14 #ifndef KMP_WAIT_RELEASE_H 15 #define KMP_WAIT_RELEASE_H 19 #include "kmp_stats.h" 21 #include "ompt-specific.h" 56 volatile P *
get() {
return loc; }
57 void *get_void_p() {
return RCAST(
void *, CCAST(P *, loc)); }
58 void set(
volatile P *new_loc) { loc = new_loc; }
60 P load() {
return *loc; }
61 void store(P val) { *loc = val; }
78 std::atomic<P> *
get() {
return loc; }
86 void set(std::atomic<P> *new_loc) { loc = new_loc; }
94 P
load() {
return loc->load(std::memory_order_acquire); }
98 void store(P val) { loc->store(val, std::memory_order_release); }
123 static void __ompt_implicit_task_end(kmp_info_t *this_thr,
124 ompt_state_t ompt_state,
126 int ds_tid = this_thr->th.th_info.ds.ds_tid;
127 if (ompt_state == ompt_state_wait_barrier_implicit) {
128 this_thr->th.ompt_thread_info.state = ompt_state_overhead;
130 void *codeptr = NULL;
131 if (ompt_enabled.ompt_callback_sync_region_wait) {
132 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
133 ompt_sync_region_barrier, ompt_scope_end, NULL, tId, codeptr);
135 if (ompt_enabled.ompt_callback_sync_region) {
136 ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
137 ompt_sync_region_barrier, ompt_scope_end, NULL, tId, codeptr);
140 if (!KMP_MASTER_TID(ds_tid)) {
141 if (ompt_enabled.ompt_callback_implicit_task) {
142 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
143 ompt_scope_end, NULL, tId, 0, ds_tid, ompt_task_implicit);
146 this_thr->th.ompt_thread_info.state = ompt_state_idle;
148 this_thr->th.ompt_thread_info.state = ompt_state_overhead;
159 template <
class C,
int final_spin>
161 __kmp_wait_template(kmp_info_t *this_thr,
162 C *flag USE_ITT_BUILD_ARG(
void *itt_sync_obj)) {
163 #if USE_ITT_BUILD && USE_ITT_NOTIFY 164 volatile void *spin = flag->get();
168 int tasks_completed = FALSE;
171 kmp_uint64 poll_count;
172 kmp_uint64 hibernate_goal;
174 kmp_uint32 hibernate;
177 KMP_FSYNC_SPIN_INIT(spin, NULL);
178 if (flag->done_check()) {
179 KMP_FSYNC_SPIN_ACQUIRED(CCAST(
void *, spin));
182 th_gtid = this_thr->th.th_info.ds.ds_gtid;
185 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking,
true);
188 (
"__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid, flag));
189 #if KMP_STATS_ENABLED 244 ompt_state_t ompt_entry_state;
246 if (ompt_enabled.enabled) {
247 ompt_entry_state = this_thr->th.ompt_thread_info.state;
248 if (!final_spin || ompt_entry_state != ompt_state_wait_barrier_implicit ||
249 KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)) {
250 ompt_lw_taskteam_t *team =
251 this_thr->th.th_team->t.ompt_serialized_team_info;
253 tId = &(team->ompt_task_info.task_data);
255 tId = OMPT_CUR_TASK_DATA(this_thr);
258 tId = &(this_thr->th.ompt_thread_info.task_data);
260 if (final_spin && (__kmp_tasking_mode == tskm_immediate_exec ||
261 this_thr->th.th_task_team == NULL)) {
263 __ompt_implicit_task_end(this_thr, ompt_entry_state, tId);
269 KMP_INIT_YIELD(spins);
271 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
275 #ifdef KMP_ADJUST_BLOCKTIME 276 if (__kmp_zero_bt && !this_thr->th.th_team_bt_set)
281 hibernate = this_thr->th.th_team_bt_intervals;
283 hibernate = this_thr->th.th_team_bt_intervals;
294 hibernate += TCR_4(__kmp_global.g.g_time.dt.t_value);
295 KF_TRACE(20, (
"__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n",
296 th_gtid, __kmp_global.g.g_time.dt.t_value, hibernate,
297 hibernate - __kmp_global.g.g_time.dt.t_value));
