LLVM OpenMP* Runtime Library
kmp.h
1
2/*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6//===----------------------------------------------------------------------===//
7//
8// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9// See https://llvm.org/LICENSE.txt for license information.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef KMP_H
15#define KMP_H
16
17#include "kmp_config.h"
18
19/* #define BUILD_PARALLEL_ORDERED 1 */
20
21/* This fix replaces gettimeofday with clock_gettime for better scalability on
22 the Altix. Requires user code to be linked with -lrt. */
23//#define FIX_SGI_CLOCK
24
25/* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27#ifndef KMP_STATIC_STEAL_ENABLED
28#define KMP_STATIC_STEAL_ENABLED 1
29#endif
30
31#define TASK_CURRENT_NOT_QUEUED 0
32#define TASK_CURRENT_QUEUED 1
33
34#ifdef BUILD_TIED_TASK_STACK
35#define TASK_STACK_EMPTY 0 // entries when the stack is empty
36#define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37// Number of entries in each task stack array
38#define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39// Mask for determining index into stack block
40#define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41#endif // BUILD_TIED_TASK_STACK
42
43#define TASK_NOT_PUSHED 1
44#define TASK_SUCCESSFULLY_PUSHED 0
45#define TASK_TIED 1
46#define TASK_UNTIED 0
47#define TASK_EXPLICIT 1
48#define TASK_IMPLICIT 0
49#define TASK_PROXY 1
50#define TASK_FULL 0
51#define TASK_DETACHABLE 1
52#define TASK_UNDETACHABLE 0
53
54#define KMP_CANCEL_THREADS
55#define KMP_THREAD_ATTR
56
57// Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58// built on Android
59#if defined(__ANDROID__)
60#undef KMP_CANCEL_THREADS
61#endif
62
63#include <signal.h>
64#include <stdarg.h>
65#include <stddef.h>
66#include <stdio.h>
67#include <stdlib.h>
68#include <string.h>
69#include <limits>
70#include <type_traits>
71/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72 Microsoft library. Some macros provided below to replace these functions */
73#ifndef __ABSOFT_WIN
74#include <sys/types.h>
75#endif
76#include <limits.h>
77#include <time.h>
78
79#include <errno.h>
80
81#include "kmp_os.h"
82
83#include "kmp_safe_c_api.h"
84
85#if KMP_STATS_ENABLED
86class kmp_stats_list;
87#endif
88
89#if KMP_USE_HIER_SCHED
90// Only include hierarchical scheduling if affinity is supported
91#undef KMP_USE_HIER_SCHED
92#define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93#endif
94
95#if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96#include "hwloc.h"
97#ifndef HWLOC_OBJ_NUMANODE
98#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99#endif
100#ifndef HWLOC_OBJ_PACKAGE
101#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102#endif
103#endif
104
105#if KMP_ARCH_X86 || KMP_ARCH_X86_64
106#include <xmmintrin.h>
107#endif
108
109// The below has to be defined before including "kmp_barrier.h".
110#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
111#define KMP_INTERNAL_FREE(p) free(p)
112#define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
113#define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
114
115#include "kmp_debug.h"
116#include "kmp_lock.h"
117#include "kmp_version.h"
118#include "kmp_barrier.h"
119#if USE_DEBUGGER
120#include "kmp_debugger.h"
121#endif
122#include "kmp_i18n.h"
123
124#define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125
126#include "kmp_wrapper_malloc.h"
127#if KMP_OS_UNIX
128#include <unistd.h>
129#if !defined NSIG && defined _NSIG
130#define NSIG _NSIG
131#endif
132#endif
133
134#if KMP_OS_LINUX
135#pragma weak clock_gettime
136#endif
137
138#if OMPT_SUPPORT
139#include "ompt-internal.h"
140#endif
141
142#if OMPD_SUPPORT
143#include "ompd-specific.h"
144#endif
145
146#ifndef UNLIKELY
147#define UNLIKELY(x) (x)
148#endif
149
150// Affinity format function
151#include "kmp_str.h"
152
153// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154// 3 - fast allocation using sync, non-sync free lists of any size, non-self
155// free lists of limited size.
156#ifndef USE_FAST_MEMORY
157#define USE_FAST_MEMORY 3
158#endif
159
160#ifndef KMP_NESTED_HOT_TEAMS
161#define KMP_NESTED_HOT_TEAMS 0
162#define USE_NESTED_HOT_ARG(x)
163#else
164#if KMP_NESTED_HOT_TEAMS
165#define USE_NESTED_HOT_ARG(x) , x
166#else
167#define USE_NESTED_HOT_ARG(x)
168#endif
169#endif
170
171// Assume using BGET compare_exchange instruction instead of lock by default.
172#ifndef USE_CMP_XCHG_FOR_BGET
173#define USE_CMP_XCHG_FOR_BGET 1
174#endif
175
176// Test to see if queuing lock is better than bootstrap lock for bget
177// #ifndef USE_QUEUING_LOCK_FOR_BGET
178// #define USE_QUEUING_LOCK_FOR_BGET
179// #endif
180
181#define KMP_NSEC_PER_SEC 1000000000L
182#define KMP_USEC_PER_SEC 1000000L
183
192enum {
197 /* 0x04 is no longer used */
206 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
207 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
208 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
209
210 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
211 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
212
224 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
225 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
226 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
227 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
228 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
229};
230
234typedef struct ident {
235 kmp_int32 reserved_1;
236 kmp_int32 flags;
238 kmp_int32 reserved_2;
239#if USE_ITT_BUILD
240/* but currently used for storing region-specific ITT */
241/* contextual information. */
242#endif /* USE_ITT_BUILD */
243 kmp_int32 reserved_3;
244 char const *psource;
248 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
249 kmp_int32 get_openmp_version() {
250 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
251 }
257// Some forward declarations.
258typedef union kmp_team kmp_team_t;
259typedef struct kmp_taskdata kmp_taskdata_t;
260typedef union kmp_task_team kmp_task_team_t;
261typedef union kmp_team kmp_team_p;
262typedef union kmp_info kmp_info_p;
263typedef union kmp_root kmp_root_p;
264
265template <bool C = false, bool S = true> class kmp_flag_32;
266template <bool C = false, bool S = true> class kmp_flag_64;
267template <bool C = false, bool S = true> class kmp_atomic_flag_64;
268class kmp_flag_oncore;
269
270#ifdef __cplusplus
271extern "C" {
272#endif
273
274/* ------------------------------------------------------------------------ */
275
276/* Pack two 32-bit signed integers into a 64-bit signed integer */
277/* ToDo: Fix word ordering for big-endian machines. */
278#define KMP_PACK_64(HIGH_32, LOW_32) \
279 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
280
281// Generic string manipulation macros. Assume that _x is of type char *
282#define SKIP_WS(_x) \
283 { \
284 while (*(_x) == ' ' || *(_x) == '\t') \
285 (_x)++; \
286 }
287#define SKIP_DIGITS(_x) \
288 { \
289 while (*(_x) >= '0' && *(_x) <= '9') \
290 (_x)++; \
291 }
292#define SKIP_TOKEN(_x) \
293 { \
294 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
295 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
296 (_x)++; \
297 }
298#define SKIP_TO(_x, _c) \
299 { \
300 while (*(_x) != '\0' && *(_x) != (_c)) \
301 (_x)++; \
302 }
303
304/* ------------------------------------------------------------------------ */
305
306#define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
307#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
308
309/* ------------------------------------------------------------------------ */
310/* Enumeration types */
311
312enum kmp_state_timer {
313 ts_stop,
314 ts_start,
315 ts_pause,
316
317 ts_last_state
318};
319
320enum dynamic_mode {
321 dynamic_default,
322#ifdef USE_LOAD_BALANCE
323 dynamic_load_balance,
324#endif /* USE_LOAD_BALANCE */
325 dynamic_random,
326 dynamic_thread_limit,
327 dynamic_max
328};
329
330/* external schedule constants, duplicate enum omp_sched in omp.h in order to
331 * not include it here */
332#ifndef KMP_SCHED_TYPE_DEFINED
333#define KMP_SCHED_TYPE_DEFINED
334typedef enum kmp_sched {
335 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
336 // Note: need to adjust __kmp_sch_map global array in case enum is changed
337 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
338 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
339 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
340 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
341 kmp_sched_upper_std = 5, // upper bound for standard schedules
342 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
343 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
344#if KMP_STATIC_STEAL_ENABLED
345 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
346#endif
347 kmp_sched_upper,
348 kmp_sched_default = kmp_sched_static, // default scheduling
349 kmp_sched_monotonic = 0x80000000
350} kmp_sched_t;
351#endif
352
357enum sched_type : kmp_int32 {
359 kmp_sch_static_chunked = 33,
361 kmp_sch_dynamic_chunked = 35,
363 kmp_sch_runtime = 37,
365 kmp_sch_trapezoidal = 39,
366
367 /* accessible only through KMP_SCHEDULE environment variable */
368 kmp_sch_static_greedy = 40,
369 kmp_sch_static_balanced = 41,
370 /* accessible only through KMP_SCHEDULE environment variable */
371 kmp_sch_guided_iterative_chunked = 42,
372 kmp_sch_guided_analytical_chunked = 43,
373 /* accessible only through KMP_SCHEDULE environment variable */
374 kmp_sch_static_steal = 44,
375
376 /* static with chunk adjustment (e.g., simd) */
377 kmp_sch_static_balanced_chunked = 45,
381 /* accessible only through KMP_SCHEDULE environment variable */
385 kmp_ord_static_chunked = 65,
387 kmp_ord_dynamic_chunked = 67,
388 kmp_ord_guided_chunked = 68,
389 kmp_ord_runtime = 69,
391 kmp_ord_trapezoidal = 71,
394 /* Schedules for Distribute construct */
398 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
399 single iteration/chunk, even if the loop is serialized. For the schedule
400 types listed above, the entire iteration vector is returned if the loop is
401 serialized. This doesn't work for gcc/gcomp sections. */
404 kmp_nm_static_chunked =
405 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
407 kmp_nm_dynamic_chunked = 163,
409 kmp_nm_runtime = 165,
411 kmp_nm_trapezoidal = 167,
412
413 /* accessible only through KMP_SCHEDULE environment variable */
414 kmp_nm_static_greedy = 168,
415 kmp_nm_static_balanced = 169,
416 /* accessible only through KMP_SCHEDULE environment variable */
417 kmp_nm_guided_iterative_chunked = 170,
418 kmp_nm_guided_analytical_chunked = 171,
419 kmp_nm_static_steal =
420 172, /* accessible only through OMP_SCHEDULE environment variable */
421
422 kmp_nm_ord_static_chunked = 193,
424 kmp_nm_ord_dynamic_chunked = 195,
425 kmp_nm_ord_guided_chunked = 196,
426 kmp_nm_ord_runtime = 197,
428 kmp_nm_ord_trapezoidal = 199,
431 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
432 we need to distinguish the three possible cases (no modifier, monotonic
433 modifier, nonmonotonic modifier), we need separate bits for each modifier.
434 The absence of monotonic does not imply nonmonotonic, especially since 4.5
435 says that the behaviour of the "no modifier" case is implementation defined
436 in 4.5, but will become "nonmonotonic" in 5.0.
437
438 Since we're passing a full 32 bit value, we can use a couple of high bits
439 for these flags; out of paranoia we avoid the sign bit.
440
441 These modifiers can be or-ed into non-static schedules by the compiler to
442 pass the additional information. They will be stripped early in the
443 processing in __kmp_dispatch_init when setting up schedules, so most of the
444 code won't ever see schedules with these bits set. */
446 (1 << 29),
448 (1 << 30),
450#define SCHEDULE_WITHOUT_MODIFIERS(s) \
451 (enum sched_type)( \
453#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
454#define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
455#define SCHEDULE_HAS_NO_MODIFIERS(s) \
456 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
457#define SCHEDULE_GET_MODIFIERS(s) \
458 ((enum sched_type)( \
459 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
460#define SCHEDULE_SET_MODIFIERS(s, m) \
461 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
462#define SCHEDULE_NONMONOTONIC 0
463#define SCHEDULE_MONOTONIC 1
464
467
468// Apply modifiers on internal kind to standard kind
469static inline void
470__kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
471 enum sched_type internal_kind) {
472 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
473 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
474 }
475}
476
477// Apply modifiers on standard kind to internal kind
478static inline void
479__kmp_sched_apply_mods_intkind(kmp_sched_t kind,
480 enum sched_type *internal_kind) {
481 if ((int)kind & (int)kmp_sched_monotonic) {
482 *internal_kind = (enum sched_type)((int)*internal_kind |
484 }
485}
486
487// Get standard schedule without modifiers
488static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
489 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
490}
491
492/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
493typedef union kmp_r_sched {
494 struct {
495 enum sched_type r_sched_type;
496 int chunk;
497 };
498 kmp_int64 sched;
499} kmp_r_sched_t;
500
501extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
502// internal schedule types
503
504enum library_type {
505 library_none,
506 library_serial,
507 library_turnaround,
508 library_throughput
509};
510
511#if KMP_OS_LINUX
512enum clock_function_type {
513 clock_function_gettimeofday,
514 clock_function_clock_gettime
515};
516#endif /* KMP_OS_LINUX */
517
518#if KMP_MIC_SUPPORTED
519enum mic_type { non_mic, mic1, mic2, mic3, dummy };
520#endif
521
522/* -- fast reduction stuff ------------------------------------------------ */
523
524#undef KMP_FAST_REDUCTION_BARRIER
525#define KMP_FAST_REDUCTION_BARRIER 1
526
527#undef KMP_FAST_REDUCTION_CORE_DUO
528#if KMP_ARCH_X86 || KMP_ARCH_X86_64
529#define KMP_FAST_REDUCTION_CORE_DUO 1
530#endif
531
532enum _reduction_method {
533 reduction_method_not_defined = 0,
534 critical_reduce_block = (1 << 8),
535 atomic_reduce_block = (2 << 8),
536 tree_reduce_block = (3 << 8),
537 empty_reduce_block = (4 << 8)
538};
539
540// Description of the packed_reduction_method variable:
541// The packed_reduction_method variable consists of two enum types variables
542// that are packed together into 0-th byte and 1-st byte:
543// 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
544// barrier that will be used in fast reduction: bs_plain_barrier or
545// bs_reduction_barrier
546// 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
547// be used in fast reduction;
548// Reduction method is of 'enum _reduction_method' type and it's defined the way
549// so that the bits of 0-th byte are empty, so no need to execute a shift
550// instruction while packing/unpacking
551
552#if KMP_FAST_REDUCTION_BARRIER
553#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
554 ((reduction_method) | (barrier_type))
555
556#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
557 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
558
559#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
560 ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
561#else
562#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
563 (reduction_method)
564
565#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
566 (packed_reduction_method)
567
568#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
569#endif
570
571#define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
572 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
573 (which_reduction_block))
574
575#if KMP_FAST_REDUCTION_BARRIER
576#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
577 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
578
579#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
580 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
581#endif
582
583typedef int PACKED_REDUCTION_METHOD_T;
584
585/* -- end of fast reduction stuff ----------------------------------------- */
586
587#if KMP_OS_WINDOWS
588#define USE_CBLKDATA
589#if KMP_MSVC_COMPAT
590#pragma warning(push)
591#pragma warning(disable : 271 310)
592#endif
593#include <windows.h>
594#if KMP_MSVC_COMPAT
595#pragma warning(pop)
596#endif
597#endif
598
599#if KMP_OS_UNIX
600#include <dlfcn.h>
601#include <pthread.h>
602#endif
603
604enum kmp_hw_t : int {
605 KMP_HW_UNKNOWN = -1,
606 KMP_HW_SOCKET = 0,
607 KMP_HW_PROC_GROUP,
608 KMP_HW_NUMA,
609 KMP_HW_DIE,
610 KMP_HW_LLC,
611 KMP_HW_L3,
612 KMP_HW_TILE,
613 KMP_HW_MODULE,
614 KMP_HW_L2,
615 KMP_HW_L1,
616 KMP_HW_CORE,
617 KMP_HW_THREAD,
618 KMP_HW_LAST
619};
620
621typedef enum kmp_hw_core_type_t {
622 KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
623#if KMP_ARCH_X86 || KMP_ARCH_X86_64
624 KMP_HW_CORE_TYPE_ATOM = 0x20,
625 KMP_HW_CORE_TYPE_CORE = 0x40,
626 KMP_HW_MAX_NUM_CORE_TYPES = 3,
627#else
628 KMP_HW_MAX_NUM_CORE_TYPES = 1,
629#endif
630} kmp_hw_core_type_t;
631
632#define KMP_HW_MAX_NUM_CORE_EFFS 8
633
634#define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
635 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
636#define KMP_ASSERT_VALID_HW_TYPE(type) \
637 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
638
639#define KMP_FOREACH_HW_TYPE(type) \
640 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
641 type = (kmp_hw_t)((int)type + 1))
642
643const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
644const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
645const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
646
647/* Only Linux* OS and Windows* OS support thread affinity. */
648#if KMP_AFFINITY_SUPPORTED
649
650// GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
651#if KMP_OS_WINDOWS
652#if _MSC_VER < 1600 && KMP_MSVC_COMPAT
653typedef struct GROUP_AFFINITY {
654 KAFFINITY Mask;
655 WORD Group;
656 WORD Reserved[3];
657} GROUP_AFFINITY;
658#endif /* _MSC_VER < 1600 */
659#if KMP_GROUP_AFFINITY
660extern int __kmp_num_proc_groups;
661#else
662static const int __kmp_num_proc_groups = 1;
663#endif /* KMP_GROUP_AFFINITY */
664typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
665extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
666
667typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
668extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
669
670typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
671extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
672
673typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
674 GROUP_AFFINITY *);
675extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
676#endif /* KMP_OS_WINDOWS */
677
678#if KMP_USE_HWLOC
679extern hwloc_topology_t __kmp_hwloc_topology;
680extern int __kmp_hwloc_error;
681#endif
682
683extern size_t __kmp_affin_mask_size;
684#define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
685#define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
686#define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
687#define KMP_CPU_SET_ITERATE(i, mask) \
688 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
689#define KMP_CPU_SET(i, mask) (mask)->set(i)
690#define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
691#define KMP_CPU_CLR(i, mask) (mask)->clear(i)
692#define KMP_CPU_ZERO(mask) (mask)->zero()
693#define KMP_CPU_COPY(dest, src) (dest)->copy(src)
694#define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
695#define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
696#define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
697#define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
698#define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
699#define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
700#define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
701#define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
702#define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
703#define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
704#define KMP_CPU_ALLOC_ARRAY(arr, n) \
705 (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
706#define KMP_CPU_FREE_ARRAY(arr, n) \
707 __kmp_affinity_dispatch->deallocate_mask_array(arr)
708#define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
709#define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
710#define __kmp_get_system_affinity(mask, abort_bool) \
711 (mask)->get_system_affinity(abort_bool)
712#define __kmp_set_system_affinity(mask, abort_bool) \
713 (mask)->set_system_affinity(abort_bool)
714#define __kmp_get_proc_group(mask) (mask)->get_proc_group()
715
716class KMPAffinity {
717public:
718 class Mask {
719 public:
720 void *operator new(size_t n);
721 void operator delete(void *p);
722 void *operator new[](size_t n);
723 void operator delete[](void *p);
724 virtual ~Mask() {}
725 // Set bit i to 1
726 virtual void set(int i) {}
727 // Return bit i
728 virtual bool is_set(int i) const { return false; }
729 // Set bit i to 0
730 virtual void clear(int i) {}
731 // Zero out entire mask
732 virtual void zero() {}
733 // Copy src into this mask
734 virtual void copy(const Mask *src) {}
735 // this &= rhs
736 virtual void bitwise_and(const Mask *rhs) {}
737 // this |= rhs
738 virtual void bitwise_or(const Mask *rhs) {}
739 // this = ~this
740 virtual void bitwise_not() {}
741 // API for iterating over an affinity mask
742 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
743 virtual int begin() const { return 0; }
744 virtual int end() const { return 0; }
745 virtual int next(int previous) const { return 0; }
746#if KMP_OS_WINDOWS
747 virtual int set_process_affinity(bool abort_on_error) const { return -1; }
748#endif
749 // Set the system's affinity to this affinity mask's value
750 virtual int set_system_affinity(bool abort_on_error) const { return -1; }
751 // Set this affinity mask to the current system affinity
752 virtual int get_system_affinity(bool abort_on_error) { return -1; }
753 // Only 1 DWORD in the mask should have any procs set.
