LLVM OpenMP* Runtime Library
kmp_lock.cpp
1 /*
2  * kmp_lock.cpp -- lock-related functions
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <stddef.h>
14 #include <atomic>
15 
16 #include "kmp.h"
17 #include "kmp_i18n.h"
18 #include "kmp_io.h"
19 #include "kmp_itt.h"
20 #include "kmp_lock.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #include "tsan_annotations.h"
25 
26 #if KMP_USE_FUTEX
27 #include <sys/syscall.h>
28 #include <unistd.h>
29 // We should really include <futex.h>, but that causes compatibility problems on
30 // different Linux* OS distributions that either require that you include (or
31 // break when you try to include) <pci/types.h>. Since all we need is the two
32 // macros below (which are part of the kernel ABI, so can't change) we just
33 // define the constants here and don't include <futex.h>
34 #ifndef FUTEX_WAIT
35 #define FUTEX_WAIT 0
36 #endif
37 #ifndef FUTEX_WAKE
38 #define FUTEX_WAKE 1
39 #endif
40 #endif
41 
42 /* Implement spin locks for internal library use. */
43 /* The algorithm implemented is Lamport's bakery lock [1974]. */
44 
45 void __kmp_validate_locks(void) {
46  int i;
47  kmp_uint32 x, y;
48 
49  /* Check to make sure unsigned arithmetic does wraps properly */
50  x = ~((kmp_uint32)0) - 2;
51  y = x - 2;
52 
53  for (i = 0; i < 8; ++i, ++x, ++y) {
54  kmp_uint32 z = (x - y);
55  KMP_ASSERT(z == 2);
56  }
57 
58  KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0);
59 }
60 
61 /* ------------------------------------------------------------------------ */
62 /* test and set locks */
63 
64 // For the non-nested locks, we can only assume that the first 4 bytes were
65 // allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel
66 // compiler only allocates a 4 byte pointer on IA-32 architecture. On
67 // Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated.
68 //
69 // gcc reserves >= 8 bytes for nested locks, so we can assume that the
70 // entire 8 bytes were allocated for nested locks on all 64-bit platforms.
71 
72 static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) {
73  return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1;
74 }
75 
76 static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) {
77  return lck->lk.depth_locked != -1;
78 }
79 
80 __forceinline static int
81 __kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) {
82  KMP_MB();
83 
84 #ifdef USE_LOCK_PROFILE
85  kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll);
86  if ((curr != 0) && (curr != gtid + 1))
87  __kmp_printf("LOCK CONTENTION: %p\n", lck);
88 /* else __kmp_printf( "." );*/
89 #endif /* USE_LOCK_PROFILE */
90 
91  kmp_int32 tas_free = KMP_LOCK_FREE(tas);
92  kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
93 
94  if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
95  __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
96  KMP_FSYNC_ACQUIRED(lck);
97  return KMP_LOCK_ACQUIRED_FIRST;
98  }
99 
100  kmp_uint32 spins;
101  KMP_FSYNC_PREPARE(lck);
102  KMP_INIT_YIELD(spins);
103  kmp_backoff_t backoff = __kmp_spin_backoff_params;
104  do {
105  __kmp_spin_backoff(&backoff);
106  KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
107  } while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free ||
108  !__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy));
109  KMP_FSYNC_ACQUIRED(lck);
110  return KMP_LOCK_ACQUIRED_FIRST;
111 }
112 
113 int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
114  int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid);
115  ANNOTATE_TAS_ACQUIRED(lck);
116  return retval;
117 }
118 
119 static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck,
120  kmp_int32 gtid) {
121  char const *const func = "omp_set_lock";
122  if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
123  __kmp_is_tas_lock_nestable(lck)) {
124  KMP_FATAL(LockNestableUsedAsSimple, func);
125  }
126  if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) {
127  KMP_FATAL(LockIsAlreadyOwned, func);
128  }
129  return __kmp_acquire_tas_lock(lck, gtid);
130 }
131 
132 int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
133  kmp_int32 tas_free = KMP_LOCK_FREE(tas);
134  kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
135  if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
136  __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
137  KMP_FSYNC_ACQUIRED(lck);
138  return TRUE;
139  }
140  return FALSE;
141 }
142 
143 static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck,
144  kmp_int32 gtid) {
145  char const *const func = "omp_test_lock";
146  if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
147  __kmp_is_tas_lock_nestable(lck)) {
148  KMP_FATAL(LockNestableUsedAsSimple, func);
149  }
150  return __kmp_test_tas_lock(lck, gtid);
151 }
152 
153 int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
154  KMP_MB(); /* Flush all pending memory write invalidates. */
155 
156  KMP_FSYNC_RELEASING(lck);
157  ANNOTATE_TAS_RELEASED(lck);
158  KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas));
159  KMP_MB(); /* Flush all pending memory write invalidates. */
160 
161  KMP_YIELD_OVERSUB();
162  return KMP_LOCK_RELEASED;
163 }
164 
165 static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck,
166  kmp_int32 gtid) {
167  char const *const func = "omp_unset_lock";
168  KMP_MB(); /* in case another processor initialized lock */
169  if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
170  __kmp_is_tas_lock_nestable(lck)) {
171  KMP_FATAL(LockNestableUsedAsSimple, func);
172  }
173  if (__kmp_get_tas_lock_owner(lck) == -1) {
174  KMP_FATAL(LockUnsettingFree, func);
175  }
176  if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) &&
177  (__kmp_get_tas_lock_owner(lck) != gtid)) {
178  KMP_FATAL(LockUnsettingSetByAnother, func);
179  }
180  return __kmp_release_tas_lock(lck, gtid);
181 }
182 
183 void __kmp_init_tas_lock(kmp_tas_lock_t *lck) {
184  lck->lk.poll = KMP_LOCK_FREE(tas);
185 }
186 
187 void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; }
188 
189 static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) {
190  char const *const func = "omp_destroy_lock";
191  if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
192  __kmp_is_tas_lock_nestable(lck)) {
193  KMP_FATAL(LockNestableUsedAsSimple, func);
194  }
195  if (__kmp_get_tas_lock_owner(lck) != -1) {
196  KMP_FATAL(LockStillOwned, func);
197  }
198  __kmp_destroy_tas_lock(lck);
199 }
200 
201 // nested test and set locks
202 
203 int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
204  KMP_DEBUG_ASSERT(gtid >= 0);
205 
206  if (__kmp_get_tas_lock_owner(lck) == gtid) {
207  lck->lk.depth_locked += 1;
208  return KMP_LOCK_ACQUIRED_NEXT;
209  } else {
210  __kmp_acquire_tas_lock_timed_template(lck, gtid);
211  ANNOTATE_TAS_ACQUIRED(lck);
212  lck->lk.depth_locked = 1;
213  return KMP_LOCK_ACQUIRED_FIRST;
214  }
215 }
216 
217 static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
218  kmp_int32 gtid) {
219  char const *const func = "omp_set_nest_lock";
220  if (!__kmp_is_tas_lock_nestable(lck)) {
221  KMP_FATAL(LockSimpleUsedAsNestable, func);
222  }
223  return __kmp_acquire_nested_tas_lock(lck, gtid);
224 }
225 
226 int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
227  int retval;
228 
229  KMP_DEBUG_ASSERT(gtid >= 0);
230 
231  if (__kmp_get_tas_lock_owner(lck) == gtid) {
232  retval = ++lck->lk.depth_locked;
233  } else if (!__kmp_test_tas_lock(lck, gtid)) {
234  retval = 0;
235  } else {
236  KMP_MB();
237  retval = lck->lk.depth_locked = 1;
238  }
239  return retval;
240 }
241 
242 static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
243  kmp_int32 gtid) {
244  char const *const func = "omp_test_nest_lock";
245  if (!__kmp_is_tas_lock_nestable(lck)) {
246  KMP_FATAL(LockSimpleUsedAsNestable, func);
247  }
248  return __kmp_test_nested_tas_lock(lck, gtid);
249 }
250 
251 int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
252  KMP_DEBUG_ASSERT(gtid >= 0);
253 
254  KMP_MB();
255  if (--(lck->lk.depth_locked) == 0) {
256  __kmp_release_tas_lock(lck, gtid);
257  return KMP_LOCK_RELEASED;
258  }
259  return KMP_LOCK_STILL_HELD;
260 }
261 
262 static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
263  kmp_int32 gtid) {
264  char const *const func = "omp_unset_nest_lock";
265  KMP_MB(); /* in case another processor initialized lock */
266  if (!__kmp_is_tas_lock_nestable(lck)) {
267  KMP_FATAL(LockSimpleUsedAsNestable, func);
268  }
269  if (__kmp_get_tas_lock_owner(lck) == -1) {
270  KMP_FATAL(LockUnsettingFree, func);
271  }
272  if (__kmp_get_tas_lock_owner(lck) != gtid) {
273  KMP_FATAL(LockUnsettingSetByAnother, func);
274  }
275  return __kmp_release_nested_tas_lock(lck, gtid);
276 }
277 
278 void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) {
279  __kmp_init_tas_lock(lck);
280  lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
281 }
282 
283 void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) {
284  __kmp_destroy_tas_lock(lck);
285  lck->lk.depth_locked = 0;
286 }
287 
288 static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
289  char const *const func = "omp_destroy_nest_lock";
290  if (!__kmp_is_tas_lock_nestable(lck)) {
291  KMP_FATAL(LockSimpleUsedAsNestable, func);
292  }
293  if (__kmp_get_tas_lock_owner(lck) != -1) {
294  KMP_FATAL(LockStillOwned, func);
295  }
296  __kmp_destroy_nested_tas_lock(lck);
297 }
298 
299 #if KMP_USE_FUTEX
300 
301 /* ------------------------------------------------------------------------ */
302 /* futex locks */
303 
304 // futex locks are really just test and set locks, with a different method
305 // of handling contention. They take the same amount of space as test and
306 // set locks, and are allocated the same way (i.e. use the area allocated by
307 // the compiler for non-nested locks / allocate nested locks on the heap).
308 
309 static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) {
310  return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1;
311 }
312 
313 static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) {
314  return lck->lk.depth_locked != -1;
315 }
316 
317 __forceinline static int
318 __kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) {
319  kmp_int32 gtid_code = (gtid + 1) << 1;
320 
321  KMP_MB();
322 
323 #ifdef USE_LOCK_PROFILE
324  kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll));
325  if ((curr != 0) && (curr != gtid_code))
326  __kmp_printf("LOCK CONTENTION: %p\n", lck);
327 /* else __kmp_printf( "." );*/
328 #endif /* USE_LOCK_PROFILE */
329 
330  KMP_FSYNC_PREPARE(lck);
331  KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n",
332  lck, lck->lk.poll, gtid));
333 
334  kmp_int32 poll_val;
335 
336  while ((poll_val = KMP_COMPARE_AND_STORE_RET32(
337  &(lck->lk.poll), KMP_LOCK_FREE(futex),
338  KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) {
339 
340  kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1;
341  KA_TRACE(
342  1000,
343  ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n",
344  lck, gtid, poll_val, cond));
345 
346  // NOTE: if you try to use the following condition for this branch
347  //
348  // if ( poll_val & 1 == 0 )
349  //
350  // Then the 12.0 compiler has a bug where the following block will
351  // always be skipped, regardless of the value of the LSB of poll_val.
352  if (!cond) {
353  // Try to set the lsb in the poll to indicate to the owner
354  // thread that they need to wake this thread up.
355  if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val,
356  poll_val | KMP_LOCK_BUSY(1, futex))) {
357  KA_TRACE(
358  1000,
359  ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n",
360  lck, lck->lk.poll, gtid));
361  continue;
362  }
363  poll_val |= KMP_LOCK_BUSY(1, futex);
364 
365  KA_TRACE(1000,
366  ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n", lck,
367  lck->lk.poll, gtid));
368  }
369 
370  KA_TRACE(
371  1000,
372  ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n",
373  lck, gtid, poll_val));
374 
375  kmp_int32 rc;
376  if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL,
377  NULL, 0)) != 0) {
378  KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) "
379  "failed (rc=%d errno=%d)\n",
380  lck, gtid, poll_val, rc, errno));
381  continue;
382  }
383 
384  KA_TRACE(1000,
385  ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n",
386  lck, gtid, poll_val));
387  // This thread has now done a successful futex wait call and was entered on
388  // the OS futex queue. We must now perform a futex wake call when releasing
389  // the lock, as we have no idea how many other threads are in the queue.