299 hibernate_goal = KMP_NOW() + this_thr->th.th_team_bt_intervals;
301 #endif // KMP_USE_MONITOR 304 oversubscribed = (TCR_4(__kmp_nth) > __kmp_avail_proc);
308 while (flag->notdone_check()) {
310 kmp_task_team_t *task_team = NULL;
311 if (__kmp_tasking_mode != tskm_immediate_exec) {
312 task_team = this_thr->th.th_task_team;
320 if (task_team != NULL) {
321 if (TCR_SYNC_4(task_team->tt.tt_active)) {
322 if (KMP_TASKING_ENABLED(task_team))
324 this_thr, th_gtid, final_spin,
325 &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0);
327 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
329 KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid));
332 if (final_spin && ompt_enabled.enabled)
333 __ompt_implicit_task_end(this_thr, ompt_entry_state, tId);
335 this_thr->th.th_task_team = NULL;
336 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
339 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
343 KMP_FSYNC_SPIN_PREPARE(CCAST(
void *, spin));
344 if (TCR_4(__kmp_global.g.g_done)) {
345 if (__kmp_global.g.g_abort)
346 __kmp_abort_thread();
355 if (oversubscribed) {
358 KMP_YIELD_SPIN(spins);
362 in_pool = !!TCR_4(this_thr->th.th_in_pool);
363 if (in_pool != !!this_thr->th.th_active_in_pool) {
365 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
366 this_thr->th.th_active_in_pool = TRUE;
375 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
376 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
377 this_thr->th.th_active_in_pool = FALSE;
381 #if KMP_STATS_ENABLED 384 if (this_thr->th.th_stats->isIdle() &&
385 KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER) {
386 KMP_SET_THREAD_STATE(IDLE);
387 KMP_PUSH_PARTITIONED_TIMER(OMP_idle);
392 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME)
396 if ((task_team != NULL) && TCR_4(task_team->tt.tt_found_tasks))
401 if (TCR_4(__kmp_global.g.g_time.dt.t_value) < hibernate)
404 if (KMP_BLOCKING(hibernate_goal, poll_count++))
408 KF_TRACE(50, (
"__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid));
411 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking,
false);
413 flag->suspend(th_gtid);
416 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking,
true);
419 if (TCR_4(__kmp_global.g.g_done)) {
420 if (__kmp_global.g.g_abort)
421 __kmp_abort_thread();
423 }
else if (__kmp_tasking_mode != tskm_immediate_exec &&
424 this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) {
425 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
431 ompt_state_t ompt_exit_state = this_thr->th.ompt_thread_info.state;
432 if (ompt_enabled.enabled && ompt_exit_state != ompt_state_undefined) {
435 __ompt_implicit_task_end(this_thr, ompt_exit_state, tId);
436 ompt_exit_state = this_thr->th.ompt_thread_info.state;
439 if (ompt_exit_state == ompt_state_idle) {
440 this_thr->th.ompt_thread_info.state = ompt_state_overhead;
444 #if KMP_STATS_ENABLED 446 if (KMP_GET_THREAD_STATE() == IDLE) {
447 KMP_POP_PARTITIONED_TIMER();
448 KMP_SET_THREAD_STATE(thread_state);
449 this_thr->th.th_stats->resetIdleFlag();
455 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking,
false);
457 KMP_FSYNC_SPIN_ACQUIRED(CCAST(
void *, spin));
464 template <
class C>
static inline void __kmp_release_template(C *flag) {
466 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
468 KF_TRACE(20, (
"__kmp_release: T#%d releasing flag(%x)\n", gtid, flag->get()));
469 KMP_DEBUG_ASSERT(flag->get());
470 KMP_FSYNC_RELEASING(flag->get_void_p());