754 // Return the appropriate index, or -1 for an invalid mask.
755 virtual int get_proc_group() const { return -1; }
756 int get_max_cpu() const {
757 int cpu;
758 int max_cpu = -1;
759 KMP_CPU_SET_ITERATE(cpu, this) {
760 if (cpu > max_cpu)
761 max_cpu = cpu;
762 }
763 return max_cpu;
764 }
765 };
766 void *operator new(size_t n);
767 void operator delete(void *p);
768 // Need virtual destructor
769 virtual ~KMPAffinity() = default;
770 // Determine if affinity is capable
771 virtual void determine_capable(const char *env_var) {}
772 // Bind the current thread to os proc
773 virtual void bind_thread(int proc) {}
774 // Factory functions to allocate/deallocate a mask
775 virtual Mask *allocate_mask() { return nullptr; }
776 virtual void deallocate_mask(Mask *m) {}
777 virtual Mask *allocate_mask_array(int num) { return nullptr; }
778 virtual void deallocate_mask_array(Mask *m) {}
779 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
780 static void pick_api();
781 static void destroy_api();
782 enum api_type {
783 NATIVE_OS
784#if KMP_USE_HWLOC
785 ,
786 HWLOC
787#endif
788 };
789 virtual api_type get_api_type() const {
790 KMP_ASSERT(0);
791 return NATIVE_OS;
792 }
793
794private:
795 static bool picked_api;
796};
797
798typedef KMPAffinity::Mask kmp_affin_mask_t;
799extern KMPAffinity *__kmp_affinity_dispatch;
800
801// Declare local char buffers with this size for printing debug and info
802// messages, using __kmp_affinity_print_mask().
803#define KMP_AFFIN_MASK_PRINT_LEN 1024
804
805enum affinity_type {
806 affinity_none = 0,
807 affinity_physical,
808 affinity_logical,
809 affinity_compact,
810 affinity_scatter,
811 affinity_explicit,
812 affinity_balanced,
813 affinity_disabled, // not used outsize the env var parser
814 affinity_default
815};
816
817enum affinity_top_method {
818 affinity_top_method_all = 0, // try all (supported) methods, in order
819#if KMP_ARCH_X86 || KMP_ARCH_X86_64
820 affinity_top_method_apicid,
821 affinity_top_method_x2apicid,
822 affinity_top_method_x2apicid_1f,
823#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
824 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
825#if KMP_GROUP_AFFINITY
826 affinity_top_method_group,
827#endif /* KMP_GROUP_AFFINITY */
828 affinity_top_method_flat,
829#if KMP_USE_HWLOC
830 affinity_top_method_hwloc,
831#endif
832 affinity_top_method_default
833};
834
835#define affinity_respect_mask_default (2)
836
837typedef struct kmp_affinity_flags_t {
838 unsigned dups : 1;
839 unsigned verbose : 1;
840 unsigned warnings : 1;
841 unsigned respect : 2;
842 unsigned reset : 1;
843 unsigned initialized : 1;
844 unsigned reserved : 25;
845} kmp_affinity_flags_t;
846KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
847
848typedef struct kmp_affinity_ids_t {
849 int ids[KMP_HW_LAST];
850 int operator[](size_t idx) const { return ids[idx]; }
851 int &operator[](size_t idx) { return ids[idx]; }
852 kmp_affinity_ids_t &operator=(const kmp_affinity_ids_t &rhs) {
853 for (int i = 0; i < KMP_HW_LAST; ++i)
854 ids[i] = rhs[i];
855 return *this;
856 }
857} kmp_affinity_ids_t;
858
859typedef struct kmp_affinity_attrs_t {
860 int core_type : 8;
861 int core_eff : 8;
862 unsigned valid : 1;
863 unsigned reserved : 15;
864} kmp_affinity_attrs_t;
865#define KMP_AFFINITY_ATTRS_UNKNOWN \
866 { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
867
868typedef struct kmp_affinity_t {
869 char *proclist;
870 enum affinity_type type;
871 kmp_hw_t gran;
872 int gran_levels;
873 int compact;
874 int offset;
875 kmp_affinity_flags_t flags;
876 unsigned num_masks;
877 kmp_affin_mask_t *masks;
878 kmp_affinity_ids_t *ids;
879 kmp_affinity_attrs_t *attrs;
880 unsigned num_os_id_masks;
881 kmp_affin_mask_t *os_id_masks;
882 const char *env_var;
883} kmp_affinity_t;
884
885#define KMP_AFFINITY_INIT(env) \
886 { \
887 nullptr, affinity_default, KMP_HW_UNKNOWN, -1, 0, 0, \
888 {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE}, 0, \
889 nullptr, nullptr, nullptr, 0, nullptr, env \
890 }
891
892extern enum affinity_top_method __kmp_affinity_top_method;
893extern kmp_affinity_t __kmp_affinity;
894extern kmp_affinity_t __kmp_hh_affinity;
895extern kmp_affinity_t *__kmp_affinities[2];
896
897extern void __kmp_affinity_bind_thread(int which);
898
899extern kmp_affin_mask_t *__kmp_affin_fullMask;
900extern kmp_affin_mask_t *__kmp_affin_origMask;
901extern char *__kmp_cpuinfo_file;
902
903#endif /* KMP_AFFINITY_SUPPORTED */
904
905// This needs to be kept in sync with the values in omp.h !!!
906typedef enum kmp_proc_bind_t {
907 proc_bind_false = 0,
908 proc_bind_true,
909 proc_bind_primary,
910 proc_bind_close,
911 proc_bind_spread,
912 proc_bind_intel, // use KMP_AFFINITY interface
913 proc_bind_default
914} kmp_proc_bind_t;
915
916typedef struct kmp_nested_proc_bind_t {
917 kmp_proc_bind_t *bind_types;
918 int size;
919 int used;
920} kmp_nested_proc_bind_t;
921
922extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
923extern kmp_proc_bind_t __kmp_teams_proc_bind;
924
925extern int __kmp_display_affinity;
926extern char *__kmp_affinity_format;
927static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
928#if OMPT_SUPPORT
929extern int __kmp_tool;
930extern char *__kmp_tool_libraries;
931#endif // OMPT_SUPPORT
932
933#if KMP_AFFINITY_SUPPORTED
934#define KMP_PLACE_ALL (-1)
935#define KMP_PLACE_UNDEFINED (-2)
936// Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
937#define KMP_AFFINITY_NON_PROC_BIND \
938 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
939 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
940 (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
941#endif /* KMP_AFFINITY_SUPPORTED */
942
943extern int __kmp_affinity_num_places;
944
945typedef enum kmp_cancel_kind_t {
946 cancel_noreq = 0,
947 cancel_parallel = 1,
948 cancel_loop = 2,
949 cancel_sections = 3,
950 cancel_taskgroup = 4
951} kmp_cancel_kind_t;
952
953// KMP_HW_SUBSET support:
954typedef struct kmp_hws_item {
955 int num;
956 int offset;
957} kmp_hws_item_t;
958
959extern kmp_hws_item_t __kmp_hws_socket;
960extern kmp_hws_item_t __kmp_hws_die;
961extern kmp_hws_item_t __kmp_hws_node;
962extern kmp_hws_item_t __kmp_hws_tile;
963extern kmp_hws_item_t __kmp_hws_core;
964extern kmp_hws_item_t __kmp_hws_proc;
965extern int __kmp_hws_requested;
966extern int __kmp_hws_abs_flag; // absolute or per-item number requested
967
968/* ------------------------------------------------------------------------ */
969
970#define KMP_PAD(type, sz) \
971 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
972
973// We need to avoid using -1 as a GTID as +1 is added to the gtid
974// when storing it in a lock, and the value 0 is reserved.
975#define KMP_GTID_DNE (-2) /* Does not exist */
976#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
977#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
978#define KMP_GTID_UNKNOWN (-5) /* Is not known */
979#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
980
981/* OpenMP 5.0 Memory Management support */
982
983#ifndef __OMP_H
984// Duplicate type definitions from omp.h
985typedef uintptr_t omp_uintptr_t;
986
987typedef enum {
988 omp_atk_sync_hint = 1,
989 omp_atk_alignment = 2,
990 omp_atk_access = 3,
991 omp_atk_pool_size = 4,
992 omp_atk_fallback = 5,
993 omp_atk_fb_data = 6,
994 omp_atk_pinned = 7,
995 omp_atk_partition = 8
996} omp_alloctrait_key_t;
997
998typedef enum {
999 omp_atv_false = 0,
1000 omp_atv_true = 1,
1001 omp_atv_contended = 3,
1002 omp_atv_uncontended = 4,
1003 omp_atv_serialized = 5,
1004 omp_atv_sequential = omp_atv_serialized, // (deprecated)
1005 omp_atv_private = 6,
1006 omp_atv_all = 7,
1007 omp_atv_thread = 8,
1008 omp_atv_pteam = 9,
1009 omp_atv_cgroup = 10,
1010 omp_atv_default_mem_fb = 11,
1011 omp_atv_null_fb = 12,
1012 omp_atv_abort_fb = 13,
1013 omp_atv_allocator_fb = 14,
1014 omp_atv_environment = 15,
1015 omp_atv_nearest = 16,
1016 omp_atv_blocked = 17,
1017 omp_atv_interleaved = 18
1018} omp_alloctrait_value_t;
1019#define omp_atv_default ((omp_uintptr_t)-1)
1020
1021typedef void *omp_memspace_handle_t;
1022extern omp_memspace_handle_t const omp_default_mem_space;
1023extern omp_memspace_handle_t const omp_large_cap_mem_space;
1024extern omp_memspace_handle_t const omp_const_mem_space;
1025extern omp_memspace_handle_t const omp_high_bw_mem_space;
1026extern omp_memspace_handle_t const omp_low_lat_mem_space;
1027extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1028extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1029extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1030
1031typedef struct {
1032 omp_alloctrait_key_t key;
1033 omp_uintptr_t value;
1034} omp_alloctrait_t;
1035
1036typedef void *omp_allocator_handle_t;
1037extern omp_allocator_handle_t const omp_null_allocator;
1038extern omp_allocator_handle_t const omp_default_mem_alloc;
1039extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1040extern omp_allocator_handle_t const omp_const_mem_alloc;
1041extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1042extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1043extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1044extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1045extern omp_allocator_handle_t const omp_thread_mem_alloc;
1046extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1047extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1048extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1049extern omp_allocator_handle_t const kmp_max_mem_alloc;
1050extern omp_allocator_handle_t __kmp_def_allocator;
1051
1052// end of duplicate type definitions from omp.h
1053#endif
1054
1055extern int __kmp_memkind_available;
1056
1057typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1058
1059typedef struct kmp_allocator_t {
1060 omp_memspace_handle_t memspace;
1061 void **memkind; // pointer to memkind
1062 size_t alignment;
1063 omp_alloctrait_value_t fb;
1064 kmp_allocator_t *fb_data;
1065 kmp_uint64 pool_size;
1066 kmp_uint64 pool_used;
1067 bool pinned;
1068} kmp_allocator_t;
1069
1070extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1071 omp_memspace_handle_t,
1072 int ntraits,
1073 omp_alloctrait_t traits[]);
1074extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1075extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1076extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1077// external interfaces, may be used by compiler
1078extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1079extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1080 omp_allocator_handle_t al);
1081extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1082 omp_allocator_handle_t al);
1083extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1084 omp_allocator_handle_t al,
1085 omp_allocator_handle_t free_al);
1086extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1087// internal interfaces, contain real implementation
1088extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1089 omp_allocator_handle_t al);
1090extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1091 omp_allocator_handle_t al);
1092extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1093 omp_allocator_handle_t al,
1094 omp_allocator_handle_t free_al);
1095extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1096
1097extern void __kmp_init_memkind();
1098extern void __kmp_fini_memkind();
1099extern void __kmp_init_target_mem();
1100
1101/* ------------------------------------------------------------------------ */
1102
1103#define KMP_UINT64_MAX \
1104 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1105
1106#define KMP_MIN_NTH 1
1107
1108#ifndef KMP_MAX_NTH
1109#if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1110#define KMP_MAX_NTH PTHREAD_THREADS_MAX
1111#else
1112#define KMP_MAX_NTH INT_MAX
1113#endif
1114#endif /* KMP_MAX_NTH */
1115
1116#ifdef PTHREAD_STACK_MIN
1117#define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
1118#else
1119#define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1120#endif
1121
1122#define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1123
1124#if KMP_ARCH_X86
1125#define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1126#elif KMP_ARCH_X86_64
1127#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1128#define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1129#else
1130#define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1131#endif
1132
1133#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1134#define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1135#define KMP_MAX_MALLOC_POOL_INCR \
1136 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1137
1138#define KMP_MIN_STKOFFSET (0)
1139#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1140#if KMP_OS_DARWIN
1141#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1142#else
1143#define KMP_DEFAULT_STKOFFSET CACHE_LINE
1144#endif
1145
1146#define KMP_MIN_STKPADDING (0)
1147#define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1148
1149#define KMP_BLOCKTIME_MULTIPLIER \
1150 (1000) /* number of blocktime units per second */
1151#define KMP_MIN_BLOCKTIME (0)
1152#define KMP_MAX_BLOCKTIME \
1153 (INT_MAX) /* Must be this for "infinite" setting the work */
1154
1155/* __kmp_blocktime is in milliseconds */
1156#define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200))
1157
1158#if KMP_USE_MONITOR
1159#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1160#define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1161#define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1162
1163/* Calculate new number of monitor wakeups for a specific block time based on
1164 previous monitor_wakeups. Only allow increasing number of wakeups */
1165#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1166 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1167 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1168 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1169 ? (monitor_wakeups) \
1170 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1171
1172/* Calculate number of intervals for a specific block time based on
1173 monitor_wakeups */
1174#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1175 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1176 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1177#else
1178#define KMP_BLOCKTIME(team, tid) \
1179 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1180#if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1181// HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1182extern kmp_uint64 __kmp_ticks_per_msec;
1183#if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1184#define KMP_NOW() ((kmp_uint64)_rdtsc())
1185#else
1186#define KMP_NOW() __kmp_hardware_timestamp()
1187#endif
1188#define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1189#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1190 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1191#define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1192#else
1193// System time is retrieved sporadically while blocking.
1194extern kmp_uint64 __kmp_now_nsec();
1195#define KMP_NOW() __kmp_now_nsec()
1196#define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1197#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1198 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1199#define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1200#endif
1201#endif // KMP_USE_MONITOR
1202
1203#define KMP_MIN_STATSCOLS 40
1204#define KMP_MAX_STATSCOLS 4096
1205#define KMP_DEFAULT_STATSCOLS 80
1206
1207#define KMP_MIN_INTERVAL 0
1208#define KMP_MAX_INTERVAL (INT_MAX - 1)
1209#define KMP_DEFAULT_INTERVAL 0
1210
1211#define KMP_MIN_CHUNK 1
1212#define KMP_MAX_CHUNK (INT_MAX - 1)
1213#define KMP_DEFAULT_CHUNK 1
1214
1215#define KMP_MIN_DISP_NUM_BUFF 1
1216#define KMP_DFLT_DISP_NUM_BUFF 7
1217#define KMP_MAX_DISP_NUM_BUFF 4096
1218
1219#define KMP_MAX_ORDERED 8
1220
1221#define KMP_MAX_FIELDS 32
1222
1223#define KMP_MAX_BRANCH_BITS 31
1224
1225#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1226
1227#define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1228
1229#define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1230
1231/* Minimum number of threads before switch to TLS gtid (experimentally
1232 determined) */
1233/* josh TODO: what about OS X* tuning? */
1234#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1235#define KMP_TLS_GTID_MIN 5
1236#else
1237#define KMP_TLS_GTID_MIN INT_MAX
1238#endif
1239
1240#define KMP_MASTER_TID(tid) (0 == (tid))
1241#define KMP_WORKER_TID(tid) (0 != (tid))
1242
1243#define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1244#define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1245#define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1246
1247#ifndef TRUE
1248#define FALSE 0
1249#define TRUE (!FALSE)
1250#endif
1251
1252/* NOTE: all of the following constants must be even */
1253
1254#if KMP_OS_WINDOWS
1255#define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1256#define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1257#elif KMP_OS_LINUX
1258#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1259#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1260#elif KMP_OS_DARWIN
1261/* TODO: tune for KMP_OS_DARWIN */
1262#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1263#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1264#elif KMP_OS_DRAGONFLY
1265/* TODO: tune for KMP_OS_DRAGONFLY */
1266#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1267#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1268#elif KMP_OS_FREEBSD
1269/* TODO: tune for KMP_OS_FREEBSD */
1270#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1271#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1272#elif KMP_OS_NETBSD
1273/* TODO: tune for KMP_OS_NETBSD */
1274#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1275#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1276#elif KMP_OS_HURD
1277/* TODO: tune for KMP_OS_HURD */
1278#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1279#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1280#elif KMP_OS_OPENBSD
1281/* TODO: tune for KMP_OS_OPENBSD */
1282#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1283#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1284#endif
1285
1286#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1287typedef struct kmp_cpuid {
1288 kmp_uint32 eax;
1289 kmp_uint32 ebx;
1290 kmp_uint32 ecx;
1291 kmp_uint32 edx;
1292} kmp_cpuid_t;
1293
1294typedef struct kmp_cpuinfo_flags_t {
1295 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1296 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1297 unsigned hybrid : 1;
1298 unsigned reserved : 29; // Ensure size of 32 bits
1299} kmp_cpuinfo_flags_t;
1300
1301typedef struct kmp_cpuinfo {
1302 int initialized; // If 0, other fields are not initialized.