390  gtid_code |= 1;
391  }
392 
393  KMP_FSYNC_ACQUIRED(lck);
394  KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
395  lck->lk.poll, gtid));
396  return KMP_LOCK_ACQUIRED_FIRST;
397 }
398 
399 int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
400  int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid);
401  ANNOTATE_FUTEX_ACQUIRED(lck);
402  return retval;
403 }
404 
405 static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck,
406  kmp_int32 gtid) {
407  char const *const func = "omp_set_lock";
408  if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
409  __kmp_is_futex_lock_nestable(lck)) {
410  KMP_FATAL(LockNestableUsedAsSimple, func);
411  }
412  if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) {
413  KMP_FATAL(LockIsAlreadyOwned, func);
414  }
415  return __kmp_acquire_futex_lock(lck, gtid);
416 }
417 
418 int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
419  if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex),
420  KMP_LOCK_BUSY((gtid + 1) << 1, futex))) {
421  KMP_FSYNC_ACQUIRED(lck);
422  return TRUE;
423  }
424  return FALSE;
425 }
426 
427 static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck,
428  kmp_int32 gtid) {
429  char const *const func = "omp_test_lock";
430  if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
431  __kmp_is_futex_lock_nestable(lck)) {
432  KMP_FATAL(LockNestableUsedAsSimple, func);
433  }
434  return __kmp_test_futex_lock(lck, gtid);
435 }
436 
437 int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
438  KMP_MB(); /* Flush all pending memory write invalidates. */
439 
440  KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n",
441  lck, lck->lk.poll, gtid));
442 
443  KMP_FSYNC_RELEASING(lck);
444  ANNOTATE_FUTEX_RELEASED(lck);
445 
446  kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex));
447 
448  KA_TRACE(1000,
449  ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n",
450  lck, gtid, poll_val));
451 
452  if (KMP_LOCK_STRIP(poll_val) & 1) {
453  KA_TRACE(1000,
454  ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n",
455  lck, gtid));
456  syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex),
457  NULL, NULL, 0);
458  }
459 
460  KMP_MB(); /* Flush all pending memory write invalidates. */
461 
462  KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
463  lck->lk.poll, gtid));
464 
465  KMP_YIELD_OVERSUB();
466  return KMP_LOCK_RELEASED;
467 }
468 
469 static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck,
470  kmp_int32 gtid) {
471  char const *const func = "omp_unset_lock";
472  KMP_MB(); /* in case another processor initialized lock */
473  if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
474  __kmp_is_futex_lock_nestable(lck)) {
475  KMP_FATAL(LockNestableUsedAsSimple, func);
476  }
477  if (__kmp_get_futex_lock_owner(lck) == -1) {
478  KMP_FATAL(LockUnsettingFree, func);
479  }
480  if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) &&
481  (__kmp_get_futex_lock_owner(lck) != gtid)) {
482  KMP_FATAL(LockUnsettingSetByAnother, func);
483  }
484  return __kmp_release_futex_lock(lck, gtid);
485 }
486 
487 void __kmp_init_futex_lock(kmp_futex_lock_t *lck) {
488  TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex));
489 }
490 
491 void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; }
492 
493 static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) {
494  char const *const func = "omp_destroy_lock";
495  if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
496  __kmp_is_futex_lock_nestable(lck)) {
497  KMP_FATAL(LockNestableUsedAsSimple, func);
498  }
499  if (__kmp_get_futex_lock_owner(lck) != -1) {
500  KMP_FATAL(LockStillOwned, func);
501  }
502  __kmp_destroy_futex_lock(lck);
503 }
504 
505 // nested futex locks
506 
507 int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
508  KMP_DEBUG_ASSERT(gtid >= 0);
509 
510  if (__kmp_get_futex_lock_owner(lck) == gtid) {
511  lck->lk.depth_locked += 1;
512  return KMP_LOCK_ACQUIRED_NEXT;
513  } else {
514  __kmp_acquire_futex_lock_timed_template(lck, gtid);
515  ANNOTATE_FUTEX_ACQUIRED(lck);
516  lck->lk.depth_locked = 1;
517  return KMP_LOCK_ACQUIRED_FIRST;
518  }
519 }
520 
521 static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
522  kmp_int32 gtid) {
523  char const *const func = "omp_set_nest_lock";
524  if (!__kmp_is_futex_lock_nestable(lck)) {
525  KMP_FATAL(LockSimpleUsedAsNestable, func);
526  }
527  return __kmp_acquire_nested_futex_lock(lck, gtid);
528 }
529 
530 int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
531  int retval;
532 
533  KMP_DEBUG_ASSERT(gtid >= 0);
534 
535  if (__kmp_get_futex_lock_owner(lck) == gtid) {
536  retval = ++lck->lk.depth_locked;
537  } else if (!__kmp_test_futex_lock(lck, gtid)) {
538  retval = 0;
539  } else {
540  KMP_MB();
541  retval = lck->lk.depth_locked = 1;
542  }
543  return retval;
544 }
545 
546 static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
547  kmp_int32 gtid) {
548  char const *const func = "omp_test_nest_lock";
549  if (!__kmp_is_futex_lock_nestable(lck)) {
550  KMP_FATAL(LockSimpleUsedAsNestable, func);
551  }
552  return __kmp_test_nested_futex_lock(lck, gtid);
553 }
554 
555 int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
556  KMP_DEBUG_ASSERT(gtid >= 0);
557 
558  KMP_MB();
559  if (--(lck->lk.depth_locked) == 0) {
560  __kmp_release_futex_lock(lck, gtid);
561  return KMP_LOCK_RELEASED;
562  }
563  return KMP_LOCK_STILL_HELD;
564 }
565 
566 static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
567  kmp_int32 gtid) {
568  char const *const func = "omp_unset_nest_lock";
569  KMP_MB(); /* in case another processor initialized lock */
570  if (!__kmp_is_futex_lock_nestable(lck)) {
571  KMP_FATAL(LockSimpleUsedAsNestable, func);
572  }
573  if (__kmp_get_futex_lock_owner(lck) == -1) {
574  KMP_FATAL(LockUnsettingFree, func);
575  }
576  if (__kmp_get_futex_lock_owner(lck) != gtid) {
577  KMP_FATAL(LockUnsettingSetByAnother, func);
578  }
579  return __kmp_release_nested_futex_lock(lck, gtid);
580 }
581 
582 void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) {
583  __kmp_init_futex_lock(lck);
584  lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
585 }
586 
587 void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) {
588  __kmp_destroy_futex_lock(lck);
589  lck->lk.depth_locked = 0;
590 }
591 
592 static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
593  char const *const func = "omp_destroy_nest_lock";
594  if (!__kmp_is_futex_lock_nestable(lck)) {
595  KMP_FATAL(LockSimpleUsedAsNestable, func);
596  }
597  if (__kmp_get_futex_lock_owner(lck) != -1) {
598  KMP_FATAL(LockStillOwned, func);
599  }
600  __kmp_destroy_nested_futex_lock(lck);
601 }
602 
603 #endif // KMP_USE_FUTEX
604 
605 /* ------------------------------------------------------------------------ */
606 /* ticket (bakery) locks */
607 
608 static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) {
609  return std::atomic_load_explicit(&lck->lk.owner_id,
610  std::memory_order_relaxed) -
611  1;
612 }
613 
614 static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) {
615  return std::atomic_load_explicit(&lck->lk.depth_locked,
616  std::memory_order_relaxed) != -1;
617 }
618 
619 static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) {
620  return std::atomic_load_explicit((std::atomic<unsigned> *)now_serving,
621  std::memory_order_acquire) == my_ticket;
622 }
623 
624 __forceinline static int
625 __kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck,
626  kmp_int32 gtid) {
627  kmp_uint32 my_ticket = std::atomic_fetch_add_explicit(
628  &lck->lk.next_ticket, 1U, std::memory_order_relaxed);
629 
630 #ifdef USE_LOCK_PROFILE
631  if (std::atomic_load_explicit(&lck->lk.now_serving,
632  std::memory_order_relaxed) != my_ticket)
633  __kmp_printf("LOCK CONTENTION: %p\n", lck);
634 /* else __kmp_printf( "." );*/
635 #endif /* USE_LOCK_PROFILE */
636 
637  if (std::atomic_load_explicit(&lck->lk.now_serving,
638  std::memory_order_acquire) == my_ticket) {
639  return KMP_LOCK_ACQUIRED_FIRST;
640  }
641  KMP_WAIT_PTR(&lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck);
642  return KMP_LOCK_ACQUIRED_FIRST;
643 }
644 
645 int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
646  int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid);
647  ANNOTATE_TICKET_ACQUIRED(lck);
648  return retval;
649 }
650 
651 static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
652  kmp_int32 gtid) {
653  char const *const func = "omp_set_lock";
654 
655  if (!std::atomic_load_explicit(&lck->lk.initialized,
656  std::memory_order_relaxed)) {
657  KMP_FATAL(LockIsUninitialized, func);
658  }
659  if (lck->lk.self != lck) {
660  KMP_FATAL(LockIsUninitialized, func);
661  }
662  if (__kmp_is_ticket_lock_nestable(lck)) {
663  KMP_FATAL(LockNestableUsedAsSimple, func);
664  }
665  if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) {
666  KMP_FATAL(LockIsAlreadyOwned, func);
667  }
668 
669  __kmp_acquire_ticket_lock(lck, gtid);
670 
671  std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
672  std::memory_order_relaxed);
673  return KMP_LOCK_ACQUIRED_FIRST;
674 }
675 
676 int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
677  kmp_uint32 my_ticket = std::atomic_load_explicit(&lck->lk.next_ticket,
678  std::memory_order_relaxed);
679 
680  if (std::atomic_load_explicit(&lck->lk.now_serving,
681  std::memory_order_relaxed) == my_ticket) {
682  kmp_uint32 next_ticket = my_ticket + 1;
683  if (std::atomic_compare_exchange_strong_explicit(
684  &lck->lk.next_ticket, &my_ticket, next_ticket,
685  std::memory_order_acquire, std::memory_order_acquire)) {
686  return TRUE;
687  }
688  }
689  return FALSE;
690 }
691 
692 static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
693  kmp_int32 gtid) {
694  char const *const func = "omp_test_lock";
695 
696  if (!std::atomic_load_explicit(&lck->lk.initialized,
697  std::memory_order_relaxed)) {
698  KMP_FATAL(LockIsUninitialized, func);
699  }
700  if (lck->lk.self != lck) {
701  KMP_FATAL(LockIsUninitialized, func);
702  }
703  if (__kmp_is_ticket_lock_nestable(lck)) {
704  KMP_FATAL(LockNestableUsedAsSimple, func);
705  }
706 
707  int retval = __kmp_test_ticket_lock(lck, gtid);
708 
709  if (retval) {
710  std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
711  std::memory_order_relaxed);
712  }
713  return retval;
714 }
715 
716 int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
717  kmp_uint32 distance = std::atomic_load_explicit(&lck->lk.next_ticket,
718  std::memory_order_relaxed) -
719  std::atomic_load_explicit(&lck->lk.now_serving,
720  std::memory_order_relaxed);
721 
722  ANNOTATE_TICKET_RELEASED(lck);
723  std::atomic_fetch_add_explicit(&lck->lk.now_serving, 1U,
724  std::memory_order_release);
725 
726  KMP_YIELD(distance >
727  (kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
728  return KMP_LOCK_RELEASED;
729 }
730 
731 static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
732  kmp_int32 gtid) {
733  char const *const func = "omp_unset_lock";
734 
735  if (!std::atomic_load_explicit(&lck->lk.initialized,
736  std::memory_order_relaxed)) {
737  KMP_FATAL(LockIsUninitialized, func);
738  }
739  if (lck->lk.self != lck) {
740  KMP_FATAL(LockIsUninitialized, func);
741  }
742  if (__kmp_is_ticket_lock_nestable(lck)) {
743  KMP_FATAL(LockNestableUsedAsSimple, func);
744  }
745  if (__kmp_get_ticket_lock_owner(lck) == -1) {
746  KMP_FATAL(LockUnsettingFree, func);
747  }
748  if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) &&
749  (__kmp_get_ticket_lock_owner(lck) != gtid)) {
750  KMP_FATAL(LockUnsettingSetByAnother, func);
751  }
752  std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
753  return __kmp_release_ticket_lock(lck, gtid);
754 }
755 
756 void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) {
757  lck->lk.location = NULL;
758  lck->lk.self = lck;
759  std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
760  std::memory_order_relaxed);
761  std::atomic_store_explicit(&lck->lk.now_serving, 0U,
762  std::memory_order_relaxed);
763  std::atomic_store_explicit(
764  &lck->lk.owner_id, 0,
765  std::memory_order_relaxed); // no thread owns the lock.
766  std::atomic_store_explicit(
767  &lck->lk.depth_locked, -1,
768  std::memory_order_relaxed); // -1 => not a nested lock.
769  std::atomic_store_explicit(&lck->lk.initialized, true,
770  std::memory_order_release);
771 }
772 
773 void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) {
774  std::atomic_store_explicit(&lck->lk.initialized, false,
775  std::memory_order_release);
776  lck->lk.self = NULL;
777  lck->lk.location = NULL;
778  std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
779  std::memory_order_relaxed);
780  std::atomic_store_explicit(&lck->lk.now_serving, 0U,
781  std::memory_order_relaxed);
782  std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
783  std::atomic_store_explicit(&lck->lk.depth_locked, -1,
784  std::memory_order_relaxed);
785 }
786 
787 static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
788  char const *const func = "omp_destroy_lock";
789 
790  if (!std::atomic_load_explicit(&lck->lk.initialized,
791  std::memory_order_relaxed)) {
792  KMP_FATAL(LockIsUninitialized, func);
793  }
794  if (lck->lk.self != lck) {
795  KMP_FATAL(LockIsUninitialized, func);
796  }
797  if (__kmp_is_ticket_lock_nestable(lck)) {
798  KMP_FATAL(LockNestableUsedAsSimple, func);
799  }
800  if (__kmp_get_ticket_lock_owner(lck) != -1) {
801  KMP_FATAL(LockStillOwned, func);
802  }
803  __kmp_destroy_ticket_lock(lck);
804 }
805 
806 // nested ticket locks
807 
808 int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
809  KMP_DEBUG_ASSERT(gtid >= 0);
810 
811  if (__kmp_get_ticket_lock_owner(lck) == gtid) {
812  std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
813  std::memory_order_relaxed);
814  return KMP_LOCK_ACQUIRED_NEXT;
815  } else {
816  __kmp_acquire_ticket_lock_timed_template(lck, gtid);
817  ANNOTATE_TICKET_ACQUIRED(lck);
818  std::atomic_store_explicit(&lck->lk.depth_locked, 1,
819  std::memory_order_relaxed);
820  std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
821  std::memory_order_relaxed);
822  return KMP_LOCK_ACQUIRED_FIRST;
823  }
824 }
825 
826 static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
827  kmp_int32 gtid) {
828  char const *const func = "omp_set_nest_lock";
829 
830  if (!std::atomic_load_explicit(&lck->lk.initialized,
831  std::memory_order_relaxed)) {
832  KMP_FATAL(LockIsUninitialized, func);
833  }
834  if (lck->lk.self != lck) {
835  KMP_FATAL(LockIsUninitialized, func);
836  }
837  if (!__kmp_is_ticket_lock_nestable(lck)) {
838  KMP_FATAL(LockSimpleUsedAsNestable, func);
839  }
840  return __kmp_acquire_nested_ticket_lock(lck, gtid);
841 }
842 
843 int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
844  int retval;
845 
846  KMP_DEBUG_ASSERT(gtid >= 0);
847 
848  if (__kmp_get_ticket_lock_owner(lck) == gtid) {
849  retval = std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
850  std::memory_order_relaxed) +
851  1;
852  } else if (!__kmp_test_ticket_lock(lck, gtid)) {
853  retval = 0;
854  } else {
855  std::atomic_store_explicit(&lck->lk.depth_locked, 1,
856  std::memory_order_relaxed);
857  std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
858  std::memory_order_relaxed);
859  retval = 1;
860  }
861  return retval;
862 }
863 
864 static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
865  kmp_int32 gtid) {
866  char const *const func = "omp_test_nest_lock";
867 
868  if (!std::atomic_load_explicit(&lck->lk.initialized,
869  std::memory_order_relaxed)) {
870  KMP_FATAL(LockIsUninitialized, func);
871  }
872  if (lck->lk.self != lck) {
873  KMP_FATAL(LockIsUninitialized, func);
874  }
875  if (!__kmp_is_ticket_lock_nestable(lck)) {
876  KMP_FATAL(LockSimpleUsedAsNestable, func);
877  }
878  return __kmp_test_nested_ticket_lock(lck, gtid);
879 }
880 
881 int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
882  KMP_DEBUG_ASSERT(gtid >= 0);
883 
884  if ((std::atomic_fetch_add_explicit(&lck->lk.depth_locked, -1,
885  std::memory_order_relaxed) -
886  1) == 0) {
887  std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
888  __kmp_release_ticket_lock(lck, gtid);
889  return KMP_LOCK_RELEASED;
890  }
891  return KMP_LOCK_STILL_HELD;
892 }
893 
894 static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
895  kmp_int32 gtid) {
896  char const *const func = "omp_unset_nest_lock";
897 
898  if (!std::atomic_load_explicit(&lck->lk.initialized,
899  std::memory_order_relaxed)) {
900  KMP_FATAL(LockIsUninitialized, func);
901  }
902  if (lck->lk.self != lck) {
903  KMP_FATAL(LockIsUninitialized, func);
904  }
905  if (!__kmp_is_ticket_lock_nestable(lck)) {
906  KMP_FATAL(LockSimpleUsedAsNestable, func);
907  }
908  if (__kmp_get_ticket_lock_owner(lck) == -1) {
909  KMP_FATAL(LockUnsettingFree, func);
910  }
911  if (__kmp_get_ticket_lock_owner(lck) != gtid) {
912  KMP_FATAL(LockUnsettingSetByAnother, func);
913  }
914  return __kmp_release_nested_ticket_lock(lck, gtid);
915 }
916 
917 void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) {
918  __kmp_init_ticket_lock(lck);
919  std::atomic_store_explicit(&lck->lk.depth_locked, 0,
920  std::memory_order_relaxed);
921  // >= 0 for nestable locks, -1 for simple locks
922 }
923 
924 void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) {
925  __kmp_destroy_ticket_lock(lck);
926  std::atomic_store_explicit(&lck->lk.depth_locked, 0,
927  std::memory_order_relaxed);
928 }
929 
930 static void
931 __kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
932  char const *const func = "omp_destroy_nest_lock";
933 
934  if (!std::atomic_load_explicit(&lck->lk.initialized,
935  std::memory_order_relaxed)) {
936  KMP_FATAL(LockIsUninitialized, func);
937  }
938  if (lck->lk.self != lck) {
939  KMP_FATAL(LockIsUninitialized, func);
940  }
941  if (!__kmp_is_ticket_lock_nestable(lck)) {
942  KMP_FATAL(LockSimpleUsedAsNestable, func);
943  }
944  if (__kmp_get_ticket_lock_owner(lck) != -1) {
945  KMP_FATAL(LockStillOwned, func);
946  }
947  __kmp_destroy_nested_ticket_lock(lck);
948 }
949 
950 // access functions to fields which don't exist for all lock kinds.
