c, AVCodecContext *avctx)
Definition: cavsdsp.c:520
cavs_vector mv[2 *4 *3]
mv motion vector cache 0: D3 B2 B3 C2 4: A1 X0 X1 - 8: A3 X2 X3 -
Definition: cavs.h:201
cavs_vector * top_mv[2]
Definition: cavs.h:202
static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:273
bitstream reader API header.
uint8_t idct_permutation[64]
idct input permutation.
Definition: dsputil.h:425
void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
in-loop deblocking filter for a single macroblock
Definition: cavs.c:105
int dist[2]
temporal distances from current frame to ref frames
Definition: cavs.h:169
int mby
Definition: cavs.h:182
GetBitContext gb
Definition: cavs.h:166
uint8_t * cy
Definition: cavs.h:185
DCTELEM * block
Definition: cavs.h:237
#define cm
Definition: dvbsubdec.c:34
#define D_AVAIL
Definition: cavs.h:40
static void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp)
Definition: cavs.c:500
uint8_t topleft_border_u
Definition: cavs.h:223
static void mv_pred_median(AVSContext *h, cavs_vector *mvP, cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC)
Definition: cavs.c:507
void av_free(void *ptr)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc(). ...
Definition: mem.c:139
uint8_t * cu
Definition: cavs.h:185
Definition: cavs.h:65
int scale_den[2]
for scaling neighbouring MVs
Definition: cavs.h:232
AVSFrame cur
currently decoded frame
Definition: cavs.h:167
#define SET_PARAMS
Definition: cavs.c:88
int ff_cavs_next_mb(AVSContext *h)
save predictors for later macroblocks and increase macroblock address
Definition: cavs.c:626
void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
Definition: cavs.c:463
CAVSDSPContext cdsp
Definition: cavs.h:165
static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:265
uint8_t left_border_y[26]
Definition: cavs.h:221
#define C_AVAIL
Definition: cavs.h:39
void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:36
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:146
static const uint8_t beta_tab[64]
Definition: cavs.c:41
void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top, uint8_t **left, int block)
Definition: cavs.c:177
void(* h264_chroma_mc_func)(uint8_t *dst, uint8_t *src, int srcStride, int h, int x, int y)
Definition: dsputil.h:145
static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:324
int c_stride
Definition: cavs.h:211
h264_chroma_mc_func put_h264_chroma_pixels_tab[3]
h264 Chroma MC
Definition: dsputil.h:321
AVSFrame DPB[2]
reference frames
Definition: cavs.h:168
static const int8_t top_modifier_c[7]
Definition: cavs.c:62
#define B_AVAIL
Definition: cavs.h:38
uint8_t * cv
current MB sample pointers
Definition: cavs.h:185
AVFrame * avcodec_alloc_frame(void)
Allocate an AVFrame and set its fields to default values.
Definition: utils.c:616
void ff_cavs_load_intra_pred_chroma(AVSContext *h)
Definition: cavs.c:228
static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:255
void ff_cavs_init_pic(AVSContext *h)
Definition: cavs.c:670
int l_stride
Definition: cavs.h:211
qpel_mc_func put_cavs_qpel_pixels_tab[2][16]
Definition: cavsdsp.h:29
static DCTELEM block[64]
Definition: dct-test.c:169
#define NOT_AVAIL
Definition: cavs.h:41
av_cold int ff_cavs_init(AVCodecContext *avctx)
Definition: cavs.c:719
int16_t dist
Definition: cavs.h:144
uint8_t left_border_u[10]
Definition: cavs.h:221
static const uint8_t tc_tab[64]
Definition: cavs.c:48
const uint8_t ff_cavs_partition_flags[30]
Definition: cavsdata.c:24
void ff_cavs_init_top_lines(AVSContext *h)
some predictions require data from the top-neighbouring macroblock.
Definition: cavs.c:703
void(* intra_pred_l[8])(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.h:225
const cavs_vector ff_cavs_dir_mv
mark block as "no prediction from this direction" e.g.
Definition: cavsdata.c:59
DSPContext dsp
Definition: cavs.h:163
uint8_t left_border_v[10]
Definition: cavs.h:221
void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC, enum cavs_mv_pred mode, enum cavs_block size, int ref)
Definition: cavs.c:533
static void modify_pred(const int8_t *mod_table, int *mode)
Definition: cavs.c:342
static const int8_t mv[256][2]
Definition: 4xm.c:73
NULL
Definition: eval.c:52
external API header
static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:295
int linesize[AV_NUM_DATA_POINTERS]
Size, in bytes, of the data for each picture/channel plane.
Definition: avcodec.h:1008
main external API structure.
Definition: avcodec.h:1339
static void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op, cavs_vector *mv)
Definition: cavs.c:378
int pred_mode_Y[3 *3]
luma pred mode cache 0: – B2 B3 3: A1 X0 X1 6: A3 X2 X3
Definition: cavs.h:209
cavs_block
Definition: cavs.h:111
#define SPLITV
Definition: cavs.h:54
int * top_pred_Y
Definition: cavs.h:210
static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:303
int idct_perm
Definition: cavsdsp.h:36
int16_t ref
Definition: cavs.h:145
#define mid_pred
Definition: mathops.h:94
qpel_mc_func avg_cavs_qpel_pixels_tab[2][16]
Definition: cavsdsp.h:30
void ff_init_scantable_permutation(uint8_t *idct_permutation, int idct_permutation_type)
Definition: dsputil.c:143
short DCTELEM
Definition: dsputil.h:39
#define LOWPASS(ARRAY, INDEX)
Definition: cavs.c:292
uint8_t topleft_border_v
Definition: cavs.h:223
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: avcodec.h:997
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:65
static const int8_t top_modifier_l[8]
Definition: cavs.c:60
cavs_mv_pred
Definition: cavs.h:102
int flags
availability flags of neighbouring macroblocks
Definition: cavs.h:183
int luma_scan[4]
Definition: cavs.h:212
int mb_height
Definition: cavs.h:173
static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:246
void * priv_data
Definition: avcodec.h:1382
#define REF_INTRA
Definition: cavs.h:42
static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:311
void ff_init_scantable(uint8_t *permutation, ScanTable *st, const uint8_t *src_scantable)
Definition: dsputil.c:122
#define AV_RN64(p)
Definition: intreadwrite.h:330
void avcodec_free_frame(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: utils.c:628
static const cavs_vector un_mv
mark block as unavailable, i.e.
Definition: cavs.c:57
static void set_mvs(cavs_vector *mv, enum cavs_block size)
Definition: cavs.h:244
void(* cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:34
int16_t y
Definition: cavs.h:143
VideoDSPContext vdsp
Definition: cavs.h:164
exp golomb vlc stuff
static const uint8_t alpha_tab[64]
Definition: cavs.c:34
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:158
int mb_width
Definition: cavs.h:173
AVFrame * f
Definition: cavs.h:157
uint8_t * col_type_base
Definition: cavs.h:227
static void mc_part_std(AVSContext *h, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, cavs_vector *mv)
Definition: cavs.c:430