1303 int signature; // CPUID(1).EAX
1304 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1305 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1306 // Model << 4 ) + Model)
1307 int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1308 kmp_cpuinfo_flags_t flags;
1309 int apic_id;
1310 int physical_id;
1311 int logical_id;
1312 kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1313 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1314} kmp_cpuinfo_t;
1315
1316extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1317
1318#if KMP_OS_UNIX
1319// subleaf is only needed for cache and topology discovery and can be set to
1320// zero in most cases
1321static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1322 __asm__ __volatile__("cpuid"
1323 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1324 : "a"(leaf), "c"(subleaf));
1325}
1326// Load p into FPU control word
1327static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1328 __asm__ __volatile__("fldcw %0" : : "m"(*p));
1329}
1330// Store FPU control word into p
1331static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1332 __asm__ __volatile__("fstcw %0" : "=m"(*p));
1333}
1334static inline void __kmp_clear_x87_fpu_status_word() {
1335#if KMP_MIC
1336 // 32-bit protected mode x87 FPU state
1337 struct x87_fpu_state {
1338 unsigned cw;
1339 unsigned sw;
1340 unsigned tw;
1341 unsigned fip;
1342 unsigned fips;
1343 unsigned fdp;
1344 unsigned fds;
1345 };
1346 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1347 __asm__ __volatile__("fstenv %0\n\t" // store FP env
1348 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1349 "fldenv %0\n\t" // load FP env back
1350 : "+m"(fpu_state), "+m"(fpu_state.sw));
1351#else
1352 __asm__ __volatile__("fnclex");
1353#endif // KMP_MIC
1354}
1355#if __SSE__
1356static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1357static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1358#else
1359static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1360static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1361#endif
1362#else
1363// Windows still has these as external functions in assembly file
1364extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1365extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1366extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1367extern void __kmp_clear_x87_fpu_status_word();
1368static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1369static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1370#endif // KMP_OS_UNIX
1371
1372#define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1373
1374// User-level Monitor/Mwait
1375#if KMP_HAVE_UMWAIT
1376// We always try for UMWAIT first
1377#if KMP_HAVE_WAITPKG_INTRINSICS
1378#if KMP_HAVE_IMMINTRIN_H
1379#include <immintrin.h>
1380#elif KMP_HAVE_INTRIN_H
1381#include <intrin.h>
1382#endif
1383#endif // KMP_HAVE_WAITPKG_INTRINSICS
1384
1385KMP_ATTRIBUTE_TARGET_WAITPKG
1386static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1387#if !KMP_HAVE_WAITPKG_INTRINSICS
1388 uint32_t timeHi = uint32_t(counter >> 32);
1389 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1390 char flag;
1391 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1392 "setb %0"
1393 // The "=q" restraint means any register accessible as rl
1394 // in 32-bit mode: a, b, c, and d;
1395 // in 64-bit mode: any integer register
1396 : "=q"(flag)
1397 : "a"(timeLo), "d"(timeHi), "c"(hint)
1398 :);
1399 return flag;
1400#else
1401 return _tpause(hint, counter);
1402#endif
1403}
1404KMP_ATTRIBUTE_TARGET_WAITPKG
1405static inline void __kmp_umonitor(void *cacheline) {
1406#if !KMP_HAVE_WAITPKG_INTRINSICS
1407 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1408 :
1409 : "a"(cacheline)
1410 :);
1411#else
1412 _umonitor(cacheline);
1413#endif
1414}
1415KMP_ATTRIBUTE_TARGET_WAITPKG
1416static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1417#if !KMP_HAVE_WAITPKG_INTRINSICS
1418 uint32_t timeHi = uint32_t(counter >> 32);
1419 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1420 char flag;
1421 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1422 "setb %0"
1423 // The "=q" restraint means any register accessible as rl
1424 // in 32-bit mode: a, b, c, and d;
1425 // in 64-bit mode: any integer register
1426 : "=q"(flag)
1427 : "a"(timeLo), "d"(timeHi), "c"(hint)
1428 :);
1429 return flag;
1430#else
1431 return _umwait(hint, counter);
1432#endif
1433}
1434#elif KMP_HAVE_MWAIT
1435#if KMP_OS_UNIX
1436#include <pmmintrin.h>
1437#else
1438#include <intrin.h>
1439#endif
1440#if KMP_OS_UNIX
1441__attribute__((target("sse3")))
1442#endif
1443static inline void
1444__kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1445 _mm_monitor(cacheline, extensions, hints);
1446}
1447#if KMP_OS_UNIX
1448__attribute__((target("sse3")))
1449#endif
1450static inline void
1451__kmp_mm_mwait(unsigned extensions, unsigned hints) {
1452 _mm_mwait(extensions, hints);
1453}
1454#endif // KMP_HAVE_UMWAIT
1455
1456#if KMP_ARCH_X86
1457extern void __kmp_x86_pause(void);
1458#elif KMP_MIC
1459// Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1460// regression after removal of extra PAUSE from spin loops. Changing
1461// the delay from 100 to 300 showed even better performance than double PAUSE
1462// on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1463static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1464#else
1465static inline void __kmp_x86_pause(void) { _mm_pause(); }
1466#endif
1467#define KMP_CPU_PAUSE() __kmp_x86_pause()
1468#elif KMP_ARCH_PPC64
1469#define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1470#define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1471#define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1472#define KMP_CPU_PAUSE() \
1473 do { \
1474 KMP_PPC64_PRI_LOW(); \
1475 KMP_PPC64_PRI_MED(); \
1476 KMP_PPC64_PRI_LOC_MB(); \
1477 } while (0)
1478#else
1479#define KMP_CPU_PAUSE() /* nothing to do */
1480#endif
1481
1482#define KMP_INIT_YIELD(count) \
1483 { (count) = __kmp_yield_init; }
1484
1485#define KMP_INIT_BACKOFF(time) \
1486 { (time) = __kmp_pause_init; }
1487
1488#define KMP_OVERSUBSCRIBED \
1489 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1490
1491#define KMP_TRY_YIELD \
1492 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1493
1494#define KMP_TRY_YIELD_OVERSUB \
1495 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1496
1497#define KMP_YIELD(cond) \
1498 { \
1499 KMP_CPU_PAUSE(); \
1500 if ((cond) && (KMP_TRY_YIELD)) \
1501 __kmp_yield(); \
1502 }
1503
1504#define KMP_YIELD_OVERSUB() \
1505 { \
1506 KMP_CPU_PAUSE(); \
1507 if ((KMP_TRY_YIELD_OVERSUB)) \
1508 __kmp_yield(); \
1509 }
1510
1511// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1512// there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1513#define KMP_YIELD_SPIN(count) \
1514 { \
1515 KMP_CPU_PAUSE(); \
1516 if (KMP_TRY_YIELD) { \
1517 (count) -= 2; \
1518 if (!(count)) { \
1519 __kmp_yield(); \
1520 (count) = __kmp_yield_next; \
1521 } \
1522 } \
1523 }
1524
1525// If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1526// (C0.2) state, which improves performance of other SMT threads on the same
1527// core, otherwise, use the fast (C0.1) default state, or whatever the user has
1528// requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1529// available, fall back to the regular CPU pause and yield combination.
1530#if KMP_HAVE_UMWAIT
1531#define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1532#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1533 { \
1534 if (__kmp_tpause_enabled) { \
1535 if (KMP_OVERSUBSCRIBED) { \
1536 __kmp_tpause(0, (time)); \
1537 } else { \
1538 __kmp_tpause(__kmp_tpause_hint, (time)); \
1539 } \
1540 (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1541 } else { \
1542 KMP_CPU_PAUSE(); \
1543 if ((KMP_TRY_YIELD_OVERSUB)) { \
1544 __kmp_yield(); \
1545 } else if (__kmp_use_yield == 1) { \
1546 (count) -= 2; \
1547 if (!(count)) { \
1548 __kmp_yield(); \
1549 (count) = __kmp_yield_next; \
1550 } \
1551 } \
1552 } \
1553 }
1554#else
1555#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1556 { \
1557 KMP_CPU_PAUSE(); \
1558 if ((KMP_TRY_YIELD_OVERSUB)) \
1559 __kmp_yield(); \
1560 else if (__kmp_use_yield == 1) { \
1561 (count) -= 2; \
1562 if (!(count)) { \
1563 __kmp_yield(); \
1564 (count) = __kmp_yield_next; \
1565 } \
1566 } \
1567 }
1568#endif // KMP_HAVE_UMWAIT
1569
1570/* ------------------------------------------------------------------------ */
1571/* Support datatypes for the orphaned construct nesting checks. */
1572/* ------------------------------------------------------------------------ */
1573
1574/* When adding to this enum, add its corresponding string in cons_text_c[]
1575 * array in kmp_error.cpp */
1576enum cons_type {
1577 ct_none,
1578 ct_parallel,
1579 ct_pdo,
1580 ct_pdo_ordered,
1581 ct_psections,
1582 ct_psingle,
1583 ct_critical,
1584 ct_ordered_in_parallel,
1585 ct_ordered_in_pdo,
1586 ct_master,
1587 ct_reduce,
1588 ct_barrier,
1589 ct_masked
1590};
1591
1592#define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1593
1594struct cons_data {
1595 ident_t const *ident;
1596 enum cons_type type;
1597 int prev;
1598 kmp_user_lock_p
1599 name; /* address exclusively for critical section name comparison */
1600};
1601
1602struct cons_header {
1603 int p_top, w_top, s_top;
1604 int stack_size, stack_top;
1605 struct cons_data *stack_data;
1606};
1607
1608struct kmp_region_info {
1609 char *text;
1610 int offset[KMP_MAX_FIELDS];
1611 int length[KMP_MAX_FIELDS];
1612};
1613
1614/* ---------------------------------------------------------------------- */
1615/* ---------------------------------------------------------------------- */
1616
1617#if KMP_OS_WINDOWS
1618typedef HANDLE kmp_thread_t;
1619typedef DWORD kmp_key_t;
1620#endif /* KMP_OS_WINDOWS */
1621
1622#if KMP_OS_UNIX
1623typedef pthread_t kmp_thread_t;
1624typedef pthread_key_t kmp_key_t;
1625#endif
1626
1627extern kmp_key_t __kmp_gtid_threadprivate_key;
1628
1629typedef struct kmp_sys_info {
1630 long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1631 long minflt; /* the number of page faults serviced without any I/O */
1632 long majflt; /* the number of page faults serviced that required I/O */
1633 long nswap; /* the number of times a process was "swapped" out of memory */
1634 long inblock; /* the number of times the file system had to perform input */
1635 long oublock; /* the number of times the file system had to perform output */
1636 long nvcsw; /* the number of times a context switch was voluntarily */
1637 long nivcsw; /* the number of times a context switch was forced */
1638} kmp_sys_info_t;
1639
1640#if USE_ITT_BUILD
1641// We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1642// required type here. Later we will check the type meets requirements.
1643typedef int kmp_itt_mark_t;
1644#define KMP_ITT_DEBUG 0
1645#endif /* USE_ITT_BUILD */
1646
1647typedef kmp_int32 kmp_critical_name[8];
1648
1658typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1659typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1660 ...);
1661
1666/* ---------------------------------------------------------------------------
1667 */
1668/* Threadprivate initialization/finalization function declarations */
1669
1670/* for non-array objects: __kmpc_threadprivate_register() */
1671
1676typedef void *(*kmpc_ctor)(void *);
1677
1682typedef void (*kmpc_dtor)(
1683 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1684 compiler */
1689typedef void *(*kmpc_cctor)(void *, void *);
1690
1691/* for array objects: __kmpc_threadprivate_register_vec() */
1692/* First arg: "this" pointer */
1693/* Last arg: number of array elements */
1699typedef void *(*kmpc_ctor_vec)(void *, size_t);
1705typedef void (*kmpc_dtor_vec)(void *, size_t);
1711typedef void *(*kmpc_cctor_vec)(void *, void *,
1712 size_t); /* function unused by compiler */
1713
1718/* keeps tracked of threadprivate cache allocations for cleanup later */
1719typedef struct kmp_cached_addr {
1720 void **addr; /* address of allocated cache */
1721 void ***compiler_cache; /* pointer to compiler's cache */
1722 void *data; /* pointer to global data */
1723 struct kmp_cached_addr *next; /* pointer to next cached address */
1724} kmp_cached_addr_t;
1725
1726struct private_data {
1727 struct private_data *next; /* The next descriptor in the list */
1728 void *data; /* The data buffer for this descriptor */
1729 int more; /* The repeat count for this descriptor */
1730 size_t size; /* The data size for this descriptor */
1731};
1732
1733struct private_common {
1734 struct private_common *next;
1735 struct private_common *link;
1736 void *gbl_addr;
1737 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1738 size_t cmn_size;
1739};
1740
1741struct shared_common {
1742 struct shared_common *next;
1743 struct private_data *pod_init;
1744 void *obj_init;
1745 void *gbl_addr;
1746 union {
1747 kmpc_ctor ctor;
1748 kmpc_ctor_vec ctorv;
1749 } ct;
1750 union {
1751 kmpc_cctor cctor;
1752 kmpc_cctor_vec cctorv;
1753 } cct;
1754 union {
1755 kmpc_dtor dtor;
1756 kmpc_dtor_vec dtorv;
1757 } dt;
1758 size_t vec_len;
1759 int is_vec;
1760 size_t cmn_size;
1761};
1762
1763#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1764#define KMP_HASH_TABLE_SIZE \
1765 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1766#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1767#define KMP_HASH(x) \
1768 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1769
1770struct common_table {
1771 struct private_common *data[KMP_HASH_TABLE_SIZE];
1772};
1773
1774struct shared_table {
1775 struct shared_common *data[KMP_HASH_TABLE_SIZE];
1776};
1777
1778/* ------------------------------------------------------------------------ */
1779
1780#if KMP_USE_HIER_SCHED
1781// Shared barrier data that exists inside a single unit of the scheduling
1782// hierarchy
1783typedef struct kmp_hier_private_bdata_t {
1784 kmp_int32 num_active;
1785 kmp_uint64 index;
1786 kmp_uint64 wait_val[2];
1787} kmp_hier_private_bdata_t;
1788#endif
1789
1790typedef struct kmp_sched_flags {
1791 unsigned ordered : 1;
1792 unsigned nomerge : 1;
1793 unsigned contains_last : 1;
1794#if KMP_USE_HIER_SCHED
1795 unsigned use_hier : 1;
1796 unsigned unused : 28;
1797#else
1798 unsigned unused : 29;
1799#endif
1800} kmp_sched_flags_t;
1801
1802KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1803
1804#if KMP_STATIC_STEAL_ENABLED
1805typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1806 kmp_int32 count;
1807 kmp_int32 ub;
1808 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1809 kmp_int32 lb;
1810 kmp_int32 st;
1811 kmp_int32 tc;
1812 kmp_lock_t *steal_lock; // lock used for chunk stealing
1813 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1814 // a) parm3 is properly aligned and
1815 // b) all parm1-4 are on the same cache line.
1816 // Because of parm1-4 are used together, performance seems to be better
1817 // if they are on the same cache line (not measured though).
1818
1819 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1820 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1821 kmp_int32 parm2; // make no real change at least while padding is off.
1822 kmp_int32 parm3;
1823 kmp_int32 parm4;
1824 };
1825
1826 kmp_uint32 ordered_lower;
1827 kmp_uint32 ordered_upper;
1828#if KMP_OS_WINDOWS
1829 kmp_int32 last_upper;
1830#endif /* KMP_OS_WINDOWS */
1831} dispatch_private_info32_t;
1832
1833typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1834 kmp_int64 count; // current chunk number for static & static-steal scheduling
1835 kmp_int64 ub; /* upper-bound */
1836 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1837 kmp_int64 lb; /* lower-bound */
1838 kmp_int64 st; /* stride */
1839 kmp_int64 tc; /* trip count (number of iterations) */
1840 kmp_lock_t *steal_lock; // lock used for chunk stealing
1841 /* parm[1-4] are used in different ways by different scheduling algorithms */
1842
1843 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1844 // a) parm3 is properly aligned and
1845 // b) all parm1-4 are in the same cache line.
1846 // Because of parm1-4 are used together, performance seems to be better
1847 // if they are in the same line (not measured though).