951 
952 static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) {
953  return lck->lk.location;
954 }
955 
956 static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck,
957  const ident_t *loc) {
958  lck->lk.location = loc;
959 }
960 
961 static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) {
962  return lck->lk.flags;
963 }
964 
965 static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck,
966  kmp_lock_flags_t flags) {
967  lck->lk.flags = flags;
968 }
969 
970 /* ------------------------------------------------------------------------ */
971 /* queuing locks */
972 
973 /* First the states
974  (head,tail) = 0, 0 means lock is unheld, nobody on queue
975  UINT_MAX or -1, 0 means lock is held, nobody on queue
976  h, h means lock held or about to transition,
977  1 element on queue
978  h, t h <> t, means lock is held or about to
979  transition, >1 elements on queue
980 
981  Now the transitions
982  Acquire(0,0) = -1 ,0
983  Release(0,0) = Error
984  Acquire(-1,0) = h ,h h > 0
985  Release(-1,0) = 0 ,0
986  Acquire(h,h) = h ,t h > 0, t > 0, h <> t
987  Release(h,h) = -1 ,0 h > 0
988  Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t'
989  Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t
990 
991  And pictorially
992 
993  +-----+
994  | 0, 0|------- release -------> Error
995  +-----+
996  | ^
997  acquire| |release
998  | |
999  | |
1000  v |
1001  +-----+
1002  |-1, 0|
1003  +-----+
1004  | ^
1005  acquire| |release
1006  | |
1007  | |
1008  v |
1009  +-----+
1010  | h, h|
1011  +-----+
1012  | ^
1013  acquire| |release
1014  | |
1015  | |
1016  v |
1017  +-----+
1018  | h, t|----- acquire, release loopback ---+
1019  +-----+ |
1020  ^ |
1021  | |
1022  +------------------------------------+
1023  */
1024 
1025 #ifdef DEBUG_QUEUING_LOCKS
1026 
1027 /* Stuff for circular trace buffer */
1028 #define TRACE_BUF_ELE 1024
1029 static char traces[TRACE_BUF_ELE][128] = {0};
1030 static int tc = 0;
1031 #define TRACE_LOCK(X, Y) \
1032  KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y);
1033 #define TRACE_LOCK_T(X, Y, Z) \
1034  KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z);
1035 #define TRACE_LOCK_HT(X, Y, Z, Q) \
1036  KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, \
1037  Z, Q);
1038 
1039 static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid,
1040  kmp_queuing_lock_t *lck, kmp_int32 head_id,
1041  kmp_int32 tail_id) {
1042  kmp_int32 t, i;
1043 
1044  __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n");
1045 
1046  i = tc % TRACE_BUF_ELE;
1047  __kmp_printf_no_lock("%s\n", traces[i]);
1048  i = (i + 1) % TRACE_BUF_ELE;
1049  while (i != (tc % TRACE_BUF_ELE)) {
1050  __kmp_printf_no_lock("%s", traces[i]);
1051  i = (i + 1) % TRACE_BUF_ELE;
1052  }
1053  __kmp_printf_no_lock("\n");
1054 
1055  __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, "
1056  "next_wait:%d, head_id:%d, tail_id:%d\n",
1057  gtid + 1, this_thr->th.th_spin_here,
1058  this_thr->th.th_next_waiting, head_id, tail_id);
1059 
1060  __kmp_printf_no_lock("\t\thead: %d ", lck->lk.head_id);
1061 
1062  if (lck->lk.head_id >= 1) {
1063  t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting;
1064  while (t > 0) {
1065  __kmp_printf_no_lock("-> %d ", t);
1066  t = __kmp_threads[t - 1]->th.th_next_waiting;
1067  }
1068  }
1069  __kmp_printf_no_lock("; tail: %d ", lck->lk.tail_id);
1070  __kmp_printf_no_lock("\n\n");
1071 }
1072 
1073 #endif /* DEBUG_QUEUING_LOCKS */
1074 
1075 static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) {
1076  return TCR_4(lck->lk.owner_id) - 1;
1077 }
1078 
1079 static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) {
1080  return lck->lk.depth_locked != -1;
1081 }
1082 
1083 /* Acquire a lock using a the queuing lock implementation */
1084 template <bool takeTime>
1085 /* [TLW] The unused template above is left behind because of what BEB believes
1086  is a potential compiler problem with __forceinline. */
1087 __forceinline static int
1088 __kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck,
1089  kmp_int32 gtid) {
1090  kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid);
1091  volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1092  volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
1093  volatile kmp_uint32 *spin_here_p;
1094  kmp_int32 need_mf = 1;
1095 
1096 #if OMPT_SUPPORT
1097  ompt_state_t prev_state = ompt_state_undefined;
1098 #endif
1099 
1100  KA_TRACE(1000,
1101  ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
1102 
1103  KMP_FSYNC_PREPARE(lck);
1104  KMP_DEBUG_ASSERT(this_thr != NULL);
1105  spin_here_p = &this_thr->th.th_spin_here;
1106 
1107 #ifdef DEBUG_QUEUING_LOCKS
1108  TRACE_LOCK(gtid + 1, "acq ent");
1109  if (*spin_here_p)
1110  __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1111  if (this_thr->th.th_next_waiting != 0)
1112  __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1113 #endif
1114  KMP_DEBUG_ASSERT(!*spin_here_p);
1115  KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1116 
1117  /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to
1118  head_id_p that may follow, not just in execution order, but also in
1119  visibility order. This way, when a releasing thread observes the changes to
1120  the queue by this thread, it can rightly assume that spin_here_p has
1121  already been set to TRUE, so that when it sets spin_here_p to FALSE, it is
1122  not premature. If the releasing thread sets spin_here_p to FALSE before
1123  this thread sets it to TRUE, this thread will hang. */
1124  *spin_here_p = TRUE; /* before enqueuing to prevent race */
1125 
1126  while (1) {
1127  kmp_int32 enqueued;
1128  kmp_int32 head;
1129  kmp_int32 tail;
1130 
1131  head = *head_id_p;
1132 
1133  switch (head) {
1134 
1135  case -1: {
1136 #ifdef DEBUG_QUEUING_LOCKS
1137  tail = *tail_id_p;
1138  TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1139 #endif
1140  tail = 0; /* to make sure next link asynchronously read is not set
1141  accidentally; this assignment prevents us from entering the
1142  if ( t > 0 ) condition in the enqueued case below, which is not
1143  necessary for this state transition */
1144 
1145  need_mf = 0;
1146  /* try (-1,0)->(tid,tid) */
1147  enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p,
1148  KMP_PACK_64(-1, 0),
1149  KMP_PACK_64(gtid + 1, gtid + 1));
1150 #ifdef DEBUG_QUEUING_LOCKS
1151  if (enqueued)
1152  TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)");
1153 #endif
1154  } break;
1155 
1156  default: {
1157  tail = *tail_id_p;
1158  KMP_DEBUG_ASSERT(tail != gtid + 1);
1159 
1160 #ifdef DEBUG_QUEUING_LOCKS
1161  TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1162 #endif
1163 
1164  if (tail == 0) {
1165  enqueued = FALSE;
1166  } else {
1167  need_mf = 0;
1168  /* try (h,t) or (h,h)->(h,tid) */
1169  enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1);
1170 
1171 #ifdef DEBUG_QUEUING_LOCKS
1172  if (enqueued)
1173  TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)");
1174 #endif
1175  }
1176  } break;
1177 
1178  case 0: /* empty queue */
1179  {
1180  kmp_int32 grabbed_lock;
1181 
1182 #ifdef DEBUG_QUEUING_LOCKS
1183  tail = *tail_id_p;
1184  TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1185 #endif
1186  /* try (0,0)->(-1,0) */
1187 
1188  /* only legal transition out of head = 0 is head = -1 with no change to
1189  * tail */
1190  grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1);
1191 
1192  if (grabbed_lock) {
1193 
1194  *spin_here_p = FALSE;
1195 
1196  KA_TRACE(
1197  1000,
1198  ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n",
1199  lck, gtid));
1200 #ifdef DEBUG_QUEUING_LOCKS
1201  TRACE_LOCK_HT(gtid + 1, "acq exit: ", head, 0);
1202 #endif
1203 
1204 #if OMPT_SUPPORT
1205  if (ompt_enabled.enabled && prev_state != ompt_state_undefined) {
1206  /* change the state before clearing wait_id */
1207  this_thr->th.ompt_thread_info.state = prev_state;
1208  this_thr->th.ompt_thread_info.wait_id = 0;
1209  }
1210 #endif
1211 
1212  KMP_FSYNC_ACQUIRED(lck);
1213  return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */
1214  }
1215  enqueued = FALSE;
1216  } break;
1217  }
1218 
1219 #if OMPT_SUPPORT
1220  if (ompt_enabled.enabled && prev_state == ompt_state_undefined) {
1221  /* this thread will spin; set wait_id before entering wait state */
1222  prev_state = this_thr->th.ompt_thread_info.state;
1223  this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck;
1224  this_thr->th.ompt_thread_info.state = ompt_state_wait_lock;
1225  }
1226 #endif
1227 
1228  if (enqueued) {
1229  if (tail > 0) {
1230  kmp_info_t *tail_thr = __kmp_thread_from_gtid(tail - 1);
1231  KMP_ASSERT(tail_thr != NULL);
1232  tail_thr->th.th_next_waiting = gtid + 1;
1233  /* corresponding wait for this write in release code */
1234  }
1235  KA_TRACE(1000,
1236  ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n",
1237  lck, gtid));
1238 
1239  KMP_MB();
1240  // ToDo: Use __kmp_wait_sleep or similar when blocktime != inf
1241  KMP_WAIT(spin_here_p, FALSE, KMP_EQ, lck);
1242  // Synchronize writes to both runtime thread structures
1243  // and writes in user code.
1244  KMP_MB();
1245 
1246 #ifdef DEBUG_QUEUING_LOCKS
1247  TRACE_LOCK(gtid + 1, "acq spin");
1248 
1249  if (this_thr->th.th_next_waiting != 0)
1250  __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1251 #endif
1252  KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1253  KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after "
1254  "waiting on queue\n",
1255  lck, gtid));
1256 
1257 #ifdef DEBUG_QUEUING_LOCKS
1258  TRACE_LOCK(gtid + 1, "acq exit 2");
1259 #endif
1260 
1261 #if OMPT_SUPPORT
1262  /* change the state before clearing wait_id */
1263  this_thr->th.ompt_thread_info.state = prev_state;
1264  this_thr->th.ompt_thread_info.wait_id = 0;
1265 #endif
1266 
1267  /* got lock, we were dequeued by the thread that released lock */
1268  return KMP_LOCK_ACQUIRED_FIRST;
1269  }
1270 
1271  /* Yield if number of threads > number of logical processors */
1272  /* ToDo: Not sure why this should only be in oversubscription case,
1273  maybe should be traditional YIELD_INIT/YIELD_WHEN loop */
1274  KMP_YIELD_OVERSUB();
1275 
1276 #ifdef DEBUG_QUEUING_LOCKS
1277  TRACE_LOCK(gtid + 1, "acq retry");
1278 #endif
1279  }
1280  KMP_ASSERT2(0, "should not get here");
1281  return KMP_LOCK_ACQUIRED_FIRST;
1282 }
1283 
1284 int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1285  KMP_DEBUG_ASSERT(gtid >= 0);
1286 
1287  int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
1288  ANNOTATE_QUEUING_ACQUIRED(lck);
1289  return retval;
1290 }
1291 
1292 static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1293  kmp_int32 gtid) {
1294  char const *const func = "omp_set_lock";
1295  if (lck->lk.initialized != lck) {
1296  KMP_FATAL(LockIsUninitialized, func);
1297  }
1298  if (__kmp_is_queuing_lock_nestable(lck)) {
1299  KMP_FATAL(LockNestableUsedAsSimple, func);
1300  }
1301  if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1302  KMP_FATAL(LockIsAlreadyOwned, func);
1303  }
1304 
1305  __kmp_acquire_queuing_lock(lck, gtid);
1306 
1307  lck->lk.owner_id = gtid + 1;
1308  return KMP_LOCK_ACQUIRED_FIRST;
1309 }
1310 
1311 int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1312  volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1313  kmp_int32 head;
1314 #ifdef KMP_DEBUG
1315  kmp_info_t *this_thr;
1316 #endif
1317 
1318  KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid));
1319  KMP_DEBUG_ASSERT(gtid >= 0);
1320 #ifdef KMP_DEBUG
1321  this_thr = __kmp_thread_from_gtid(gtid);
1322  KMP_DEBUG_ASSERT(this_thr != NULL);
1323  KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
1324 #endif
1325 
1326  head = *head_id_p;
1327 
1328  if (head == 0) { /* nobody on queue, nobody holding */
1329  /* try (0,0)->(-1,0) */
1330  if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) {
1331  KA_TRACE(1000,
1332  ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid));
1333  KMP_FSYNC_ACQUIRED(lck);
1334  ANNOTATE_QUEUING_ACQUIRED(lck);
1335  return TRUE;
1336  }
1337  }
1338 
1339  KA_TRACE(1000,
1340  ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid));
1341  return FALSE;
1342 }
1343 
1344 static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1345  kmp_int32 gtid) {
1346  char const *const func = "omp_test_lock";
1347  if (lck->lk.initialized != lck) {
1348  KMP_FATAL(LockIsUninitialized, func);
1349  }
1350  if (__kmp_is_queuing_lock_nestable(lck)) {
1351  KMP_FATAL(LockNestableUsedAsSimple, func);
1352  }
1353 
1354  int retval = __kmp_test_queuing_lock(lck, gtid);
1355 
1356  if (retval) {
1357  lck->lk.owner_id = gtid + 1;
1358  }
1359  return retval;
1360 }
1361 
1362 int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1363  kmp_info_t *this_thr;
1364  volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1365  volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
1366 
1367  KA_TRACE(1000,
1368  ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
1369  KMP_DEBUG_ASSERT(gtid >= 0);
1370  this_thr = __kmp_thread_from_gtid(gtid);
1371  KMP_DEBUG_ASSERT(this_thr != NULL);
1372 #ifdef DEBUG_QUEUING_LOCKS
1373  TRACE_LOCK(gtid + 1, "rel ent");
1374 
1375  if (this_thr->th.th_spin_here)
1376  __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1377  if (this_thr->th.th_next_waiting != 0)
1378  __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1379 #endif
1380  KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
1381  KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1382 
1383  KMP_FSYNC_RELEASING(lck);
1384  ANNOTATE_QUEUING_RELEASED(lck);
1385 
1386  while (1) {
1387  kmp_int32 dequeued;
1388  kmp_int32 head;
1389  kmp_int32 tail;
1390 
1391  head = *head_id_p;
1392 
1393 #ifdef DEBUG_QUEUING_LOCKS
1394  tail = *tail_id_p;
1395  TRACE_LOCK_HT(gtid + 1, "rel read: ", head, tail);
1396  if (head == 0)
1397  __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1398 #endif
1399  KMP_DEBUG_ASSERT(head !=
1400  0); /* holding the lock, head must be -1 or queue head */
1401 
1402  if (head == -1) { /* nobody on queue */
1403  /* try (-1,0)->(0,0) */
1404  if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) {
1405  KA_TRACE(
1406  1000,
1407  ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n",
1408  lck, gtid));
1409 #ifdef DEBUG_QUEUING_LOCKS
1410  TRACE_LOCK_HT(gtid + 1, "rel exit: ", 0, 0);
1411 #endif
1412 
1413 #if OMPT_SUPPORT
1414 /* nothing to do - no other thread is trying to shift blame */
1415 #endif
1416  return KMP_LOCK_RELEASED;
1417  }
1418  dequeued = FALSE;
1419  } else {
1420  KMP_MB();
1421  tail = *tail_id_p;
1422  if (head == tail) { /* only one thread on the queue */
1423 #ifdef DEBUG_QUEUING_LOCKS
1424  if (head <= 0)
1425  __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1426 #endif
1427  KMP_DEBUG_ASSERT(head > 0);
1428 
1429  /* try (h,h)->(-1,0) */
1430  dequeued = KMP_COMPARE_AND_STORE_REL64(
1431  RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head),
1432  KMP_PACK_64(-1, 0));
1433 #ifdef DEBUG_QUEUING_LOCKS
1434  TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)");
1435 #endif
1436 
1437  } else {
1438  volatile kmp_int32 *waiting_id_p;
1439  kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
1440  KMP_DEBUG_ASSERT(head_thr != NULL);
1441  waiting_id_p = &head_thr->th.th_next_waiting;
1442 
1443 /* Does this require synchronous reads? */
1444 #ifdef DEBUG_QUEUING_LOCKS
1445  if (head <= 0 || tail <= 0)
1446  __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1447 #endif
1448  KMP_DEBUG_ASSERT(head > 0 && tail > 0);
1449 
1450  /* try (h,t)->(h',t) or (t,t) */
1451  KMP_MB();
1452  /* make sure enqueuing thread has time to update next waiting thread
1453  * field */
1454  *head_id_p =
1455  KMP_WAIT((volatile kmp_uint32 *)waiting_id_p, 0, KMP_NEQ, NULL);
1456 #ifdef DEBUG_QUEUING_LOCKS
1457  TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)");
1458 #endif
1459  dequeued = TRUE;
1460  }
1461  }
1462 
1463  if (dequeued) {
1464  kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
1465  KMP_DEBUG_ASSERT(head_thr != NULL);
1466 
1467 /* Does this require synchronous reads? */
1468 #ifdef DEBUG_QUEUING_LOCKS
1469  if (head <= 0 || tail <= 0)
1470  __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1471 #endif
1472  KMP_DEBUG_ASSERT(head > 0 && tail > 0);
1473 
1474  /* For clean code only. Thread not released until next statement prevents
1475  race with acquire code. */
1476  head_thr->th.th_next_waiting = 0;
1477 #ifdef DEBUG_QUEUING_LOCKS
1478  TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=", head);
1479 #endif
1480 
1481  KMP_MB();
1482  /* reset spin value */
1483  head_thr->th.th_spin_here = FALSE;
1484 
1485  KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after "
1486  "dequeuing\n",
1487  lck, gtid));
1488 #ifdef DEBUG_QUEUING_LOCKS
1489  TRACE_LOCK(gtid + 1, "rel exit 2");
1490 #endif
1491  return KMP_LOCK_RELEASED;
1492  }
1493 /* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring
1494  threads */
1495 
1496 #ifdef DEBUG_QUEUING_LOCKS
1497  TRACE_LOCK(gtid + 1, "rel retry");
1498 #endif
1499 
1500  } /* while */
1501  KMP_ASSERT2(0, "should not get here");
1502  return KMP_LOCK_RELEASED;
1503 }
1504 
1505 static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1506  kmp_int32 gtid) {
1507  char const *const func = "omp_unset_lock";
1508  KMP_MB(); /* in case another processor initialized lock */
1509  if (lck->lk.initialized != lck) {
1510  KMP_FATAL(LockIsUninitialized, func);
1511  }
1512  if (__kmp_is_queuing_lock_nestable(lck)) {
1513  KMP_FATAL(LockNestableUsedAsSimple, func);
1514  }
1515  if (__kmp_get_queuing_lock_owner(lck) == -1) {
1516  KMP_FATAL(LockUnsettingFree, func);
1517  }
1518  if (__kmp_get_queuing_lock_owner(lck) != gtid) {
1519  KMP_FATAL(LockUnsettingSetByAnother, func);
1520  }
1521  lck->lk.owner_id = 0;
1522  return __kmp_release_queuing_lock(lck, gtid);
1523 }
1524 
1525 void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) {
1526  lck->lk.location = NULL;
1527  lck->lk.head_id = 0;
1528  lck->lk.tail_id = 0;
1529  lck->lk.next_ticket = 0;
1530  lck->lk.now_serving = 0;
1531  lck->lk.owner_id = 0; // no thread owns the lock.
