LLVM OpenMP* Runtime Library
z_Linux_util.cpp
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // The LLVM Compiler Infrastructure
8 //
9 // This file is dual licensed under the MIT and the University of Illinois Open
10 // Source Licenses. See LICENSE.txt for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "kmp.h"
15 #include "kmp_affinity.h"
16 #include "kmp_i18n.h"
17 #include "kmp_io.h"
18 #include "kmp_itt.h"
19 #include "kmp_lock.h"
20 #include "kmp_stats.h"
21 #include "kmp_str.h"
22 #include "kmp_wait_release.h"
23 #include "kmp_wrapper_getpid.h"
24 
25 #if !KMP_OS_FREEBSD && !KMP_OS_NETBSD
26 #include <alloca.h>
27 #endif
28 #include <math.h> // HUGE_VAL.
29 #include <sys/resource.h>
30 #include <sys/syscall.h>
31 #include <sys/time.h>
32 #include <sys/times.h>
33 #include <unistd.h>
34 
35 #if KMP_OS_LINUX && !KMP_OS_CNK
36 #include <sys/sysinfo.h>
37 #if KMP_USE_FUTEX
38 // We should really include <futex.h>, but that causes compatibility problems on
39 // different Linux* OS distributions that either require that you include (or
40 // break when you try to include) <pci/types.h>. Since all we need is the two
41 // macros below (which are part of the kernel ABI, so can't change) we just
42 // define the constants here and don't include <futex.h>
43 #ifndef FUTEX_WAIT
44 #define FUTEX_WAIT 0
45 #endif
46 #ifndef FUTEX_WAKE
47 #define FUTEX_WAKE 1
48 #endif
49 #endif
50 #elif KMP_OS_DARWIN
51 #include <mach/mach.h>
52 #include <sys/sysctl.h>
53 #elif KMP_OS_FREEBSD
54 #include <pthread_np.h>
55 #endif
56 
57 #include <ctype.h>
58 #include <dirent.h>
59 #include <fcntl.h>
60 
61 #include "tsan_annotations.h"
62 
63 struct kmp_sys_timer {
64  struct timespec start;
65 };
66 
67 // Convert timespec to nanoseconds.
68 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
69 
70 static struct kmp_sys_timer __kmp_sys_timer_data;
71 
72 #if KMP_HANDLE_SIGNALS
73 typedef void (*sig_func_t)(int);
74 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
75 static sigset_t __kmp_sigset;
76 #endif
77 
78 static int __kmp_init_runtime = FALSE;
79 
80 static int __kmp_fork_count = 0;
81 
82 static pthread_condattr_t __kmp_suspend_cond_attr;
83 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
84 
85 static kmp_cond_align_t __kmp_wait_cv;
86 static kmp_mutex_align_t __kmp_wait_mx;
87 
88 kmp_uint64 __kmp_ticks_per_msec = 1000000;
89 
90 #ifdef DEBUG_SUSPEND
91 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
92  KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
93  cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
94  cond->c_cond.__c_waiting);
95 }
96 #endif
97 
98 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
99 
100 /* Affinity support */
101 
102 void __kmp_affinity_bind_thread(int which) {
103  KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
104  "Illegal set affinity operation when not capable");
105 
106  kmp_affin_mask_t *mask;
107  KMP_CPU_ALLOC_ON_STACK(mask);
108  KMP_CPU_ZERO(mask);
109  KMP_CPU_SET(which, mask);
110  __kmp_set_system_affinity(mask, TRUE);
111  KMP_CPU_FREE_FROM_STACK(mask);
112 }
113 
114 /* Determine if we can access affinity functionality on this version of
115  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
116  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
117 void __kmp_affinity_determine_capable(const char *env_var) {
118 // Check and see if the OS supports thread affinity.
119 
120 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
121 
122  int gCode;
123  int sCode;
124  unsigned char *buf;
125  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
126 
127  // If Linux* OS:
128  // If the syscall fails or returns a suggestion for the size,
129  // then we don't have to search for an appropriate size.
130  gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
131  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
132  "initial getaffinity call returned %d errno = %d\n",
133  gCode, errno));
134 
135  // if ((gCode < 0) && (errno == ENOSYS))
136  if (gCode < 0) {
137  // System call not supported
138  if (__kmp_affinity_verbose ||
139  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
140  (__kmp_affinity_type != affinity_default) &&
141  (__kmp_affinity_type != affinity_disabled))) {
142  int error = errno;
143  kmp_msg_t err_code = KMP_ERR(error);
144  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
145  err_code, __kmp_msg_null);
146  if (__kmp_generate_warnings == kmp_warnings_off) {
147  __kmp_str_free(&err_code.str);
148  }
149  }
150  KMP_AFFINITY_DISABLE();
151  KMP_INTERNAL_FREE(buf);
152  return;
153  }
154  if (gCode > 0) { // Linux* OS only
155  // The optimal situation: the OS returns the size of the buffer it expects.
156  //
157  // A verification of correct behavior is that Isetaffinity on a NULL
158  // buffer with the same size fails with errno set to EFAULT.
159  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
160  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
161  "setaffinity for mask size %d returned %d errno = %d\n",
162  gCode, sCode, errno));
163  if (sCode < 0) {
164  if (errno == ENOSYS) {
165  if (__kmp_affinity_verbose ||
166  (__kmp_affinity_warnings &&
167  (__kmp_affinity_type != affinity_none) &&
168  (__kmp_affinity_type != affinity_default) &&
169  (__kmp_affinity_type != affinity_disabled))) {
170  int error = errno;
171  kmp_msg_t err_code = KMP_ERR(error);
172  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
173  err_code, __kmp_msg_null);
174  if (__kmp_generate_warnings == kmp_warnings_off) {
175  __kmp_str_free(&err_code.str);
176  }
177  }
178  KMP_AFFINITY_DISABLE();
179  KMP_INTERNAL_FREE(buf);
180  }
181  if (errno == EFAULT) {
182  KMP_AFFINITY_ENABLE(gCode);
183  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
184  "affinity supported (mask size %d)\n",
185  (int)__kmp_affin_mask_size));
186  KMP_INTERNAL_FREE(buf);
187  return;
188  }
189  }
190  }
191 
192  // Call the getaffinity system call repeatedly with increasing set sizes
193  // until we succeed, or reach an upper bound on the search.