1848
1849 struct KMP_ALIGN(32) {
1850 kmp_int64 parm1;
1851 kmp_int64 parm2;
1852 kmp_int64 parm3;
1853 kmp_int64 parm4;
1854 };
1855
1856 kmp_uint64 ordered_lower;
1857 kmp_uint64 ordered_upper;
1858#if KMP_OS_WINDOWS
1859 kmp_int64 last_upper;
1860#endif /* KMP_OS_WINDOWS */
1861} dispatch_private_info64_t;
1862#else /* KMP_STATIC_STEAL_ENABLED */
1863typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1864 kmp_int32 lb;
1865 kmp_int32 ub;
1866 kmp_int32 st;
1867 kmp_int32 tc;
1868
1869 kmp_int32 parm1;
1870 kmp_int32 parm2;
1871 kmp_int32 parm3;
1872 kmp_int32 parm4;
1873
1874 kmp_int32 count;
1875
1876 kmp_uint32 ordered_lower;
1877 kmp_uint32 ordered_upper;
1878#if KMP_OS_WINDOWS
1879 kmp_int32 last_upper;
1880#endif /* KMP_OS_WINDOWS */
1881} dispatch_private_info32_t;
1882
1883typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1884 kmp_int64 lb; /* lower-bound */
1885 kmp_int64 ub; /* upper-bound */
1886 kmp_int64 st; /* stride */
1887 kmp_int64 tc; /* trip count (number of iterations) */
1888
1889 /* parm[1-4] are used in different ways by different scheduling algorithms */
1890 kmp_int64 parm1;
1891 kmp_int64 parm2;
1892 kmp_int64 parm3;
1893 kmp_int64 parm4;
1894
1895 kmp_int64 count; /* current chunk number for static scheduling */
1896
1897 kmp_uint64 ordered_lower;
1898 kmp_uint64 ordered_upper;
1899#if KMP_OS_WINDOWS
1900 kmp_int64 last_upper;
1901#endif /* KMP_OS_WINDOWS */
1902} dispatch_private_info64_t;
1903#endif /* KMP_STATIC_STEAL_ENABLED */
1904
1905typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1906 union private_info {
1907 dispatch_private_info32_t p32;
1908 dispatch_private_info64_t p64;
1909 } u;
1910 enum sched_type schedule; /* scheduling algorithm */
1911 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1912 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1913 kmp_int32 ordered_bumped;
1914 // Stack of buffers for nest of serial regions
1915 struct dispatch_private_info *next;
1916 kmp_int32 type_size; /* the size of types in private_info */
1917#if KMP_USE_HIER_SCHED
1918 kmp_int32 hier_id;
1919 void *parent; /* hierarchical scheduling parent pointer */
1920#endif
1921 enum cons_type pushed_ws;
1922} dispatch_private_info_t;
1923
1924typedef struct dispatch_shared_info32 {
1925 /* chunk index under dynamic, number of idle threads under static-steal;
1926 iteration index otherwise */
1927 volatile kmp_uint32 iteration;
1928 volatile kmp_int32 num_done;
1929 volatile kmp_uint32 ordered_iteration;
1930 // Dummy to retain the structure size after making ordered_iteration scalar
1931 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1932} dispatch_shared_info32_t;
1933
1934typedef struct dispatch_shared_info64 {
1935 /* chunk index under dynamic, number of idle threads under static-steal;
1936 iteration index otherwise */
1937 volatile kmp_uint64 iteration;
1938 volatile kmp_int64 num_done;
1939 volatile kmp_uint64 ordered_iteration;
1940 // Dummy to retain the structure size after making ordered_iteration scalar
1941 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1942} dispatch_shared_info64_t;
1943
1944typedef struct dispatch_shared_info {
1945 union shared_info {
1946 dispatch_shared_info32_t s32;
1947 dispatch_shared_info64_t s64;
1948 } u;
1949 volatile kmp_uint32 buffer_index;
1950 volatile kmp_int32 doacross_buf_idx; // teamwise index
1951 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1952 kmp_int32 doacross_num_done; // count finished threads
1953#if KMP_USE_HIER_SCHED
1954 void *hier;
1955#endif
1956#if KMP_USE_HWLOC
1957 // When linking with libhwloc, the ORDERED EPCC test slows down on big
1958 // machines (> 48 cores). Performance analysis showed that a cache thrash
1959 // was occurring and this padding helps alleviate the problem.
1960 char padding[64];
1961#endif
1962} dispatch_shared_info_t;
1963
1964typedef struct kmp_disp {
1965 /* Vector for ORDERED SECTION */
1966 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1967 /* Vector for END ORDERED SECTION */
1968 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1969
1970 dispatch_shared_info_t *th_dispatch_sh_current;
1971 dispatch_private_info_t *th_dispatch_pr_current;
1972
1973 dispatch_private_info_t *th_disp_buffer;
1974 kmp_uint32 th_disp_index;
1975 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1976 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1977 kmp_int64 *th_doacross_info; // info on loop bounds
1978#if KMP_USE_INTERNODE_ALIGNMENT
1979 char more_padding[INTERNODE_CACHE_LINE];
1980#endif
1981} kmp_disp_t;
1982
1983/* ------------------------------------------------------------------------ */
1984/* Barrier stuff */
1985
1986/* constants for barrier state update */
1987#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1988#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1989#define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1990#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1991
1992#define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1993#define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1994#define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1995
1996#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1997#error "Barrier sleep bit must be smaller than barrier bump bit"
1998#endif
1999#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2000#error "Barrier unused bit must be smaller than barrier bump bit"
2001#endif
2002
2003// Constants for release barrier wait state: currently, hierarchical only
2004#define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2005#define KMP_BARRIER_OWN_FLAG \
2006 1 // Normal state; worker waiting on own b_go flag in release
2007#define KMP_BARRIER_PARENT_FLAG \
2008 2 // Special state; worker waiting on parent's b_go flag in release
2009#define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2010 3 // Special state; tells worker to shift from parent to own b_go
2011#define KMP_BARRIER_SWITCHING \
2012 4 // Special state; worker resets appropriate flag on wake-up
2013
2014#define KMP_NOT_SAFE_TO_REAP \
2015 0 // Thread th_reap_state: not safe to reap (tasking)
2016#define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2017
2018// The flag_type describes the storage used for the flag.
2019enum flag_type {
2020 flag32,
2021 flag64,
2022 atomic_flag64,
2023 flag_oncore,
2024 flag_unset
2025};
2026
2027enum barrier_type {
2028 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2029 barriers if enabled) */
2030 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2031#if KMP_FAST_REDUCTION_BARRIER
2032 bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2033#endif // KMP_FAST_REDUCTION_BARRIER
2034 bs_last_barrier /* Just a placeholder to mark the end */
2035};
2036
2037// to work with reduction barriers just like with plain barriers
2038#if !KMP_FAST_REDUCTION_BARRIER
2039#define bs_reduction_barrier bs_plain_barrier
2040#endif // KMP_FAST_REDUCTION_BARRIER
2041
2042typedef enum kmp_bar_pat { /* Barrier communication patterns */
2043 bp_linear_bar =
2044 0, /* Single level (degenerate) tree */
2045 bp_tree_bar =
2046 1, /* Balanced tree with branching factor 2^n */
2047 bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2048 branching factor 2^n */
2049 bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2050 bp_dist_bar = 4, /* Distributed barrier */
2051 bp_last_bar /* Placeholder to mark the end */
2052} kmp_bar_pat_e;
2053
2054#define KMP_BARRIER_ICV_PUSH 1
2055
2056/* Record for holding the values of the internal controls stack records */
2057typedef struct kmp_internal_control {
2058 int serial_nesting_level; /* corresponds to the value of the
2059 th_team_serialized field */
2060 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2061 thread) */
2062 kmp_int8
2063 bt_set; /* internal control for whether blocktime is explicitly set */
2064 int blocktime; /* internal control for blocktime */
2065#if KMP_USE_MONITOR
2066 int bt_intervals; /* internal control for blocktime intervals */
2067#endif
2068 int nproc; /* internal control for #threads for next parallel region (per
2069 thread) */
2070 int thread_limit; /* internal control for thread-limit-var */
2071 int max_active_levels; /* internal control for max_active_levels */
2072 kmp_r_sched_t
2073 sched; /* internal control for runtime schedule {sched,chunk} pair */
2074 kmp_proc_bind_t proc_bind; /* internal control for affinity */
2075 kmp_int32 default_device; /* internal control for default device */
2076 struct kmp_internal_control *next;
2077} kmp_internal_control_t;
2078
2079static inline void copy_icvs(kmp_internal_control_t *dst,
2080 kmp_internal_control_t *src) {
2081 *dst = *src;
2082}
2083
2084/* Thread barrier needs volatile barrier fields */
2085typedef struct KMP_ALIGN_CACHE kmp_bstate {
2086 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2087 // uses of it). It is not explicitly aligned below, because we *don't* want
2088 // it to be padded -- instead, we fit b_go into the same cache line with
2089 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2090 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2091 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2092 // same NGO store
2093 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2094 KMP_ALIGN_CACHE volatile kmp_uint64
2095 b_arrived; // STATE => task reached synch point.
2096 kmp_uint32 *skip_per_level;
2097 kmp_uint32 my_level;
2098 kmp_int32 parent_tid;
2099 kmp_int32 old_tid;
2100 kmp_uint32 depth;
2101 struct kmp_bstate *parent_bar;
2102 kmp_team_t *team;
2103 kmp_uint64 leaf_state;
2104 kmp_uint32 nproc;
2105 kmp_uint8 base_leaf_kids;
2106 kmp_uint8 leaf_kids;
2107 kmp_uint8 offset;
2108 kmp_uint8 wait_flag;
2109 kmp_uint8 use_oncore_barrier;
2110#if USE_DEBUGGER
2111 // The following field is intended for the debugger solely. Only the worker
2112 // thread itself accesses this field: the worker increases it by 1 when it
2113 // arrives to a barrier.
2114 KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2115#endif /* USE_DEBUGGER */
2116} kmp_bstate_t;
2117
2118union KMP_ALIGN_CACHE kmp_barrier_union {
2119 double b_align; /* use worst case alignment */
2120 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2121 kmp_bstate_t bb;
2122};
2123
2124typedef union kmp_barrier_union kmp_balign_t;
2125
2126/* Team barrier needs only non-volatile arrived counter */
2127union KMP_ALIGN_CACHE kmp_barrier_team_union {
2128 double b_align; /* use worst case alignment */
2129 char b_pad[CACHE_LINE];
2130 struct {
2131 kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2132#if USE_DEBUGGER
2133 // The following two fields are indended for the debugger solely. Only
2134 // primary thread of the team accesses these fields: the first one is
2135 // increased by 1 when the primary thread arrives to a barrier, the second
2136 // one is increased by one when all the threads arrived.
2137 kmp_uint b_master_arrived;
2138 kmp_uint b_team_arrived;
2139#endif
2140 };
2141};
2142
2143typedef union kmp_barrier_team_union kmp_balign_team_t;
2144
2145/* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2146 threads when a condition changes. This is to workaround an NPTL bug where
2147 padding was added to pthread_cond_t which caused the initialization routine
2148 to write outside of the structure if compiled on pre-NPTL threads. */
2149#if KMP_OS_WINDOWS
2150typedef struct kmp_win32_mutex {
2151 /* The Lock */
2152 CRITICAL_SECTION cs;
2153} kmp_win32_mutex_t;
2154
2155typedef struct kmp_win32_cond {
2156 /* Count of the number of waiters. */
2157 int waiters_count_;
2158
2159 /* Serialize access to <waiters_count_> */
2160 kmp_win32_mutex_t waiters_count_lock_;
2161
2162 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2163 int release_count_;
2164
2165 /* Keeps track of the current "generation" so that we don't allow */
2166 /* one thread to steal all the "releases" from the broadcast. */
2167 int wait_generation_count_;
2168
2169 /* A manual-reset event that's used to block and release waiting threads. */
2170 HANDLE event_;
2171} kmp_win32_cond_t;
2172#endif
2173
2174#if KMP_OS_UNIX
2175
2176union KMP_ALIGN_CACHE kmp_cond_union {
2177 double c_align;
2178 char c_pad[CACHE_LINE];
2179 pthread_cond_t c_cond;
2180};
2181
2182typedef union kmp_cond_union kmp_cond_align_t;
2183
2184union KMP_ALIGN_CACHE kmp_mutex_union {
2185 double m_align;
2186 char m_pad[CACHE_LINE];
2187 pthread_mutex_t m_mutex;
2188};
2189
2190typedef union kmp_mutex_union kmp_mutex_align_t;
2191
2192#endif /* KMP_OS_UNIX */
2193
2194typedef struct kmp_desc_base {
2195 void *ds_stackbase;
2196 size_t ds_stacksize;
2197 int ds_stackgrow;
2198 kmp_thread_t ds_thread;
2199 volatile int ds_tid;
2200 int ds_gtid;
2201#if KMP_OS_WINDOWS
2202 volatile int ds_alive;
2203 DWORD ds_thread_id;
2204/* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2205 However, debugger support (libomp_db) cannot work with handles, because they
2206 uncomparable. For example, debugger requests info about thread with handle h.
2207 h is valid within debugger process, and meaningless within debugee process.
2208 Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2209 within debugee process, but it is a *new* handle which does *not* equal to
2210 any other handle in debugee... The only way to compare handles is convert
2211 them to system-wide ids. GetThreadId() function is available only in
2212 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2213 on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2214 thread id by call to GetCurrentThreadId() from within the thread and save it
2215 to let libomp_db identify threads. */
2216#endif /* KMP_OS_WINDOWS */
2217} kmp_desc_base_t;
2218
2219typedef union KMP_ALIGN_CACHE kmp_desc {
2220 double ds_align; /* use worst case alignment */
2221 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2222 kmp_desc_base_t ds;
2223} kmp_desc_t;
2224
2225typedef struct kmp_local {
2226 volatile int this_construct; /* count of single's encountered by thread */
2227 void *reduce_data;
2228#if KMP_USE_BGET
2229 void *bget_data;
2230 void *bget_list;
2231#if !USE_CMP_XCHG_FOR_BGET
2232#ifdef USE_QUEUING_LOCK_FOR_BGET
2233 kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2234#else
2235 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2236// bootstrap lock so we can use it at library
2237// shutdown.
2238#endif /* USE_LOCK_FOR_BGET */
2239#endif /* ! USE_CMP_XCHG_FOR_BGET */
2240#endif /* KMP_USE_BGET */
2241
2242 PACKED_REDUCTION_METHOD_T
2243 packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2244 __kmpc_end_reduce*() */
2245
2246} kmp_local_t;
2247
2248#define KMP_CHECK_UPDATE(a, b) \
2249 if ((a) != (b)) \
2250 (a) = (b)
2251#define KMP_CHECK_UPDATE_SYNC(a, b) \
2252 if ((a) != (b)) \
2253 TCW_SYNC_PTR((a), (b))
2254
2255#define get__blocktime(xteam, xtid) \
2256 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2257#define get__bt_set(xteam, xtid) \
2258 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2259#if KMP_USE_MONITOR
2260#define get__bt_intervals(xteam, xtid) \
2261 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2262#endif
2263
2264#define get__dynamic_2(xteam, xtid) \
2265 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2266#define get__nproc_2(xteam, xtid) \
2267 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2268#define get__sched_2(xteam, xtid) \
2269 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2270
2271#define set__blocktime_team(xteam, xtid, xval) \
2272 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2273 (xval))
2274
2275#if KMP_USE_MONITOR
2276#define set__bt_intervals_team(xteam, xtid, xval) \
2277 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2278 (xval))
2279#endif
2280
2281#define set__bt_set_team(xteam, xtid, xval) \
2282 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2283
2284#define set__dynamic(xthread, xval) \
2285 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2286#define get__dynamic(xthread) \
2287 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2288
2289#define set__nproc(xthread, xval) \
2290 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2291
2292#define set__thread_limit(xthread, xval) \
2293 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2294
2295#define set__max_active_levels(xthread, xval) \
2296 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2297
2298#define get__max_active_levels(xthread) \
2299 ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2300
2301#define set__sched(xthread, xval) \
2302 (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2303
2304#define set__proc_bind(xthread, xval) \
2305 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2306#define get__proc_bind(xthread) \
2307 ((xthread)->th.th_current_task->td_icvs.proc_bind)
2308
2309// OpenMP tasking data structures
2310
2311typedef enum kmp_tasking_mode {
2312 tskm_immediate_exec = 0,
2313 tskm_extra_barrier = 1,
2314 tskm_task_teams = 2,
2315 tskm_max = 2
2316} kmp_tasking_mode_t;
2317
2318extern kmp_tasking_mode_t
2319 __kmp_tasking_mode; /* determines how/when to execute tasks */
2320extern int __kmp_task_stealing_constraint;
2321extern int __kmp_enable_task_throttling;
2322extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2323// specified, defaults to 0 otherwise
2324// Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2325extern kmp_int32 __kmp_max_task_priority;
2326// Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2327extern kmp_uint64 __kmp_taskloop_min_tasks;
2328
2329/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2330 taskdata first */
2331#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2332#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2333
2334// The tt_found_tasks flag is a signal to all threads in the team that tasks
2335// were spawned and queued since the previous barrier release.
