LLVM OpenMP* Runtime Library
z_Linux_util.cpp
1/*
2 * z_Linux_util.cpp -- platform specific routines.
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_affinity.h"
15#include "kmp_i18n.h"
16#include "kmp_io.h"
17#include "kmp_itt.h"
18#include "kmp_lock.h"
19#include "kmp_stats.h"
20#include "kmp_str.h"
21#include "kmp_wait_release.h"
22#include "kmp_wrapper_getpid.h"
23
24#if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25#include <alloca.h>
26#endif
27#include <math.h> // HUGE_VAL.
28#if KMP_OS_LINUX
29#include <semaphore.h>
30#endif // KMP_OS_LINUX
31#include <sys/resource.h>
32#include <sys/syscall.h>
33#include <sys/time.h>
34#include <sys/times.h>
35#include <unistd.h>
36
37#if KMP_OS_LINUX
38#include <sys/sysinfo.h>
39#if KMP_USE_FUTEX
40// We should really include <futex.h>, but that causes compatibility problems on
41// different Linux* OS distributions that either require that you include (or
42// break when you try to include) <pci/types.h>. Since all we need is the two
43// macros below (which are part of the kernel ABI, so can't change) we just
44// define the constants here and don't include <futex.h>
45#ifndef FUTEX_WAIT
46#define FUTEX_WAIT 0
47#endif
48#ifndef FUTEX_WAKE
49#define FUTEX_WAKE 1
50#endif
51#endif
52#elif KMP_OS_DARWIN
53#include <mach/mach.h>
54#include <sys/sysctl.h>
55#elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
56#include <sys/types.h>
57#include <sys/sysctl.h>
58#include <sys/user.h>
59#include <pthread_np.h>
60#elif KMP_OS_NETBSD || KMP_OS_OPENBSD
61#include <sys/types.h>
62#include <sys/sysctl.h>
63#endif
64
65#include <ctype.h>
66#include <dirent.h>
67#include <fcntl.h>
68
69struct kmp_sys_timer {
70 struct timespec start;
71};
72
73// Convert timespec to nanoseconds.
74#define TS2NS(timespec) \
75 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
76
77static struct kmp_sys_timer __kmp_sys_timer_data;
78
79#if KMP_HANDLE_SIGNALS
80typedef void (*sig_func_t)(int);
81STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82static sigset_t __kmp_sigset;
83#endif
84
85static int __kmp_init_runtime = FALSE;
86
87static int __kmp_fork_count = 0;
88
89static pthread_condattr_t __kmp_suspend_cond_attr;
90static pthread_mutexattr_t __kmp_suspend_mutex_attr;
91
92static kmp_cond_align_t __kmp_wait_cv;
93static kmp_mutex_align_t __kmp_wait_mx;
94
95kmp_uint64 __kmp_ticks_per_msec = 1000000;
96
97#ifdef DEBUG_SUSPEND
98static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
99 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
100 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
101 cond->c_cond.__c_waiting);
102}
103#endif
104
105#if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
106
107/* Affinity support */
108
109void __kmp_affinity_bind_thread(int which) {
110 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
111 "Illegal set affinity operation when not capable");
112
113 kmp_affin_mask_t *mask;
114 KMP_CPU_ALLOC_ON_STACK(mask);
115 KMP_CPU_ZERO(mask);
116 KMP_CPU_SET(which, mask);
117 __kmp_set_system_affinity(mask, TRUE);
118 KMP_CPU_FREE_FROM_STACK(mask);
119}
120
121/* Determine if we can access affinity functionality on this version of
122 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
123 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
124void __kmp_affinity_determine_capable(const char *env_var) {
125 // Check and see if the OS supports thread affinity.
126
127#if KMP_OS_LINUX
128#define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
129#define KMP_CPU_SET_TRY_SIZE CACHE_LINE
130#elif KMP_OS_FREEBSD
131#define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
132#endif
133
134 int verbose = __kmp_affinity.flags.verbose;
135 int warnings = __kmp_affinity.flags.warnings;
136 enum affinity_type type = __kmp_affinity.type;
137
138#if KMP_OS_LINUX
139 long gCode;
140 unsigned char *buf;
141 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
142
143 // If the syscall returns a suggestion for the size,
144 // then we don't have to search for an appropriate size.