194  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
195  "searching for proper set size\n"));
196  int size;
197  for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
198  gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
199  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
200  "getaffinity for mask size %d returned %d errno = %d\n",
201  size, gCode, errno));
202 
203  if (gCode < 0) {
204  if (errno == ENOSYS) {
205  // We shouldn't get here
206  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
207  "inconsistent OS call behavior: errno == ENOSYS for mask "
208  "size %d\n",
209  size));
210  if (__kmp_affinity_verbose ||
211  (__kmp_affinity_warnings &&
212  (__kmp_affinity_type != affinity_none) &&
213  (__kmp_affinity_type != affinity_default) &&
214  (__kmp_affinity_type != affinity_disabled))) {
215  int error = errno;
216  kmp_msg_t err_code = KMP_ERR(error);
217  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
218  err_code, __kmp_msg_null);
219  if (__kmp_generate_warnings == kmp_warnings_off) {
220  __kmp_str_free(&err_code.str);
221  }
222  }
223  KMP_AFFINITY_DISABLE();
224  KMP_INTERNAL_FREE(buf);
225  return;
226  }
227  continue;
228  }
229 
230  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
231  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
232  "setaffinity for mask size %d returned %d errno = %d\n",
233  gCode, sCode, errno));
234  if (sCode < 0) {
235  if (errno == ENOSYS) { // Linux* OS only
236  // We shouldn't get here
237  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
238  "inconsistent OS call behavior: errno == ENOSYS for mask "
239  "size %d\n",
240  size));
241  if (__kmp_affinity_verbose ||
242  (__kmp_affinity_warnings &&
243  (__kmp_affinity_type != affinity_none) &&
244  (__kmp_affinity_type != affinity_default) &&
245  (__kmp_affinity_type != affinity_disabled))) {
246  int error = errno;
247  kmp_msg_t err_code = KMP_ERR(error);
248  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
249  err_code, __kmp_msg_null);
250  if (__kmp_generate_warnings == kmp_warnings_off) {
251  __kmp_str_free(&err_code.str);
252  }
253  }
254  KMP_AFFINITY_DISABLE();
255  KMP_INTERNAL_FREE(buf);
256  return;
257  }
258  if (errno == EFAULT) {
259  KMP_AFFINITY_ENABLE(gCode);
260  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
261  "affinity supported (mask size %d)\n",
262  (int)__kmp_affin_mask_size));
263  KMP_INTERNAL_FREE(buf);
264  return;
265  }
266  }
267  }
268  // save uncaught error code
269  // int error = errno;
270  KMP_INTERNAL_FREE(buf);
271  // restore uncaught error code, will be printed at the next KMP_WARNING below
272  // errno = error;
273 
274  // Affinity is not supported
275  KMP_AFFINITY_DISABLE();
276  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
277  "cannot determine mask size - affinity not supported\n"));
278  if (__kmp_affinity_verbose ||
279  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
280  (__kmp_affinity_type != affinity_default) &&
281  (__kmp_affinity_type != affinity_disabled))) {
282  KMP_WARNING(AffCantGetMaskSize, env_var);
283  }
284 }
285 
286 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
287 
288 #if KMP_USE_FUTEX
289 
290 int __kmp_futex_determine_capable() {
291  int loc = 0;
292  int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
293  int retval = (rc == 0) || (errno != ENOSYS);
294 
295  KA_TRACE(10,
296  ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
297  KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
298  retval ? "" : " not"));
299 
300  return retval;
301 }
302 
303 #endif // KMP_USE_FUTEX
304 
305 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
306 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
307  use compare_and_store for these routines */
308 
309 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
310  kmp_int8 old_value, new_value;
311 
312  old_value = TCR_1(*p);
313  new_value = old_value | d;
314 
315  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
316  KMP_CPU_PAUSE();
317  old_value = TCR_1(*p);
318  new_value = old_value | d;
319  }
320  return old_value;
321 }
322 
323 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
324  kmp_int8 old_value, new_value;
325 
326  old_value = TCR_1(*p);
327  new_value = old_value & d;
328 
329  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
330  KMP_CPU_PAUSE();
331  old_value = TCR_1(*p);
332  new_value = old_value & d;
333  }
334  return old_value;
335 }
336 
337 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
338  kmp_uint32 old_value, new_value;
339 
340  old_value = TCR_4(*p);
341  new_value = old_value | d;
342 
343  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
344  KMP_CPU_PAUSE();
345  old_value = TCR_4(*p);
346  new_value = old_value | d;
347  }
348  return old_value;
349 }
350 
351 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
352  kmp_uint32 old_value, new_value;
353 
354  old_value = TCR_4(*p);
355  new_value = old_value & d;
356 
357  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
358  KMP_CPU_PAUSE();
359  old_value = TCR_4(*p);
360  new_value = old_value & d;
361  }
362  return old_value;
363 }
364 
365 #if KMP_ARCH_X86
366 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
367  kmp_int8 old_value, new_value;
368 
369  old_value = TCR_1(*p);
370  new_value = old_value + d;
371 
372  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
373  KMP_CPU_PAUSE();
374  old_value = TCR_1(*p);
375  new_value = old_value + d;
376  }
377  return old_value;
378 }
379 
380 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
381  kmp_int64 old_value, new_value;
382 
383  old_value = TCR_8(*p);
384  new_value = old_value + d;
385 
386  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
387  KMP_CPU_PAUSE();
388  old_value = TCR_8(*p);
389  new_value = old_value + d;
390  }
391  return old_value;
392 }
393 #endif /* KMP_ARCH_X86 */
394 
395 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
396  kmp_uint64 old_value, new_value;
397 
398  old_value = TCR_8(*p);
399  new_value = old_value | d;
400  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
401  KMP_CPU_PAUSE();
402  old_value = TCR_8(*p);
403  new_value = old_value | d;
404  }
405  return old_value;
406 }
407 
408 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
409  kmp_uint64 old_value, new_value;
410 
411  old_value = TCR_8(*p);
412  new_value = old_value & d;
413  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
414  KMP_CPU_PAUSE();
415  old_value = TCR_8(*p);
416  new_value = old_value & d;
417  }
418  return old_value;
419 }
420 
421 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
422 
423 void __kmp_terminate_thread(int gtid) {
424  int status;
425  kmp_info_t *th = __kmp_threads[gtid];
426 
427  if (!th)
428  return;
429 
430 #ifdef KMP_CANCEL_THREADS
431  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
432  status = pthread_cancel(th->th.th_info.ds.ds_thread);
433  if (status != 0 && status != ESRCH) {
434  __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
435  __kmp_msg_null);
436  }
437 #endif
438  __kmp_yield(TRUE);
439 } //
440 
441 /* Set thread stack info according to values returned by pthread_getattr_np().
442  If values are unreasonable, assume call failed and use incremental stack
443  refinement method instead. Returns TRUE if the stack parameters could be
444  determined exactly, FALSE if incremental refinement is necessary. */
445 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
446  int stack_data;
447 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_HURD
448  pthread_attr_t attr;
449  int status;
450  size_t size = 0;
451  void *addr = 0;
452 
453  /* Always do incremental stack refinement for ubermaster threads since the
454  initial thread stack range can be reduced by sibling thread creation so
455  pthread_attr_getstack may cause thread gtid aliasing */
456  if (!KMP_UBER_GTID(gtid)) {
457 
458  /* Fetch the real thread attributes */
459  status = pthread_attr_init(&attr);
460  KMP_CHECK_SYSFAIL("pthread_attr_init", status);
461 #if KMP_OS_FREEBSD || KMP_OS_NETBSD
462  status = pthread_attr_get_np(pthread_self(), &attr);
463  KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
464 #else
465  status = pthread_getattr_np(pthread_self(), &attr);
466  KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
467 #endif
468  status = pthread_attr_getstack(&attr, &addr, &size);
469  KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
470  KA_TRACE(60,
471  ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
472  " %lu, low addr: %p\n",
473  gtid, size, addr));
474  status = pthread_attr_destroy(&attr);
475  KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
476  }
477 
478  if (size != 0 && addr != 0) { // was stack parameter determination successful?
479  /* Store the correct base and size */
480  TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
481  TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
482  TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
483  return TRUE;
484  }
485 #endif /* KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD */
486  /* Use incremental refinement starting from initial conservative estimate */
487  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
488  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
489  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
490  return FALSE;
491 }
492 
493 static void *__kmp_launch_worker(void *thr) {
494  int status, old_type, old_state;
495 #ifdef KMP_BLOCK_SIGNALS
496  sigset_t new_set, old_set;
497 #endif /* KMP_BLOCK_SIGNALS */
498  void *exit_val;
499 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_HURD
500  void *volatile padding = 0;
501 #endif
502  int gtid;
503 
504  gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
505  __kmp_gtid_set_specific(gtid);
506 #ifdef KMP_TDATA_GTID
507  __kmp_gtid = gtid;
508 #endif
509 #if KMP_STATS_ENABLED
510  // set thread local index to point to thread-specific stats
511  __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
512  __kmp_stats_thread_ptr->startLife();
513  KMP_SET_THREAD_STATE(IDLE);
514  KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
515 #endif
516 
517 #if USE_ITT_BUILD
518  __kmp_itt_thread_name(gtid);
519 #endif /* USE_ITT_BUILD */
520 
521 #if KMP_AFFINITY_SUPPORTED
522  __kmp_affinity_set_init_mask(gtid, FALSE);
523 #endif
524 
525 #ifdef KMP_CANCEL_THREADS
526  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
527  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
528  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
529  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
530  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
531 #endif
532 
533 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
534  // Set FP control regs to be a copy of the parallel initialization thread's.
535  __kmp_clear_x87_fpu_status_word();
536  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
537  __kmp_load_mxcsr(&__kmp_init_mxcsr);
538 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
539 
540 #ifdef KMP_BLOCK_SIGNALS
541  status = sigfillset(&new_set);
542  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
543  status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
544  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
545 #endif /* KMP_BLOCK_SIGNALS */
546 
547 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
548  if (__kmp_stkoffset > 0 && gtid > 0) {
549  padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
550  }
551 #endif
552 
553  KMP_MB();
554  __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
555 
556  __kmp_check_stack_overlap((kmp_info_t *)thr);
557 
558  exit_val = __kmp_launch_thread((kmp_info_t *)thr);
559 
560 #ifdef KMP_BLOCK_SIGNALS
561  status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
562  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
563 #endif /* KMP_BLOCK_SIGNALS */
564 
565  return exit_val;
566 }
567 
568 #if KMP_USE_MONITOR
569 /* The monitor thread controls all of the threads in the complex */
570 
571 static void *__kmp_launch_monitor(void *thr) {
572  int status, old_type, old_state;
573 #ifdef KMP_BLOCK_SIGNALS
574  sigset_t new_set;
575 #endif /* KMP_BLOCK_SIGNALS */
576  struct timespec interval;
577  int yield_count;
578  int yield_cycles = 0;
579 
580  KMP_MB(); /* Flush all pending memory write invalidates. */
581 
582  KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
583 
584  /* register us as the monitor thread */
585  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
586 #ifdef KMP_TDATA_GTID
587  __kmp_gtid = KMP_GTID_MONITOR;
588 #endif
589 
590  KMP_MB();
591 
592 #if USE_ITT_BUILD
593  // Instruct Intel(R) Threading Tools to ignore monitor thread.