2336#define KMP_TASKING_ENABLED(task_team) \
2337 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2345typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2346
2347typedef union kmp_cmplrdata {
2348 kmp_int32 priority;
2349 kmp_routine_entry_t
2350 destructors; /* pointer to function to invoke deconstructors of
2351 firstprivate C++ objects */
2352 /* future data */
2353} kmp_cmplrdata_t;
2354
2355/* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2358typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2359 void *shareds;
2360 kmp_routine_entry_t
2361 routine;
2362 kmp_int32 part_id;
2363 kmp_cmplrdata_t
2364 data1; /* Two known optional additions: destructors and priority */
2365 kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2366 /* future data */
2367 /* private vars */
2368} kmp_task_t;
2369
2374typedef struct kmp_taskgroup {
2375 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2376 std::atomic<kmp_int32>
2377 cancel_request; // request for cancellation of this taskgroup
2378 struct kmp_taskgroup *parent; // parent taskgroup
2379 // Block of data to perform task reduction
2380 void *reduce_data; // reduction related info
2381 kmp_int32 reduce_num_data; // number of data items to reduce
2382 uintptr_t *gomp_data; // gomp reduction data
2383} kmp_taskgroup_t;
2384
2385// forward declarations
2386typedef union kmp_depnode kmp_depnode_t;
2387typedef struct kmp_depnode_list kmp_depnode_list_t;
2388typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2389
2390// macros for checking dep flag as an integer
2391#define KMP_DEP_IN 0x1
2392#define KMP_DEP_OUT 0x2
2393#define KMP_DEP_INOUT 0x3
2394#define KMP_DEP_MTX 0x4
2395#define KMP_DEP_SET 0x8
2396#define KMP_DEP_ALL 0x80
2397// Compiler sends us this info:
2398typedef struct kmp_depend_info {
2399 kmp_intptr_t base_addr;
2400 size_t len;
2401 union {
2402 kmp_uint8 flag; // flag as an unsigned char
2403 struct { // flag as a set of 8 bits
2404 unsigned in : 1;
2405 unsigned out : 1;
2406 unsigned mtx : 1;
2407 unsigned set : 1;
2408 unsigned unused : 3;
2409 unsigned all : 1;
2410 } flags;
2411 };
2412} kmp_depend_info_t;
2413
2414// Internal structures to work with task dependencies:
2415struct kmp_depnode_list {
2416 kmp_depnode_t *node;
2417 kmp_depnode_list_t *next;
2418};
2419
2420// Max number of mutexinoutset dependencies per node
2421#define MAX_MTX_DEPS 4
2422
2423typedef struct kmp_base_depnode {
2424 kmp_depnode_list_t *successors; /* used under lock */
2425 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2426 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2427 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2428 kmp_lock_t lock; /* guards shared fields: task, successors */
2429#if KMP_SUPPORT_GRAPH_OUTPUT
2430 kmp_uint32 id;
2431#endif
2432 std::atomic<kmp_int32> npredecessors;
2433 std::atomic<kmp_int32> nrefs;
2434} kmp_base_depnode_t;
2435
2436union KMP_ALIGN_CACHE kmp_depnode {
2437 double dn_align; /* use worst case alignment */
2438 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2439 kmp_base_depnode_t dn;
2440};
2441
2442struct kmp_dephash_entry {
2443 kmp_intptr_t addr;
2444 kmp_depnode_t *last_out;
2445 kmp_depnode_list_t *last_set;
2446 kmp_depnode_list_t *prev_set;
2447 kmp_uint8 last_flag;
2448 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2449 kmp_dephash_entry_t *next_in_bucket;
2450};
2451
2452typedef struct kmp_dephash {
2453 kmp_dephash_entry_t **buckets;
2454 size_t size;
2455 kmp_depnode_t *last_all;
2456 size_t generation;
2457 kmp_uint32 nelements;
2458 kmp_uint32 nconflicts;
2459} kmp_dephash_t;
2460
2461typedef struct kmp_task_affinity_info {
2462 kmp_intptr_t base_addr;
2463 size_t len;
2464 struct {
2465 bool flag1 : 1;
2466 bool flag2 : 1;
2467 kmp_int32 reserved : 30;
2468 } flags;
2469} kmp_task_affinity_info_t;
2470
2471typedef enum kmp_event_type_t {
2472 KMP_EVENT_UNINITIALIZED = 0,
2473 KMP_EVENT_ALLOW_COMPLETION = 1
2474} kmp_event_type_t;
2475
2476typedef struct {
2477 kmp_event_type_t type;
2478 kmp_tas_lock_t lock;
2479 union {
2480 kmp_task_t *task;
2481 } ed;
2482} kmp_event_t;
2483
2484#ifdef BUILD_TIED_TASK_STACK
2485
2486/* Tied Task stack definitions */
2487typedef struct kmp_stack_block {
2488 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2489 struct kmp_stack_block *sb_next;
2490 struct kmp_stack_block *sb_prev;
2491} kmp_stack_block_t;
2492
2493typedef struct kmp_task_stack {
2494 kmp_stack_block_t ts_first_block; // first block of stack entries
2495 kmp_taskdata_t **ts_top; // pointer to the top of stack
2496 kmp_int32 ts_entries; // number of entries on the stack
2497} kmp_task_stack_t;
2498
2499#endif // BUILD_TIED_TASK_STACK
2500
2501typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2502 /* Compiler flags */ /* Total compiler flags must be 16 bits */
2503 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2504 unsigned final : 1; /* task is final(1) so execute immediately */
2505 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2506 code path */
2507 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2508 invoke destructors from the runtime */
2509 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2510 context of the RTL) */
2511 unsigned priority_specified : 1; /* set if the compiler provides priority
2512 setting for the task */
2513 unsigned detachable : 1; /* 1 == can detach */
2514 unsigned hidden_helper : 1; /* 1 == hidden helper task */
2515 unsigned reserved : 8; /* reserved for compiler use */
2516
2517 /* Library flags */ /* Total library flags must be 16 bits */
2518 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2519 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2520 unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2521 // (1) or may be deferred (0)
2522 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2523 // (0) [>= 2 threads]
2524 /* If either team_serial or tasking_ser is set, task team may be NULL */
2525 /* Task State Flags: */
2526 unsigned started : 1; /* 1==started, 0==not started */
2527 unsigned executing : 1; /* 1==executing, 0==not executing */
2528 unsigned complete : 1; /* 1==complete, 0==not complete */
2529 unsigned freed : 1; /* 1==freed, 0==allocated */
2530 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2531 unsigned reserved31 : 7; /* reserved for library use */
2532
2533} kmp_tasking_flags_t;
2534
2535typedef struct kmp_target_data {
2536 void *async_handle; // libomptarget async handle for task completion query
2537} kmp_target_data_t;
2538
2539struct kmp_taskdata { /* aligned during dynamic allocation */
2540 kmp_int32 td_task_id; /* id, assigned by debugger */
2541 kmp_tasking_flags_t td_flags; /* task flags */
2542 kmp_team_t *td_team; /* team for this task */
2543 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2544 /* Currently not used except for perhaps IDB */
2545 kmp_taskdata_t *td_parent; /* parent task */
2546 kmp_int32 td_level; /* task nesting level */
2547 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2548 ident_t *td_ident; /* task identifier */
2549 // Taskwait data.
2550 ident_t *td_taskwait_ident;
2551 kmp_uint32 td_taskwait_counter;
2552 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2553 KMP_ALIGN_CACHE kmp_internal_control_t
2554 td_icvs; /* Internal control variables for the task */
2555 KMP_ALIGN_CACHE std::atomic<kmp_int32>
2556 td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2557 deallocated */
2558 std::atomic<kmp_int32>
2559 td_incomplete_child_tasks; /* Child tasks not yet complete */
2560 kmp_taskgroup_t
2561 *td_taskgroup; // Each task keeps pointer to its current taskgroup
2562 kmp_dephash_t
2563 *td_dephash; // Dependencies for children tasks are tracked from here
2564 kmp_depnode_t
2565 *td_depnode; // Pointer to graph node if this task has dependencies
2566 kmp_task_team_t *td_task_team;
2567 size_t td_size_alloc; // Size of task structure, including shareds etc.
2568#if defined(KMP_GOMP_COMPAT)
2569 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2570 kmp_int32 td_size_loop_bounds;
2571#endif
2572 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2573#if defined(KMP_GOMP_COMPAT)
2574 // GOMP sends in a copy function for copy constructors
2575 void (*td_copy_func)(void *, void *);
2576#endif
2577 kmp_event_t td_allow_completion_event;
2578#if OMPT_SUPPORT
2579 ompt_task_info_t ompt_task_info;
2580#endif
2581 kmp_target_data_t td_target_data;
2582}; // struct kmp_taskdata
2583
2584// Make sure padding above worked
2585KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2586
2587// Data for task team but per thread
2588typedef struct kmp_base_thread_data {
2589 kmp_info_p *td_thr; // Pointer back to thread info
2590 // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2591 // queued?
2592 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2593 kmp_taskdata_t *
2594 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2595 kmp_int32 td_deque_size; // Size of deck
2596 kmp_uint32 td_deque_head; // Head of deque (will wrap)
2597 kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2598 kmp_int32 td_deque_ntasks; // Number of tasks in deque
2599 // GEH: shouldn't this be volatile since used in while-spin?
2600 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2601#ifdef BUILD_TIED_TASK_STACK
2602 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2603// scheduling constraint
2604#endif // BUILD_TIED_TASK_STACK
2605} kmp_base_thread_data_t;
2606
2607#define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2608#define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2609
2610#define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2611#define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2612
2613typedef union KMP_ALIGN_CACHE kmp_thread_data {
2614 kmp_base_thread_data_t td;
2615 double td_align; /* use worst case alignment */
2616 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2617} kmp_thread_data_t;
2618
2619typedef struct kmp_task_pri {
2620 kmp_thread_data_t td;
2621 kmp_int32 priority;
2622 kmp_task_pri *next;
2623} kmp_task_pri_t;
2624
2625// Data for task teams which are used when tasking is enabled for the team
2626typedef struct kmp_base_task_team {
2627 kmp_bootstrap_lock_t
2628 tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2629 /* must be bootstrap lock since used at library shutdown*/
2630
2631 // TODO: check performance vs kmp_tas_lock_t
2632 kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2633 kmp_task_pri_t *tt_task_pri_list;
2634
2635 kmp_task_team_t *tt_next; /* For linking the task team free list */
2636 kmp_thread_data_t
2637 *tt_threads_data; /* Array of per-thread structures for task team */
2638 /* Data survives task team deallocation */
2639 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2640 executing this team? */
2641 /* TRUE means tt_threads_data is set up and initialized */
2642 kmp_int32 tt_nproc; /* #threads in team */
2643 kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2644 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2645 kmp_int32 tt_untied_task_encountered;
2646 std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2647 // There is hidden helper thread encountered in this task team so that we must
2648 // wait when waiting on task team
2649 kmp_int32 tt_hidden_helper_task_encountered;
2650
2651 KMP_ALIGN_CACHE
2652 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2653
2654 KMP_ALIGN_CACHE
2655 volatile kmp_uint32
2656 tt_active; /* is the team still actively executing tasks */
2657} kmp_base_task_team_t;
2658
2659union KMP_ALIGN_CACHE kmp_task_team {
2660 kmp_base_task_team_t tt;
2661 double tt_align; /* use worst case alignment */
2662 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2663};
2664
2665#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2666// Free lists keep same-size free memory slots for fast memory allocation
2667// routines
2668typedef struct kmp_free_list {
2669 void *th_free_list_self; // Self-allocated tasks free list
2670 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2671 // threads
2672 void *th_free_list_other; // Non-self free list (to be returned to owner's
2673 // sync list)
2674} kmp_free_list_t;
2675#endif
2676#if KMP_NESTED_HOT_TEAMS
2677// Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2678// are not put in teams pool, and they don't put threads in threads pool.
2679typedef struct kmp_hot_team_ptr {
2680 kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2681 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2682} kmp_hot_team_ptr_t;
2683#endif
2684typedef struct kmp_teams_size {
2685 kmp_int32 nteams; // number of teams in a league
2686 kmp_int32 nth; // number of threads in each team of the league
2687} kmp_teams_size_t;
2688
2689// This struct stores a thread that acts as a "root" for a contention
2690// group. Contention groups are rooted at kmp_root threads, but also at
2691// each primary thread of each team created in the teams construct.
2692// This struct therefore also stores a thread_limit associated with
2693// that contention group, and a counter to track the number of threads
2694// active in that contention group. Each thread has a list of these: CG
2695// root threads have an entry in their list in which cg_root refers to
2696// the thread itself, whereas other workers in the CG will have a
2697// single entry where cg_root is same as the entry containing their CG
2698// root. When a thread encounters a teams construct, it will add a new
2699// entry to the front of its list, because it now roots a new CG.
2700typedef struct kmp_cg_root {
2701 kmp_info_p *cg_root; // "root" thread for a contention group
2702 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2703 // thread_limit clause for teams primary threads
2704 kmp_int32 cg_thread_limit;
2705 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2706 struct kmp_cg_root *up; // pointer to higher level CG root in list
2707} kmp_cg_root_t;
2708
2709// OpenMP thread data structures
2710
2711typedef struct KMP_ALIGN_CACHE kmp_base_info {
2712 /* Start with the readonly data which is cache aligned and padded. This is
2713 written before the thread starts working by the primary thread. Uber
2714 masters may update themselves later. Usage does not consider serialized
2715 regions. */
2716 kmp_desc_t th_info;
2717 kmp_team_p *th_team; /* team we belong to */
2718 kmp_root_p *th_root; /* pointer to root of task hierarchy */
2719 kmp_info_p *th_next_pool; /* next available thread in the pool */
2720 kmp_disp_t *th_dispatch; /* thread's dispatch data */
2721 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2722
2723 /* The following are cached from the team info structure */
2724 /* TODO use these in more places as determined to be needed via profiling */
2725 int th_team_nproc; /* number of threads in a team */
2726 kmp_info_p *th_team_master; /* the team's primary thread */
2727 int th_team_serialized; /* team is serialized */
2728 microtask_t th_teams_microtask; /* save entry address for teams construct */
2729 int th_teams_level; /* save initial level of teams construct */
2730/* it is 0 on device but may be any on host */
2731
2732/* The blocktime info is copied from the team struct to the thread struct */
2733/* at the start of a barrier, and the values stored in the team are used */
2734/* at points in the code where the team struct is no longer guaranteed */
2735/* to exist (from the POV of worker threads). */
2736#if KMP_USE_MONITOR
2737 int th_team_bt_intervals;
2738 int th_team_bt_set;
2739#else
2740 kmp_uint64 th_team_bt_intervals;
2741#endif
2742
2743#if KMP_AFFINITY_SUPPORTED
2744 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2745 kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2746 kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2747#endif
2748 omp_allocator_handle_t th_def_allocator; /* default allocator */
2749 /* The data set by the primary thread at reinit, then R/W by the worker */
2750 KMP_ALIGN_CACHE int
2751 th_set_nproc; /* if > 0, then only use this request for the next fork */
2752#if KMP_NESTED_HOT_TEAMS
2753 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2754#endif
2755 kmp_proc_bind_t
2756 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2757 kmp_teams_size_t
2758 th_teams_size; /* number of teams/threads in teams construct */
2759#if KMP_AFFINITY_SUPPORTED
2760 int th_current_place; /* place currently bound to */
2761 int th_new_place; /* place to bind to in par reg */
2762 int th_first_place; /* first place in partition */
2763 int th_last_place; /* last place in partition */
2764#endif
2765 int th_prev_level; /* previous level for affinity format */
2766 int th_prev_num_threads; /* previous num_threads for affinity format */
2767#if USE_ITT_BUILD
2768 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2769 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2770 kmp_uint64 th_frame_time; /* frame timestamp */
2771#endif /* USE_ITT_BUILD */
2772 kmp_local_t th_local;
2773 struct private_common *th_pri_head;
2774
2775 /* Now the data only used by the worker (after initial allocation) */
2776 /* TODO the first serial team should actually be stored in the info_t
2777 structure. this will help reduce initial allocation overhead */
2778 KMP_ALIGN_CACHE kmp_team_p
2779 *th_serial_team; /*serialized team held in reserve*/
2780
2781#if OMPT_SUPPORT
2782 ompt_thread_info_t ompt_thread_info;
2783#endif
2784
2785 /* The following are also read by the primary thread during reinit */
2786 struct common_table *th_pri_common;
2787
2788 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2789 /* while awaiting queuing lock acquire */
2790
2791 volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2792 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2793
2794 ident_t *th_ident;
2795 unsigned th_x; // Random number generator data
2796 unsigned th_a; // Random number generator data
2797
2798 /* Tasking-related data for the thread */
2799 kmp_task_team_t *th_task_team; // Task team struct
2800 kmp_taskdata_t *th_current_task; // Innermost Task being executed
2801 kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2802 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2803 // at nested levels
2804 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2805 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2806 kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2807 // tasking, thus safe to reap
2808
2809 /* More stuff for keeping track of active/sleeping threads (this part is
2810 written by the worker thread) */
2811 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2812 int th_active; // ! sleeping; 32 bits for TCR/TCW
2813 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2814 // 0 = not used in team; 1 = used in team;
2815 // 2 = transitioning to not used in team; 3 = transitioning to used in team
2816 struct cons_header *th_cons; // used for consistency check
2817#if KMP_USE_HIER_SCHED
2818 // used for hierarchical scheduling
2819 kmp_hier_private_bdata_t *th_hier_bar_data;
2820#endif
2821
2822 /* Add the syncronizing data which is cache aligned and padded. */
2823 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2824
2825 KMP_ALIGN_CACHE volatile kmp_int32
2826 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2827
2828#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2829#define NUM_LISTS 4
2830 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2831// allocation routines
2832#endif
2833
2834#if KMP_OS_WINDOWS
2835 kmp_win32_cond_t th_suspend_cv;
2836 kmp_win32_mutex_t th_suspend_mx;
2837 std::atomic<int> th_suspend_init;
2838#endif
2839#if KMP_OS_UNIX
2840 kmp_cond_align_t th_suspend_cv;
2841 kmp_mutex_align_t th_suspend_mx;
2842 std::atomic<int> th_suspend_init_count;
2843#endif
2844
2845#if USE_ITT_BUILD
2846 kmp_itt_mark_t th_itt_mark_single;
2847// alignment ???
2848#endif /* USE_ITT_BUILD */
2849#if KMP_STATS_ENABLED
2850 kmp_stats_list *th_stats;
2851#endif
2852#if KMP_OS_UNIX
2853 std::atomic<bool> th_blocking;
2854#endif
2855 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2856} kmp_base_info_t;
2857
2858typedef union KMP_ALIGN_CACHE kmp_info {
2859 double th_align; /* use worst case alignment */
2860 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2861 kmp_base_info_t th;
2862} kmp_info_t;
2863
2864// OpenMP thread team data structures
2865
2866typedef struct kmp_base_data {
2867 volatile kmp_uint32 t_value;
2868} kmp_base_data_t;
2869
2870typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2871 double dt_align; /* use worst case alignment */
2872 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2873 kmp_base_data_t dt;
2874} kmp_sleep_team_t;
2875
2876typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2877 double dt_align; /* use worst case alignment */
2878 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2879 kmp_base_data_t dt;
2880} kmp_ordered_team_t;
2881
2882typedef int (*launch_t)(int gtid);
2883
2884/* Minimum number of ARGV entries to malloc if necessary */
2885#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2886
2887// Set up how many argv pointers will fit in cache lines containing
2888// t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2889// larger value for more space between the primary write/worker read section and
2890// read/write by all section seems to buy more performance on EPCC PARALLEL.