1532  lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
1533  lck->lk.initialized = lck;
1534 
1535  KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck));
1536 }
1537 
1538 void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) {
1539  lck->lk.initialized = NULL;
1540  lck->lk.location = NULL;
1541  lck->lk.head_id = 0;
1542  lck->lk.tail_id = 0;
1543  lck->lk.next_ticket = 0;
1544  lck->lk.now_serving = 0;
1545  lck->lk.owner_id = 0;
1546  lck->lk.depth_locked = -1;
1547 }
1548 
1549 static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
1550  char const *const func = "omp_destroy_lock";
1551  if (lck->lk.initialized != lck) {
1552  KMP_FATAL(LockIsUninitialized, func);
1553  }
1554  if (__kmp_is_queuing_lock_nestable(lck)) {
1555  KMP_FATAL(LockNestableUsedAsSimple, func);
1556  }
1557  if (__kmp_get_queuing_lock_owner(lck) != -1) {
1558  KMP_FATAL(LockStillOwned, func);
1559  }
1560  __kmp_destroy_queuing_lock(lck);
1561 }
1562 
1563 // nested queuing locks
1564 
1565 int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1566  KMP_DEBUG_ASSERT(gtid >= 0);
1567 
1568  if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1569  lck->lk.depth_locked += 1;
1570  return KMP_LOCK_ACQUIRED_NEXT;
1571  } else {
1572  __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
1573  ANNOTATE_QUEUING_ACQUIRED(lck);
1574  KMP_MB();
1575  lck->lk.depth_locked = 1;
1576  KMP_MB();
1577  lck->lk.owner_id = gtid + 1;
1578  return KMP_LOCK_ACQUIRED_FIRST;
1579  }
1580 }
1581 
1582 static int
1583 __kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1584  kmp_int32 gtid) {
1585  char const *const func = "omp_set_nest_lock";
1586  if (lck->lk.initialized != lck) {
1587  KMP_FATAL(LockIsUninitialized, func);
1588  }
1589  if (!__kmp_is_queuing_lock_nestable(lck)) {
1590  KMP_FATAL(LockSimpleUsedAsNestable, func);
1591  }
1592  return __kmp_acquire_nested_queuing_lock(lck, gtid);
1593 }
1594 
1595 int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1596  int retval;
1597 
1598  KMP_DEBUG_ASSERT(gtid >= 0);
1599 
1600  if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1601  retval = ++lck->lk.depth_locked;
1602  } else if (!__kmp_test_queuing_lock(lck, gtid)) {
1603  retval = 0;
1604  } else {
1605  KMP_MB();
1606  retval = lck->lk.depth_locked = 1;
1607  KMP_MB();
1608  lck->lk.owner_id = gtid + 1;
1609  }
1610  return retval;
1611 }
1612 
1613 static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1614  kmp_int32 gtid) {
1615  char const *const func = "omp_test_nest_lock";
1616  if (lck->lk.initialized != lck) {
1617  KMP_FATAL(LockIsUninitialized, func);
1618  }
1619  if (!__kmp_is_queuing_lock_nestable(lck)) {
1620  KMP_FATAL(LockSimpleUsedAsNestable, func);
1621  }
1622  return __kmp_test_nested_queuing_lock(lck, gtid);
1623 }
1624 
1625 int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1626  KMP_DEBUG_ASSERT(gtid >= 0);
1627 
1628  KMP_MB();
1629  if (--(lck->lk.depth_locked) == 0) {
1630  KMP_MB();
1631  lck->lk.owner_id = 0;
1632  __kmp_release_queuing_lock(lck, gtid);
1633  return KMP_LOCK_RELEASED;
1634  }
1635  return KMP_LOCK_STILL_HELD;
1636 }
1637 
1638 static int
1639 __kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1640  kmp_int32 gtid) {
1641  char const *const func = "omp_unset_nest_lock";
1642  KMP_MB(); /* in case another processor initialized lock */
1643  if (lck->lk.initialized != lck) {
1644  KMP_FATAL(LockIsUninitialized, func);
1645  }
1646  if (!__kmp_is_queuing_lock_nestable(lck)) {
1647  KMP_FATAL(LockSimpleUsedAsNestable, func);
1648  }
1649  if (__kmp_get_queuing_lock_owner(lck) == -1) {
1650  KMP_FATAL(LockUnsettingFree, func);
1651  }
1652  if (__kmp_get_queuing_lock_owner(lck) != gtid) {
1653  KMP_FATAL(LockUnsettingSetByAnother, func);
1654  }
1655  return __kmp_release_nested_queuing_lock(lck, gtid);
1656 }
1657 
1658 void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) {
1659  __kmp_init_queuing_lock(lck);
1660  lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
1661 }
1662 
1663 void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) {
1664  __kmp_destroy_queuing_lock(lck);
1665  lck->lk.depth_locked = 0;
1666 }
1667 
1668 static void
1669 __kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
1670  char const *const func = "omp_destroy_nest_lock";
1671  if (lck->lk.initialized != lck) {
1672  KMP_FATAL(LockIsUninitialized, func);
1673  }
1674  if (!__kmp_is_queuing_lock_nestable(lck)) {
1675  KMP_FATAL(LockSimpleUsedAsNestable, func);
1676  }
1677  if (__kmp_get_queuing_lock_owner(lck) != -1) {
1678  KMP_FATAL(LockStillOwned, func);
1679  }
1680  __kmp_destroy_nested_queuing_lock(lck);
1681 }
1682 
1683 // access functions to fields which don't exist for all lock kinds.
1684 
1685 static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) {
1686  return lck->lk.location;
1687 }
1688 
1689 static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck,
1690  const ident_t *loc) {
1691  lck->lk.location = loc;
1692 }
1693 
1694 static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) {
1695  return lck->lk.flags;
1696 }
1697 
1698 static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck,
1699  kmp_lock_flags_t flags) {
1700  lck->lk.flags = flags;
1701 }
1702 
1703 #if KMP_USE_ADAPTIVE_LOCKS
1704 
1705 /* RTM Adaptive locks */
1706 
1707 #if (KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300) || \
1708  (KMP_COMPILER_MSVC && _MSC_VER >= 1700) || \
1709  (KMP_COMPILER_CLANG && KMP_MSVC_COMPAT)
1710 
1711 #include <immintrin.h>
1712 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
1713 
1714 #else
1715 
1716 // Values from the status register after failed speculation.
1717 #define _XBEGIN_STARTED (~0u)
1718 #define _XABORT_EXPLICIT (1 << 0)
1719 #define _XABORT_RETRY (1 << 1)
1720 #define _XABORT_CONFLICT (1 << 2)
1721 #define _XABORT_CAPACITY (1 << 3)
1722 #define _XABORT_DEBUG (1 << 4)
1723 #define _XABORT_NESTED (1 << 5)
1724 #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF))
1725 
1726 // Aborts for which it's worth trying again immediately
1727 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
1728 
1729 #define STRINGIZE_INTERNAL(arg) #arg
1730 #define STRINGIZE(arg) STRINGIZE_INTERNAL(arg)
1731 
1732 // Access to RTM instructions
1733 /*A version of XBegin which returns -1 on speculation, and the value of EAX on
1734  an abort. This is the same definition as the compiler intrinsic that will be
1735  supported at some point. */
1736 static __inline int _xbegin() {
1737  int res = -1;
1738 
1739 #if KMP_OS_WINDOWS
1740 #if KMP_ARCH_X86_64
1741  _asm {
1742  _emit 0xC7
1743  _emit 0xF8
1744  _emit 2
1745  _emit 0
1746  _emit 0
1747  _emit 0
1748  jmp L2
1749  mov res, eax
1750  L2:
1751  }
1752 #else /* IA32 */
1753  _asm {
1754  _emit 0xC7
1755  _emit 0xF8
1756  _emit 2
1757  _emit 0
1758  _emit 0
1759  _emit 0
1760  jmp L2
1761  mov res, eax
1762  L2:
1763  }
1764 #endif // KMP_ARCH_X86_64
1765 #else
1766  /* Note that %eax must be noted as killed (clobbered), because the XSR is
1767  returned in %eax(%rax) on abort. Other register values are restored, so
1768  don't need to be killed.
1769 
1770  We must also mark 'res' as an input and an output, since otherwise
1771  'res=-1' may be dropped as being dead, whereas we do need the assignment on
1772  the successful (i.e., non-abort) path. */
1773  __asm__ volatile("1: .byte 0xC7; .byte 0xF8;\n"
1774  " .long 1f-1b-6\n"
1775  " jmp 2f\n"
1776  "1: movl %%eax,%0\n"
1777  "2:"
1778  : "+r"(res)::"memory", "%eax");
1779 #endif // KMP_OS_WINDOWS
1780  return res;
1781 }
1782 
1783 /* Transaction end */
1784 static __inline void _xend() {
1785 #if KMP_OS_WINDOWS
1786  __asm {
1787  _emit 0x0f
1788  _emit 0x01
1789  _emit 0xd5
1790  }
1791 #else
1792  __asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory");
1793 #endif
1794 }
1795 
1796 /* This is a macro, the argument must be a single byte constant which can be
1797  evaluated by the inline assembler, since it is emitted as a byte into the
1798  assembly code. */
1799 // clang-format off
1800 #if KMP_OS_WINDOWS
1801 #define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG
1802 #else
1803 #define _xabort(ARG) \
1804  __asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory");
1805 #endif
1806 // clang-format on
1807 #endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
1808 
1809 // Statistics is collected for testing purpose
1810 #if KMP_DEBUG_ADAPTIVE_LOCKS
1811 
1812 // We accumulate speculative lock statistics when the lock is destroyed. We
1813 // keep locks that haven't been destroyed in the liveLocks list so that we can
1814 // grab their statistics too.
1815 static kmp_adaptive_lock_statistics_t destroyedStats;
1816 
1817 // To hold the list of live locks.
1818 static kmp_adaptive_lock_info_t liveLocks;
1819 
1820 // A lock so we can safely update the list of locks.
1821 static kmp_bootstrap_lock_t chain_lock =
1822  KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock);
1823 
1824 // Initialize the list of stats.
1825 void __kmp_init_speculative_stats() {
1826  kmp_adaptive_lock_info_t *lck = &liveLocks;
1827 
1828  memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0,
1829  sizeof(lck->stats));
1830  lck->stats.next = lck;
1831  lck->stats.prev = lck;
1832 
1833  KMP_ASSERT(lck->stats.next->stats.prev == lck);
1834  KMP_ASSERT(lck->stats.prev->stats.next == lck);
1835 
1836  __kmp_init_bootstrap_lock(&chain_lock);
1837 }
1838 
1839 // Insert the lock into the circular list
1840 static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) {
1841  __kmp_acquire_bootstrap_lock(&chain_lock);
1842 
1843  lck->stats.next = liveLocks.stats.next;
1844  lck->stats.prev = &liveLocks;
1845 
1846  liveLocks.stats.next = lck;
1847  lck->stats.next->stats.prev = lck;
1848 
1849  KMP_ASSERT(lck->stats.next->stats.prev == lck);
1850  KMP_ASSERT(lck->stats.prev->stats.next == lck);
1851 
1852  __kmp_release_bootstrap_lock(&chain_lock);
1853 }
1854 
1855 static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) {
1856  KMP_ASSERT(lck->stats.next->stats.prev == lck);
1857  KMP_ASSERT(lck->stats.prev->stats.next == lck);
1858 
1859  kmp_adaptive_lock_info_t *n = lck->stats.next;
1860  kmp_adaptive_lock_info_t *p = lck->stats.prev;
1861 
1862  n->stats.prev = p;
1863  p->stats.next = n;
1864 }
1865 
1866 static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) {
1867  memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0,
1868  sizeof(lck->stats));
1869  __kmp_remember_lock(lck);
1870 }
1871 
1872 static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t,
1873  kmp_adaptive_lock_info_t *lck) {
1874  kmp_adaptive_lock_statistics_t volatile *s = &lck->stats;
1875 
1876  t->nonSpeculativeAcquireAttempts += lck->acquire_attempts;
1877  t->successfulSpeculations += s->successfulSpeculations;
1878  t->hardFailedSpeculations += s->hardFailedSpeculations;
1879  t->softFailedSpeculations += s->softFailedSpeculations;
1880  t->nonSpeculativeAcquires += s->nonSpeculativeAcquires;
1881  t->lemmingYields += s->lemmingYields;
1882 }
1883 
1884 static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) {
1885  __kmp_acquire_bootstrap_lock(&chain_lock);
1886 
1887  __kmp_add_stats(&destroyedStats, lck);
1888  __kmp_forget_lock(lck);
1889 
1890  __kmp_release_bootstrap_lock(&chain_lock);
1891 }
1892 
1893 static float percent(kmp_uint32 count, kmp_uint32 total) {
1894  return (total == 0) ? 0.0 : (100.0 * count) / total;
1895 }
1896 
1897 static FILE *__kmp_open_stats_file() {
1898  if (strcmp(__kmp_speculative_statsfile, "-") == 0)
1899  return stdout;
1900 
1901  size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20;
1902  char buffer[buffLen];
1903  KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile,
1904  (kmp_int32)getpid());
1905  FILE *result = fopen(&buffer[0], "w");
1906 
1907  // Maybe we should issue a warning here...
1908  return result ? result : stdout;
1909 }
1910 
1911 void __kmp_print_speculative_stats() {
1912  kmp_adaptive_lock_statistics_t total = destroyedStats;
1913  kmp_adaptive_lock_info_t *lck;
1914 
1915  for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) {
1916  __kmp_add_stats(&total, lck);
1917  }
1918  kmp_adaptive_lock_statistics_t *t = &total;
1919  kmp_uint32 totalSections =
1920  t->nonSpeculativeAcquires + t->successfulSpeculations;
1921  kmp_uint32 totalSpeculations = t->successfulSpeculations +
1922  t->hardFailedSpeculations +
1923  t->softFailedSpeculations;
1924  if (totalSections <= 0)
1925  return;
1926 
1927  FILE *statsFile = __kmp_open_stats_file();
1928 
1929  fprintf(statsFile, "Speculative lock statistics (all approximate!)\n");
1930  fprintf(statsFile, " Lock parameters: \n"
1931  " max_soft_retries : %10d\n"
1932  " max_badness : %10d\n",
1933  __kmp_adaptive_backoff_params.max_soft_retries,
1934  __kmp_adaptive_backoff_params.max_badness);
1935  fprintf(statsFile, " Non-speculative acquire attempts : %10d\n",
1936  t->nonSpeculativeAcquireAttempts);
1937  fprintf(statsFile, " Total critical sections : %10d\n",
1938  totalSections);
1939  fprintf(statsFile, " Successful speculations : %10d (%5.1f%%)\n",
1940  t->successfulSpeculations,
1941  percent(t->successfulSpeculations, totalSections));
1942  fprintf(statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n",
1943  t->nonSpeculativeAcquires,
1944  percent(t->nonSpeculativeAcquires, totalSections));
1945  fprintf(statsFile, " Lemming yields : %10d\n\n",
1946  t->lemmingYields);
1947 
1948  fprintf(statsFile, " Speculative acquire attempts : %10d\n",
1949  totalSpeculations);
1950  fprintf(statsFile, " Successes : %10d (%5.1f%%)\n",
1951  t->successfulSpeculations,
1952  percent(t->successfulSpeculations, totalSpeculations));
1953  fprintf(statsFile, " Soft failures : %10d (%5.1f%%)\n",
1954  t->softFailedSpeculations,
1955  percent(t->softFailedSpeculations, totalSpeculations));
1956  fprintf(statsFile, " Hard failures : %10d (%5.1f%%)\n",
1957  t->hardFailedSpeculations,
1958  percent(t->hardFailedSpeculations, totalSpeculations));
1959 
1960  if (statsFile != stdout)
1961  fclose(statsFile);
1962 }
1963 
1964 #define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++)
1965 #else
1966 #define KMP_INC_STAT(lck, stat)
1967 
1968 #endif // KMP_DEBUG_ADAPTIVE_LOCKS
1969 
1970 static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) {
1971  // It is enough to check that the head_id is zero.
1972  // We don't also need to check the tail.
1973  bool res = lck->lk.head_id == 0;
1974 
1975 // We need a fence here, since we must ensure that no memory operations
1976 // from later in this thread float above that read.
1977 #if KMP_COMPILER_ICC
1978  _mm_mfence();
1979 #else
1980  __sync_synchronize();
1981 #endif
1982 
1983  return res;
1984 }
1985 
1986 // Functions for manipulating the badness
1987 static __inline void
1988 __kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) {
1989  // Reset the badness to zero so we eagerly try to speculate again
1990  lck->lk.adaptive.badness = 0;
1991  KMP_INC_STAT(lck, successfulSpeculations);
1992 }
1993 
1994 // Create a bit mask with one more set bit.