594  __kmp_itt_thread_ignore();
595 #endif /* USE_ITT_BUILD */
596 
597  __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
598  (kmp_info_t *)thr);
599 
600  __kmp_check_stack_overlap((kmp_info_t *)thr);
601 
602 #ifdef KMP_CANCEL_THREADS
603  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
604  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
605  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
606  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
607  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
608 #endif
609 
610 #if KMP_REAL_TIME_FIX
611  // This is a potential fix which allows application with real-time scheduling
612  // policy work. However, decision about the fix is not made yet, so it is
613  // disabled by default.
614  { // Are program started with real-time scheduling policy?
615  int sched = sched_getscheduler(0);
616  if (sched == SCHED_FIFO || sched == SCHED_RR) {
617  // Yes, we are a part of real-time application. Try to increase the
618  // priority of the monitor.
619  struct sched_param param;
620  int max_priority = sched_get_priority_max(sched);
621  int rc;
622  KMP_WARNING(RealTimeSchedNotSupported);
623  sched_getparam(0, &param);
624  if (param.sched_priority < max_priority) {
625  param.sched_priority += 1;
626  rc = sched_setscheduler(0, sched, &param);
627  if (rc != 0) {
628  int error = errno;
629  kmp_msg_t err_code = KMP_ERR(error);
630  __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
631  err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
632  if (__kmp_generate_warnings == kmp_warnings_off) {
633  __kmp_str_free(&err_code.str);
634  }
635  }
636  } else {
637  // We cannot abort here, because number of CPUs may be enough for all
638  // the threads, including the monitor thread, so application could
639  // potentially work...
640  __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
641  KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
642  __kmp_msg_null);
643  }
644  }
645  // AC: free thread that waits for monitor started
646  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
647  }
648 #endif // KMP_REAL_TIME_FIX
649 
650  KMP_MB(); /* Flush all pending memory write invalidates. */
651 
652  if (__kmp_monitor_wakeups == 1) {
653  interval.tv_sec = 1;
654  interval.tv_nsec = 0;
655  } else {
656  interval.tv_sec = 0;
657  interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
658  }
659 
660  KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
661 
662  if (__kmp_yield_cycle) {
663  __kmp_yielding_on = 0; /* Start out with yielding shut off */
664  yield_count = __kmp_yield_off_count;
665  } else {
666  __kmp_yielding_on = 1; /* Yielding is on permanently */
667  }
668 
669  while (!TCR_4(__kmp_global.g.g_done)) {
670  struct timespec now;
671  struct timeval tval;
672 
673  /* This thread monitors the state of the system */
674 
675  KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
676 
677  status = gettimeofday(&tval, NULL);
678  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
679  TIMEVAL_TO_TIMESPEC(&tval, &now);
680 
681  now.tv_sec += interval.tv_sec;
682  now.tv_nsec += interval.tv_nsec;
683 
684  if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
685  now.tv_sec += 1;
686  now.tv_nsec -= KMP_NSEC_PER_SEC;
687  }
688 
689  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
690  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
691  // AC: the monitor should not fall asleep if g_done has been set
692  if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
693  status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
694  &__kmp_wait_mx.m_mutex, &now);
695  if (status != 0) {
696  if (status != ETIMEDOUT && status != EINTR) {
697  KMP_SYSFAIL("pthread_cond_timedwait", status);
698  }
699  }
700  }
701  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
702  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
703 
704  if (__kmp_yield_cycle) {
705  yield_cycles++;
706  if ((yield_cycles % yield_count) == 0) {
707  if (__kmp_yielding_on) {
708  __kmp_yielding_on = 0; /* Turn it off now */
709  yield_count = __kmp_yield_off_count;
710  } else {
711  __kmp_yielding_on = 1; /* Turn it on now */
712  yield_count = __kmp_yield_on_count;
713  }
714  yield_cycles = 0;
715  }
716  } else {
717  __kmp_yielding_on = 1;
718  }
719 
720  TCW_4(__kmp_global.g.g_time.dt.t_value,
721  TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
722 
723  KMP_MB(); /* Flush all pending memory write invalidates. */
724  }
725 
726  KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
727 
728 #ifdef KMP_BLOCK_SIGNALS
729  status = sigfillset(&new_set);
730  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
731  status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
732  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
733 #endif /* KMP_BLOCK_SIGNALS */
734 
735  KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
736 
737  if (__kmp_global.g.g_abort != 0) {
738  /* now we need to terminate the worker threads */
739  /* the value of t_abort is the signal we caught */
740 
741  int gtid;
742 
743  KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
744  __kmp_global.g.g_abort));
745 
746  /* terminate the OpenMP worker threads */
747  /* TODO this is not valid for sibling threads!!
748  * the uber master might not be 0 anymore.. */
749  for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
750  __kmp_terminate_thread(gtid);
751 
752  __kmp_cleanup();
753 
754  KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
755  __kmp_global.g.g_abort));
756 
757  if (__kmp_global.g.g_abort > 0)
758  raise(__kmp_global.g.g_abort);
759  }
760 
761  KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
762 
763  return thr;
764 }
765 #endif // KMP_USE_MONITOR
766 
767 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
768  pthread_t handle;
769  pthread_attr_t thread_attr;
770  int status;
771 
772  th->th.th_info.ds.ds_gtid = gtid;
773 
774 #if KMP_STATS_ENABLED
775  // sets up worker thread stats
776  __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
777 
778  // th->th.th_stats is used to transfer thread-specific stats-pointer to
779  // __kmp_launch_worker. So when thread is created (goes into
780  // __kmp_launch_worker) it will set its thread local pointer to
781  // th->th.th_stats
782  if (!KMP_UBER_GTID(gtid)) {
783  th->th.th_stats = __kmp_stats_list->push_back(gtid);
784  } else {
785  // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
786  // so set the th->th.th_stats field to it.
787  th->th.th_stats = __kmp_stats_thread_ptr;
788  }
789  __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
790 
791 #endif // KMP_STATS_ENABLED
792 
793  if (KMP_UBER_GTID(gtid)) {
794  KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
795  th->th.th_info.ds.ds_thread = pthread_self();
796  __kmp_set_stack_info(gtid, th);
797  __kmp_check_stack_overlap(th);
798  return;
799  }
800 
801  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
802 
803  KMP_MB(); /* Flush all pending memory write invalidates. */
804 
805 #ifdef KMP_THREAD_ATTR
806  status = pthread_attr_init(&thread_attr);
807  if (status != 0) {
808  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
809  }
810  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
811  if (status != 0) {
812  __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
813  }
814 
815  /* Set stack size for this thread now.
816  The multiple of 2 is there because on some machines, requesting an unusual
817  stacksize causes the thread to have an offset before the dummy alloca()
818  takes place to create the offset. Since we want the user to have a
819  sufficient stacksize AND support a stack offset, we alloca() twice the
820  offset so that the upcoming alloca() does not eliminate any premade offset,
821  and also gives the user the stack space they requested for all threads */
822  stack_size += gtid * __kmp_stkoffset * 2;
823 
824  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
825  "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
826  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
827 
828 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
829  status = pthread_attr_setstacksize(&thread_attr, stack_size);
830 #ifdef KMP_BACKUP_STKSIZE
831  if (status != 0) {
832  if (!__kmp_env_stksize) {
833  stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
834  __kmp_stksize = KMP_BACKUP_STKSIZE;
835  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
836  "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
837  "bytes\n",
838  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
839  status = pthread_attr_setstacksize(&thread_attr, stack_size);
840  }
841  }
842 #endif /* KMP_BACKUP_STKSIZE */
843  if (status != 0) {
844  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
845  KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
846  }
847 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
848 
849 #endif /* KMP_THREAD_ATTR */
850 
851  status =
852  pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
853  if (status != 0 || !handle) { // ??? Why do we check handle??
854 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
855  if (status == EINVAL) {
856  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
857  KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
858  }
859  if (status == ENOMEM) {
860  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
861  KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
862  }
863 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
864  if (status == EAGAIN) {
865  __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
866  KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
867  }
868  KMP_SYSFAIL("pthread_create", status);
869  }
870 
871  th->th.th_info.ds.ds_thread = handle;
872 
873 #ifdef KMP_THREAD_ATTR
874  status = pthread_attr_destroy(&thread_attr);
875  if (status) {
876  kmp_msg_t err_code = KMP_ERR(status);
877  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
878  __kmp_msg_null);
879  if (__kmp_generate_warnings == kmp_warnings_off) {
880  __kmp_str_free(&err_code.str);
881  }
882  }
883 #endif /* KMP_THREAD_ATTR */
884 
885  KMP_MB(); /* Flush all pending memory write invalidates. */
886 
887  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
888 
889 } // __kmp_create_worker
890 
891 #if KMP_USE_MONITOR
892 void __kmp_create_monitor(kmp_info_t *th) {
893  pthread_t handle;
894  pthread_attr_t thread_attr;
895  size_t size;
896  int status;
897  int auto_adj_size = FALSE;
898 
899  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
900  // We don't need monitor thread in case of MAX_BLOCKTIME
901  KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
902  "MAX blocktime\n"));
903  th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
904  th->th.th_info.ds.ds_gtid = 0;
905  return;
906  }
907  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
908 
909  KMP_MB(); /* Flush all pending memory write invalidates. */
910 
911  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
912  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
913 #if KMP_REAL_TIME_FIX
914  TCW_4(__kmp_global.g.g_time.dt.t_value,
915  -1); // Will use it for synchronization a bit later.