145 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
146 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
147 "initial getaffinity call returned %ld errno = %d\n",
148 gCode, errno));
149
150 if (gCode < 0 && errno != EINVAL) {
151 // System call not supported
152 if (verbose ||
153 (warnings && (type != affinity_none) && (type != affinity_default) &&
154 (type != affinity_disabled))) {
155 int error = errno;
156 kmp_msg_t err_code = KMP_ERR(error);
157 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
158 err_code, __kmp_msg_null);
159 if (__kmp_generate_warnings == kmp_warnings_off) {
160 __kmp_str_free(&err_code.str);
161 }
162 }
163 KMP_AFFINITY_DISABLE();
164 KMP_INTERNAL_FREE(buf);
165 return;
166 } else if (gCode > 0) {
167 // The optimal situation: the OS returns the size of the buffer it expects.
168 KMP_AFFINITY_ENABLE(gCode);
169 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
170 "affinity supported (mask size %d)\n",
171 (int)__kmp_affin_mask_size));
172 KMP_INTERNAL_FREE(buf);
173 return;
174 }
175
176 // Call the getaffinity system call repeatedly with increasing set sizes
177 // until we succeed, or reach an upper bound on the search.
178 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
179 "searching for proper set size\n"));
180 int size;
181 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
182 gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
183 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
184 "getaffinity for mask size %ld returned %ld errno = %d\n",
185 size, gCode, errno));
186
187 if (gCode < 0) {
188 if (errno == ENOSYS) {
189 // We shouldn't get here
190 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
191 "inconsistent OS call behavior: errno == ENOSYS for mask "
192 "size %d\n",
193 size));
194 if (verbose ||
195 (warnings && (type != affinity_none) &&
196 (type != affinity_default) && (type != affinity_disabled))) {
197 int error = errno;
198 kmp_msg_t err_code = KMP_ERR(error);
199 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
200 err_code, __kmp_msg_null);
201 if (__kmp_generate_warnings == kmp_warnings_off) {
202 __kmp_str_free(&err_code.str);
203 }
204 }
205 KMP_AFFINITY_DISABLE();
206 KMP_INTERNAL_FREE(buf);
207 return;
208 }
209 continue;
210 }
211
212 KMP_AFFINITY_ENABLE(gCode);
213 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
214 "affinity supported (mask size %d)\n",
215 (int)__kmp_affin_mask_size));
216 KMP_INTERNAL_FREE(buf);
217 return;
218 }
219#elif KMP_OS_FREEBSD
220 long gCode;
221 unsigned char *buf;
222 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
223 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
224 reinterpret_cast<cpuset_t *>(buf));
225 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
226 "initial getaffinity call returned %d errno = %d\n",
227 gCode, errno));
228 if (gCode == 0) {
229 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
230 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
231 "affinity supported (mask size %d)\n",
232 (int)__kmp_affin_mask_size));
233 KMP_INTERNAL_FREE(buf);
234 return;
235 }
236#endif
237 KMP_INTERNAL_FREE(buf);
238
239 // Affinity is not supported
240 KMP_AFFINITY_DISABLE();
241 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
242 "cannot determine mask size - affinity not supported\n"));
243 if (verbose || (warnings && (type != affinity_none) &&
244 (type != affinity_default) && (type != affinity_disabled))) {
245 KMP_WARNING(AffCantGetMaskSize, env_var);
246 }
247}
248
249#endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
250
251#if KMP_USE_FUTEX
252
253int __kmp_futex_determine_capable() {
254 int loc = 0;
255 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
256 int retval = (rc == 0) || (errno != ENOSYS);
257
258 KA_TRACE(10,
259 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
260 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
261 retval ? "" : " not"));
262
263 return retval;
264}
265
266#endif // KMP_USE_FUTEX
267
268#if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
269/* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
270 use compare_and_store for these routines */
271
272kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
273 kmp_int8 old_value, new_value;
274
275 old_value = TCR_1(*p);
276 new_value = old_value | d;
277
278 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
279 KMP_CPU_PAUSE();
280 old_value = TCR_1(*p);
281 new_value = old_value | d;
282 }
283 return old_value;
284}
285
286kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