2891#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2892#define KMP_INLINE_ARGV_BYTES \
2893 (4 * CACHE_LINE - \
2894 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2895 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2896 CACHE_LINE))
2897#else
2898#define KMP_INLINE_ARGV_BYTES \
2899 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2900#endif
2901#define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2902
2903typedef struct KMP_ALIGN_CACHE kmp_base_team {
2904 // Synchronization Data
2905 // ---------------------------------------------------------------------------
2906 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2907 kmp_balign_team_t t_bar[bs_last_barrier];
2908 std::atomic<int> t_construct; // count of single directive encountered by team
2909 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2910
2911 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2912 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2913 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2914
2915 // Primary thread only
2916 // ---------------------------------------------------------------------------
2917 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
2918 int t_master_this_cons; // "this_construct" single counter of primary thread
2919 // in parent team
2920 ident_t *t_ident; // if volatile, have to change too much other crud to
2921 // volatile too
2922 kmp_team_p *t_parent; // parent team
2923 kmp_team_p *t_next_pool; // next free team in the team pool
2924 kmp_disp_t *t_dispatch; // thread's dispatch data
2925 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2926 kmp_proc_bind_t t_proc_bind; // bind type for par region
2927#if USE_ITT_BUILD
2928 kmp_uint64 t_region_time; // region begin timestamp
2929#endif /* USE_ITT_BUILD */
2930
2931 // Primary thread write, workers read
2932 // --------------------------------------------------------------------------
2933 KMP_ALIGN_CACHE void **t_argv;
2934 int t_argc;
2935 int t_nproc; // number of threads in team
2936 microtask_t t_pkfn;
2937 launch_t t_invoke; // procedure to launch the microtask
2938
2939#if OMPT_SUPPORT
2940 ompt_team_info_t ompt_team_info;
2941 ompt_lw_taskteam_t *ompt_serialized_team_info;
2942#endif
2943
2944#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2945 kmp_int8 t_fp_control_saved;
2946 kmp_int8 t_pad2b;
2947 kmp_int16 t_x87_fpu_control_word; // FP control regs
2948 kmp_uint32 t_mxcsr;
2949#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2950
2951 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2952
2953 KMP_ALIGN_CACHE kmp_info_t **t_threads;
2954 kmp_taskdata_t
2955 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2956 int t_level; // nested parallel level
2957
2958 KMP_ALIGN_CACHE int t_max_argc;
2959 int t_max_nproc; // max threads this team can handle (dynamically expandable)
2960 int t_serialized; // levels deep of serialized teams
2961 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2962 int t_id; // team's id, assigned by debugger.
2963 int t_active_level; // nested active parallel level
2964 kmp_r_sched_t t_sched; // run-time schedule for the team
2965#if KMP_AFFINITY_SUPPORTED
2966 int t_first_place; // first & last place in parent thread's partition.
2967 int t_last_place; // Restore these values to primary thread after par region.
2968#endif // KMP_AFFINITY_SUPPORTED
2969 int t_display_affinity;
2970 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2971 // omp_set_num_threads() call
2972 omp_allocator_handle_t t_def_allocator; /* default allocator */
2973
2974// Read/write by workers as well
2975#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2976 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2977 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2978 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2979 // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2980 char dummy_padding[1024];
2981#endif
2982 // Internal control stack for additional nested teams.
2983 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2984 // for SERIALIZED teams nested 2 or more levels deep
2985 // typed flag to store request state of cancellation
2986 std::atomic<kmp_int32> t_cancel_request;
2987 int t_master_active; // save on fork, restore on join
2988 void *t_copypriv_data; // team specific pointer to copyprivate data array
2989#if KMP_OS_WINDOWS
2990 std::atomic<kmp_uint32> t_copyin_counter;
2991#endif
2992#if USE_ITT_BUILD
2993 void *t_stack_id; // team specific stack stitching id (for ittnotify)
2994#endif /* USE_ITT_BUILD */
2995 distributedBarrier *b; // Distributed barrier data associated with team
2996} kmp_base_team_t;
2997
2998union KMP_ALIGN_CACHE kmp_team {
2999 kmp_base_team_t t;
3000 double t_align; /* use worst case alignment */
3001 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3002};
3003
3004typedef union KMP_ALIGN_CACHE kmp_time_global {
3005 double dt_align; /* use worst case alignment */
3006 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3007 kmp_base_data_t dt;
3008} kmp_time_global_t;
3009
3010typedef struct kmp_base_global {
3011 /* cache-aligned */
3012 kmp_time_global_t g_time;
3013
3014 /* non cache-aligned */
3015 volatile int g_abort;
3016 volatile int g_done;
3017
3018 int g_dynamic;
3019 enum dynamic_mode g_dynamic_mode;
3020} kmp_base_global_t;
3021
3022typedef union KMP_ALIGN_CACHE kmp_global {
3023 kmp_base_global_t g;
3024 double g_align; /* use worst case alignment */
3025 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3026} kmp_global_t;
3027
3028typedef struct kmp_base_root {
3029 // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3030 // (r_in_parallel>= 0)
3031 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3032 // the synch overhead or keeping r_active
3033 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3034 // keeps a count of active parallel regions per root
3035 std::atomic<int> r_in_parallel;
3036 // GEH: This is misnamed, should be r_active_levels
3037 kmp_team_t *r_root_team;
3038 kmp_team_t *r_hot_team;
3039 kmp_info_t *r_uber_thread;
3040 kmp_lock_t r_begin_lock;
3041 volatile int r_begin;
3042 int r_blocktime; /* blocktime for this root and descendants */
3043#if KMP_AFFINITY_SUPPORTED
3044 int r_affinity_assigned;
3045#endif // KMP_AFFINITY_SUPPORTED
3046} kmp_base_root_t;
3047
3048typedef union KMP_ALIGN_CACHE kmp_root {
3049 kmp_base_root_t r;
3050 double r_align; /* use worst case alignment */
3051 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3052} kmp_root_t;
3053
3054struct fortran_inx_info {
3055 kmp_int32 data;
3056};
3057
3058// This list type exists to hold old __kmp_threads arrays so that
3059// old references to them may complete while reallocation takes place when
3060// expanding the array. The items in this list are kept alive until library
3061// shutdown.
3062typedef struct kmp_old_threads_list_t {
3063 kmp_info_t **threads;
3064 struct kmp_old_threads_list_t *next;
3065} kmp_old_threads_list_t;
3066
3067/* ------------------------------------------------------------------------ */
3068
3069extern int __kmp_settings;
3070extern int __kmp_duplicate_library_ok;
3071#if USE_ITT_BUILD
3072extern int __kmp_forkjoin_frames;
3073extern int __kmp_forkjoin_frames_mode;
3074#endif
3075extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3076extern int __kmp_determ_red;
3077
3078#ifdef KMP_DEBUG
3079extern int kmp_a_debug;
3080extern int kmp_b_debug;
3081extern int kmp_c_debug;
3082extern int kmp_d_debug;
3083extern int kmp_e_debug;
3084extern int kmp_f_debug;
3085#endif /* KMP_DEBUG */
3086
3087/* For debug information logging using rotating buffer */
3088#define KMP_DEBUG_BUF_LINES_INIT 512
3089#define KMP_DEBUG_BUF_LINES_MIN 1
3090
3091#define KMP_DEBUG_BUF_CHARS_INIT 128
3092#define KMP_DEBUG_BUF_CHARS_MIN 2
3093
3094extern int
3095 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3096extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3097extern int
3098 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3099extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3100 entry pointer */
3101
3102extern char *__kmp_debug_buffer; /* Debug buffer itself */
3103extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3104 printed in buffer so far */
3105extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3106 recommended in warnings */
3107/* end rotating debug buffer */
3108
3109#ifdef KMP_DEBUG
3110extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3111
3112#define KMP_PAR_RANGE_ROUTINE_LEN 1024
3113extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3114#define KMP_PAR_RANGE_FILENAME_LEN 1024
3115extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3116extern int __kmp_par_range_lb;
3117extern int __kmp_par_range_ub;
3118#endif
3119
3120/* For printing out dynamic storage map for threads and teams */
3121extern int
3122 __kmp_storage_map; /* True means print storage map for threads and teams */
3123extern int __kmp_storage_map_verbose; /* True means storage map includes
3124 placement info */
3125extern int __kmp_storage_map_verbose_specified;
3126
3127#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3128extern kmp_cpuinfo_t __kmp_cpuinfo;
3129static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3130#elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3131static inline bool __kmp_is_hybrid_cpu() { return true; }
3132#else
3133static inline bool __kmp_is_hybrid_cpu() { return false; }
3134#endif
3135
3136extern volatile int __kmp_init_serial;
3137extern volatile int __kmp_init_gtid;
3138extern volatile int __kmp_init_common;
3139extern volatile int __kmp_need_register_serial;
3140extern volatile int __kmp_init_middle;
3141extern volatile int __kmp_init_parallel;
3142#if KMP_USE_MONITOR
3143extern volatile int __kmp_init_monitor;
3144#endif
3145extern volatile int __kmp_init_user_locks;
3146extern volatile int __kmp_init_hidden_helper_threads;
3147extern int __kmp_init_counter;
3148extern int __kmp_root_counter;
3149extern int __kmp_version;
3150
3151/* list of address of allocated caches for commons */
3152extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3153
3154/* Barrier algorithm types and options */
3155extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3156extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3157extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3158extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3159extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3160extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3161extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3162extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3163extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3164extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3165extern char const *__kmp_barrier_type_name[bs_last_barrier];
3166extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3167
3168/* Global Locks */
3169extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3170extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3171extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3172extern kmp_bootstrap_lock_t
3173 __kmp_exit_lock; /* exit() is not always thread-safe */
3174#if KMP_USE_MONITOR
3175extern kmp_bootstrap_lock_t
3176 __kmp_monitor_lock; /* control monitor thread creation */
3177#endif
3178extern kmp_bootstrap_lock_t
3179 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3180 __kmp_threads expansion to co-exist */
3181
3182extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3183extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3184extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3185
3186extern enum library_type __kmp_library;
3187
3188extern enum sched_type __kmp_sched; /* default runtime scheduling */
3189extern enum sched_type __kmp_static; /* default static scheduling method */
3190extern enum sched_type __kmp_guided; /* default guided scheduling method */
3191extern enum sched_type __kmp_auto; /* default auto scheduling method */
3192extern int __kmp_chunk; /* default runtime chunk size */
3193extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3194
3195extern size_t __kmp_stksize; /* stack size per thread */
3196#if KMP_USE_MONITOR
3197extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3198#endif
3199extern size_t __kmp_stkoffset; /* stack offset per thread */
3200extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3201
3202extern size_t
3203 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3204extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3205extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3206extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3207extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3208extern int __kmp_generate_warnings; /* should we issue warnings? */
3209extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3210
3211#ifdef DEBUG_SUSPEND
3212extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3213#endif
3214
3215extern kmp_int32 __kmp_use_yield;
3216extern kmp_int32 __kmp_use_yield_exp_set;
3217extern kmp_uint32 __kmp_yield_init;
3218extern kmp_uint32 __kmp_yield_next;
3219extern kmp_uint64 __kmp_pause_init;
3220
3221/* ------------------------------------------------------------------------- */
3222extern int __kmp_allThreadsSpecified;
3223
3224extern size_t __kmp_align_alloc;
3225/* following data protected by initialization routines */
3226extern int __kmp_xproc; /* number of processors in the system */
3227extern int __kmp_avail_proc; /* number of processors available to the process */
3228extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3229extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3230// maximum total number of concurrently-existing threads on device
3231extern int __kmp_max_nth;
3232// maximum total number of concurrently-existing threads in a contention group
3233extern int __kmp_cg_max_nth;
3234extern int __kmp_teams_max_nth; // max threads used in a teams construct
3235extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3236 __kmp_root */
3237extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3238 region a la OMP_NUM_THREADS */
3239extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3240 initialization */
3241extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3242 used (fixed) */
3243extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3244 (__kmpc_threadprivate_cached()) */
3245extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3246 blocking (env setting) */
3247extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3248#if KMP_USE_MONITOR
3249extern int
3250 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3251extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3252 blocking */
3253#endif
3254#ifdef KMP_ADJUST_BLOCKTIME
3255extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3256#endif /* KMP_ADJUST_BLOCKTIME */
3257#ifdef KMP_DFLT_NTH_CORES
3258extern int __kmp_ncores; /* Total number of cores for threads placement */
3259#endif
3260/* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3261extern int __kmp_abort_delay;
3262
3263extern int __kmp_need_register_atfork_specified;
3264extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3265 to install fork handler */
3266extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3267 0 - not set, will be set at runtime
3268 1 - using stack search
3269 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3270 X*) or TlsGetValue(Windows* OS))
3271 3 - static TLS (__declspec(thread) __kmp_gtid),
3272 Linux* OS .so only. */
3273extern int
3274 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3275#ifdef KMP_TDATA_GTID
3276extern KMP_THREAD_LOCAL int __kmp_gtid;
3277#endif
3278extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3279extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3280#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3281extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3282extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3283extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3284#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3285
3286// max_active_levels for nested parallelism enabled by default via
3287// OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3288extern int __kmp_dflt_max_active_levels;
3289// Indicates whether value of __kmp_dflt_max_active_levels was already
3290// explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3291extern bool __kmp_dflt_max_active_levels_set;
3292extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3293 concurrent execution per team */
3294#if KMP_NESTED_HOT_TEAMS
3295extern int __kmp_hot_teams_mode;
3296extern int __kmp_hot_teams_max_level;
3297#endif
3298
3299#if KMP_OS_LINUX
3300extern enum clock_function_type __kmp_clock_function;
3301extern int __kmp_clock_function_param;
3302#endif /* KMP_OS_LINUX */
3303
3304#if KMP_MIC_SUPPORTED
3305extern enum mic_type __kmp_mic_type;
3306#endif
3307
3308#ifdef USE_LOAD_BALANCE
3309extern double __kmp_load_balance_interval; // load balance algorithm interval
3310#endif /* USE_LOAD_BALANCE */
3311
3312// OpenMP 3.1 - Nested num threads array
3313typedef struct kmp_nested_nthreads_t {
3314 int *nth;
3315 int size;
3316 int used;
3317} kmp_nested_nthreads_t;
3318
3319extern kmp_nested_nthreads_t __kmp_nested_nth;
3320
3321#if KMP_USE_ADAPTIVE_LOCKS
3322
3323// Parameters for the speculative lock backoff system.
3324struct kmp_adaptive_backoff_params_t {
3325 // Number of soft retries before it counts as a hard retry.
3326 kmp_uint32 max_soft_retries;
3327 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3328 // the right
3329 kmp_uint32 max_badness;
3330};
3331
3332extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3333
3334#if KMP_DEBUG_ADAPTIVE_LOCKS
3335extern const char *__kmp_speculative_statsfile;
3336#endif
3337
3338#endif // KMP_USE_ADAPTIVE_LOCKS
3339
3340extern int __kmp_display_env; /* TRUE or FALSE */
3341extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3342extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3343extern int __kmp_nteams;
3344extern int __kmp_teams_thread_limit;
3345
3346/* ------------------------------------------------------------------------- */
3347
3348/* the following are protected by the fork/join lock */
3349/* write: lock read: anytime */
3350extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3351/* Holds old arrays of __kmp_threads until library shutdown */
3352extern kmp_old_threads_list_t *__kmp_old_threads_list;
3353/* read/write: lock */
3354extern volatile kmp_team_t *__kmp_team_pool;
3355extern volatile kmp_info_t *__kmp_thread_pool;
3356extern kmp_info_t *__kmp_thread_pool_insert_pt;
3357
3358// total num threads reachable from some root thread including all root threads
3359extern volatile int __kmp_nth;
3360/* total number of threads reachable from some root thread including all root
3361 threads, and those in the thread pool */
3362extern volatile int __kmp_all_nth;
3363extern std::atomic<int> __kmp_thread_pool_active_nth;
3364
3365extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3366/* end data protected by fork/join lock */
3367/* ------------------------------------------------------------------------- */
3368
3369#define __kmp_get_gtid() __kmp_get_global_thread_id()
3370#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3371#define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3372#define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3373#define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3374
3375// AT: Which way is correct?
3376// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3377// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3378#define __kmp_get_team_num_threads(gtid) \
3379 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3380
3381static inline bool KMP_UBER_GTID(int gtid) {
3382 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3383 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3384 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3385 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3386}
3387
3388static inline int __kmp_tid_from_gtid(int gtid) {
3389 KMP_DEBUG_ASSERT(gtid >= 0);
3390 return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3391}
3392
3393static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3394 KMP_DEBUG_ASSERT(tid >= 0 && team);
3395 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3396}
3397
3398static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3399 KMP_DEBUG_ASSERT(thr);
3400 return thr->th.th_info.ds.ds_gtid;
3401}
3402
3403static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3404 KMP_DEBUG_ASSERT(gtid >= 0);
3405 return __kmp_threads[gtid];
3406}
3407
3408static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3409 KMP_DEBUG_ASSERT(gtid >= 0);
3410 return __kmp_threads[gtid]->th.th_team;
3411}
3412
3413static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3414 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3415 KMP_FATAL(ThreadIdentInvalid);
3416}
3417
3418#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3419extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3420extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3421extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3422extern int __kmp_mwait_hints; // Hints to pass in to mwait
3423#endif
3424
3425#if KMP_HAVE_UMWAIT
3426extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3427extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3428extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3429extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3430#endif
3431
3432/* ------------------------------------------------------------------------- */
3433
3434extern kmp_global_t __kmp_global; /* global status */
3435
3436extern kmp_info_t __kmp_monitor;
3437// For Debugging Support Library
3438extern std::atomic<kmp_int32> __kmp_team_counter;
3439// For Debugging Support Library
3440extern std::atomic<kmp_int32> __kmp_task_counter;
3441
3442#if USE_DEBUGGER
3443#define _KMP_GEN_ID(counter) \
3444 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3445#else
3446#define _KMP_GEN_ID(counter) (~0)
3447#endif /* USE_DEBUGGER */
3448
3449#define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3450#define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3451
3452/* ------------------------------------------------------------------------ */
3453
3454extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3455 size_t size, char const *format, ...);
3456
3457extern void __kmp_serial_initialize(void);
3458extern void __kmp_middle_initialize(void);
3459extern void __kmp_parallel_initialize(void);
3460
3461extern void __kmp_internal_begin(void);
3462extern void __kmp_internal_end_library(int gtid);
3463extern void __kmp_internal_end_thread(int gtid);
3464extern void __kmp_internal_end_atexit(void);
3465extern void __kmp_internal_end_dtor(void);
3466extern void __kmp_internal_end_dest(void *);
3467
3468extern int __kmp_register_root(int initial_thread);
3469extern void __kmp_unregister_root(int gtid);
3470extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3471
3472extern int __kmp_ignore_mppbeg(void);
3473extern int __kmp_ignore_mppend(void);
3474
3475extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3476extern void __kmp_exit_single(int gtid);
3477
3478extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3479extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3480
3481#ifdef USE_LOAD_BALANCE
3482extern int __kmp_get_load_balance(int);
3483#endif
3484
3485extern int __kmp_get_global_thread_id(void);
3486extern int __kmp_get_global_thread_id_reg(void);
3487extern void __kmp_exit_thread(int exit_status);
3488extern void __kmp_abort(char const *format, ...);
3489extern void __kmp_abort_thread(void);
3490KMP_NORETURN extern void __kmp_abort_process(void);
3491extern void __kmp_warn(char const *format, ...);
3492
3493extern void __kmp_set_num_threads(int new_nth, int gtid);
3494
3495// Returns current thread (pointer to kmp_info_t). Current thread *must* be
3496// registered.