916 #else
917  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
918 #endif // KMP_REAL_TIME_FIX
919 
920 #ifdef KMP_THREAD_ATTR
921  if (__kmp_monitor_stksize == 0) {
922  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
923  auto_adj_size = TRUE;
924  }
925  status = pthread_attr_init(&thread_attr);
926  if (status != 0) {
927  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
928  }
929  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
930  if (status != 0) {
931  __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
932  }
933 
934 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
935  status = pthread_attr_getstacksize(&thread_attr, &size);
936  KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
937 #else
938  size = __kmp_sys_min_stksize;
939 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
940 #endif /* KMP_THREAD_ATTR */
941 
942  if (__kmp_monitor_stksize == 0) {
943  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
944  }
945  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
946  __kmp_monitor_stksize = __kmp_sys_min_stksize;
947  }
948 
949  KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
950  "requested stacksize = %lu bytes\n",
951  size, __kmp_monitor_stksize));
952 
953 retry:
954 
955 /* Set stack size for this thread now. */
956 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
957  KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
958  __kmp_monitor_stksize));
959  status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
960  if (status != 0) {
961  if (auto_adj_size) {
962  __kmp_monitor_stksize *= 2;
963  goto retry;
964  }
965  kmp_msg_t err_code = KMP_ERR(status);
966  __kmp_msg(kmp_ms_warning, // should this be fatal? BB
967  KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
968  err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
969  if (__kmp_generate_warnings == kmp_warnings_off) {
970  __kmp_str_free(&err_code.str);
971  }
972  }
973 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
974 
975  status =
976  pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
977 
978  if (status != 0) {
979 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
980  if (status == EINVAL) {
981  if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
982  __kmp_monitor_stksize *= 2;
983  goto retry;
984  }
985  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
986  KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
987  __kmp_msg_null);
988  }
989  if (status == ENOMEM) {
990  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
991  KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
992  __kmp_msg_null);
993  }
994 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
995  if (status == EAGAIN) {
996  __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
997  KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
998  }
999  KMP_SYSFAIL("pthread_create", status);
1000  }
1001 
1002  th->th.th_info.ds.ds_thread = handle;
1003 
1004 #if KMP_REAL_TIME_FIX
1005  // Wait for the monitor thread is really started and set its *priority*.
1006  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1007  sizeof(__kmp_global.g.g_time.dt.t_value));
1008  __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value,
1009  -1, &__kmp_neq_4, NULL);
1010 #endif // KMP_REAL_TIME_FIX
1011 
1012 #ifdef KMP_THREAD_ATTR
1013  status = pthread_attr_destroy(&thread_attr);
1014  if (status != 0) {
1015  kmp_msg_t err_code = KMP_ERR(status);
1016  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1017  __kmp_msg_null);
1018  if (__kmp_generate_warnings == kmp_warnings_off) {
1019  __kmp_str_free(&err_code.str);
1020  }
1021  }
1022 #endif
1023 
1024  KMP_MB(); /* Flush all pending memory write invalidates. */
1025 
1026  KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1027  th->th.th_info.ds.ds_thread));
1028 
1029 } // __kmp_create_monitor
1030 #endif // KMP_USE_MONITOR
1031 
1032 void __kmp_exit_thread(int exit_status) {
1033  pthread_exit((void *)(intptr_t)exit_status);
1034 } // __kmp_exit_thread
1035 
1036 #if KMP_USE_MONITOR
1037 void __kmp_resume_monitor();
1038 
1039 void __kmp_reap_monitor(kmp_info_t *th) {
1040  int status;
1041  void *exit_val;
1042 
1043  KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1044  " %#.8lx\n",
1045  th->th.th_info.ds.ds_thread));
1046 
1047  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1048  // If both tid and gtid are 0, it means the monitor did not ever start.
1049  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1050  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1051  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1052  KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1053  return;
1054  }
1055 
1056  KMP_MB(); /* Flush all pending memory write invalidates. */
1057 
1058  /* First, check to see whether the monitor thread exists to wake it up. This
1059  is to avoid performance problem when the monitor sleeps during
1060  blocktime-size interval */
1061 
1062  status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1063  if (status != ESRCH) {
1064  __kmp_resume_monitor(); // Wake up the monitor thread
1065  }
1066  KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1067  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1068  if (exit_val != th) {
1069  __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1070  }
1071 
1072  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1073  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1074 
1075  KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1076  " %#.8lx\n",
1077  th->th.th_info.ds.ds_thread));
1078 
1079  KMP_MB(); /* Flush all pending memory write invalidates. */
1080 }
1081 #endif // KMP_USE_MONITOR
1082 
1083 void __kmp_reap_worker(kmp_info_t *th) {
1084  int status;
1085  void *exit_val;
1086 
1087  KMP_MB(); /* Flush all pending memory write invalidates. */
1088 
1089  KA_TRACE(
1090  10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1091 
1092  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1093 #ifdef KMP_DEBUG
1094  /* Don't expose these to the user until we understand when they trigger */
1095  if (status != 0) {
1096  __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1097  }
1098  if (exit_val != th) {
1099  KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1100  "exit_val = %p\n",
1101  th->th.th_info.ds.ds_gtid, exit_val));
1102  }
1103 #endif /* KMP_DEBUG */
1104 
1105  KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1106  th->th.th_info.ds.ds_gtid));
1107 
1108  KMP_MB(); /* Flush all pending memory write invalidates. */
1109 }
1110 
1111 #if KMP_HANDLE_SIGNALS
1112 
1113 static void __kmp_null_handler(int signo) {
1114  // Do nothing, for doing SIG_IGN-type actions.
1115 } // __kmp_null_handler
1116 
1117 static void __kmp_team_handler(int signo) {
1118  if (__kmp_global.g.g_abort == 0) {
1119 /* Stage 1 signal handler, let's shut down all of the threads */
1120 #ifdef KMP_DEBUG
1121  __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1122 #endif
1123  switch (signo) {
1124  case SIGHUP:
1125  case SIGINT:
1126  case SIGQUIT:
1127  case SIGILL:
1128  case SIGABRT:
1129  case SIGFPE:
1130  case SIGBUS:
1131  case SIGSEGV:
1132 #ifdef SIGSYS
1133  case SIGSYS:
1134 #endif
1135  case SIGTERM:
1136  if (__kmp_debug_buf) {
1137  __kmp_dump_debug_buffer();
1138  }
1139  KMP_MB(); // Flush all pending memory write invalidates.
1140  TCW_4(__kmp_global.g.g_abort, signo);
1141  KMP_MB(); // Flush all pending memory write invalidates.
1142  TCW_4(__kmp_global.g.g_done, TRUE);
1143  KMP_MB(); // Flush all pending memory write invalidates.
1144  break;
1145  default:
1146 #ifdef KMP_DEBUG
1147  __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1148 #endif
1149  break;
1150  }
1151  }
1152 } // __kmp_team_handler
1153 
1154 static void __kmp_sigaction(int signum, const struct sigaction *act,
1155  struct sigaction *oldact) {
1156  int rc = sigaction(signum, act, oldact);
1157  KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1158 }
1159 
1160 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1161  int parallel_init) {
1162  KMP_MB(); // Flush all pending memory write invalidates.
1163  KB_TRACE(60,
1164  ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1165  if (parallel_init) {
1166  struct sigaction new_action;
1167  struct sigaction old_action;
1168  new_action.sa_handler = handler_func;
1169  new_action.sa_flags = 0;
1170  sigfillset(&new_action.sa_mask);
1171  __kmp_sigaction(sig, &new_action, &old_action);
1172  if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1173  sigaddset(&__kmp_sigset, sig);
1174  } else {
1175  // Restore/keep user's handler if one previously installed.
1176  __kmp_sigaction(sig, &old_action, NULL);
1177  }
1178  } else {
1179  // Save initial/system signal handlers to see if user handlers installed.
1180  __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1181  }
1182  KMP_MB(); // Flush all pending memory write invalidates.
1183 } // __kmp_install_one_handler
1184 
1185 static void __kmp_remove_one_handler(int sig) {
1186  KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1187  if (sigismember(&__kmp_sigset, sig)) {
1188  struct sigaction old;
1189  KMP_MB(); // Flush all pending memory write invalidates.
1190  __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1191  if ((old.sa_handler != __kmp_team_handler) &&
1192  (old.sa_handler != __kmp_null_handler)) {
1193  // Restore the users signal handler.