472 flag->internal_release();
474 KF_TRACE(100, (
"__kmp_release: T#%d set new spin=%d\n", gtid, flag->get(),
477 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
480 if (flag->is_any_sleeping()) {
481 for (
unsigned int i = 0; i < flag->get_num_waiters(); ++i) {
483 kmp_info_t *waiter = flag->get_waiter(i);
485 int wait_gtid = waiter->th.th_info.ds.ds_gtid;
487 KF_TRACE(50, (
"__kmp_release: T#%d waking up thread T#%d since sleep " 489 gtid, wait_gtid, flag->get()));
490 flag->resume(wait_gtid);
497 template <
typename FlagType>
struct flag_traits {};
499 template <>
struct flag_traits<kmp_uint32> {
500 typedef kmp_uint32 flag_t;
502 static inline flag_t tcr(flag_t f) {
return TCR_4(f); }
503 static inline flag_t test_then_add4(
volatile flag_t *f) {
504 return KMP_TEST_THEN_ADD4_32(RCAST(
volatile kmp_int32 *, f));
506 static inline flag_t test_then_or(
volatile flag_t *f, flag_t v) {
507 return KMP_TEST_THEN_OR32(f, v);
509 static inline flag_t test_then_and(
volatile flag_t *f, flag_t v) {
510 return KMP_TEST_THEN_AND32(f, v);
514 template <>
struct flag_traits<kmp_uint64> {
515 typedef kmp_uint64 flag_t;
517 static inline flag_t tcr(flag_t f) {
return TCR_8(f); }
518 static inline flag_t test_then_add4(
volatile flag_t *f) {
519 return KMP_TEST_THEN_ADD4_64(RCAST(
volatile kmp_int64 *, f));
521 static inline flag_t test_then_or(
volatile flag_t *f, flag_t v) {
522 return KMP_TEST_THEN_OR64(f, v);
524 static inline flag_t test_then_and(
volatile flag_t *f, flag_t v) {
525 return KMP_TEST_THEN_AND64(f, v);
530 template <
typename FlagType>
532 typedef flag_traits<FlagType> traits_type;
540 kmp_basic_flag_native(
volatile FlagType *p)
542 kmp_basic_flag_native(
volatile FlagType *p, kmp_info_t *thr)
544 waiting_threads[0] = thr;
546 kmp_basic_flag_native(
volatile FlagType *p, FlagType c)
548 num_waiting_threads(0) {}
553 kmp_info_t *get_waiter(kmp_uint32 i) {
554 KMP_DEBUG_ASSERT(i < num_waiting_threads);
555 return waiting_threads[i];
560 kmp_uint32 get_num_waiters() {
return num_waiting_threads; }
566 void set_waiter(kmp_info_t *thr) {
567 waiting_threads[0] = thr;
568 num_waiting_threads = 1;
573 bool done_check() {
return traits_type::tcr(*(this->
get())) == checker; }
578 bool done_check_val(FlagType old_loc) {
return old_loc == checker; }
586 bool notdone_check() {
return traits_type::tcr(*(this->
get())) != checker; }
591 void internal_release() {
592 (void)traits_type::test_then_add4((
volatile FlagType *)this->
get());
599 FlagType set_sleeping() {
600 return traits_type::test_then_or((
volatile FlagType *)this->
get(),
601 KMP_BARRIER_SLEEP_STATE);
608 FlagType unset_sleeping() {
609 return traits_type::test_then_and((
volatile FlagType *)this->
get(),
610 ~KMP_BARRIER_SLEEP_STATE);
616 bool is_sleeping_val(FlagType old_loc) {
617 return old_loc & KMP_BARRIER_SLEEP_STATE;
622 bool is_sleeping() {
return is_sleeping_val(*(this->
get())); }
623 bool is_any_sleeping() {
return is_sleeping_val(*(this->
get())); }
624 kmp_uint8 *get_stolen() {
return NULL; }
625 enum barrier_type get_bt() {
return bs_last_barrier; }
628 template <
typename FlagType>
class kmp_basic_flag :
public kmp_flag<FlagType> {
629 typedef flag_traits<FlagType> traits_type;
637 kmp_basic_flag(std::atomic<FlagType> *p)
639 kmp_basic_flag(std::atomic<FlagType> *p, kmp_info_t *thr)
641 waiting_threads[0] = thr;
643 kmp_basic_flag(std::atomic<FlagType> *p, FlagType c)