287 kmp_int8 old_value, new_value;
288
289 old_value = TCR_1(*p);
290 new_value = old_value & d;
291
292 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
293 KMP_CPU_PAUSE();
294 old_value = TCR_1(*p);
295 new_value = old_value & d;
296 }
297 return old_value;
298}
299
300kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
301 kmp_uint32 old_value, new_value;
302
303 old_value = TCR_4(*p);
304 new_value = old_value | d;
305
306 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
307 KMP_CPU_PAUSE();
308 old_value = TCR_4(*p);
309 new_value = old_value | d;
310 }
311 return old_value;
312}
313
314kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
315 kmp_uint32 old_value, new_value;
316
317 old_value = TCR_4(*p);
318 new_value = old_value & d;
319
320 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
321 KMP_CPU_PAUSE();
322 old_value = TCR_4(*p);
323 new_value = old_value & d;
324 }
325 return old_value;
326}
327
328#if KMP_ARCH_X86
329kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
330 kmp_int8 old_value, new_value;
331
332 old_value = TCR_1(*p);
333 new_value = old_value + d;
334
335 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
336 KMP_CPU_PAUSE();
337 old_value = TCR_1(*p);
338 new_value = old_value + d;
339 }
340 return old_value;
341}
342
343kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
344 kmp_int64 old_value, new_value;
345
346 old_value = TCR_8(*p);
347 new_value = old_value + d;
348
349 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
350 KMP_CPU_PAUSE();
351 old_value = TCR_8(*p);
352 new_value = old_value + d;
353 }
354 return old_value;
355}
356#endif /* KMP_ARCH_X86 */
357
358kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
359 kmp_uint64 old_value, new_value;
360
361 old_value = TCR_8(*p);
362 new_value = old_value | d;
363 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
364 KMP_CPU_PAUSE();
365 old_value = TCR_8(*p);
366 new_value = old_value | d;
367 }
368 return old_value;
369}
370
371kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
372 kmp_uint64 old_value, new_value;
373
374 old_value = TCR_8(*p);
375 new_value = old_value & d;
376 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
377 KMP_CPU_PAUSE();
378 old_value = TCR_8(*p);
379 new_value = old_value & d;
380 }
381 return old_value;
382}
383
384#endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
385
386void __kmp_terminate_thread(int gtid) {
387 int status;
388 kmp_info_t *th = __kmp_threads[gtid];
389
390 if (!th)
391 return;
392
393#ifdef KMP_CANCEL_THREADS
394 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
395 status = pthread_cancel(th->th.th_info.ds.ds_thread);
396 if (status != 0 && status != ESRCH) {
397 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
398 __kmp_msg_null);
399 }
400#endif
401 KMP_YIELD(TRUE);
402} //
403
404/* Set thread stack info according to values returned by pthread_getattr_np().
405 If values are unreasonable, assume call failed and use incremental stack
406 refinement method instead. Returns TRUE if the stack parameters could be
407 determined exactly, FALSE if incremental refinement is necessary. */
408static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
409 int stack_data;
410#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
411 KMP_OS_HURD
412 pthread_attr_t attr;
413 int status;
414 size_t size = 0;
415 void *addr = 0;
416
417 /* Always do incremental stack refinement for ubermaster threads since the
418 initial thread stack range can be reduced by sibling thread creation so
419 pthread_attr_getstack may cause thread gtid aliasing */
420 if (!KMP_UBER_GTID(gtid)) {
421
422 /* Fetch the real thread attributes */
423 status = pthread_attr_init(&attr);
424 KMP_CHECK_SYSFAIL("pthread_attr_init", status);
425#if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
426 status = pthread_attr_get_np(pthread_self(), &attr);
427 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
428#else
429 status = pthread_getattr_np(pthread_self(), &attr);
430 KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
431#endif
432 status = pthread_attr_getstack(&attr, &addr, &size);
433 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
434 KA_TRACE(60,
435 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
436 " %lu, low addr: %p\n",
437 gtid, size, addr));
438 status = pthread_attr_destroy(&attr);
439 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
440 }
441
442 if (size != 0 && addr != 0) { // was stack parameter determination successful?