1995 static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) {
1996  kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1;
1997  if (newBadness > lck->lk.adaptive.max_badness) {
1998  return;
1999  } else {
2000  lck->lk.adaptive.badness = newBadness;
2001  }
2002 }
2003 
2004 // Check whether speculation should be attempted.
2005 static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck,
2006  kmp_int32 gtid) {
2007  kmp_uint32 badness = lck->lk.adaptive.badness;
2008  kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts;
2009  int res = (attempts & badness) == 0;
2010  return res;
2011 }
2012 
2013 // Attempt to acquire only the speculative lock.
2014 // Does not back off to the non-speculative lock.
2015 static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck,
2016  kmp_int32 gtid) {
2017  int retries = lck->lk.adaptive.max_soft_retries;
2018 
2019  // We don't explicitly count the start of speculation, rather we record the
2020  // results (success, hard fail, soft fail). The sum of all of those is the
2021  // total number of times we started speculation since all speculations must
2022  // end one of those ways.
2023  do {
2024  kmp_uint32 status = _xbegin();
2025  // Switch this in to disable actual speculation but exercise at least some
2026  // of the rest of the code. Useful for debugging...
2027  // kmp_uint32 status = _XABORT_NESTED;
2028 
2029  if (status == _XBEGIN_STARTED) {
2030  /* We have successfully started speculation. Check that no-one acquired
2031  the lock for real between when we last looked and now. This also gets
2032  the lock cache line into our read-set, which we need so that we'll
2033  abort if anyone later claims it for real. */
2034  if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2035  // Lock is now visibly acquired, so someone beat us to it. Abort the
2036  // transaction so we'll restart from _xbegin with the failure status.
2037  _xabort(0x01);
2038  KMP_ASSERT2(0, "should not get here");
2039  }
2040  return 1; // Lock has been acquired (speculatively)
2041  } else {
2042  // We have aborted, update the statistics
2043  if (status & SOFT_ABORT_MASK) {
2044  KMP_INC_STAT(lck, softFailedSpeculations);
2045  // and loop round to retry.
2046  } else {
2047  KMP_INC_STAT(lck, hardFailedSpeculations);
2048  // Give up if we had a hard failure.
2049  break;
2050  }
2051  }
2052  } while (retries--); // Loop while we have retries, and didn't fail hard.
2053 
2054  // Either we had a hard failure or we didn't succeed softly after
2055  // the full set of attempts, so back off the badness.
2056  __kmp_step_badness(lck);
2057  return 0;
2058 }
2059 
2060 // Attempt to acquire the speculative lock, or back off to the non-speculative
2061 // one if the speculative lock cannot be acquired.
2062 // We can succeed speculatively, non-speculatively, or fail.
2063 static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) {
2064  // First try to acquire the lock speculatively
2065  if (__kmp_should_speculate(lck, gtid) &&
2066  __kmp_test_adaptive_lock_only(lck, gtid))
2067  return 1;
2068 
2069  // Speculative acquisition failed, so try to acquire it non-speculatively.
2070  // Count the non-speculative acquire attempt
2071  lck->lk.adaptive.acquire_attempts++;
2072 
2073  // Use base, non-speculative lock.
2074  if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) {
2075  KMP_INC_STAT(lck, nonSpeculativeAcquires);
2076  return 1; // Lock is acquired (non-speculatively)
2077  } else {
2078  return 0; // Failed to acquire the lock, it's already visibly locked.
2079  }
2080 }
2081 
2082 static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2083  kmp_int32 gtid) {
2084  char const *const func = "omp_test_lock";
2085  if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2086  KMP_FATAL(LockIsUninitialized, func);
2087  }
2088 
2089  int retval = __kmp_test_adaptive_lock(lck, gtid);
2090 
2091  if (retval) {
2092  lck->lk.qlk.owner_id = gtid + 1;
2093  }
2094  return retval;
2095 }
2096 
2097 // Block until we can acquire a speculative, adaptive lock. We check whether we
2098 // should be trying to speculate. If we should be, we check the real lock to see
2099 // if it is free, and, if not, pause without attempting to acquire it until it
2100 // is. Then we try the speculative acquire. This means that although we suffer
2101 // from lemmings a little (because all we can't acquire the lock speculatively
2102 // until the queue of threads waiting has cleared), we don't get into a state
2103 // where we can never acquire the lock speculatively (because we force the queue
2104 // to clear by preventing new arrivals from entering the queue). This does mean
2105 // that when we're trying to break lemmings, the lock is no longer fair. However
2106 // OpenMP makes no guarantee that its locks are fair, so this isn't a real
2107 // problem.
2108 static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck,
2109  kmp_int32 gtid) {
2110  if (__kmp_should_speculate(lck, gtid)) {
2111  if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2112  if (__kmp_test_adaptive_lock_only(lck, gtid))
2113  return;
2114  // We tried speculation and failed, so give up.
2115  } else {
2116  // We can't try speculation until the lock is free, so we pause here
2117  // (without suspending on the queueing lock, to allow it to drain, then
2118  // try again. All other threads will also see the same result for
2119  // shouldSpeculate, so will be doing the same if they try to claim the
2120  // lock from now on.
2121  while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2122  KMP_INC_STAT(lck, lemmingYields);
2123  KMP_YIELD(TRUE);
2124  }
2125 
2126  if (__kmp_test_adaptive_lock_only(lck, gtid))
2127  return;
2128  }
2129  }
2130 
2131  // Speculative acquisition failed, so acquire it non-speculatively.
2132  // Count the non-speculative acquire attempt
2133  lck->lk.adaptive.acquire_attempts++;
2134 
2135  __kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid);
2136  // We have acquired the base lock, so count that.
2137  KMP_INC_STAT(lck, nonSpeculativeAcquires);
2138  ANNOTATE_QUEUING_ACQUIRED(lck);
2139 }
2140 
2141 static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2142  kmp_int32 gtid) {
2143  char const *const func = "omp_set_lock";
2144  if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2145  KMP_FATAL(LockIsUninitialized, func);
2146  }
2147  if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) {
2148  KMP_FATAL(LockIsAlreadyOwned, func);
2149  }
2150 
2151  __kmp_acquire_adaptive_lock(lck, gtid);
2152 
2153  lck->lk.qlk.owner_id = gtid + 1;
2154 }
2155 
2156 static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck,
2157  kmp_int32 gtid) {
2158  if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(
2159  lck))) { // If the lock doesn't look claimed we must be speculating.
2160  // (Or the user's code is buggy and they're releasing without locking;
2161  // if we had XTEST we'd be able to check that case...)
2162  _xend(); // Exit speculation
2163  __kmp_update_badness_after_success(lck);
2164  } else { // Since the lock *is* visibly locked we're not speculating,
2165  // so should use the underlying lock's release scheme.
2166  __kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid);
2167  }
2168  return KMP_LOCK_RELEASED;
2169 }
2170 
2171 static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2172  kmp_int32 gtid) {
2173  char const *const func = "omp_unset_lock";
2174  KMP_MB(); /* in case another processor initialized lock */
2175  if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2176  KMP_FATAL(LockIsUninitialized, func);
2177  }
2178  if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) {
2179  KMP_FATAL(LockUnsettingFree, func);
2180  }
2181  if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) {
2182  KMP_FATAL(LockUnsettingSetByAnother, func);
2183  }
2184  lck->lk.qlk.owner_id = 0;
2185  __kmp_release_adaptive_lock(lck, gtid);
2186  return KMP_LOCK_RELEASED;
2187 }
2188 
2189 static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) {
2190  __kmp_init_queuing_lock(GET_QLK_PTR(lck));
2191  lck->lk.adaptive.badness = 0;
2192  lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0;
2193  lck->lk.adaptive.max_soft_retries =
2194  __kmp_adaptive_backoff_params.max_soft_retries;
2195  lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness;
2196 #if KMP_DEBUG_ADAPTIVE_LOCKS
2197  __kmp_zero_speculative_stats(&lck->lk.adaptive);
2198 #endif
2199  KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck));
2200 }
2201 
2202 static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) {
2203 #if KMP_DEBUG_ADAPTIVE_LOCKS
2204  __kmp_accumulate_speculative_stats(&lck->lk.adaptive);
2205 #endif
2206  __kmp_destroy_queuing_lock(GET_QLK_PTR(lck));
2207  // Nothing needed for the speculative part.
2208 }
2209 
2210 static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
2211  char const *const func = "omp_destroy_lock";
2212  if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2213  KMP_FATAL(LockIsUninitialized, func);
2214  }
2215  if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) {
2216  KMP_FATAL(LockStillOwned, func);
2217  }
2218  __kmp_destroy_adaptive_lock(lck);
2219 }
2220 
2221 #endif // KMP_USE_ADAPTIVE_LOCKS
2222 
2223 /* ------------------------------------------------------------------------ */
2224 /* DRDPA ticket locks */
2225 /* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */
2226 
2227 static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) {
2228  return lck->lk.owner_id - 1;
2229 }
2230 
2231 static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) {
2232  return lck->lk.depth_locked != -1;
2233 }
2234 
2235 __forceinline static int
2236 __kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2237  kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket);
2238  kmp_uint64 mask = lck->lk.mask; // atomic load
2239  std::atomic<kmp_uint64> *polls = lck->lk.polls;
2240 
2241 #ifdef USE_LOCK_PROFILE
2242  if (polls[ticket & mask] != ticket)
2243  __kmp_printf("LOCK CONTENTION: %p\n", lck);
2244 /* else __kmp_printf( "." );*/
2245 #endif /* USE_LOCK_PROFILE */
2246 
2247  // Now spin-wait, but reload the polls pointer and mask, in case the
2248  // polling area has been reconfigured. Unless it is reconfigured, the
2249  // reloads stay in L1 cache and are cheap.
2250  //
2251  // Keep this code in sync with KMP_WAIT, in kmp_dispatch.cpp !!!
2252  // The current implementation of KMP_WAIT doesn't allow for mask
2253  // and poll to be re-read every spin iteration.
2254  kmp_uint32 spins;
2255  KMP_FSYNC_PREPARE(lck);
2256  KMP_INIT_YIELD(spins);
2257  while (polls[ticket & mask] < ticket) { // atomic load
2258  KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
2259  // Re-read the mask and the poll pointer from the lock structure.
2260  //
2261  // Make certain that "mask" is read before "polls" !!!
2262  //
2263  // If another thread picks reconfigures the polling area and updates their
2264  // values, and we get the new value of mask and the old polls pointer, we
2265  // could access memory beyond the end of the old polling area.
2266  mask = lck->lk.mask; // atomic load
2267  polls = lck->lk.polls; // atomic load
2268  }
2269 
2270  // Critical section starts here
2271  KMP_FSYNC_ACQUIRED(lck);
2272  KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n",
2273  ticket, lck));
2274  lck->lk.now_serving = ticket; // non-volatile store
2275 
2276  // Deallocate a garbage polling area if we know that we are the last
2277  // thread that could possibly access it.
2278  //
2279  // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup
2280  // ticket.
2281  if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) {
2282  __kmp_free(lck->lk.old_polls);
2283  lck->lk.old_polls = NULL;
2284  lck->lk.cleanup_ticket = 0;
2285  }
2286 
2287  // Check to see if we should reconfigure the polling area.
2288  // If there is still a garbage polling area to be deallocated from a
2289  // previous reconfiguration, let a later thread reconfigure it.
2290  if (lck->lk.old_polls == NULL) {
2291  bool reconfigure = false;
2292  std::atomic<kmp_uint64> *old_polls = polls;
2293  kmp_uint32 num_polls = TCR_4(lck->lk.num_polls);
2294 
2295  if (TCR_4(__kmp_nth) >
2296  (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) {
2297  // We are in oversubscription mode. Contract the polling area
2298  // down to a single location, if that hasn't been done already.
2299  if (num_polls > 1) {
2300  reconfigure = true;
2301  num_polls = TCR_4(lck->lk.num_polls);
2302  mask = 0;
2303  num_polls = 1;
2304  polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
2305  sizeof(*polls));
2306  polls[0] = ticket;
2307  }
2308  } else {
2309  // We are in under/fully subscribed mode. Check the number of
2310  // threads waiting on the lock. The size of the polling area
2311  // should be at least the number of threads waiting.
2312  kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1;
2313  if (num_waiting > num_polls) {
2314  kmp_uint32 old_num_polls = num_polls;
2315  reconfigure = true;
2316  do {
2317  mask = (mask << 1) | 1;
2318  num_polls *= 2;
2319  } while (num_polls <= num_waiting);
2320 
2321  // Allocate the new polling area, and copy the relevant portion
2322  // of the old polling area to the new area. __kmp_allocate()
2323  // zeroes the memory it allocates, and most of the old area is
2324  // just zero padding, so we only copy the release counters.
2325  polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
2326  sizeof(*polls));
2327  kmp_uint32 i;
2328  for (i = 0; i < old_num_polls; i++) {
2329  polls[i].store(old_polls[i]);
2330  }
2331  }
2332  }
2333 
2334  if (reconfigure) {
2335  // Now write the updated fields back to the lock structure.
2336  //
2337  // Make certain that "polls" is written before "mask" !!!
2338  //
2339  // If another thread picks up the new value of mask and the old polls
2340  // pointer , it could access memory beyond the end of the old polling
2341  // area.
2342  //
2343  // On x86, we need memory fences.
2344  KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring "
2345  "lock %p to %d polls\n",
2346  ticket, lck, num_polls));
2347 
2348  lck->lk.old_polls = old_polls;
2349  lck->lk.polls = polls; // atomic store
2350 
2351  KMP_MB();
2352 
2353  lck->lk.num_polls = num_polls;
2354  lck->lk.mask = mask; // atomic store
2355 
2356  KMP_MB();
2357 
2358  // Only after the new polling area and mask have been flushed
2359  // to main memory can we update the cleanup ticket field.
2360  //
2361  // volatile load / non-volatile store
2362  lck->lk.cleanup_ticket = lck->lk.next_ticket;
2363  }
2364  }
2365  return KMP_LOCK_ACQUIRED_FIRST;
2366 }
2367 
2368 int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2369  int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
2370  ANNOTATE_DRDPA_ACQUIRED(lck);
2371  return retval;
2372 }
2373 
2374 static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2375  kmp_int32 gtid) {
2376  char const *const func = "omp_set_lock";
2377  if (lck->lk.initialized != lck) {
2378  KMP_FATAL(LockIsUninitialized, func);
2379  }
2380  if (__kmp_is_drdpa_lock_nestable(lck)) {
2381  KMP_FATAL(LockNestableUsedAsSimple, func);
2382  }
2383  if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) {
2384  KMP_FATAL(LockIsAlreadyOwned, func);
2385  }
2386 
2387  __kmp_acquire_drdpa_lock(lck, gtid);
2388 
2389  lck->lk.owner_id = gtid + 1;
2390  return KMP_LOCK_ACQUIRED_FIRST;
2391 }
2392 
2393 int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2394  // First get a ticket, then read the polls pointer and the mask.
2395  // The polls pointer must be read before the mask!!! (See above)
2396  kmp_uint64 ticket = lck->lk.next_ticket; // atomic load
2397  std::atomic<kmp_uint64> *polls = lck->lk.polls;
2398  kmp_uint64 mask = lck->lk.mask; // atomic load
2399  if (polls[ticket & mask] == ticket) {
2400  kmp_uint64 next_ticket = ticket + 1;
2401  if (__kmp_atomic_compare_store_acq(&lck->lk.next_ticket, ticket,
2402  next_ticket)) {
2403  KMP_FSYNC_ACQUIRED(lck);
2404  KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n",
2405  ticket, lck));
2406  lck->lk.now_serving = ticket; // non-volatile store
2407 
2408  // Since no threads are waiting, there is no possibility that we would
2409  // want to reconfigure the polling area. We might have the cleanup ticket
2410  // value (which says that it is now safe to deallocate old_polls), but
2411  // we'll let a later thread which calls __kmp_acquire_lock do that - this
2412  // routine isn't supposed to block, and we would risk blocks if we called
2413  // __kmp_free() to do the deallocation.