3497static inline kmp_info_t *__kmp_entry_thread() {
3498 int gtid = __kmp_entry_gtid();
3499
3500 return __kmp_threads[gtid];
3501}
3502
3503extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3504extern int __kmp_get_max_active_levels(int gtid);
3505extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3506extern int __kmp_get_team_size(int gtid, int level);
3507extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3508extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3509
3510extern unsigned short __kmp_get_random(kmp_info_t *thread);
3511extern void __kmp_init_random(kmp_info_t *thread);
3512
3513extern kmp_r_sched_t __kmp_get_schedule_global(void);
3514extern void __kmp_adjust_num_threads(int new_nproc);
3515extern void __kmp_check_stksize(size_t *val);
3516
3517extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3518extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3519extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3520#define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3521#define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3522#define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3523
3524#if USE_FAST_MEMORY
3525extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3526 size_t size KMP_SRC_LOC_DECL);
3527extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3528extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3529extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3530#define __kmp_fast_allocate(this_thr, size) \
3531 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3532#define __kmp_fast_free(this_thr, ptr) \
3533 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3534#endif
3535
3536extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3537extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3538 size_t elsize KMP_SRC_LOC_DECL);
3539extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3540 size_t size KMP_SRC_LOC_DECL);
3541extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3542#define __kmp_thread_malloc(th, size) \
3543 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3544#define __kmp_thread_calloc(th, nelem, elsize) \
3545 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3546#define __kmp_thread_realloc(th, ptr, size) \
3547 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3548#define __kmp_thread_free(th, ptr) \
3549 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3550
3551extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3552
3553extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3554 kmp_proc_bind_t proc_bind);
3555extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3556 int num_threads);
3557extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3558 int num_teams_ub, int num_threads);
3559
3560extern void __kmp_yield();
3561
3562extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3563 enum sched_type schedule, kmp_int32 lb,
3564 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3565extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3566 enum sched_type schedule, kmp_uint32 lb,
3567 kmp_uint32 ub, kmp_int32 st,
3568 kmp_int32 chunk);
3569extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3570 enum sched_type schedule, kmp_int64 lb,
3571 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3572extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3573 enum sched_type schedule, kmp_uint64 lb,
3574 kmp_uint64 ub, kmp_int64 st,
3575 kmp_int64 chunk);
3576
3577extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3578 kmp_int32 *p_last, kmp_int32 *p_lb,
3579 kmp_int32 *p_ub, kmp_int32 *p_st);
3580extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3581 kmp_int32 *p_last, kmp_uint32 *p_lb,
3582 kmp_uint32 *p_ub, kmp_int32 *p_st);
3583extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3584 kmp_int32 *p_last, kmp_int64 *p_lb,
3585 kmp_int64 *p_ub, kmp_int64 *p_st);
3586extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3587 kmp_int32 *p_last, kmp_uint64 *p_lb,
3588 kmp_uint64 *p_ub, kmp_int64 *p_st);
3589
3590extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3591extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3592extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3593extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3594
3595#ifdef KMP_GOMP_COMPAT
3596
3597extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3598 enum sched_type schedule, kmp_int32 lb,
3599 kmp_int32 ub, kmp_int32 st,
3600 kmp_int32 chunk, int push_ws);
3601extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3602 enum sched_type schedule, kmp_uint32 lb,
3603 kmp_uint32 ub, kmp_int32 st,
3604 kmp_int32 chunk, int push_ws);
3605extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3606 enum sched_type schedule, kmp_int64 lb,
3607 kmp_int64 ub, kmp_int64 st,
3608 kmp_int64 chunk, int push_ws);
3609extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3610 enum sched_type schedule, kmp_uint64 lb,
3611 kmp_uint64 ub, kmp_int64 st,
3612 kmp_int64 chunk, int push_ws);
3613extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3614extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3615extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3616extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3617
3618#endif /* KMP_GOMP_COMPAT */
3619
3620extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3621extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3622extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3623extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3624extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3625extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3626 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3627 void *obj);
3628extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3629 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3630
3631extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3632 int final_spin
3633#if USE_ITT_BUILD
3634 ,
3635 void *itt_sync_obj
3636#endif
3637);
3638extern void __kmp_release_64(kmp_flag_64<> *flag);
3639
3640extern void __kmp_infinite_loop(void);
3641
3642extern void __kmp_cleanup(void);
3643
3644#if KMP_HANDLE_SIGNALS
3645extern int __kmp_handle_signals;
3646extern void __kmp_install_signals(int parallel_init);
3647extern void __kmp_remove_signals(void);
3648#endif
3649
3650extern void __kmp_clear_system_time(void);
3651extern void __kmp_read_system_time(double *delta);
3652
3653extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3654
3655extern void __kmp_expand_host_name(char *buffer, size_t size);
3656extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3657
3658#if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3659extern void
3660__kmp_initialize_system_tick(void); /* Initialize timer tick value */
3661#endif
3662
3663extern void
3664__kmp_runtime_initialize(void); /* machine specific initialization */
3665extern void __kmp_runtime_destroy(void);
3666
3667#if KMP_AFFINITY_SUPPORTED
3668extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3669 kmp_affin_mask_t *mask);
3670extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3671 kmp_affin_mask_t *mask);
3672extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3673extern void __kmp_affinity_uninitialize(void);
3674extern void __kmp_affinity_set_init_mask(
3675 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3676extern void __kmp_affinity_set_place(int gtid);
3677extern void __kmp_affinity_determine_capable(const char *env_var);
3678extern int __kmp_aux_set_affinity(void **mask);
3679extern int __kmp_aux_get_affinity(void **mask);
3680extern int __kmp_aux_get_affinity_max_proc();
3681extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3682extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3683extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3684extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3685#if KMP_OS_LINUX || KMP_OS_FREEBSD
3686extern int kmp_set_thread_affinity_mask_initial(void);
3687#endif
3688static inline void __kmp_assign_root_init_mask() {
3689 int gtid = __kmp_entry_gtid();
3690 kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3691 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3692 __kmp_affinity_set_init_mask(gtid, TRUE);
3693 r->r.r_affinity_assigned = TRUE;
3694 }
3695}
3696static inline void __kmp_reset_root_init_mask(int gtid) {
3697 if (!KMP_AFFINITY_CAPABLE())
3698 return;
3699 kmp_info_t *th = __kmp_threads[gtid];
3700 kmp_root_t *r = th->th.th_root;
3701 if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3702 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3703 KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3704 r->r.r_affinity_assigned = FALSE;
3705 }
3706}
3707#else /* KMP_AFFINITY_SUPPORTED */
3708#define __kmp_assign_root_init_mask() /* Nothing */
3709static inline void __kmp_reset_root_init_mask(int gtid) {}
3710#endif /* KMP_AFFINITY_SUPPORTED */
3711// No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3712// format string is for affinity, so platforms that do not support
3713// affinity can still use the other fields, e.g., %n for num_threads
3714extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3715 kmp_str_buf_t *buffer);
3716extern void __kmp_aux_display_affinity(int gtid, const char *format);
3717
3718extern void __kmp_cleanup_hierarchy();
3719extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3720
3721#if KMP_USE_FUTEX
3722
3723extern int __kmp_futex_determine_capable(void);
3724
3725#endif // KMP_USE_FUTEX
3726
3727extern void __kmp_gtid_set_specific(int gtid);
3728extern int __kmp_gtid_get_specific(void);
3729
3730extern double __kmp_read_cpu_time(void);
3731
3732extern int __kmp_read_system_info(struct kmp_sys_info *info);
3733
3734#if KMP_USE_MONITOR
3735extern void __kmp_create_monitor(kmp_info_t *th);
3736#endif
3737
3738extern void *__kmp_launch_thread(kmp_info_t *thr);
3739
3740extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3741
3742#if KMP_OS_WINDOWS
3743extern int __kmp_still_running(kmp_info_t *th);
3744extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3745extern void __kmp_free_handle(kmp_thread_t tHandle);
3746#endif
3747
3748#if KMP_USE_MONITOR
3749extern void __kmp_reap_monitor(kmp_info_t *th);
3750#endif
3751extern void __kmp_reap_worker(kmp_info_t *th);
3752extern void __kmp_terminate_thread(int gtid);
3753
3754extern int __kmp_try_suspend_mx(kmp_info_t *th);
3755extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3756extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3757
3758extern void __kmp_elapsed(double *);
3759extern void __kmp_elapsed_tick(double *);
3760
3761extern void __kmp_enable(int old_state);
3762extern void __kmp_disable(int *old_state);
3763
3764extern void __kmp_thread_sleep(int millis);
3765
3766extern void __kmp_common_initialize(void);
3767extern void __kmp_common_destroy(void);
3768extern void __kmp_common_destroy_gtid(int gtid);
3769
3770#if KMP_OS_UNIX
3771extern void __kmp_register_atfork(void);
3772#endif
3773extern void __kmp_suspend_initialize(void);
3774extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3775extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3776
3777extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3778 int tid);
3779extern kmp_team_t *
3780__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3781#if OMPT_SUPPORT
3782 ompt_data_t ompt_parallel_data,
3783#endif
3784 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3785 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3786extern void __kmp_free_thread(kmp_info_t *);
3787extern void __kmp_free_team(kmp_root_t *,
3788 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3789extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3790
3791/* ------------------------------------------------------------------------ */
3792
3793extern void __kmp_initialize_bget(kmp_info_t *th);
3794extern void __kmp_finalize_bget(kmp_info_t *th);
3795
3796KMP_EXPORT void *kmpc_malloc(size_t size);
3797KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3798KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3799KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3800KMP_EXPORT void kmpc_free(void *ptr);
3801
3802/* declarations for internal use */
3803
3804extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3805 size_t reduce_size, void *reduce_data,
3806 void (*reduce)(void *, void *));
3807extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3808extern int __kmp_barrier_gomp_cancel(int gtid);
3809
3814enum fork_context_e {
3815 fork_context_gnu,
3817 fork_context_intel,
3818 fork_context_last
3819};
3820extern int __kmp_fork_call(ident_t *loc, int gtid,
3821 enum fork_context_e fork_context, kmp_int32 argc,
3822 microtask_t microtask, launch_t invoker,
3823 kmp_va_list ap);
3824
3825extern void __kmp_join_call(ident_t *loc, int gtid
3826#if OMPT_SUPPORT
3827 ,
3828 enum fork_context_e fork_context
3829#endif
3830 ,
3831 int exit_teams = 0);
3832
3833extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3834extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3835extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3836extern int __kmp_invoke_task_func(int gtid);
3837extern void __kmp_run_before_invoked_task(int gtid, int tid,
3838 kmp_info_t *this_thr,
3839 kmp_team_t *team);
3840extern void __kmp_run_after_invoked_task(int gtid, int tid,
3841 kmp_info_t *this_thr,
3842 kmp_team_t *team);
3843
3844// should never have been exported
3845KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3846extern int __kmp_invoke_teams_master(int gtid);
3847extern void __kmp_teams_master(int gtid);
3848extern int __kmp_aux_get_team_num();
3849extern int __kmp_aux_get_num_teams();
3850extern void __kmp_save_internal_controls(kmp_info_t *thread);
3851extern void __kmp_user_set_library(enum library_type arg);
3852extern void __kmp_aux_set_library(enum library_type arg);
3853extern void __kmp_aux_set_stacksize(size_t arg);
3854extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3855extern void __kmp_aux_set_defaults(char const *str, size_t len);
3856
3857/* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3858void kmpc_set_blocktime(int arg);
3859void ompc_set_nested(int flag);
3860void ompc_set_dynamic(int flag);
3861void ompc_set_num_threads(int arg);
3862
3863extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3864 kmp_team_t *team, int tid);
3865extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3866extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3867 kmp_tasking_flags_t *flags,
3868 size_t sizeof_kmp_task_t,
3869 size_t sizeof_shareds,
3870 kmp_routine_entry_t task_entry);
3871extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3872 kmp_team_t *team, int tid,
3873 int set_curr_task);
3874extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3875extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3876
3877extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3878 int gtid,
3879 kmp_task_t *task);
3880extern void __kmp_fulfill_event(kmp_event_t *event);
3881
3882extern void __kmp_free_task_team(kmp_info_t *thread,
3883 kmp_task_team_t *task_team);
3884extern void __kmp_reap_task_teams(void);
3885extern void __kmp_wait_to_unref_task_teams(void);
3886extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3887 int always);
3888extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3889extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3890#if USE_ITT_BUILD
3891 ,
3892 void *itt_sync_obj
3893#endif /* USE_ITT_BUILD */
3894 ,
3895 int wait = 1);
3896extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3897 int gtid);
3898
3899extern int __kmp_is_address_mapped(void *addr);
3900extern kmp_uint64 __kmp_hardware_timestamp(void);
3901
3902#if KMP_OS_UNIX
3903extern int __kmp_read_from_file(char const *path, char const *format, ...);
3904#endif
3905
3906/* ------------------------------------------------------------------------ */
3907//
3908// Assembly routines that have no compiler intrinsic replacement
3909//
3910
3911extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3912 void *argv[]
3913#if OMPT_SUPPORT
3914 ,
3915 void **exit_frame_ptr
3916#endif
3917);
3918
3919/* ------------------------------------------------------------------------ */
3920
3921KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3922KMP_EXPORT void __kmpc_end(ident_t *);
3923
3924KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3925 kmpc_ctor_vec ctor,
3926 kmpc_cctor_vec cctor,
3927 kmpc_dtor_vec dtor,
3928 size_t vector_length);
3929KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3930 kmpc_ctor ctor, kmpc_cctor cctor,
3931 kmpc_dtor dtor);
3932KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3933 void *data, size_t size);
3934
3935KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3936KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3937KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3938KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3939
3940KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3941KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3942 kmpc_micro microtask, ...);
3943KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
3944 kmpc_micro microtask, kmp_int32 cond,
3945 void *args);
3946
3947KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3948KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3949
3950KMP_EXPORT void __kmpc_flush(ident_t *);
3951KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3952KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3953KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3954KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
3955 kmp_int32 filter);
3956KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
3957KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3958KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3959KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3960 kmp_critical_name *);
3961KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3962 kmp_critical_name *);
3963KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3964 kmp_critical_name *, uint32_t hint);
3965
3966KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3967KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3968
3969KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3970 kmp_int32 global_tid);
3971
3972KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3973KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3974
3975KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
3976KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
3977 kmp_int32 numberOfSections);
3978KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
3979
3980KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3981 kmp_int32 schedtype, kmp_int32 *plastiter,
3982 kmp_int *plower, kmp_int *pupper,
3983 kmp_int *pstride, kmp_int incr,
3984 kmp_int chunk);
3985
3986KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3987
3988KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3989 size_t cpy_size, void *cpy_data,
3990 void (*cpy_func)(void *, void *),
3991 kmp_int32 didit);
3992
3993KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
3994 void *cpy_data);
3995
3996extern void KMPC_SET_NUM_THREADS(int arg);
3997extern void KMPC_SET_DYNAMIC(int flag);
3998extern void KMPC_SET_NESTED(int flag);
3999
4000/* OMP 3.0 tasking interface routines */
4001KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4002 kmp_task_t *new_task);
4003KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4004 kmp_int32 flags,
4005 size_t sizeof_kmp_task_t,
4006 size_t sizeof_shareds,
4007 kmp_routine_entry_t task_entry);
4008KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4009 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4010 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4011KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4012 kmp_task_t *task);
4013KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4014 kmp_task_t *task);
4015KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4016 kmp_task_t *new_task);
4017KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4018KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4019 int end_part);
4020
4021#if TASK_UNUSED
4022void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4023void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4024 kmp_task_t *task);
4025#endif // TASK_UNUSED
4026
4027/* ------------------------------------------------------------------------ */
4028
4029KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4030KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4031
4032KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4033 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4034 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4035 kmp_depend_info_t *noalias_dep_list);
4036KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4037 kmp_int32 ndeps,
4038 kmp_depend_info_t *dep_list,
4039 kmp_int32 ndeps_noalias,
4040 kmp_depend_info_t *noalias_dep_list);
4041/* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4042 * Placeholder for taskwait with nowait clause.*/
4043KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4044 kmp_int32 ndeps,
4045 kmp_depend_info_t *dep_list,
4046 kmp_int32 ndeps_noalias,
4047 kmp_depend_info_t *noalias_dep_list,
4048 kmp_int32 has_no_wait);
4049
4050extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4051 bool serialize_immediate);
4052
4053KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4054 kmp_int32 cncl_kind);
4055KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4056 kmp_int32 cncl_kind);
4057KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4058KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4059
4060KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4061KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4062KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4063 kmp_int32 if_val, kmp_uint64 *lb,
4064 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4065 kmp_int32 sched, kmp_uint64 grainsize,
4066 void *task_dup);
4067KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4068 kmp_task_t *task, kmp_int32 if_val,
4069 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4070 kmp_int32 nogroup, kmp_int32 sched,
4071 kmp_uint64 grainsize, kmp_int32 modifier,
4072 void *task_dup);
4073KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4074KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4075KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4076KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4077 int is_ws, int num,
4078 void *data);
4079KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4080 int num, void *data);
4081KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4082 int is_ws);
4083KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4084 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4085 kmp_task_affinity_info_t *affin_list);
4086KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4087KMP_EXPORT int __kmp_get_max_teams(void);
4088KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4089KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4090
4091/* Interface target task integration */
4092KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4093KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4094
4095/* Lock interface routines (fast versions with gtid passed in) */
4096KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4097 void **user_lock);
4098KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4099 void **user_lock);
4100KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4101 void **user_lock);
4102KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4103 void **user_lock);
4104KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4105KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4106 void **user_lock);
4107KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4108 void **user_lock);
4109KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4110 void **user_lock);
4111KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4112KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4113 void **user_lock);
4114
4115KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4116 void **user_lock, uintptr_t hint);
4117KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4118 void **user_lock,
4119 uintptr_t hint);
4120
4121/* Interface to fast scalable reduce methods routines */
4122
4123KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4124 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4125 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4126 kmp_critical_name *lck);
4127KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4128 kmp_critical_name *lck);
4129KMP_EXPORT kmp_int32 __kmpc_reduce(
4130 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4131 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4132 kmp_critical_name *lck);
4133KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4134 kmp_critical_name *lck);
4135
4136/* Internal fast reduction routines */
4137
4138extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4139 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4140 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4141 kmp_critical_name *lck);
4142
4143// this function is for testing set/get/determine reduce method
4144KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4145
4146KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4147KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4148
4149// C++ port
4150// missing 'extern "C"' declarations
4151
4152KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4153KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4154KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4155 kmp_int32 num_threads);
4156
4157KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4158 int proc_bind);
4159KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4160 kmp_int32 num_teams,
4161 kmp_int32 num_threads);
4162/* Function for OpenMP 5.1 num_teams clause */
4163KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4164 kmp_int32 num_teams_lb,
4165 kmp_int32 num_teams_ub,
4166 kmp_int32 num_threads);
4167KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4168 kmpc_micro microtask, ...);
4169struct kmp_dim { // loop bounds info casted to kmp_int64
4170 kmp_int64 lo; // lower
4171 kmp_int64 up; // upper
4172 kmp_int64 st; // stride
4173};
4174KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4175 kmp_int32 num_dims,
4176 const struct kmp_dim *dims);
4177KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4178 const kmp_int64 *vec);
4179KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4180 const kmp_int64 *vec);
4181KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4182
4183KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4184 void *data, size_t size,
4185 void ***cache);
4186
4187// Symbols for MS mutual detection.