1194  KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1195  "restoring: sig=%d\n",
1196  sig));
1197  __kmp_sigaction(sig, &old, NULL);
1198  }
1199  sigdelset(&__kmp_sigset, sig);
1200  KMP_MB(); // Flush all pending memory write invalidates.
1201  }
1202 } // __kmp_remove_one_handler
1203 
1204 void __kmp_install_signals(int parallel_init) {
1205  KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1206  if (__kmp_handle_signals || !parallel_init) {
1207  // If ! parallel_init, we do not install handlers, just save original
1208  // handlers. Let us do it even __handle_signals is 0.
1209  sigemptyset(&__kmp_sigset);
1210  __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1211  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1212  __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1213  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1214  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1215  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1216  __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1217  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1218 #ifdef SIGSYS
1219  __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1220 #endif // SIGSYS
1221  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1222 #ifdef SIGPIPE
1223  __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1224 #endif // SIGPIPE
1225  }
1226 } // __kmp_install_signals
1227 
1228 void __kmp_remove_signals(void) {
1229  int sig;
1230  KB_TRACE(10, ("__kmp_remove_signals()\n"));
1231  for (sig = 1; sig < NSIG; ++sig) {
1232  __kmp_remove_one_handler(sig);
1233  }
1234 } // __kmp_remove_signals
1235 
1236 #endif // KMP_HANDLE_SIGNALS
1237 
1238 void __kmp_enable(int new_state) {
1239 #ifdef KMP_CANCEL_THREADS
1240  int status, old_state;
1241  status = pthread_setcancelstate(new_state, &old_state);
1242  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1243  KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1244 #endif
1245 }
1246 
1247 void __kmp_disable(int *old_state) {
1248 #ifdef KMP_CANCEL_THREADS
1249  int status;
1250  status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1251  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1252 #endif
1253 }
1254 
1255 static void __kmp_atfork_prepare(void) {
1256  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1257  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1258 }
1259 
1260 static void __kmp_atfork_parent(void) {
1261  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1262  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1263 }
1264 
1265 /* Reset the library so execution in the child starts "all over again" with
1266  clean data structures in initial states. Don't worry about freeing memory
1267  allocated by parent, just abandon it to be safe. */
1268 static void __kmp_atfork_child(void) {
1269  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1270  /* TODO make sure this is done right for nested/sibling */
1271  // ATT: Memory leaks are here? TODO: Check it and fix.
1272  /* KMP_ASSERT( 0 ); */
1273 
1274  ++__kmp_fork_count;
1275 
1276 #if KMP_AFFINITY_SUPPORTED
1277 #if KMP_OS_LINUX
1278  // reset the affinity in the child to the initial thread
1279  // affinity in the parent
1280  kmp_set_thread_affinity_mask_initial();
1281 #endif
1282  // Set default not to bind threads tightly in the child (we’re expecting
1283  // over-subscription after the fork and this can improve things for
1284  // scripting languages that use OpenMP inside process-parallel code).
1285  __kmp_affinity_type = affinity_none;
1286 #if OMP_40_ENABLED
1287  if (__kmp_nested_proc_bind.bind_types != NULL) {
1288  __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1289  }
1290 #endif // OMP_40_ENABLED
1291 #endif // KMP_AFFINITY_SUPPORTED
1292 
1293  __kmp_init_runtime = FALSE;
1294 #if KMP_USE_MONITOR
1295  __kmp_init_monitor = 0;
1296 #endif
1297  __kmp_init_parallel = FALSE;
1298  __kmp_init_middle = FALSE;
1299  __kmp_init_serial = FALSE;
1300  TCW_4(__kmp_init_gtid, FALSE);
1301  __kmp_init_common = FALSE;
1302 
1303  TCW_4(__kmp_init_user_locks, FALSE);
1304 #if !KMP_USE_DYNAMIC_LOCK
1305  __kmp_user_lock_table.used = 1;
1306  __kmp_user_lock_table.allocated = 0;
1307  __kmp_user_lock_table.table = NULL;
1308  __kmp_lock_blocks = NULL;
1309 #endif
1310 
1311  __kmp_all_nth = 0;
1312  TCW_4(__kmp_nth, 0);
1313 
1314  __kmp_thread_pool = NULL;
1315  __kmp_thread_pool_insert_pt = NULL;
1316  __kmp_team_pool = NULL;
1317 
1318  /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1319  here so threadprivate doesn't use stale data */
1320  KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1321  __kmp_threadpriv_cache_list));
1322 
1323  while (__kmp_threadpriv_cache_list != NULL) {
1324 
1325  if (*__kmp_threadpriv_cache_list->addr != NULL) {
1326  KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1327  &(*__kmp_threadpriv_cache_list->addr)));
1328 
1329  *__kmp_threadpriv_cache_list->addr = NULL;
1330  }
1331  __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1332  }
1333 
1334  __kmp_init_runtime = FALSE;
1335 
1336  /* reset statically initialized locks */
1337  __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1338  __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1339  __kmp_init_bootstrap_lock(&__kmp_console_lock);
1340  __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1341 
1342 #if USE_ITT_BUILD
1343  __kmp_itt_reset(); // reset ITT's global state
1344 #endif /* USE_ITT_BUILD */
1345 
1346  /* This is necessary to make sure no stale data is left around */
1347  /* AC: customers complain that we use unsafe routines in the atfork
1348  handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1349  in dynamic_link when check the presence of shared tbbmalloc library.
1350  Suggestion is to make the library initialization lazier, similar
1351  to what done for __kmpc_begin(). */
1352  // TODO: synchronize all static initializations with regular library
1353  // startup; look at kmp_global.cpp and etc.
1354  //__kmp_internal_begin ();
1355 }
1356 
1357 void __kmp_register_atfork(void) {
1358  if (__kmp_need_register_atfork) {
1359  int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1360  __kmp_atfork_child);
1361  KMP_CHECK_SYSFAIL("pthread_atfork", status);
1362  __kmp_need_register_atfork = FALSE;
1363  }
1364 }
1365 
1366 void __kmp_suspend_initialize(void) {
1367  int status;
1368  status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1369  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1370  status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1371  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1372 }
1373 
1374 static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1375  ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1376  if (th->th.th_suspend_init_count <= __kmp_fork_count) {
1377  /* this means we haven't initialized the suspension pthread objects for this
1378  thread in this instance of the process */
1379  int status;
1380  status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1381  &__kmp_suspend_cond_attr);
1382  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1383  status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1384  &__kmp_suspend_mutex_attr);
1385  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1386  *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
1387  ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1388  }
1389 }
1390 
1391 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1392  if (th->th.th_suspend_init_count > __kmp_fork_count) {
1393  /* this means we have initialize the suspension pthread objects for this
1394  thread in this instance of the process */
1395  int status;
1396 
1397  status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1398  if (status != 0 && status != EBUSY) {
1399  KMP_SYSFAIL("pthread_cond_destroy", status);
1400  }
1401  status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1402  if (status != 0 && status != EBUSY) {
1403  KMP_SYSFAIL("pthread_mutex_destroy", status);
1404  }
1405  --th->th.th_suspend_init_count;
1406  KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
1407  }
1408 }
1409 
1410 /* This routine puts the calling thread to sleep after setting the
1411  sleep bit for the indicated flag variable to true. */
1412 template <class C>
1413 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1414  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1415  kmp_info_t *th = __kmp_threads[th_gtid];
1416  int status;
1417  typename C::flag_t old_spin;
1418 
1419  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1420  flag->get()));
1421 
1422  __kmp_suspend_initialize_thread(th);
1423 
1424  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1425  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1426 
1427  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1428  th_gtid, flag->get()));
1429 
1430  /* TODO: shouldn't this use release semantics to ensure that
1431  __kmp_suspend_initialize_thread gets called first? */
1432  old_spin = flag->set_sleeping();
1433 
1434  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1435  " was %x\n",
1436  th_gtid, flag->get(), flag->load(), old_spin));
1437 
1438  if (flag->done_check_val(old_spin)) {
1439  old_spin = flag->unset_sleeping();
1440  KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1441  "for spin(%p)\n",
1442  th_gtid, flag->get()));
1443  } else {
1444  /* Encapsulate in a loop as the documentation states that this may
1445  "with low probability" return when the condition variable has
1446  not been signaled or broadcast */
1447  int deactivated = FALSE;
1448  TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1449 
1450  while (flag->is_sleeping()) {
1451 #ifdef DEBUG_SUSPEND
1452  char buffer[128];
1453  __kmp_suspend_count++;
1454  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1455  __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1456  buffer);
1457 #endif
1458  // Mark the thread as no longer active (only in the first iteration of the
1459  // loop).