2414  return TRUE;
2415  }
2416  }
2417  return FALSE;
2418 }
2419 
2420 static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2421  kmp_int32 gtid) {
2422  char const *const func = "omp_test_lock";
2423  if (lck->lk.initialized != lck) {
2424  KMP_FATAL(LockIsUninitialized, func);
2425  }
2426  if (__kmp_is_drdpa_lock_nestable(lck)) {
2427  KMP_FATAL(LockNestableUsedAsSimple, func);
2428  }
2429 
2430  int retval = __kmp_test_drdpa_lock(lck, gtid);
2431 
2432  if (retval) {
2433  lck->lk.owner_id = gtid + 1;
2434  }
2435  return retval;
2436 }
2437 
2438 int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2439  // Read the ticket value from the lock data struct, then the polls pointer and
2440  // the mask. The polls pointer must be read before the mask!!! (See above)
2441  kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load
2442  std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load
2443  kmp_uint64 mask = lck->lk.mask; // atomic load
2444  KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n",
2445  ticket - 1, lck));
2446  KMP_FSYNC_RELEASING(lck);
2447  ANNOTATE_DRDPA_RELEASED(lck);
2448  polls[ticket & mask] = ticket; // atomic store
2449  return KMP_LOCK_RELEASED;
2450 }
2451 
2452 static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2453  kmp_int32 gtid) {
2454  char const *const func = "omp_unset_lock";
2455  KMP_MB(); /* in case another processor initialized lock */
2456  if (lck->lk.initialized != lck) {
2457  KMP_FATAL(LockIsUninitialized, func);
2458  }
2459  if (__kmp_is_drdpa_lock_nestable(lck)) {
2460  KMP_FATAL(LockNestableUsedAsSimple, func);
2461  }
2462  if (__kmp_get_drdpa_lock_owner(lck) == -1) {
2463  KMP_FATAL(LockUnsettingFree, func);
2464  }
2465  if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) &&
2466  (__kmp_get_drdpa_lock_owner(lck) != gtid)) {
2467  KMP_FATAL(LockUnsettingSetByAnother, func);
2468  }
2469  lck->lk.owner_id = 0;
2470  return __kmp_release_drdpa_lock(lck, gtid);
2471 }
2472 
2473 void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) {
2474  lck->lk.location = NULL;
2475  lck->lk.mask = 0;
2476  lck->lk.num_polls = 1;
2477  lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate(
2478  lck->lk.num_polls * sizeof(*(lck->lk.polls)));
2479  lck->lk.cleanup_ticket = 0;
2480  lck->lk.old_polls = NULL;
2481  lck->lk.next_ticket = 0;
2482  lck->lk.now_serving = 0;
2483  lck->lk.owner_id = 0; // no thread owns the lock.
2484  lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
2485  lck->lk.initialized = lck;
2486 
2487  KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck));
2488 }
2489 
2490 void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) {
2491  lck->lk.initialized = NULL;
2492  lck->lk.location = NULL;
2493  if (lck->lk.polls.load() != NULL) {
2494  __kmp_free(lck->lk.polls.load());
2495  lck->lk.polls = NULL;
2496  }
2497  if (lck->lk.old_polls != NULL) {
2498  __kmp_free(lck->lk.old_polls);
2499  lck->lk.old_polls = NULL;
2500  }
2501  lck->lk.mask = 0;
2502  lck->lk.num_polls = 0;
2503  lck->lk.cleanup_ticket = 0;
2504  lck->lk.next_ticket = 0;
2505  lck->lk.now_serving = 0;
2506  lck->lk.owner_id = 0;
2507  lck->lk.depth_locked = -1;
2508 }
2509 
2510 static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
2511  char const *const func = "omp_destroy_lock";
2512  if (lck->lk.initialized != lck) {
2513  KMP_FATAL(LockIsUninitialized, func);
2514  }
2515  if (__kmp_is_drdpa_lock_nestable(lck)) {
2516  KMP_FATAL(LockNestableUsedAsSimple, func);
2517  }
2518  if (__kmp_get_drdpa_lock_owner(lck) != -1) {
2519  KMP_FATAL(LockStillOwned, func);
2520  }
2521  __kmp_destroy_drdpa_lock(lck);
2522 }
2523 
2524 // nested drdpa ticket locks
2525 
2526 int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2527  KMP_DEBUG_ASSERT(gtid >= 0);
2528 
2529  if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
2530  lck->lk.depth_locked += 1;
2531  return KMP_LOCK_ACQUIRED_NEXT;
2532  } else {
2533  __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
2534  ANNOTATE_DRDPA_ACQUIRED(lck);
2535  KMP_MB();
2536  lck->lk.depth_locked = 1;
2537  KMP_MB();
2538  lck->lk.owner_id = gtid + 1;
2539  return KMP_LOCK_ACQUIRED_FIRST;
2540  }
2541 }
2542 
2543 static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2544  kmp_int32 gtid) {
2545  char const *const func = "omp_set_nest_lock";
2546  if (lck->lk.initialized != lck) {
2547  KMP_FATAL(LockIsUninitialized, func);
2548  }
2549  if (!__kmp_is_drdpa_lock_nestable(lck)) {
2550  KMP_FATAL(LockSimpleUsedAsNestable, func);
2551  }
2552  __kmp_acquire_nested_drdpa_lock(lck, gtid);
2553 }
2554 
2555 int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2556  int retval;
2557 
2558  KMP_DEBUG_ASSERT(gtid >= 0);
2559 
2560  if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
2561  retval = ++lck->lk.depth_locked;
2562  } else if (!__kmp_test_drdpa_lock(lck, gtid)) {
2563  retval = 0;
2564  } else {
2565  KMP_MB();
2566  retval = lck->lk.depth_locked = 1;
2567  KMP_MB();
2568  lck->lk.owner_id = gtid + 1;
2569  }
2570  return retval;
2571 }
2572 
2573 static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2574  kmp_int32 gtid) {
2575  char const *const func = "omp_test_nest_lock";
2576  if (lck->lk.initialized != lck) {
2577  KMP_FATAL(LockIsUninitialized, func);
2578  }
2579  if (!__kmp_is_drdpa_lock_nestable(lck)) {
2580  KMP_FATAL(LockSimpleUsedAsNestable, func);
2581  }
2582  return __kmp_test_nested_drdpa_lock(lck, gtid);
2583 }
2584 
2585 int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2586  KMP_DEBUG_ASSERT(gtid >= 0);
2587 
2588  KMP_MB();
2589  if (--(lck->lk.depth_locked) == 0) {
2590  KMP_MB();
2591  lck->lk.owner_id = 0;
2592  __kmp_release_drdpa_lock(lck, gtid);
2593  return KMP_LOCK_RELEASED;
2594  }
2595  return KMP_LOCK_STILL_HELD;
2596 }
2597 
2598 static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2599  kmp_int32 gtid) {
2600  char const *const func = "omp_unset_nest_lock";
2601  KMP_MB(); /* in case another processor initialized lock */
2602  if (lck->lk.initialized != lck) {
2603  KMP_FATAL(LockIsUninitialized, func);
2604  }
2605  if (!__kmp_is_drdpa_lock_nestable(lck)) {
2606  KMP_FATAL(LockSimpleUsedAsNestable, func);
2607  }
2608  if (__kmp_get_drdpa_lock_owner(lck) == -1) {
2609  KMP_FATAL(LockUnsettingFree, func);
2610  }
2611  if (__kmp_get_drdpa_lock_owner(lck) != gtid) {
2612  KMP_FATAL(LockUnsettingSetByAnother, func);
2613  }
2614  return __kmp_release_nested_drdpa_lock(lck, gtid);
2615 }
2616 
2617 void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
2618  __kmp_init_drdpa_lock(lck);
2619  lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
2620 }
2621 
2622 void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
2623  __kmp_destroy_drdpa_lock(lck);
2624  lck->lk.depth_locked = 0;
2625 }
2626 
2627 static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
2628  char const *const func = "omp_destroy_nest_lock";
2629  if (lck->lk.initialized != lck) {
2630  KMP_FATAL(LockIsUninitialized, func);
2631  }
2632  if (!__kmp_is_drdpa_lock_nestable(lck)) {
2633  KMP_FATAL(LockSimpleUsedAsNestable, func);
2634  }
2635  if (__kmp_get_drdpa_lock_owner(lck) != -1) {
2636  KMP_FATAL(LockStillOwned, func);
2637  }
2638  __kmp_destroy_nested_drdpa_lock(lck);
2639 }
2640 
2641 // access functions to fields which don't exist for all lock kinds.
2642 
2643 static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) {
2644  return lck->lk.location;
2645 }
2646 
2647 static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck,
2648  const ident_t *loc) {
2649  lck->lk.location = loc;
2650 }
2651 
2652 static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) {
2653  return lck->lk.flags;
2654 }
2655 
2656 static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck,
2657  kmp_lock_flags_t flags) {
2658  lck->lk.flags = flags;
2659 }
2660 
2661 // Time stamp counter
2662 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2663 #define __kmp_tsc() __kmp_hardware_timestamp()
2664 // Runtime's default backoff parameters
2665 kmp_backoff_t __kmp_spin_backoff_params = {1, 4096, 100};
2666 #else
2667 // Use nanoseconds for other platforms
2668 extern kmp_uint64 __kmp_now_nsec();
2669 kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100};
2670 #define __kmp_tsc() __kmp_now_nsec()
2671 #endif
2672 
2673 // A useful predicate for dealing with timestamps that may wrap.
2674 // Is a before b? Since the timestamps may wrap, this is asking whether it's
2675 // shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
2676 // Times where going clockwise is less distance than going anti-clockwise
2677 // are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
2678 // then a > b (true) does not mean a reached b; whereas signed(a) = -2,
2679 // signed(b) = 0 captures the actual difference
2680 static inline bool before(kmp_uint64 a, kmp_uint64 b) {
2681  return ((kmp_int64)b - (kmp_int64)a) > 0;
2682 }
2683 
2684 // Truncated binary exponential backoff function
2685 void __kmp_spin_backoff(kmp_backoff_t *boff) {
2686  // We could flatten this loop, but making it a nested loop gives better result
2687  kmp_uint32 i;
2688  for (i = boff->step; i > 0; i--) {
2689  kmp_uint64 goal = __kmp_tsc() + boff->min_tick;
2690  do {
2691  KMP_CPU_PAUSE();
2692  } while (before(__kmp_tsc(), goal));
2693  }
2694  boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1);
2695 }
2696 
2697 #if KMP_USE_DYNAMIC_LOCK
2698 
2699 // Direct lock initializers. It simply writes a tag to the low 8 bits of the
2700 // lock word.
2701 static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck,
2702  kmp_dyna_lockseq_t seq) {
2703  TCW_4(*lck, KMP_GET_D_TAG(seq));
2704  KA_TRACE(
2705  20,
2706  ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq));
2707 }
2708 
2709 #if KMP_USE_TSX
2710 
2711 // HLE lock functions - imported from the testbed runtime.
2712 #define HLE_ACQUIRE ".byte 0xf2;"
2713 #define HLE_RELEASE ".byte 0xf3;"
2714 
2715 static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) {
2716  __asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r"(v), "+m"(*p) : : "memory");
2717  return v;
2718 }
2719 
2720 static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); }
2721 
2722 static void __kmp_destroy_hle_lock_with_checks(kmp_dyna_lock_t *lck) {
2723  TCW_4(*lck, 0);
2724 }
2725 
2726 static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2727  // Use gtid for KMP_LOCK_BUSY if necessary
2728  if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) {
2729  int delay = 1;
2730  do {
2731  while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) {
2732  for (int i = delay; i != 0; --i)
2733  KMP_CPU_PAUSE();
2734  delay = ((delay << 1) | 1) & 7;
2735  }
2736  } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle));
2737  }
2738 }
2739 
2740 static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2741  kmp_int32 gtid) {
2742  __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks
2743 }
2744 
2745 static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2746  __asm__ volatile(HLE_RELEASE "movl %1,%0"
2747  : "=m"(*lck)
2748  : "r"(KMP_LOCK_FREE(hle))
2749  : "memory");
2750  return KMP_LOCK_RELEASED;
2751 }
2752 
2753 static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2754  kmp_int32 gtid) {
2755  return __kmp_release_hle_lock(lck, gtid); // TODO: add checks
2756 }
2757 
2758 static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2759  return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle);
2760 }
2761 
2762 static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2763  kmp_int32 gtid) {
2764  return __kmp_test_hle_lock(lck, gtid); // TODO: add checks
2765 }
2766 
2767 static void __kmp_init_rtm_lock(kmp_queuing_lock_t *lck) {
2768  __kmp_init_queuing_lock(lck);
2769 }
2770 
2771 static void __kmp_destroy_rtm_lock(kmp_queuing_lock_t *lck) {
2772  __kmp_destroy_queuing_lock(lck);
2773 }
2774 
2775 static void __kmp_destroy_rtm_lock_with_checks(kmp_queuing_lock_t *lck) {
2776  __kmp_destroy_queuing_lock_with_checks(lck);
2777 }
2778 
2779 static void __kmp_acquire_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2780  unsigned retries = 3, status;
2781  do {
2782  status = _xbegin();
2783  if (status == _XBEGIN_STARTED) {
2784  if (__kmp_is_unlocked_queuing_lock(lck))
2785  return;
2786  _xabort(0xff);
2787  }
2788  if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) {
2789  // Wait until lock becomes free
2790  while (!__kmp_is_unlocked_queuing_lock(lck)) {
2791  KMP_YIELD(TRUE);
2792  }
2793  } else if (!(status & _XABORT_RETRY))
2794  break;
2795  } while (retries--);
2796 
2797  // Fall-back non-speculative lock (xchg)
2798  __kmp_acquire_queuing_lock(lck, gtid);
2799 }
2800 
2801 static void __kmp_acquire_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2802  kmp_int32 gtid) {
2803  __kmp_acquire_rtm_lock(lck, gtid);
2804 }
2805 
2806 static int __kmp_release_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2807  if (__kmp_is_unlocked_queuing_lock(lck)) {
2808  // Releasing from speculation
2809  _xend();
2810  } else {
2811  // Releasing from a real lock
2812  __kmp_release_queuing_lock(lck, gtid);
2813  }
2814  return KMP_LOCK_RELEASED;
2815 }
2816 
2817 static int __kmp_release_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2818  kmp_int32 gtid) {
2819  return __kmp_release_rtm_lock(lck, gtid);
2820 }
2821 
2822 static int __kmp_test_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2823  unsigned retries = 3, status;
2824  do {
2825  status = _xbegin();
2826  if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) {
2827  return 1;
2828  }
2829  if (!(status & _XABORT_RETRY))
2830  break;
2831  } while (retries--);
2832 
2833  return (__kmp_is_unlocked_queuing_lock(lck)) ? 1 : 0;
2834 }
2835 
2836 static int __kmp_test_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2837  kmp_int32 gtid) {
2838  return __kmp_test_rtm_lock(lck, gtid);
2839 }
2840 
2841 #endif // KMP_USE_TSX
2842 
2843 // Entry functions for indirect locks (first element of direct lock jump tables)
2844 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l,
2845  kmp_dyna_lockseq_t tag);
2846 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock);
2847 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2848 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2849 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2850 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2851  kmp_int32);
2852 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2853  kmp_int32);
2854 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2855  kmp_int32);
2856 
2857 // Lock function definitions for the union parameter type
2858 #define KMP_FOREACH_LOCK_KIND(m, a) m(ticket, a) m(queuing, a) m(drdpa, a)
2859 
2860 #define expand1(lk, op) \
2861  static void __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock) { \
2862  __kmp_##op##_##lk##_##lock(&lock->lk); \
2863  }
2864 #define expand2(lk, op) \
2865  static int __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock, \
2866  kmp_int32 gtid) { \
2867  return __kmp_##op##_##lk##_##lock(&lock->lk, gtid); \
2868  }
2869 #define expand3(lk, op) \
2870  static void __kmp_set_##lk##_##lock_flags(kmp_user_lock_p lock, \
2871  kmp_lock_flags_t flags) { \
2872  __kmp_set_##lk##_lock_flags(&lock->lk, flags); \
2873  }
2874 #define expand4(lk, op) \
2875  static void __kmp_set_##lk##_##lock_location(kmp_user_lock_p lock, \
2876  const ident_t *loc) { \
2877  __kmp_set_##lk##_lock_location(&lock->lk, loc); \
2878  }
2879 
2880 KMP_FOREACH_LOCK_KIND(expand1, init)
2881 KMP_FOREACH_LOCK_KIND(expand1, init_nested)
2882 KMP_FOREACH_LOCK_KIND(expand1, destroy)
2883 KMP_FOREACH_LOCK_KIND(expand1, destroy_nested)
2884 KMP_FOREACH_LOCK_KIND(expand2, acquire)
2885 KMP_FOREACH_LOCK_KIND(expand2, acquire_nested)
2886 KMP_FOREACH_LOCK_KIND(expand2, release)
2887 KMP_FOREACH_LOCK_KIND(expand2, release_nested)
2888 KMP_FOREACH_LOCK_KIND(expand2, test)
2889 KMP_FOREACH_LOCK_KIND(expand2, test_nested)
2890 KMP_FOREACH_LOCK_KIND(expand3, )
2891 KMP_FOREACH_LOCK_KIND(expand4, )
2892 
2893 #undef expand1
2894 #undef expand2
2895 #undef expand3
2896 #undef expand4
2897 
2898 // Jump tables for the indirect lock functions
2899 // Only fill in the odd entries, that avoids the need to shift out the low bit
2900 
2901 // init functions
2902 #define expand(l, op) 0, __kmp_init_direct_lock,
2903 void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = {
2904  __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)};
2905 #undef expand
2906 
2907 // destroy functions
2908 #define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock,
2909 static void (*direct_destroy[])(kmp_dyna_lock_t *) = {
2910  __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
2911 #undef expand
2912 #define expand(l, op) \
2913  0, (void (*)(kmp_dyna_lock_t *))__kmp_destroy_##l##_lock_with_checks,
2914 static void (*direct_destroy_check[])(kmp_dyna_lock_t *) = {
2915  __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
2916 #undef expand
2917 
2918 // set/acquire functions
2919 #define expand(l, op) \
2920  0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
2921 static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = {
2922  __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)};
2923 #undef expand
2924 #define expand(l, op) \
2925  0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
2926 static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2927  __kmp_set_indirect_lock_with_checks, 0,
2928  KMP_FOREACH_D_LOCK(expand, acquire)};
2929 #undef expand
2930 
2931 // unset/release and test functions
2932 #define expand(l, op) \
2933  0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
2934 static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = {
2935  __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)};
2936 static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = {
2937  __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)};
2938 #undef expand
2939 #define expand(l, op) \
2940  0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
2941 static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2942  __kmp_unset_indirect_lock_with_checks, 0,
2943  KMP_FOREACH_D_LOCK(expand, release)};
2944 static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2945  __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)};
2946 #undef expand
2947 
2948 // Exposes only one set of jump tables (*lock or *lock_with_checks).