443 /* Store the correct base and size */
444 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
445 TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
446 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
447 return TRUE;
448 }
449#endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \
450 || KMP_OS_HURD */
451 /* Use incremental refinement starting from initial conservative estimate */
452 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
453 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
454 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
455 return FALSE;
456}
457
458static void *__kmp_launch_worker(void *thr) {
459 int status, old_type, old_state;
460#ifdef KMP_BLOCK_SIGNALS
461 sigset_t new_set, old_set;
462#endif /* KMP_BLOCK_SIGNALS */
463 void *exit_val;
464#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
465 KMP_OS_OPENBSD || KMP_OS_HURD
466 void *volatile padding = 0;
467#endif
468 int gtid;
469
470 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
471 __kmp_gtid_set_specific(gtid);
472#ifdef KMP_TDATA_GTID
473 __kmp_gtid = gtid;
474#endif
475#if KMP_STATS_ENABLED
476 // set thread local index to point to thread-specific stats
477 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
478 __kmp_stats_thread_ptr->startLife();
479 KMP_SET_THREAD_STATE(IDLE);
481#endif
482
483#if USE_ITT_BUILD
484 __kmp_itt_thread_name(gtid);
485#endif /* USE_ITT_BUILD */
486
487#if KMP_AFFINITY_SUPPORTED
488 __kmp_affinity_set_init_mask(gtid, FALSE);
489#endif
490
491#ifdef KMP_CANCEL_THREADS
492 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
493 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
494 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
495 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
496 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
497#endif
498
499#if KMP_ARCH_X86 || KMP_ARCH_X86_64
500 // Set FP control regs to be a copy of the parallel initialization thread's.
501 __kmp_clear_x87_fpu_status_word();
502 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
503 __kmp_load_mxcsr(&__kmp_init_mxcsr);
504#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
505
506#ifdef KMP_BLOCK_SIGNALS
507 status = sigfillset(&new_set);
508 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
509 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
510 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
511#endif /* KMP_BLOCK_SIGNALS */
512
513#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
514 KMP_OS_OPENBSD
515 if (__kmp_stkoffset > 0 && gtid > 0) {
516 padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
517 (void)padding;
518 }
519#endif
520
521 KMP_MB();
522 __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
523
524 __kmp_check_stack_overlap((kmp_info_t *)thr);
525
526 exit_val = __kmp_launch_thread((kmp_info_t *)thr);
527
528#ifdef KMP_BLOCK_SIGNALS
529 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
530 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
531#endif /* KMP_BLOCK_SIGNALS */
532
533 return exit_val;
534}
535
536#if KMP_USE_MONITOR
537/* The monitor thread controls all of the threads in the complex */
538
539static void *__kmp_launch_monitor(void *thr) {
540 int status, old_type, old_state;
541#ifdef KMP_BLOCK_SIGNALS
542 sigset_t new_set;
543#endif /* KMP_BLOCK_SIGNALS */
544 struct timespec interval;
545
546 KMP_MB(); /* Flush all pending memory write invalidates. */
547
548 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
549
550 /* register us as the monitor thread */
551 __kmp_gtid_set_specific(KMP_GTID_MONITOR);
552#ifdef KMP_TDATA_GTID
553 __kmp_gtid = KMP_GTID_MONITOR;
554#endif
555
556 KMP_MB();
557
558#if USE_ITT_BUILD
559 // Instruct Intel(R) Threading Tools to ignore monitor thread.
560 __kmp_itt_thread_ignore();
561#endif /* USE_ITT_BUILD */
562
563 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
564 (kmp_info_t *)thr);
565
566 __kmp_check_stack_overlap((kmp_info_t *)thr);
567
568#ifdef KMP_CANCEL_THREADS
569 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
570 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
571 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
572 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
573 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
574#endif
575
576#if KMP_REAL_TIME_FIX
577 // This is a potential fix which allows application with real-time scheduling
578 // policy work. However, decision about the fix is not made yet, so it is
579 // disabled by default.
580 { // Are program started with real-time scheduling policy?
581 int sched = sched_getscheduler(0);
582 if (sched == SCHED_FIFO || sched == SCHED_RR) {
583 // Yes, we are a part of real-time application. Try to increase the
584 // priority of the monitor.