1460  if (!deactivated) {
1461  th->th.th_active = FALSE;
1462  if (th->th.th_active_in_pool) {
1463  th->th.th_active_in_pool = FALSE;
1464  KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1465  KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1466  }
1467  deactivated = TRUE;
1468  }
1469 
1470 #if USE_SUSPEND_TIMEOUT
1471  struct timespec now;
1472  struct timeval tval;
1473  int msecs;
1474 
1475  status = gettimeofday(&tval, NULL);
1476  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1477  TIMEVAL_TO_TIMESPEC(&tval, &now);
1478 
1479  msecs = (4 * __kmp_dflt_blocktime) + 200;
1480  now.tv_sec += msecs / 1000;
1481  now.tv_nsec += (msecs % 1000) * 1000;
1482 
1483  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1484  "pthread_cond_timedwait\n",
1485  th_gtid));
1486  status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1487  &th->th.th_suspend_mx.m_mutex, &now);
1488 #else
1489  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1490  " pthread_cond_wait\n",
1491  th_gtid));
1492  status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1493  &th->th.th_suspend_mx.m_mutex);
1494 #endif
1495 
1496  if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1497  KMP_SYSFAIL("pthread_cond_wait", status);
1498  }
1499 #ifdef KMP_DEBUG
1500  if (status == ETIMEDOUT) {
1501  if (flag->is_sleeping()) {
1502  KF_TRACE(100,
1503  ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1504  } else {
1505  KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1506  "not set!\n",
1507  th_gtid));
1508  }
1509  } else if (flag->is_sleeping()) {
1510  KF_TRACE(100,
1511  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1512  }
1513 #endif
1514  } // while
1515 
1516  // Mark the thread as active again (if it was previous marked as inactive)
1517  if (deactivated) {
1518  th->th.th_active = TRUE;
1519  if (TCR_4(th->th.th_in_pool)) {
1520  KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1521  th->th.th_active_in_pool = TRUE;
1522  }
1523  }
1524  }
1525 #ifdef DEBUG_SUSPEND
1526  {
1527  char buffer[128];
1528  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1529  __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1530  buffer);
1531  }
1532 #endif
1533 
1534  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1535  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1536  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1537 }
1538 
1539 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1540  __kmp_suspend_template(th_gtid, flag);
1541 }
1542 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1543  __kmp_suspend_template(th_gtid, flag);
1544 }
1545 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1546  __kmp_suspend_template(th_gtid, flag);
1547 }
1548 
1549 /* This routine signals the thread specified by target_gtid to wake up
1550  after setting the sleep bit indicated by the flag argument to FALSE.
1551  The target thread must already have called __kmp_suspend_template() */
1552 template <class C>
1553 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1554  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1555  kmp_info_t *th = __kmp_threads[target_gtid];
1556  int status;
1557 
1558 #ifdef KMP_DEBUG
1559  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1560 #endif
1561 
1562  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1563  gtid, target_gtid));
1564  KMP_DEBUG_ASSERT(gtid != target_gtid);
1565 
1566  __kmp_suspend_initialize_thread(th);
1567 
1568  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1569  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1570 
1571  if (!flag) { // coming from __kmp_null_resume_wrapper
1572  flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1573  }
1574 
1575  // First, check if the flag is null or its type has changed. If so, someone
1576  // else woke it up.
1577  if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1578  // simply shows what
1579  // flag was cast to
1580  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1581  "awake: flag(%p)\n",
1582  gtid, target_gtid, NULL));
1583  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1584  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1585  return;
1586  } else { // if multiple threads are sleeping, flag should be internally
1587  // referring to a specific thread here
1588  typename C::flag_t old_spin = flag->unset_sleeping();
1589  if (!flag->is_sleeping_val(old_spin)) {
1590  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1591  "awake: flag(%p): "
1592  "%u => %u\n",
1593  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1594  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1595  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1596  return;
1597  }
1598  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1599  "sleep bit for flag's loc(%p): "
1600  "%u => %u\n",
1601  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1602  }
1603  TCW_PTR(th->th.th_sleep_loc, NULL);
1604 
1605 #ifdef DEBUG_SUSPEND
1606  {
1607  char buffer[128];
1608  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1609  __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1610  target_gtid, buffer);
1611  }
1612 #endif
1613  status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1614  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1615  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1616  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1617  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1618  " for T#%d\n",
1619  gtid, target_gtid));
1620 }
1621 
1622 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1623  __kmp_resume_template(target_gtid, flag);
1624 }
1625 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1626  __kmp_resume_template(target_gtid, flag);
1627 }
1628 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1629  __kmp_resume_template(target_gtid, flag);
1630 }
1631 
1632 #if KMP_USE_MONITOR
1633 void __kmp_resume_monitor() {
1634  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1635  int status;
1636 #ifdef KMP_DEBUG
1637  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1638  KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1639  KMP_GTID_MONITOR));
1640  KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1641 #endif
1642  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1643  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1644 #ifdef DEBUG_SUSPEND
1645  {
1646  char buffer[128];
1647  __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1648  __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1649  KMP_GTID_MONITOR, buffer);
1650  }
1651 #endif
1652  status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1653  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1654  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1655  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1656  KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1657  " for T#%d\n",
1658  gtid, KMP_GTID_MONITOR));
1659 }
1660 #endif // KMP_USE_MONITOR
1661 
1662 void __kmp_yield(int cond) {
1663  if (!cond)
1664  return;
1665 #if KMP_USE_MONITOR
1666  if (!__kmp_yielding_on)
1667  return;
1668 #else
1669  if (__kmp_yield_cycle && !KMP_YIELD_NOW())
1670  return;
1671 #endif
1672  sched_yield();
1673 }
1674 
1675 void __kmp_gtid_set_specific(int gtid) {
1676  if (__kmp_init_gtid) {
1677  int status;
1678  status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1679  (void *)(intptr_t)(gtid + 1));
1680  KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1681  } else {
1682  KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1683  }
1684 }
1685 
1686 int __kmp_gtid_get_specific() {
1687  int gtid;
1688  if (!__kmp_init_gtid) {
1689  KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1690  "KMP_GTID_SHUTDOWN\n"));
1691  return KMP_GTID_SHUTDOWN;
1692  }
1693  gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1694  if (gtid == 0) {
1695  gtid = KMP_GTID_DNE;
1696  } else {
1697  gtid--;
1698  }
1699  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1700  __kmp_gtid_threadprivate_key, gtid));
1701  return gtid;
1702 }
1703 
1704 double __kmp_read_cpu_time(void) {
1705  /*clock_t t;*/
1706  struct tms buffer;
1707 
1708  /*t =*/times(&buffer);
1709 
1710  return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1711 }
1712 
1713 int __kmp_read_system_info(struct kmp_sys_info *info) {
1714  int status;
1715  struct rusage r_usage;
1716 
1717  memset(info, 0, sizeof(*info));
1718 
1719  status = getrusage(RUSAGE_SELF, &r_usage);
1720  KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1721 
1722  // The maximum resident set size utilized (in kilobytes)
1723  info->maxrss = r_usage.ru_maxrss;
1724  // The number of page faults serviced without any I/O
1725  info->minflt = r_usage.ru_minflt;
1726  // The number of page faults serviced that required I/O
1727  info->majflt = r_usage.ru_majflt;
1728  // The number of times a process was "swapped" out of memory
1729  info->nswap = r_usage.ru_nswap;
1730  // The number of times the file system had to perform input
1731  info->inblock = r_usage.ru_inblock;
1732  // The number of times the file system had to perform output
1733  info->oublock = r_usage.ru_oublock;
1734  // The number of times a context switch was voluntarily
1735  info->nvcsw = r_usage.ru_nvcsw;
1736  // The number of times a context switch was forced
1737  info->nivcsw = r_usage.ru_nivcsw;
1738 
1739  return (status != 0);
1740 }
1741 
1742 void __kmp_read_system_time(double *delta) {
1743  double t_ns;
1744  struct timeval tval;
1745  struct timespec stop;
1746  int status;
1747 
1748  status = gettimeofday(&tval, NULL);
1749  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1750  TIMEVAL_TO_TIMESPEC(&tval, &stop);
1751  t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1752  *delta = (t_ns * 1e-9);
1753 }
1754 
1755 void __kmp_clear_system_time(void) {
1756  struct timeval tval;
1757  int status;
1758  status = gettimeofday(&tval, NULL);
1759  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1760  TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1761 }
1762 
1763 static int __kmp_get_xproc(void) {
1764 
1765  int r = 0;
1766 
1767 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_HURD
1768 
1769  r = sysconf(_SC_NPROCESSORS_ONLN);
1770 
1771 #elif KMP_OS_DARWIN
1772 
1773  // Bug C77011 High "OpenMP Threads and number of active cores".
1774 
1775  // Find the number of available CPUs.
1776  kern_return_t rc;
1777  host_basic_info_data_t info;
1778  mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1779  rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1780  if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1781  // Cannot use KA_TRACE() here because this code works before trace support
1782  // is initialized.
1783  r = info.avail_cpus;
1784  } else {
1785  KMP_WARNING(CantGetNumAvailCPU);
1786  KMP_INFORM(AssumedNumCPU);
1787  }
1788 
1789 #else
1790 
1791 #error "Unknown or unsupported OS."