2949 void (**__kmp_direct_destroy)(kmp_dyna_lock_t *) = 0;
2950 int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32) = 0;
2951 int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32) = 0;
2952 int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32) = 0;
2953 
2954 // Jump tables for the indirect lock functions
2955 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
2956 void (*__kmp_indirect_init[])(kmp_user_lock_p) = {
2957  KMP_FOREACH_I_LOCK(expand, init)};
2958 #undef expand
2959 
2960 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
2961 static void (*indirect_destroy[])(kmp_user_lock_p) = {
2962  KMP_FOREACH_I_LOCK(expand, destroy)};
2963 #undef expand
2964 #define expand(l, op) \
2965  (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock_with_checks,
2966 static void (*indirect_destroy_check[])(kmp_user_lock_p) = {
2967  KMP_FOREACH_I_LOCK(expand, destroy)};
2968 #undef expand
2969 
2970 // set/acquire functions
2971 #define expand(l, op) \
2972  (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
2973 static int (*indirect_set[])(kmp_user_lock_p,
2974  kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)};
2975 #undef expand
2976 #define expand(l, op) \
2977  (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
2978 static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = {
2979  KMP_FOREACH_I_LOCK(expand, acquire)};
2980 #undef expand
2981 
2982 // unset/release and test functions
2983 #define expand(l, op) \
2984  (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
2985 static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = {
2986  KMP_FOREACH_I_LOCK(expand, release)};
2987 static int (*indirect_test[])(kmp_user_lock_p,
2988  kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)};
2989 #undef expand
2990 #define expand(l, op) \
2991  (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
2992 static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = {
2993  KMP_FOREACH_I_LOCK(expand, release)};
2994 static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = {
2995  KMP_FOREACH_I_LOCK(expand, test)};
2996 #undef expand
2997 
2998 // Exposes only one jump tables (*lock or *lock_with_checks).
2999 void (**__kmp_indirect_destroy)(kmp_user_lock_p) = 0;
3000 int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32) = 0;
3001 int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32) = 0;
3002 int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32) = 0;
3003 
3004 // Lock index table.
3005 kmp_indirect_lock_table_t __kmp_i_lock_table;
3006 
3007 // Size of indirect locks.
3008 static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0};
3009 
3010 // Jump tables for lock accessor/modifier.
3011 void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
3012  const ident_t *) = {0};
3013 void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
3014  kmp_lock_flags_t) = {0};
3015 const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(
3016  kmp_user_lock_p) = {0};
3017 kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(
3018  kmp_user_lock_p) = {0};
3019 
3020 // Use different lock pools for different lock types.
3021 static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0};
3022 
3023 // User lock allocator for dynamically dispatched indirect locks. Every entry of
3024 // the indirect lock table holds the address and type of the allocated indirect
3025 // lock (kmp_indirect_lock_t), and the size of the table doubles when it is
3026 // full. A destroyed indirect lock object is returned to the reusable pool of
3027 // locks, unique to each lock type.
3028 kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock,
3029  kmp_int32 gtid,
3030  kmp_indirect_locktag_t tag) {
3031  kmp_indirect_lock_t *lck;
3032  kmp_lock_index_t idx;
3033 
3034  __kmp_acquire_lock(&__kmp_global_lock, gtid);
3035 
3036  if (__kmp_indirect_lock_pool[tag] != NULL) {
3037  // Reuse the allocated and destroyed lock object
3038  lck = __kmp_indirect_lock_pool[tag];
3039  if (OMP_LOCK_T_SIZE < sizeof(void *))
3040  idx = lck->lock->pool.index;
3041  __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next;
3042  KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n",
3043  lck));
3044  } else {
3045  idx = __kmp_i_lock_table.next;
3046  // Check capacity and double the size if it is full
3047  if (idx == __kmp_i_lock_table.size) {
3048  // Double up the space for block pointers
3049  int row = __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK;
3050  kmp_indirect_lock_t **new_table = (kmp_indirect_lock_t **)__kmp_allocate(
3051  2 * row * sizeof(kmp_indirect_lock_t *));
3052  KMP_MEMCPY(new_table, __kmp_i_lock_table.table,
3053  row * sizeof(kmp_indirect_lock_t *));
3054  kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table;
3055  __kmp_i_lock_table.table = new_table;
3056  __kmp_free(old_table);
3057  // Allocate new objects in the new blocks
3058  for (int i = row; i < 2 * row; ++i)
3059  *(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)__kmp_allocate(
3060  KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
3061  __kmp_i_lock_table.size = 2 * idx;
3062  }
3063  __kmp_i_lock_table.next++;
3064  lck = KMP_GET_I_LOCK(idx);
3065  // Allocate a new base lock object
3066  lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]);
3067  KA_TRACE(20,
3068  ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck));
3069  }
3070 
3071  __kmp_release_lock(&__kmp_global_lock, gtid);
3072 
3073  lck->type = tag;
3074 
3075  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3076  *((kmp_lock_index_t *)user_lock) = idx
3077  << 1; // indirect lock word must be even
3078  } else {
3079  *((kmp_indirect_lock_t **)user_lock) = lck;
3080  }
3081 
3082  return lck;
3083 }
3084 
3085 // User lock lookup for dynamically dispatched locks.
3086 static __forceinline kmp_indirect_lock_t *
3087 __kmp_lookup_indirect_lock(void **user_lock, const char *func) {
3088  if (__kmp_env_consistency_check) {
3089  kmp_indirect_lock_t *lck = NULL;
3090  if (user_lock == NULL) {
3091  KMP_FATAL(LockIsUninitialized, func);
3092  }
3093  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3094  kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock);
3095  if (idx >= __kmp_i_lock_table.size) {
3096  KMP_FATAL(LockIsUninitialized, func);
3097  }
3098  lck = KMP_GET_I_LOCK(idx);
3099  } else {
3100  lck = *((kmp_indirect_lock_t **)user_lock);
3101  }
3102  if (lck == NULL) {
3103  KMP_FATAL(LockIsUninitialized, func);
3104  }
3105  return lck;
3106  } else {
3107  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3108  return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock));
3109  } else {
3110  return *((kmp_indirect_lock_t **)user_lock);
3111  }
3112  }
3113 }
3114 
3115 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock,
3116  kmp_dyna_lockseq_t seq) {
3117 #if KMP_USE_ADAPTIVE_LOCKS
3118  if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) {
3119  KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive");
3120  seq = lockseq_queuing;
3121  }
3122 #endif
3123 #if KMP_USE_TSX
3124  if (seq == lockseq_rtm && !__kmp_cpuinfo.rtm) {
3125  seq = lockseq_queuing;
3126  }
3127 #endif
3128  kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq);
3129  kmp_indirect_lock_t *l =
3130  __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag);
3131  KMP_I_LOCK_FUNC(l, init)(l->lock);
3132  KA_TRACE(
3133  20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n",
3134  seq));
3135 }
3136 
3137 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) {
3138  kmp_uint32 gtid = __kmp_entry_gtid();
3139  kmp_indirect_lock_t *l =
3140  __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock");
3141  KMP_I_LOCK_FUNC(l, destroy)(l->lock);
3142  kmp_indirect_locktag_t tag = l->type;
3143 
3144  __kmp_acquire_lock(&__kmp_global_lock, gtid);
3145 
3146  // Use the base lock's space to keep the pool chain.
3147  l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag];
3148  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3149  l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock);
3150  }
3151  __kmp_indirect_lock_pool[tag] = l;
3152 
3153  __kmp_release_lock(&__kmp_global_lock, gtid);
3154 }
3155 
3156 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3157  kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3158  return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
3159 }
3160 
3161 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3162  kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3163  return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
3164 }
3165 
3166 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3167  kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3168  return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
3169 }
3170 
3171 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3172  kmp_int32 gtid) {
3173  kmp_indirect_lock_t *l =
3174  __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock");
3175  return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
3176 }
3177 
3178 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3179  kmp_int32 gtid) {
3180  kmp_indirect_lock_t *l =
3181  __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock");
3182  return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
3183 }
3184 
3185 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3186  kmp_int32 gtid) {
3187  kmp_indirect_lock_t *l =
3188  __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock");
3189  return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
3190 }
3191 
3192 kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing;
3193 
3194 // This is used only in kmp_error.cpp when consistency checking is on.
3195 kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) {
3196  switch (seq) {
3197  case lockseq_tas:
3198  case lockseq_nested_tas:
3199  return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck);
3200 #if KMP_USE_FUTEX
3201  case lockseq_futex:
3202  case lockseq_nested_futex:
3203  return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck);
3204 #endif
3205  case lockseq_ticket:
3206  case lockseq_nested_ticket:
3207  return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck);
3208  case lockseq_queuing:
3209  case lockseq_nested_queuing:
3210 #if KMP_USE_ADAPTIVE_LOCKS
3211  case lockseq_adaptive:
3212 #endif
3213  return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck);
3214  case lockseq_drdpa:
3215  case lockseq_nested_drdpa:
3216  return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck);
3217  default:
3218  return 0;
3219  }
3220 }
3221 
3222 // Initializes data for dynamic user locks.
3223 void __kmp_init_dynamic_user_locks() {
3224  // Initialize jump table for the lock functions
3225  if (__kmp_env_consistency_check) {
3226  __kmp_direct_set = direct_set_check;
3227  __kmp_direct_unset = direct_unset_check;
3228  __kmp_direct_test = direct_test_check;
3229  __kmp_direct_destroy = direct_destroy_check;
3230  __kmp_indirect_set = indirect_set_check;
3231  __kmp_indirect_unset = indirect_unset_check;
3232  __kmp_indirect_test = indirect_test_check;
3233  __kmp_indirect_destroy = indirect_destroy_check;
3234  } else {
3235  __kmp_direct_set = direct_set;
3236  __kmp_direct_unset = direct_unset;
3237  __kmp_direct_test = direct_test;
3238  __kmp_direct_destroy = direct_destroy;
3239  __kmp_indirect_set = indirect_set;
3240  __kmp_indirect_unset = indirect_unset;
3241  __kmp_indirect_test = indirect_test;
3242  __kmp_indirect_destroy = indirect_destroy;
3243  }
3244  // If the user locks have already been initialized, then return. Allow the
3245  // switch between different KMP_CONSISTENCY_CHECK values, but do not allocate
3246  // new lock tables if they have already been allocated.
3247  if (__kmp_init_user_locks)
3248  return;
3249 
3250  // Initialize lock index table
3251  __kmp_i_lock_table.size = KMP_I_LOCK_CHUNK;
3252  __kmp_i_lock_table.table =
3253  (kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *));
3254  *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate(
3255  KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
3256  __kmp_i_lock_table.next = 0;
3257 
3258  // Indirect lock size
3259  __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t);
3260  __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t);
3261 #if KMP_USE_ADAPTIVE_LOCKS
3262  __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t);
3263 #endif
3264  __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t);
3265 #if KMP_USE_TSX
3266  __kmp_indirect_lock_size[locktag_rtm] = sizeof(kmp_queuing_lock_t);
3267 #endif
3268  __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t);
3269 #if KMP_USE_FUTEX
3270  __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t);
3271 #endif
3272  __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t);
3273  __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t);
3274  __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t);
3275 
3276 // Initialize lock accessor/modifier
3277 #define fill_jumps(table, expand, sep) \
3278  { \
3279  table[locktag##sep##ticket] = expand(ticket); \
3280  table[locktag##sep##queuing] = expand(queuing); \
3281  table[locktag##sep##drdpa] = expand(drdpa); \
3282  }
3283 
3284 #if KMP_USE_ADAPTIVE_LOCKS
3285 #define fill_table(table, expand) \
3286  { \
3287  fill_jumps(table, expand, _); \
3288  table[locktag_adaptive] = expand(queuing); \
3289  fill_jumps(table, expand, _nested_); \
3290  }
3291 #else
3292 #define fill_table(table, expand) \
3293  { \
3294  fill_jumps(table, expand, _); \
3295  fill_jumps(table, expand, _nested_); \
3296  }
3297 #endif // KMP_USE_ADAPTIVE_LOCKS
3298 
3299 #define expand(l) \
3300  (void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location
3301  fill_table(__kmp_indirect_set_location, expand);
3302 #undef expand
3303 #define expand(l) \
3304  (void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags
3305  fill_table(__kmp_indirect_set_flags, expand);
3306 #undef expand
3307 #define expand(l) \
3308  (const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location
3309  fill_table(__kmp_indirect_get_location, expand);
3310 #undef expand
3311 #define expand(l) \
3312  (kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags
3313  fill_table(__kmp_indirect_get_flags, expand);
3314 #undef expand
3315 
3316  __kmp_init_user_locks = TRUE;
3317 }
3318 
3319 // Clean up the lock table.
3320 void __kmp_cleanup_indirect_user_locks() {
3321  kmp_lock_index_t i;
3322  int k;
3323 
3324  // Clean up locks in the pools first (they were already destroyed before going
3325  // into the pools).
3326  for (k = 0; k < KMP_NUM_I_LOCKS; ++k) {
3327  kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k];
3328  while (l != NULL) {
3329  kmp_indirect_lock_t *ll = l;
3330  l = (kmp_indirect_lock_t *)l->lock->pool.next;
3331  KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n",
3332  ll));
3333  __kmp_free(ll->lock);
3334  ll->lock = NULL;
3335  }
3336  __kmp_indirect_lock_pool[k] = NULL;
3337  }
3338  // Clean up the remaining undestroyed locks.
3339  for (i = 0; i < __kmp_i_lock_table.next; i++) {
3340  kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i);
3341  if (l->lock != NULL) {
3342  // Locks not destroyed explicitly need to be destroyed here.