4188extern int _You_must_link_with_exactly_one_OpenMP_library;
4189extern int _You_must_link_with_Intel_OpenMP_library;
4190#if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
4191extern int _You_must_link_with_Microsoft_OpenMP_library;
4192#endif
4193
4194// The routines below are not exported.
4195// Consider making them 'static' in corresponding source files.
4196void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4197 void *data_addr, size_t pc_size);
4198struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4199 void *data_addr,
4200 size_t pc_size);
4201void __kmp_threadprivate_resize_cache(int newCapacity);
4202void __kmp_cleanup_threadprivate_caches();
4203
4204// ompc_, kmpc_ entries moved from omp.h.
4205#if KMP_OS_WINDOWS
4206#define KMPC_CONVENTION __cdecl
4207#else
4208#define KMPC_CONVENTION
4209#endif
4210
4211#ifndef __OMP_H
4212typedef enum omp_sched_t {
4213 omp_sched_static = 1,
4214 omp_sched_dynamic = 2,
4215 omp_sched_guided = 3,
4216 omp_sched_auto = 4
4217} omp_sched_t;
4218typedef void *kmp_affinity_mask_t;
4219#endif
4220
4221KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4222KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4223KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4224KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4225KMP_EXPORT int KMPC_CONVENTION
4226kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4227KMP_EXPORT int KMPC_CONVENTION
4228kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4229KMP_EXPORT int KMPC_CONVENTION
4230kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4231
4232KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4233KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4234KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4235KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4236KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4237void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4238size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4239void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4240size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4241 char const *format);
4242
4243enum kmp_target_offload_kind {
4244 tgt_disabled = 0,
4245 tgt_default = 1,
4246 tgt_mandatory = 2
4247};
4248typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4249// Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4250extern kmp_target_offload_kind_t __kmp_target_offload;
4251extern int __kmpc_get_target_offload();
4252
4253// Constants used in libomptarget
4254#define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4255#define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4256
4257// OMP Pause Resource
4258
4259// The following enum is used both to set the status in __kmp_pause_status, and
4260// as the internal equivalent of the externally-visible omp_pause_resource_t.
4261typedef enum kmp_pause_status_t {
4262 kmp_not_paused = 0, // status is not paused, or, requesting resume
4263 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4264 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4265} kmp_pause_status_t;
4266
4267// This stores the pause state of the runtime
4268extern kmp_pause_status_t __kmp_pause_status;
4269extern int __kmpc_pause_resource(kmp_pause_status_t level);
4270extern int __kmp_pause_resource(kmp_pause_status_t level);
4271// Soft resume sets __kmp_pause_status, and wakes up all threads.
4272extern void __kmp_resume_if_soft_paused();
4273// Hard resume simply resets the status to not paused. Library will appear to
4274// be uninitialized after hard pause. Let OMP constructs trigger required
4275// initializations.
4276static inline void __kmp_resume_if_hard_paused() {
4277 if (__kmp_pause_status == kmp_hard_paused) {
4278 __kmp_pause_status = kmp_not_paused;
4279 }
4280}
4281
4282extern void __kmp_omp_display_env(int verbose);
4283
4284// 1: it is initializing hidden helper team
4285extern volatile int __kmp_init_hidden_helper;
4286// 1: the hidden helper team is done
4287extern volatile int __kmp_hidden_helper_team_done;
4288// 1: enable hidden helper task
4289extern kmp_int32 __kmp_enable_hidden_helper;
4290// Main thread of hidden helper team
4291extern kmp_info_t *__kmp_hidden_helper_main_thread;
4292// Descriptors for the hidden helper threads
4293extern kmp_info_t **__kmp_hidden_helper_threads;
4294// Number of hidden helper threads
4295extern kmp_int32 __kmp_hidden_helper_threads_num;
4296// Number of hidden helper tasks that have not been executed yet
4297extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4298
4299extern void __kmp_hidden_helper_initialize();
4300extern void __kmp_hidden_helper_threads_initz_routine();
4301extern void __kmp_do_initialize_hidden_helper_threads();
4302extern void __kmp_hidden_helper_threads_initz_wait();
4303extern void __kmp_hidden_helper_initz_release();
4304extern void __kmp_hidden_helper_threads_deinitz_wait();
4305extern void __kmp_hidden_helper_threads_deinitz_release();
4306extern void __kmp_hidden_helper_main_thread_wait();
4307extern void __kmp_hidden_helper_worker_thread_wait();
4308extern void __kmp_hidden_helper_worker_thread_signal();
4309extern void __kmp_hidden_helper_main_thread_release();
4310
4311// Check whether a given thread is a hidden helper thread
4312#define KMP_HIDDEN_HELPER_THREAD(gtid) \
4313 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4314
4315#define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4316 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4317
4318#define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4319 ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4320
4321#define KMP_HIDDEN_HELPER_TEAM(team) \
4322 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4323
4324// Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4325// main thread, is skipped.
4326#define KMP_GTID_TO_SHADOW_GTID(gtid) \
4327 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4328
4329// Return the adjusted gtid value by subtracting from gtid the number
4330// of hidden helper threads. This adjusted value is the gtid the thread would
4331// have received if there were no hidden helper threads.
4332static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4333 int adjusted_gtid = gtid;
4334 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4335 gtid - __kmp_hidden_helper_threads_num >= 0) {
4336 adjusted_gtid -= __kmp_hidden_helper_threads_num;
4337 }
4338 return adjusted_gtid;
4339}
4340
4341// Support for error directive
4342typedef enum kmp_severity_t {
4343 severity_warning = 1,
4344 severity_fatal = 2
4345} kmp_severity_t;
4346extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4347
4348// Support for scope directive
4349KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4350KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4351
4352#ifdef __cplusplus
4353}
4354#endif
4355
4356template <bool C, bool S>
4357extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4358template <bool C, bool S>
4359extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4360template <bool C, bool S>
4361extern void __kmp_atomic_suspend_64(int th_gtid,
4362 kmp_atomic_flag_64<C, S> *flag);
4363extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4364#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4365template <bool C, bool S>
4366extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4367template <bool C, bool S>
4368extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4369template <bool C, bool S>
4370extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4371extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4372#endif
4373template <bool C, bool S>
4374extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4375template <bool C, bool S>
4376extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4377template <bool C, bool S>
4378extern void __kmp_atomic_resume_64(int target_gtid,
4379 kmp_atomic_flag_64<C, S> *flag);
4380extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4381
4382template <bool C, bool S>
4383int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4384 kmp_flag_32<C, S> *flag, int final_spin,
4385 int *thread_finished,
4386#if USE_ITT_BUILD
4387 void *itt_sync_obj,
4388#endif /* USE_ITT_BUILD */
4389 kmp_int32 is_constrained);
4390template <bool C, bool S>
4391int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4392 kmp_flag_64<C, S> *flag, int final_spin,
4393 int *thread_finished,
4394#if USE_ITT_BUILD
4395 void *itt_sync_obj,
4396#endif /* USE_ITT_BUILD */
4397 kmp_int32 is_constrained);
4398template <bool C, bool S>
4399int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4400 kmp_atomic_flag_64<C, S> *flag,
4401 int final_spin, int *thread_finished,
4402#if USE_ITT_BUILD
4403 void *itt_sync_obj,
4404#endif /* USE_ITT_BUILD */
4405 kmp_int32 is_constrained);
4406int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4407 kmp_flag_oncore *flag, int final_spin,
4408 int *thread_finished,
4409#if USE_ITT_BUILD
4410 void *itt_sync_obj,
4411#endif /* USE_ITT_BUILD */
4412 kmp_int32 is_constrained);
4413
4414extern int __kmp_nesting_mode;
4415extern int __kmp_nesting_mode_nlevels;
4416extern int *__kmp_nesting_nth_level;
4417extern void __kmp_init_nesting_mode();
4418extern void __kmp_set_nesting_mode_threads();
4419
4427 FILE *f;
4428
4429 void close() {
4430 if (f && f != stdout && f != stderr) {
4431 fclose(f);
4432 f = nullptr;
4433 }
4434 }
4435
4436public:
4437 kmp_safe_raii_file_t() : f(nullptr) {}
4438 kmp_safe_raii_file_t(const char *filename, const char *mode,
4439 const char *env_var = nullptr)
4440 : f(nullptr) {
4441 open(filename, mode, env_var);
4442 }
4443 ~kmp_safe_raii_file_t() { close(); }
4444
4448 void open(const char *filename, const char *mode,
4449 const char *env_var = nullptr) {
4450 KMP_ASSERT(!f);
4451 f = fopen(filename, mode);
4452 if (!f) {
4453 int code = errno;
4454 if (env_var) {
4455 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4456 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4457 } else {
4458 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4459 __kmp_msg_null);
4460 }
4461 }
4462 }
4465 int try_open(const char *filename, const char *mode) {
4466 KMP_ASSERT(!f);
4467 f = fopen(filename, mode);
4468 if (!f)
4469 return errno;
4470 return 0;
4471 }
4474 void set_stdout() {
4475 KMP_ASSERT(!f);
4476 f = stdout;
4477 }
4480 void set_stderr() {
4481 KMP_ASSERT(!f);
4482 f = stderr;
4483 }
4484 operator bool() { return bool(f); }
4485 operator FILE *() { return f; }
4486};
4487
4488template <typename SourceType, typename TargetType,
4489 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4490 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4491 bool isSourceSigned = std::is_signed<SourceType>::value,
4492 bool isTargetSigned = std::is_signed<TargetType>::value>
4493struct kmp_convert {};
4494
4495// Both types are signed; Source smaller
4496template <typename SourceType, typename TargetType>
4497struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4498 static TargetType to(SourceType src) { return (TargetType)src; }
4499};
4500// Source equal
4501template <typename SourceType, typename TargetType>
4502struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4503 static TargetType to(SourceType src) { return src; }
4504};
4505// Source bigger
4506template <typename SourceType, typename TargetType>
4507struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4508 static TargetType to(SourceType src) {
4509 KMP_ASSERT(src <= static_cast<SourceType>(
4510 (std::numeric_limits<TargetType>::max)()));
4511 KMP_ASSERT(src >= static_cast<SourceType>(
4512 (std::numeric_limits<TargetType>::min)()));
4513 return (TargetType)src;
4514 }
4515};
4516
4517// Source signed, Target unsigned
4518// Source smaller
4519template <typename SourceType, typename TargetType>
4520struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4521 static TargetType to(SourceType src) {
4522 KMP_ASSERT(src >= 0);
4523 return (TargetType)src;
4524 }
4525};
4526// Source equal
4527template <typename SourceType, typename TargetType>
4528struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4529 static TargetType to(SourceType src) {
4530 KMP_ASSERT(src >= 0);
4531 return (TargetType)src;
4532 }
4533};
4534// Source bigger
4535template <typename SourceType, typename TargetType>
4536struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4537 static TargetType to(SourceType src) {
4538 KMP_ASSERT(src >= 0);
4539 KMP_ASSERT(src <= static_cast<SourceType>(
4540 (std::numeric_limits<TargetType>::max)()));
4541 return (TargetType)src;
4542 }
4543};
4544
4545// Source unsigned, Target signed
4546// Source smaller
4547template <typename SourceType, typename TargetType>
4548struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4549 static TargetType to(SourceType src) { return (TargetType)src; }
4550};
4551// Source equal
4552template <typename SourceType, typename TargetType>
4553struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4554 static TargetType to(SourceType src) {
4555 KMP_ASSERT(src <= static_cast<SourceType>(
4556 (std::numeric_limits<TargetType>::max)()));
4557 return (TargetType)src;
4558 }
4559};
4560// Source bigger
4561template <typename SourceType, typename TargetType>
4562struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4563 static TargetType to(SourceType src) {
4564 KMP_ASSERT(src <= static_cast<SourceType>(
4565 (std::numeric_limits<TargetType>::max)()));
4566 return (TargetType)src;
4567 }
4568};
4569
4570// Source unsigned, Target unsigned
4571// Source smaller
4572template <typename SourceType, typename TargetType>
4573struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4574 static TargetType to(SourceType src) { return (TargetType)src; }
4575};
4576// Source equal
4577template <typename SourceType, typename TargetType>
4578struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4579 static TargetType to(SourceType src) { return src; }
4580};
4581// Source bigger
4582template <typename SourceType, typename TargetType>
4583struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4584 static TargetType to(SourceType src) {
4585 KMP_ASSERT(src <= static_cast<SourceType>(
4586 (std::numeric_limits<TargetType>::max)()));
4587 return (TargetType)src;
4588 }
4589};
4590
4591template <typename T1, typename T2>
4592static inline void __kmp_type_convert(T1 src, T2 *dest) {
4593 *dest = kmp_convert<T1, T2>::to(src);
4594}
4595
4596#endif /* KMP_H */
void set_stdout()
Definition: kmp.h:4474
void set_stderr()
Definition: kmp.h:4480
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4465
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4448
struct ident ident_t
@ KMP_IDENT_KMPC
Definition: kmp.h:196
@ KMP_IDENT_IMB
Definition: kmp.h:194
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:214
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:205
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:216
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:199
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:223
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:218
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:203
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:201
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, kmpc_micro microtask, kmp_int32 cond, void *args)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1658
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void ** __kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1682
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1689
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1711
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1676
KMP_EXPORT void * __kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, void *cpy_data)
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1699
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1705
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
sched_type
Definition: kmp.h:357
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, kmp_int32 numberOfSections)
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition: kmp.h:408
@ kmp_sch_runtime_simd
Definition: kmp.h:379
@ kmp_nm_ord_auto
Definition: kmp.h:427
@ kmp_sch_auto
Definition: kmp.h:364
@ kmp_nm_auto
Definition: kmp.h:410
@ kmp_distribute_static_chunked
Definition: kmp.h:395
@ kmp_sch_static
Definition: kmp.h:360
@ kmp_sch_guided_simd
Definition: kmp.h:378
@ kmp_sch_modifier_monotonic
Definition: kmp.h:445
@ kmp_sch_default
Definition: kmp.h:465
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:447
@ kmp_nm_ord_static
Definition: kmp.h:423
@ kmp_distribute_static
Definition: kmp.h:396
@ kmp_sch_guided_chunked
Definition: kmp.h:362
@ kmp_nm_static
Definition: kmp.h:406
@ kmp_sch_lower
Definition: kmp.h:358
@ kmp_nm_upper
Definition: kmp.h:429
@ kmp_ord_lower
Definition: kmp.h:384
@ kmp_ord_static
Definition: kmp.h:386
@ kmp_sch_upper
Definition: kmp.h:382
@ kmp_ord_upper
Definition: kmp.h:392
@ kmp_nm_lower
Definition: kmp.h:402
@ kmp_ord_auto
Definition: kmp.h:390
Definition: kmp.h:234
kmp_int32 reserved_1
Definition: kmp.h:235
char const * psource
Definition: kmp.h:244
kmp_int32 reserved_2
Definition: kmp.h:238
kmp_int32 reserved_3
Definition: kmp.h:243
kmp_int32 flags
Definition: kmp.h:236