1792 
1793 #endif
1794 
1795  return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1796 
1797 } // __kmp_get_xproc
1798 
1799 int __kmp_read_from_file(char const *path, char const *format, ...) {
1800  int result;
1801  va_list args;
1802 
1803  va_start(args, format);
1804  FILE *f = fopen(path, "rb");
1805  if (f == NULL)
1806  return 0;
1807  result = vfscanf(f, format, args);
1808  fclose(f);
1809 
1810  return result;
1811 }
1812 
1813 void __kmp_runtime_initialize(void) {
1814  int status;
1815  pthread_mutexattr_t mutex_attr;
1816  pthread_condattr_t cond_attr;
1817 
1818  if (__kmp_init_runtime) {
1819  return;
1820  }
1821 
1822 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1823  if (!__kmp_cpuinfo.initialized) {
1824  __kmp_query_cpuid(&__kmp_cpuinfo);
1825  }
1826 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1827 
1828  __kmp_xproc = __kmp_get_xproc();
1829 
1830  if (sysconf(_SC_THREADS)) {
1831 
1832  /* Query the maximum number of threads */
1833  __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1834  if (__kmp_sys_max_nth == -1) {
1835  /* Unlimited threads for NPTL */
1836  __kmp_sys_max_nth = INT_MAX;
1837  } else if (__kmp_sys_max_nth <= 1) {
1838  /* Can't tell, just use PTHREAD_THREADS_MAX */
1839  __kmp_sys_max_nth = KMP_MAX_NTH;
1840  }
1841 
1842  /* Query the minimum stack size */
1843  __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1844  if (__kmp_sys_min_stksize <= 1) {
1845  __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1846  }
1847  }
1848 
1849  /* Set up minimum number of threads to switch to TLS gtid */
1850  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1851 
1852  status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1853  __kmp_internal_end_dest);
1854  KMP_CHECK_SYSFAIL("pthread_key_create", status);
1855  status = pthread_mutexattr_init(&mutex_attr);
1856  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1857  status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1858  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1859  status = pthread_condattr_init(&cond_attr);
1860  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1861  status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1862  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1863 #if USE_ITT_BUILD
1864  __kmp_itt_initialize();
1865 #endif /* USE_ITT_BUILD */
1866 
1867  __kmp_init_runtime = TRUE;
1868 }
1869 
1870 void __kmp_runtime_destroy(void) {
1871  int status;
1872 
1873  if (!__kmp_init_runtime) {
1874  return; // Nothing to do.
1875  }
1876 
1877 #if USE_ITT_BUILD
1878  __kmp_itt_destroy();
1879 #endif /* USE_ITT_BUILD */
1880 
1881  status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1882  KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1883 
1884  status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1885  if (status != 0 && status != EBUSY) {
1886  KMP_SYSFAIL("pthread_mutex_destroy", status);
1887  }
1888  status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1889  if (status != 0 && status != EBUSY) {
1890  KMP_SYSFAIL("pthread_cond_destroy", status);
1891  }
1892 #if KMP_AFFINITY_SUPPORTED
1893  __kmp_affinity_uninitialize();
1894 #endif
1895 
1896  __kmp_init_runtime = FALSE;
1897 }
1898 
1899 /* Put the thread to sleep for a time period */
1900 /* NOTE: not currently used anywhere */
1901 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1902 
1903 /* Calculate the elapsed wall clock time for the user */
1904 void __kmp_elapsed(double *t) {
1905  int status;
1906 #ifdef FIX_SGI_CLOCK
1907  struct timespec ts;
1908 
1909  status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1910  KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1911  *t =
1912  (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1913 #else
1914  struct timeval tv;
1915 
1916  status = gettimeofday(&tv, NULL);
1917  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1918  *t =
1919  (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1920 #endif
1921 }
1922 
1923 /* Calculate the elapsed wall clock tick for the user */
1924 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1925 
1926 /* Return the current time stamp in nsec */
1927 kmp_uint64 __kmp_now_nsec() {
1928  struct timeval t;
1929  gettimeofday(&t, NULL);
1930  return KMP_NSEC_PER_SEC * t.tv_sec + 1000 * t.tv_usec;
1931 }
1932 
1933 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1934 /* Measure clock ticks per millisecond */
1935 void __kmp_initialize_system_tick() {
1936  kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1937  kmp_uint64 nsec = __kmp_now_nsec();
1938  kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1939  kmp_uint64 now;
1940  while ((now = __kmp_hardware_timestamp()) < goal)
1941  ;
1942  __kmp_ticks_per_msec =
1943  (kmp_uint64)(1e6 * (delay + (now - goal)) / (__kmp_now_nsec() - nsec));
1944 }
1945 #endif
1946 
1947 /* Determine whether the given address is mapped into the current address
1948  space. */
1949 
1950 int __kmp_is_address_mapped(void *addr) {
1951 
1952  int found = 0;
1953  int rc;
1954 
1955 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD
1956 
1957  /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
1958  ranges mapped into the address space. */
1959 
1960  char *name = __kmp_str_format("/proc/%d/maps", getpid());
1961  FILE *file = NULL;
1962 
1963  file = fopen(name, "r");
1964  KMP_ASSERT(file != NULL);
1965 
1966  for (;;) {
1967 
1968  void *beginning = NULL;
1969  void *ending = NULL;
1970  char perms[5];
1971 
1972  rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1973  if (rc == EOF) {
1974  break;
1975  }
1976  KMP_ASSERT(rc == 3 &&
1977  KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1978 
1979  // Ending address is not included in the region, but beginning is.
1980  if ((addr >= beginning) && (addr < ending)) {
1981  perms[2] = 0; // 3th and 4th character does not matter.
1982  if (strcmp(perms, "rw") == 0) {
1983  // Memory we are looking for should be readable and writable.
1984  found = 1;
1985  }
1986  break;
1987  }
1988  }
1989 
1990  // Free resources.
1991  fclose(file);
1992  KMP_INTERNAL_FREE(name);
1993 
1994 #elif KMP_OS_DARWIN
1995 
1996  /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
1997  using vm interface. */
1998 
1999  int buffer;
2000  vm_size_t count;
2001  rc = vm_read_overwrite(
2002  mach_task_self(), // Task to read memory of.
2003  (vm_address_t)(addr), // Address to read from.
2004  1, // Number of bytes to be read.
2005  (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2006  &count // Address of var to save number of read bytes in.
2007  );
2008  if (rc == 0) {
2009  // Memory successfully read.
2010  found = 1;
2011  }
2012 
2013 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD
2014 
2015  // FIXME(FreeBSD, NetBSD): Implement this
2016  found = 1;
2017 
2018 #else
2019 
2020 #error "Unknown or unsupported OS"
2021 
2022 #endif
2023 
2024  return found;
2025 
2026 } // __kmp_is_address_mapped
2027 
2028 #ifdef USE_LOAD_BALANCE
2029 
2030 #if KMP_OS_DARWIN
2031 
2032 // The function returns the rounded value of the system load average
2033 // during given time interval which depends on the value of
2034 // __kmp_load_balance_interval variable (default is 60 sec, other values
2035 // may be 300 sec or 900 sec).
2036 // It returns -1 in case of error.
2037 int __kmp_get_load_balance(int max) {
2038  double averages[3];
2039  int ret_avg = 0;
2040 
2041  int res = getloadavg(averages, 3);
2042 
2043  // Check __kmp_load_balance_interval to determine which of averages to use.
2044  // getloadavg() may return the number of samples less than requested that is
2045  // less than 3.
2046  if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2047  ret_avg = averages[0]; // 1 min
2048  } else if ((__kmp_load_balance_interval >= 180 &&
2049  __kmp_load_balance_interval < 600) &&
2050  (res >= 2)) {
2051  ret_avg = averages[1]; // 5 min
2052  } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2053  ret_avg = averages[2]; // 15 min
2054  } else { // Error occurred
2055  return -1;
2056  }
2057 
2058  return ret_avg;
2059 }
2060 
2061 #else // Linux* OS
2062 
2063 // The fuction returns number of running (not sleeping) threads, or -1 in case
2064 // of error. Error could be reported if Linux* OS kernel too old (without
2065 // "/proc" support). Counting running threads stops if max running threads
2066 // encountered.
2067 int __kmp_get_load_balance(int max) {
2068  static int permanent_error = 0;
2069  static int glb_running_threads = 0; // Saved count of the running threads for
2070  // the thread balance algortihm
2071  static double glb_call_time = 0; /* Thread balance algorithm call time */
2072 
2073  int running_threads = 0; // Number of running threads in the system.
2074 
2075  DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2076  struct dirent *proc_entry = NULL;
2077 
2078  kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2079  DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2080  struct dirent *task_entry = NULL;
2081  int task_path_fixed_len;
2082 
2083  kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2084  int stat_file = -1;
2085  int stat_path_fixed_len;
2086 
2087  int total_processes = 0; // Total number of processes in system.
2088  int total_threads = 0; // Total number of threads in system.