3343  KMP_I_LOCK_FUNC(l, destroy)(l->lock);
3344  KA_TRACE(
3345  20,
3346  ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n",
3347  l));
3348  __kmp_free(l->lock);
3349  }
3350  }
3351  // Free the table
3352  for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++)
3353  __kmp_free(__kmp_i_lock_table.table[i]);
3354  __kmp_free(__kmp_i_lock_table.table);
3355 
3356  __kmp_init_user_locks = FALSE;
3357 }
3358 
3359 enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
3360 int __kmp_num_locks_in_block = 1; // FIXME - tune this value
3361 
3362 #else // KMP_USE_DYNAMIC_LOCK
3363 
3364 static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) {
3365  __kmp_init_tas_lock(lck);
3366 }
3367 
3368 static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
3369  __kmp_init_nested_tas_lock(lck);
3370 }
3371 
3372 #if KMP_USE_FUTEX
3373 static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) {
3374  __kmp_init_futex_lock(lck);
3375 }
3376 
3377 static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
3378  __kmp_init_nested_futex_lock(lck);
3379 }
3380 #endif
3381 
3382 static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) {
3383  return lck == lck->lk.self;
3384 }
3385 
3386 static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
3387  __kmp_init_ticket_lock(lck);
3388 }
3389 
3390 static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
3391  __kmp_init_nested_ticket_lock(lck);
3392 }
3393 
3394 static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) {
3395  return lck == lck->lk.initialized;
3396 }
3397 
3398 static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
3399  __kmp_init_queuing_lock(lck);
3400 }
3401 
3402 static void
3403 __kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
3404  __kmp_init_nested_queuing_lock(lck);
3405 }
3406 
3407 #if KMP_USE_ADAPTIVE_LOCKS
3408 static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
3409  __kmp_init_adaptive_lock(lck);
3410 }
3411 #endif
3412 
3413 static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) {
3414  return lck == lck->lk.initialized;
3415 }
3416 
3417 static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
3418  __kmp_init_drdpa_lock(lck);
3419 }
3420 
3421 static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
3422  __kmp_init_nested_drdpa_lock(lck);
3423 }
3424 
3425 /* user locks
3426  * They are implemented as a table of function pointers which are set to the
3427  * lock functions of the appropriate kind, once that has been determined. */
3428 
3429 enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
3430 
3431 size_t __kmp_base_user_lock_size = 0;
3432 size_t __kmp_user_lock_size = 0;
3433 
3434 kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL;
3435 int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck,
3436  kmp_int32 gtid) = NULL;
3437 
3438 int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck,
3439  kmp_int32 gtid) = NULL;
3440 int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck,
3441  kmp_int32 gtid) = NULL;
3442 void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3443 void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL;
3444 void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3445 int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3446  kmp_int32 gtid) = NULL;
3447 
3448 int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3449  kmp_int32 gtid) = NULL;
3450 int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3451  kmp_int32 gtid) = NULL;
3452 void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3453 void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3454 
3455 int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL;
3456 const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL;
3457 void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck,
3458  const ident_t *loc) = NULL;
3459 kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL;
3460 void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck,
3461  kmp_lock_flags_t flags) = NULL;
3462 
3463 void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) {
3464  switch (user_lock_kind) {
3465  case lk_default:
3466  default:
3467  KMP_ASSERT(0);
3468 
3469  case lk_tas: {
3470  __kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t);
3471  __kmp_user_lock_size = sizeof(kmp_tas_lock_t);
3472 
3473  __kmp_get_user_lock_owner_ =
3474  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner);
3475 
3476  if (__kmp_env_consistency_check) {
3477  KMP_BIND_USER_LOCK_WITH_CHECKS(tas);
3478  KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas);
3479  } else {
3480  KMP_BIND_USER_LOCK(tas);
3481  KMP_BIND_NESTED_USER_LOCK(tas);
3482  }
3483 
3484  __kmp_destroy_user_lock_ =
3485  (void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock);
3486 
3487  __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
3488 
3489  __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
3490 
3491  __kmp_set_user_lock_location_ =
3492  (void (*)(kmp_user_lock_p, const ident_t *))NULL;
3493 
3494  __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
3495 
3496  __kmp_set_user_lock_flags_ =
3497  (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
3498  } break;
3499 
3500 #if KMP_USE_FUTEX
3501 
3502  case lk_futex: {
3503  __kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t);
3504  __kmp_user_lock_size = sizeof(kmp_futex_lock_t);
3505 
3506  __kmp_get_user_lock_owner_ =
3507  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner);
3508 
3509  if (__kmp_env_consistency_check) {
3510  KMP_BIND_USER_LOCK_WITH_CHECKS(futex);
3511  KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex);
3512  } else {
3513  KMP_BIND_USER_LOCK(futex);
3514  KMP_BIND_NESTED_USER_LOCK(futex);
3515  }
3516 
3517  __kmp_destroy_user_lock_ =
3518  (void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock);
3519 
3520  __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
3521 
3522  __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
3523 
3524  __kmp_set_user_lock_location_ =
3525  (void (*)(kmp_user_lock_p, const ident_t *))NULL;
3526 
3527  __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
3528 
3529  __kmp_set_user_lock_flags_ =
3530  (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
3531  } break;
3532 
3533 #endif // KMP_USE_FUTEX
3534 
3535  case lk_ticket: {
3536  __kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t);
3537  __kmp_user_lock_size = sizeof(kmp_ticket_lock_t);
3538 
3539  __kmp_get_user_lock_owner_ =
3540  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner);
3541 
3542  if (__kmp_env_consistency_check) {
3543  KMP_BIND_USER_LOCK_WITH_CHECKS(ticket);
3544  KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket);
3545  } else {
3546  KMP_BIND_USER_LOCK(ticket);
3547  KMP_BIND_NESTED_USER_LOCK(ticket);
3548  }
3549 
3550  __kmp_destroy_user_lock_ =
3551  (void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock);
3552 
3553  __kmp_is_user_lock_initialized_ =
3554  (int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized);
3555 
3556  __kmp_get_user_lock_location_ =
3557  (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location);
3558 
3559  __kmp_set_user_lock_location_ = (void (*)(
3560  kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location);
3561 
3562  __kmp_get_user_lock_flags_ =
3563  (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags);
3564 
3565  __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3566  &__kmp_set_ticket_lock_flags);
3567  } break;
3568 
3569  case lk_queuing: {
3570  __kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t);
3571  __kmp_user_lock_size = sizeof(kmp_queuing_lock_t);
3572 
3573  __kmp_get_user_lock_owner_ =
3574  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
3575 
3576  if (__kmp_env_consistency_check) {
3577  KMP_BIND_USER_LOCK_WITH_CHECKS(queuing);
3578  KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing);
3579  } else {
3580  KMP_BIND_USER_LOCK(queuing);
3581  KMP_BIND_NESTED_USER_LOCK(queuing);
3582  }
3583 
3584  __kmp_destroy_user_lock_ =
3585  (void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock);
3586 
3587  __kmp_is_user_lock_initialized_ =
3588  (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
3589 
3590  __kmp_get_user_lock_location_ =
3591  (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
3592 
3593  __kmp_set_user_lock_location_ = (void (*)(
3594  kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
3595 
3596  __kmp_get_user_lock_flags_ =
3597  (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
3598 
3599  __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3600  &__kmp_set_queuing_lock_flags);
3601  } break;
3602 
3603 #if KMP_USE_ADAPTIVE_LOCKS
3604  case lk_adaptive: {
3605  __kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t);
3606  __kmp_user_lock_size = sizeof(kmp_adaptive_lock_t);
3607 
3608  __kmp_get_user_lock_owner_ =
3609  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
3610 
3611  if (__kmp_env_consistency_check) {
3612  KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive);
3613  } else {
3614  KMP_BIND_USER_LOCK(adaptive);
3615  }
3616 
3617  __kmp_destroy_user_lock_ =
3618  (void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock);
3619 
3620  __kmp_is_user_lock_initialized_ =
3621  (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
3622 
3623  __kmp_get_user_lock_location_ =
3624  (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
3625 
3626  __kmp_set_user_lock_location_ = (void (*)(
3627  kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
3628 
3629  __kmp_get_user_lock_flags_ =
3630  (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
3631 
3632  __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3633  &__kmp_set_queuing_lock_flags);
3634 
3635  } break;
3636 #endif // KMP_USE_ADAPTIVE_LOCKS
3637 
3638  case lk_drdpa: {
3639  __kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t);
3640  __kmp_user_lock_size = sizeof(kmp_drdpa_lock_t);
3641 
3642  __kmp_get_user_lock_owner_ =
3643  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner);
3644 
3645  if (__kmp_env_consistency_check) {
3646  KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa);
3647  KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa);
3648  } else {
3649  KMP_BIND_USER_LOCK(drdpa);
3650  KMP_BIND_NESTED_USER_LOCK(drdpa);
3651  }
3652 
3653  __kmp_destroy_user_lock_ =
3654  (void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock);
3655 
3656  __kmp_is_user_lock_initialized_ =
3657  (int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized);
3658 
3659  __kmp_get_user_lock_location_ =
3660  (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location);
3661 
3662  __kmp_set_user_lock_location_ = (void (*)(
3663  kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location);
3664 
3665  __kmp_get_user_lock_flags_ =
3666  (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags);
3667 
3668  __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3669  &__kmp_set_drdpa_lock_flags);
3670  } break;
3671  }
3672 }
3673 
3674 // ----------------------------------------------------------------------------
3675 // User lock table & lock allocation
3676 
3677 kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL};
3678 kmp_user_lock_p __kmp_lock_pool = NULL;
3679 
3680 // Lock block-allocation support.
3681 kmp_block_of_locks *__kmp_lock_blocks = NULL;
3682 int __kmp_num_locks_in_block = 1; // FIXME - tune this value
3683 
3684 static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) {
3685  // Assume that kmp_global_lock is held upon entry/exit.
3686  kmp_lock_index_t index;
3687  if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) {
3688  kmp_lock_index_t size;
3689  kmp_user_lock_p *table;
3690  // Reallocate lock table.
3691  if (__kmp_user_lock_table.allocated == 0) {
3692  size = 1024;
3693  } else {
3694  size = __kmp_user_lock_table.allocated * 2;
3695  }
3696  table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size);
3697  KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1,
3698  sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1));
3699  table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table;
3700  // We cannot free the previous table now, since it may be in use by other
3701  // threads. So save the pointer to the previous table in in the first
3702  // element of the new table. All the tables will be organized into a list,
3703  // and could be freed when library shutting down.
3704  __kmp_user_lock_table.table = table;
3705  __kmp_user_lock_table.allocated = size;
3706  }
3707  KMP_DEBUG_ASSERT(__kmp_user_lock_table.used <
3708  __kmp_user_lock_table.allocated);
3709  index = __kmp_user_lock_table.used;
3710  __kmp_user_lock_table.table[index] = lck;
3711  ++__kmp_user_lock_table.used;
3712  return index;
3713 }
3714 
3715 static kmp_user_lock_p __kmp_lock_block_allocate() {
3716  // Assume that kmp_global_lock is held upon entry/exit.
3717  static int last_index = 0;
3718  if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) {
3719  // Restart the index.
3720  last_index = 0;
3721  // Need to allocate a new block.
3722  KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
3723  size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block;
3724  char *buffer =
3725  (char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks));
3726  // Set up the new block.
3727  kmp_block_of_locks *new_block =
3728  (kmp_block_of_locks *)(&buffer[space_for_locks]);
3729  new_block->next_block = __kmp_lock_blocks;
3730  new_block->locks = (void *)buffer;
3731  // Publish the new block.
3732  KMP_MB();
3733  __kmp_lock_blocks = new_block;
3734  }
3735  kmp_user_lock_p ret = (kmp_user_lock_p)(&(
3736  ((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size]));
3737  last_index++;
3738  return ret;
3739 }
3740 
3741 // Get memory for a lock. It may be freshly allocated memory or reused memory
3742 // from lock pool.
3743 kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid,
3744  kmp_lock_flags_t flags) {
3745  kmp_user_lock_p lck;
3746  kmp_lock_index_t index;
3747  KMP_DEBUG_ASSERT(user_lock);
3748 
3749  __kmp_acquire_lock(&__kmp_global_lock, gtid);
3750 
3751  if (__kmp_lock_pool == NULL) {
3752  // Lock pool is empty. Allocate new memory.
3753 
3754  // ANNOTATION: Found no good way to express the syncronisation
3755  // between allocation and usage, so ignore the allocation
3756  ANNOTATE_IGNORE_WRITES_BEGIN();
3757  if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point.
3758  lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size);
3759  } else {
3760  lck = __kmp_lock_block_allocate();
3761  }
3762  ANNOTATE_IGNORE_WRITES_END();
3763 
3764  // Insert lock in the table so that it can be freed in __kmp_cleanup,
3765  // and debugger has info on all allocated locks.
3766  index = __kmp_lock_table_insert(lck);
3767  } else {
3768  // Pick up lock from pool.
3769  lck = __kmp_lock_pool;
3770  index = __kmp_lock_pool->pool.index;
3771  __kmp_lock_pool = __kmp_lock_pool->pool.next;
3772  }
3773 
3774  // We could potentially differentiate between nested and regular locks
3775  // here, and do the lock table lookup for regular locks only.
3776  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3777  *((kmp_lock_index_t *)user_lock) = index;
3778  } else {
3779  *((kmp_user_lock_p *)user_lock) = lck;
3780  }
3781 
3782  // mark the lock if it is critical section lock.
3783  __kmp_set_user_lock_flags(lck, flags);
3784 
3785  __kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper
3786 
3787  return lck;
3788 }
3789 
3790 // Put lock's memory to pool for reusing.
3791 void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid,
3792  kmp_user_lock_p lck) {
3793  KMP_DEBUG_ASSERT(user_lock != NULL);
3794  KMP_DEBUG_ASSERT(lck != NULL);
3795 
3796  __kmp_acquire_lock(&__kmp_global_lock, gtid);
3797 
3798  lck->pool.next = __kmp_lock_pool;
3799  __kmp_lock_pool = lck;
3800  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3801  kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
3802  KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used);
3803  lck->pool.index = index;
3804  }
3805 
3806  __kmp_release_lock(&__kmp_global_lock, gtid);
3807 }
3808 
3809 kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) {
3810  kmp_user_lock_p lck = NULL;
3811 
3812  if (__kmp_env_consistency_check) {
3813  if (user_lock == NULL) {
3814  KMP_FATAL(LockIsUninitialized, func);
3815  }
3816  }
3817 
3818  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3819  kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
3820  if (__kmp_env_consistency_check) {
3821  if (!(0 < index && index < __kmp_user_lock_table.used)) {
3822  KMP_FATAL(LockIsUninitialized, func);
3823  }
3824  }
3825  KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used);
3826  KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
3827  lck = __kmp_user_lock_table.table[index];
3828  } else {
3829  lck = *((kmp_user_lock_p *)user_lock);
3830  }
3831 
3832  if (__kmp_env_consistency_check) {
3833  if (lck == NULL) {
3834  KMP_FATAL(LockIsUninitialized, func);
3835  }
3836  }
3837 
3838  return lck;
3839 }
3840 
3841 void __kmp_cleanup_user_locks(void) {
3842  // Reset lock pool. Don't worry about lock in the pool--we will free them when
3843  // iterating through lock table (it includes all the locks, dead or alive).
3844  __kmp_lock_pool = NULL;
3845 
3846 #define IS_CRITICAL(lck) \
3847  ((__kmp_get_user_lock_flags_ != NULL) && \
3848  ((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section))
3849 
3850  // Loop through lock table, free all locks.
3851  // Do not free item [0], it is reserved for lock tables list.
3852  //
3853  // FIXME - we are iterating through a list of (pointers to) objects of type
3854  // union kmp_user_lock, but we have no way of knowing whether the base type is
3855  // currently "pool" or whatever the global user lock type is.
3856  //
3857  // We are relying on the fact that for all of the user lock types
3858  // (except "tas"), the first field in the lock struct is the "initialized"
3859  // field, which is set to the address of the lock object itself when
3860  // the lock is initialized. When the union is of type "pool", the
3861  // first field is a pointer to the next object in the free list, which
3862  // will not be the same address as the object itself.
3863  //
3864  // This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail
3865  // for "pool" objects on the free list. This must happen as the "location"
3866  // field of real user locks overlaps the "index" field of "pool" objects.
3867  //
3868  // It would be better to run through the free list, and remove all "pool"
3869  // objects from the lock table before executing this loop. However,
3870  // "pool" objects do not always have their index field set (only on
3871  // lin_32e), and I don't want to search the lock table for the address
3872  // of every "pool" object on the free list.
3873  while (__kmp_user_lock_table.used > 1) {
3874  const ident *loc;
3875 
3876  // reduce __kmp_user_lock_table.used before freeing the lock,
3877  // so that state of locks is consistent
3878  kmp_user_lock_p lck =
3879  __kmp_user_lock_table.table[--__kmp_user_lock_table.used];
3880 
3881  if ((__kmp_is_user_lock_initialized_ != NULL) &&
3882  (*__kmp_is_user_lock_initialized_)(lck)) {
3883  // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND
3884  // it is NOT a critical section (user is not responsible for destroying
3885  // criticals) AND we know source location to report.
3886  if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) &&
3887  ((loc = __kmp_get_user_lock_location(lck)) != NULL) &&
3888  (loc->psource != NULL)) {
3889  kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 0);
3890  KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line);
3891  __kmp_str_loc_free(&str_loc);
3892  }
3893 
3894 #ifdef KMP_DEBUG
3895  if (IS_CRITICAL(lck)) {
3896  KA_TRACE(
3897  20,
3898  ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n",
3899  lck, *(void **)lck));
3900  } else {
3901  KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck,
3902  *(void **)lck));
3903  }
3904 #endif // KMP_DEBUG
3905 
3906  // Cleanup internal lock dynamic resources (for drdpa locks particularly).
3907  __kmp_destroy_user_lock(lck);
3908  }
3909 
3910  // Free the lock if block allocation of locks is not used.
3911  if (__kmp_lock_blocks == NULL) {
3912  __kmp_free(lck);
3913  }
3914  }
3915 
3916 #undef IS_CRITICAL
3917 
3918  // delete lock table(s).
3919  kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table;
3920  __kmp_user_lock_table.table = NULL;
3921  __kmp_user_lock_table.allocated = 0;
3922 
3923  while (table_ptr != NULL) {
3924  // In the first element we saved the pointer to the previous
3925  // (smaller) lock table.
3926  kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]);
3927  __kmp_free(table_ptr);
3928  table_ptr = next;
3929  }
3930 
3931  // Free buffers allocated for blocks of locks.
3932  kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks;
3933  __kmp_lock_blocks = NULL;
3934 
3935  while (block_ptr != NULL) {
3936  kmp_block_of_locks_t *next = block_ptr->next_block;
3937  __kmp_free(block_ptr->locks);
3938  // *block_ptr itself was allocated at the end of the locks vector.
3939  block_ptr = next;
3940  }
3941 
3942  TCW_4(__kmp_init_user_locks, FALSE);
3943 }
3944 
3945 #endif // KMP_USE_DYNAMIC_LOCK
ident::psource
const char * psource
Definition: kmp.h:232
ident
Definition: kmp.h:222