645 num_waiting_threads(0) {}
650 kmp_info_t *get_waiter(kmp_uint32 i) {
651 KMP_DEBUG_ASSERT(i < num_waiting_threads);
652 return waiting_threads[i];
657 kmp_uint32 get_num_waiters() {
return num_waiting_threads; }
663 void set_waiter(kmp_info_t *thr) {
664 waiting_threads[0] = thr;
665 num_waiting_threads = 1;
670 bool done_check() {
return this->load() == checker; }
675 bool done_check_val(FlagType old_loc) {
return old_loc == checker; }
683 bool notdone_check() {
return this->load() != checker; }
688 void internal_release() { KMP_ATOMIC_ADD(this->
get(), 4); }
694 FlagType set_sleeping() {
695 return KMP_ATOMIC_OR(this->
get(), KMP_BARRIER_SLEEP_STATE);
702 FlagType unset_sleeping() {
703 return KMP_ATOMIC_AND(this->
get(), ~KMP_BARRIER_SLEEP_STATE);
709 bool is_sleeping_val(FlagType old_loc) {
710 return old_loc & KMP_BARRIER_SLEEP_STATE;
715 bool is_sleeping() {
return is_sleeping_val(this->load()); }
716 bool is_any_sleeping() {
return is_sleeping_val(this->load()); }
717 kmp_uint8 *get_stolen() {
return NULL; }
718 enum barrier_type get_bt() {
return bs_last_barrier; }
721 class kmp_flag_32 :
public kmp_basic_flag<kmp_uint32> {
723 kmp_flag_32(std::atomic<kmp_uint32> *p) : kmp_basic_flag<kmp_uint32>(p) {}
724 kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_info_t *thr)
725 : kmp_basic_flag<kmp_uint32>(p, thr) {}
726 kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_uint32 c)
727 : kmp_basic_flag<kmp_uint32>(p, c) {}
728 void suspend(
int th_gtid) { __kmp_suspend_32(th_gtid,
this); }
729 void resume(
int th_gtid) { __kmp_resume_32(th_gtid,
this); }
730 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid,
int final_spin,
731 int *thread_finished USE_ITT_BUILD_ARG(
void *itt_sync_obj),
732 kmp_int32 is_constrained) {
733 return __kmp_execute_tasks_32(
734 this_thr, gtid,
this, final_spin,
735 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
737 void wait(kmp_info_t *this_thr,
738 int final_spin USE_ITT_BUILD_ARG(
void *itt_sync_obj)) {
740 __kmp_wait_template<kmp_flag_32, TRUE>(
741 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
743 __kmp_wait_template<kmp_flag_32, FALSE>(
744 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
746 void release() { __kmp_release_template(
this); }
750 class kmp_flag_64 :
public kmp_basic_flag_native<kmp_uint64> {
752 kmp_flag_64(
volatile kmp_uint64 *p) : kmp_basic_flag_native<kmp_uint64>(p) {}
753 kmp_flag_64(
volatile kmp_uint64 *p, kmp_info_t *thr)
754 : kmp_basic_flag_native<kmp_uint64>(p, thr) {}
755 kmp_flag_64(
volatile kmp_uint64 *p, kmp_uint64 c)
756 : kmp_basic_flag_native<kmp_uint64>(p, c) {}
757 void suspend(
int th_gtid) { __kmp_suspend_64(th_gtid,
this); }
758 void resume(
int th_gtid) { __kmp_resume_64(th_gtid,
this); }
759 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid,
int final_spin,
760 int *thread_finished USE_ITT_BUILD_ARG(
void *itt_sync_obj),
761 kmp_int32 is_constrained) {
762 return __kmp_execute_tasks_64(
763 this_thr, gtid,
this, final_spin,
764 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
766 void wait(kmp_info_t *this_thr,
767 int final_spin USE_ITT_BUILD_ARG(
void *itt_sync_obj)) {
769 __kmp_wait_template<kmp_flag_64, TRUE>(
770 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
772 __kmp_wait_template<kmp_flag_64, FALSE>(
773 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
775 void release() { __kmp_release_template(