2089 
2090  double call_time = 0.0;
2091 
2092  __kmp_str_buf_init(&task_path);
2093  __kmp_str_buf_init(&stat_path);
2094 
2095  __kmp_elapsed(&call_time);
2096 
2097  if (glb_call_time &&
2098  (call_time - glb_call_time < __kmp_load_balance_interval)) {
2099  running_threads = glb_running_threads;
2100  goto finish;
2101  }
2102 
2103  glb_call_time = call_time;
2104 
2105  // Do not spend time on scanning "/proc/" if we have a permanent error.
2106  if (permanent_error) {
2107  running_threads = -1;
2108  goto finish;
2109  }
2110 
2111  if (max <= 0) {
2112  max = INT_MAX;
2113  }
2114 
2115  // Open "/proc/" directory.
2116  proc_dir = opendir("/proc");
2117  if (proc_dir == NULL) {
2118  // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2119  // error now and in subsequent calls.
2120  running_threads = -1;
2121  permanent_error = 1;
2122  goto finish;
2123  }
2124 
2125  // Initialize fixed part of task_path. This part will not change.
2126  __kmp_str_buf_cat(&task_path, "/proc/", 6);
2127  task_path_fixed_len = task_path.used; // Remember number of used characters.
2128 
2129  proc_entry = readdir(proc_dir);
2130  while (proc_entry != NULL) {
2131  // Proc entry is a directory and name starts with a digit. Assume it is a
2132  // process' directory.
2133  if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2134 
2135  ++total_processes;
2136  // Make sure init process is the very first in "/proc", so we can replace
2137  // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2138  // 1. We are going to check that total_processes == 1 => d_name == "1" is
2139  // true (where "=>" is implication). Since C++ does not have => operator,
2140  // let us replace it with its equivalent: a => b == ! a || b.
2141  KMP_DEBUG_ASSERT(total_processes != 1 ||
2142  strcmp(proc_entry->d_name, "1") == 0);
2143 
2144  // Construct task_path.
2145  task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2146  __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2147  KMP_STRLEN(proc_entry->d_name));
2148  __kmp_str_buf_cat(&task_path, "/task", 5);
2149 
2150  task_dir = opendir(task_path.str);
2151  if (task_dir == NULL) {
2152  // Process can finish between reading "/proc/" directory entry and
2153  // opening process' "task/" directory. So, in general case we should not
2154  // complain, but have to skip this process and read the next one. But on
2155  // systems with no "task/" support we will spend lot of time to scan
2156  // "/proc/" tree again and again without any benefit. "init" process
2157  // (its pid is 1) should exist always, so, if we cannot open
2158  // "/proc/1/task/" directory, it means "task/" is not supported by
2159  // kernel. Report an error now and in the future.
2160  if (strcmp(proc_entry->d_name, "1") == 0) {
2161  running_threads = -1;
2162  permanent_error = 1;
2163  goto finish;
2164  }
2165  } else {
2166  // Construct fixed part of stat file path.
2167  __kmp_str_buf_clear(&stat_path);
2168  __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2169  __kmp_str_buf_cat(&stat_path, "/", 1);
2170  stat_path_fixed_len = stat_path.used;
2171 
2172  task_entry = readdir(task_dir);
2173  while (task_entry != NULL) {
2174  // It is a directory and name starts with a digit.
2175  if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2176  ++total_threads;
2177 
2178  // Consruct complete stat file path. Easiest way would be:
2179  // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2180  // task_entry->d_name );
2181  // but seriae of __kmp_str_buf_cat works a bit faster.
2182  stat_path.used =
2183  stat_path_fixed_len; // Reset stat path to its fixed part.
2184  __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2185  KMP_STRLEN(task_entry->d_name));
2186  __kmp_str_buf_cat(&stat_path, "/stat", 5);
2187 
2188  // Note: Low-level API (open/read/close) is used. High-level API
2189  // (fopen/fclose) works ~ 30 % slower.
2190  stat_file = open(stat_path.str, O_RDONLY);
2191  if (stat_file == -1) {
2192  // We cannot report an error because task (thread) can terminate
2193  // just before reading this file.
2194  } else {
2195  /* Content of "stat" file looks like:
2196  24285 (program) S ...
2197 
2198  It is a single line (if program name does not include funny
2199  symbols). First number is a thread id, then name of executable
2200  file name in paretheses, then state of the thread. We need just
2201  thread state.
2202 
2203  Good news: Length of program name is 15 characters max. Longer
2204  names are truncated.
2205 
2206  Thus, we need rather short buffer: 15 chars for program name +
2207  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2208 
2209  Bad news: Program name may contain special symbols like space,
2210  closing parenthesis, or even new line. This makes parsing
2211  "stat" file not 100 % reliable. In case of fanny program names
2212  parsing may fail (report incorrect thread state).
2213 
2214  Parsing "status" file looks more promissing (due to different
2215  file structure and escaping special symbols) but reading and
2216  parsing of "status" file works slower.
2217  -- ln
2218  */
2219  char buffer[65];
2220  int len;
2221  len = read(stat_file, buffer, sizeof(buffer) - 1);
2222  if (len >= 0) {
2223  buffer[len] = 0;
2224  // Using scanf:
2225  // sscanf( buffer, "%*d (%*s) %c ", & state );
2226  // looks very nice, but searching for a closing parenthesis
2227  // works a bit faster.
2228  char *close_parent = strstr(buffer, ") ");
2229  if (close_parent != NULL) {
2230  char state = *(close_parent + 2);
2231  if (state == 'R') {
2232  ++running_threads;
2233  if (running_threads >= max) {
2234  goto finish;
2235  }
2236  }
2237  }
2238  }
2239  close(stat_file);
2240  stat_file = -1;
2241  }
2242  }
2243  task_entry = readdir(task_dir);
2244  }
2245  closedir(task_dir);
2246  task_dir = NULL;
2247  }
2248  }
2249  proc_entry = readdir(proc_dir);
2250  }
2251 
2252  // There _might_ be a timing hole where the thread executing this
2253  // code get skipped in the load balance, and running_threads is 0.
2254  // Assert in the debug builds only!!!
2255  KMP_DEBUG_ASSERT(running_threads > 0);
2256  if (running_threads <= 0) {
2257  running_threads = 1;
2258  }
2259 
2260 finish: // Clean up and exit.
2261  if (proc_dir != NULL) {
2262  closedir(proc_dir);
2263  }
2264  __kmp_str_buf_free(&task_path);
2265  if (task_dir != NULL) {
2266  closedir(task_dir);
2267  }
2268  __kmp_str_buf_free(&stat_path);
2269  if (stat_file != -1) {
2270  close(stat_file);
2271  }
2272 
2273  glb_running_threads = running_threads;
2274 
2275  return running_threads;
2276 
2277 } // __kmp_get_load_balance
2278 
2279 #endif // KMP_OS_DARWIN
2280 
2281 #endif // USE_LOAD_BALANCE
2282 
2283 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2284  ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2285 
2286 // we really only need the case with 1 argument, because CLANG always build
2287 // a struct of pointers to shared variables referenced in the outlined function
2288 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2289  void *p_argv[]
2290 #if OMPT_SUPPORT
2291  ,
2292  void **exit_frame_ptr
2293 #endif
2294  ) {
2295 #if OMPT_SUPPORT
2296  *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2297 #endif
2298 
2299  switch (argc) {
2300  default:
2301  fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2302  fflush(stderr);
2303  exit(-1);
2304  case 0:
2305  (*pkfn)(&gtid, &tid);
2306  break;
2307  case 1:
2308  (*pkfn)(&gtid, &tid, p_argv[0]);
2309  break;
2310  case 2:
2311  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2312  break;
2313  case 3:
2314  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2315  break;
2316  case 4:
2317  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2318  break;
2319  case 5:
2320  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2321  break;
2322  case 6:
2323  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2324  p_argv[5]);
2325  break;
2326  case 7:
2327  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2328  p_argv[5], p_argv[6]);
2329  break;
2330  case 8:
2331  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2332  p_argv[5], p_argv[6], p_argv[7]);
2333  break;
2334  case 9:
2335  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2336  p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2337  break;
2338  case 10:
2339  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2340  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2341  break;
2342  case 11:
2343  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2344  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2345  break;
2346  case 12:
2347  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2348  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2349  p_argv[11]);
2350  break;
2351  case 13:
2352  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2353  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2354  p_argv[11], p_argv[12]);
2355  break;
2356  case 14:
2357  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2358  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2359  p_argv[11], p_argv[12], p_argv[13]);
2360  break;
2361  case 15:
2362  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2363  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2364  p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2365  break;
2366  }
2367 
2368 #if OMPT_SUPPORT
2369  *exit_frame_ptr = 0;
2370 #endif
2371 
2372  return 1;
2373 }
2374 
2375 #endif
2376 
2377 // end of file //
#define KMP_INIT_PARTITIONED_TIMERS(name)
Initializes the paritioned timers to begin with name.
Definition: kmp_stats.h:919