46 #define MUL16(a,b) ((a) * (b))
48 #define CMAC(pre, pim, are, aim, bre, bim) \
50 pre += (MUL16(are, bre) - MUL16(aim, bim));\
51 pim += (MUL16(are, bim) + MUL16(bre, aim));\
56 # define REF_SCALE(x, bits) (x)
60 # define REF_SCALE(x, bits) ((x) / (1<<(bits)))
76 for (i = 0; i < (n/2); i++) {
77 alpha = 2 * M_PI * (float)i / (
float)n;
90 double tmp_re, tmp_im, s, c;
95 for (i = 0; i < n; i++) {
99 for (j = 0; j < n; j++) {
100 k = (i * j) & (n - 1);
108 CMAC(tmp_re, tmp_im, c, s, q->
re, q->
im);
123 for (i = 0; i < n; i++) {
125 for (k = 0; k < n/2; k++) {
126 a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
127 f = cos(M_PI * a / (
double)(2 * n));
142 for (k = 0; k < n/2; k++) {
144 for (i = 0; i < n; i++) {
145 a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
146 s += input[i] * cos(a);
155 static void idct_ref(
float *output,
float *input,
int nbits)
162 for (i = 0; i < n; i++) {
164 for (k = 1; k < n; k++) {
165 a = M_PI*k*(i+0.5) / n;
166 s += input[k] * cos(a);
168 output[i] = 2 * s / n;
171 static void dct_ref(
float *output,
float *input,
int nbits)
178 for (k = 0; k < n; k++) {
180 for (i = 0; i < n; i++) {
181 a = M_PI*k*(i+0.5) / n;
182 s += input[i] * cos(a);
203 for (i = 0; i < n; i++) {
204 double e = fabsf(tab1[i] - (tab2[i] / scale)) /
RANGE;
207 i, tab1[i], tab2[i]);
221 "-h print this help\n"
226 "-i inverse transform test\n"
227 "-n b set the transform size to 2^b\n"
228 "-f x set scale factor for output data of (I)MDCT to x\n"
243 int main(
int argc,
char **argv)
260 int fft_nbits, fft_size;
267 c =
getopt(argc, argv,
"hsimrdn:f:c:");
304 fft_size = 1 << fft_nbits;
358 for (i = 0; i < fft_size; i++) {
383 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
387 fft_ref(tab_ref, tab1, fft_nbits);
393 fft_size_2 = fft_size >> 1;
396 tab1[fft_size_2].
im = 0;
397 for (i = 1; i < fft_size_2; i++) {
398 tab1[fft_size_2+i].
re = tab1[fft_size_2-i].
re;
399 tab1[fft_size_2+i].
im = -tab1[fft_size_2-i].
im;
402 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
403 tab2[1] = tab1[fft_size_2].
re;
406 fft_ref(tab_ref, tab1, fft_nbits);
407 for (i = 0; i < fft_size; i++) {
411 err =
check_diff((
float *)tab_ref, (
float *)tab, fft_size * 2, 0.5);
413 for (i = 0; i < fft_size; i++) {
414 tab2[i] = tab1[i].
re;
418 fft_ref(tab_ref, tab1, fft_nbits);
419 tab_ref[0].
im = tab_ref[fft_size_2].
re;
420 err =
check_diff((
float *)tab_ref, (
float *)tab2, fft_size, 1.0);
426 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
429 idct_ref(tab_ref, tab1, fft_nbits);
431 dct_ref(tab_ref, tab1, fft_nbits);
433 err =
check_diff((
float *)tab_ref, (
float *)tab, fft_size, 1.0);
450 for (it = 0; it < nb_its; it++) {
460 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
465 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
469 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
476 if (duration >= 1000000)
481 (
double)duration / nb_its,
482 (
double)duration / 1000000.0,
516 printf(
"Error: %d.\n", err);
av_cold void ff_rdft_end(RDFTContext *s)
void * av_malloc(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
void(* dct_calc)(struct DCTContext *s, FFTSample *data)
void(* mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
void av_set_cpu_flags_mask(int mask)
Set a mask on flags returned by av_get_cpu_flags().
void(* fft_permute)(struct FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling fft_calc().
static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=av_sample_fmt_is_planar(in_fmt);out_planar=av_sample_fmt_is_planar(out_fmt);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_dlog(ac->avr,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
int av_parse_cpu_flags(const char *s)
Parse CPU flags from a string.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
void av_free(void *ptr)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc(). ...
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=av_sample_fmt_is_planar(in_fmt);out_planar=av_sample_fmt_is_planar(out_fmt);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_dlog(ac->avr,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
static FFTSample frandom(AVLFG *prng)
void av_log(void *avcl, int level, const char *fmt,...)
void(* rdft_calc)(struct RDFTContext *s, FFTSample *z)
void(* imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
static void fft_ref_init(int nbits, int inverse)
#define CMAC(pre, pim, are, aim, bre, bim)
int64_t av_gettime(void)
Get the current time in microseconds.
#define REF_SCALE(x, bits)
static const int8_t transform[32][32]
#define AV_LOG_INFO
Standard information.
static int getopt(int argc, char *argv[], char *opts)
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse)
Set up DCT.
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
static const uint16_t scale[4]
int main(int argc, char **argv)
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().
static int check_diff(FFTSample *tab1, FFTSample *tab2, int n, double scale)
av_cold void ff_dct_end(DCTContext *s)
static const struct twinvq_data tab
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
Set up a real FFT.