this); }
782 kmp_info_t *waiting_threads[1];
783 kmp_uint32 num_waiting_threads;
787 enum barrier_type bt;
788 kmp_info_t *this_thr;
794 unsigned char &byteref(
volatile kmp_uint64 *loc,
size_t offset) {
795 return (RCAST(
unsigned char *, CCAST(kmp_uint64 *, loc)))[offset];
799 kmp_flag_oncore(
volatile kmp_uint64 *p)
801 flag_switch(
false) {}
802 kmp_flag_oncore(
volatile kmp_uint64 *p, kmp_uint32 idx)
804 offset(idx), flag_switch(
false) {}
805 kmp_flag_oncore(
volatile kmp_uint64 *p, kmp_uint64 c, kmp_uint32 idx,
806 enum barrier_type bar_t,
807 kmp_info_t *thr USE_ITT_BUILD_ARG(
void *itt))
809 num_waiting_threads(0), offset(idx), flag_switch(
false), bt(bar_t),
810 this_thr(thr) USE_ITT_BUILD_ARG(itt_sync_obj(itt)) {}
811 kmp_info_t *get_waiter(kmp_uint32 i) {
812 KMP_DEBUG_ASSERT(i < num_waiting_threads);
813 return waiting_threads[i];
815 kmp_uint32 get_num_waiters() {
return num_waiting_threads; }
816 void set_waiter(kmp_info_t *thr) {
817 waiting_threads[0] = thr;
818 num_waiting_threads = 1;
820 bool done_check_val(kmp_uint64 old_loc) {
821 return byteref(&old_loc, offset) == checker;
823 bool done_check() {
return done_check_val(*
get()); }
824 bool notdone_check() {
826 if (this_thr->th.th_bar[bt].bb.wait_flag == KMP_BARRIER_SWITCH_TO_OWN_FLAG)
828 if (byteref(
get(), offset) != 1 && !flag_switch)
830 else if (flag_switch) {
831 this_thr->th.th_bar[bt].bb.wait_flag = KMP_BARRIER_SWITCHING;
832 kmp_flag_64 flag(&this_thr->th.th_bar[bt].bb.b_go,
833 (kmp_uint64)KMP_BARRIER_STATE_BUMP);
834 __kmp_wait_64(this_thr, &flag, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
838 void internal_release() {
840 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
841 byteref(
get(), offset) = 1;
844 byteref(&mask, offset) = 1;
845 KMP_TEST_THEN_OR64(
get(), mask);
848 kmp_uint64 set_sleeping() {
849 return KMP_TEST_THEN_OR64(
get(), KMP_BARRIER_SLEEP_STATE);
851 kmp_uint64 unset_sleeping() {
852 return KMP_TEST_THEN_AND64(
get(), ~KMP_BARRIER_SLEEP_STATE);
854 bool is_sleeping_val(kmp_uint64 old_loc) {
855 return old_loc & KMP_BARRIER_SLEEP_STATE;
857 bool is_sleeping() {
return is_sleeping_val(*
get()); }
858 bool is_any_sleeping() {
return is_sleeping_val(*
get()); }
859 void wait(kmp_info_t *this_thr,
int final_spin) {
861 __kmp_wait_template<kmp_flag_oncore, TRUE>(
862 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
864 __kmp_wait_template<kmp_flag_oncore, FALSE>(
865 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
867 void release() { __kmp_release_template(
this); }
868 void suspend(
int th_gtid) { __kmp_suspend_oncore(th_gtid,
this); }
869 void resume(
int th_gtid) { __kmp_resume_oncore(th_gtid,
this); }
870 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid,
int final_spin,
871 int *thread_finished USE_ITT_BUILD_ARG(
void *itt_sync_obj),
872 kmp_int32 is_constrained) {
873 return __kmp_execute_tasks_oncore(
874 this_thr, gtid,
this, final_spin,
875 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
877 kmp_uint8 *get_stolen() {
return NULL; }
878 enum barrier_type get_bt() {
return bt; }
884 static inline void __kmp_null_resume_wrapper(
int gtid,
volatile void *flag) {
888 switch (RCAST(kmp_flag_64 *, CCAST(
void *, flag))->get_type()) {
890 __kmp_resume_32(gtid, NULL);
893 __kmp_resume_64(gtid, NULL);
896 __kmp_resume_oncore(gtid, NULL);
905 #endif // KMP_WAIT_RELEASE_H
stats_state_e
the states which a thread can be in