585 struct sched_param param;
586 int max_priority = sched_get_priority_max(sched);
587 int rc;
588 KMP_WARNING(RealTimeSchedNotSupported);
589 sched_getparam(0, &param);
590 if (param.sched_priority < max_priority) {
591 param.sched_priority += 1;
592 rc = sched_setscheduler(0, sched, &param);
593 if (rc != 0) {
594 int error = errno;
595 kmp_msg_t err_code = KMP_ERR(error);
596 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
597 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
598 if (__kmp_generate_warnings == kmp_warnings_off) {
599 __kmp_str_free(&err_code.str);
600 }
601 }
602 } else {
603 // We cannot abort here, because number of CPUs may be enough for all
604 // the threads, including the monitor thread, so application could
605 // potentially work...
606 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
607 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
608 __kmp_msg_null);
609 }
610 }
611 // AC: free thread that waits for monitor started
612 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
613 }
614#endif // KMP_REAL_TIME_FIX
615
616 KMP_MB(); /* Flush all pending memory write invalidates. */
617
618 if (__kmp_monitor_wakeups == 1) {
619 interval.tv_sec = 1;
620 interval.tv_nsec = 0;
621 } else {
622 interval.tv_sec = 0;
623 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
624 }
625
626 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
627
628 while (!TCR_4(__kmp_global.g.g_done)) {
629 struct timespec now;
630 struct timeval tval;
631
632 /* This thread monitors the state of the system */
633
634 KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
635
636 status = gettimeofday(&tval, NULL);
637 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
638 TIMEVAL_TO_TIMESPEC(&tval, &now);
639
640 now.tv_sec += interval.tv_sec;
641 now.tv_nsec += interval.tv_nsec;
642
643 if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
644 now.tv_sec += 1;
645 now.tv_nsec -= KMP_NSEC_PER_SEC;
646 }
647
648 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
649 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
650 // AC: the monitor should not fall asleep if g_done has been set
651 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
652 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
653 &__kmp_wait_mx.m_mutex, &now);
654 if (status != 0) {
655 if (status != ETIMEDOUT && status != EINTR) {
656 KMP_SYSFAIL("pthread_cond_timedwait", status);
657 }
658 }
659 }
660 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
661 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
662
663 TCW_4(__kmp_global.g.g_time.dt.t_value,
664 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
665
666 KMP_MB(); /* Flush all pending memory write invalidates. */
667 }
668
669 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
670
671#ifdef KMP_BLOCK_SIGNALS
672 status = sigfillset(&new_set);
673 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
674 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
675 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
676#endif /* KMP_BLOCK_SIGNALS */
677
678 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
679
680 if (__kmp_global.g.g_abort != 0) {
681 /* now we need to terminate the worker threads */
682 /* the value of t_abort is the signal we caught */
683
684 int gtid;
685
686 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
687 __kmp_global.g.g_abort));
688
689 /* terminate the OpenMP worker threads */
690 /* TODO this is not valid for sibling threads!!
691 * the uber master might not be 0 anymore.. */
692 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
693 __kmp_terminate_thread(gtid);
694
695 __kmp_cleanup();
696
697 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
698 __kmp_global.g.g_abort));
699
700 if (__kmp_global.g.g_abort > 0)
701 raise(__kmp_global.g.g_abort);
702 }
703
704 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
705
706 return thr;
707}
708#endif // KMP_USE_MONITOR
709
710void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
711 pthread_t handle;
712 pthread_attr_t thread_attr;
713 int status;
714
715 th->th.th_info.ds.ds_gtid = gtid;
716
717#if KMP_STATS_ENABLED
718 // sets up worker thread stats
719 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
720
721 // th->th.th_stats is used to transfer thread-specific stats-pointer to
722 // __kmp_launch_worker. So when thread is created (goes into
723 // __kmp_launch_worker) it will set its thread local pointer to
724 // th->th.th_stats
725 if (!KMP_UBER_GTID(gtid)) {
726 th->th.th_stats = __kmp_stats_list->push_back(gtid);
727 } else {
728 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
729 // so set the th->th.th_stats field to it.
730 th->th.th_stats = __kmp_stats_thread_ptr;
731 }
732 __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
733
734#endif // KMP_STATS_ENABLED
735
736 if (KMP_UBER_GTID(gtid)) {
737 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
738 th->th.th_info.ds.ds_thread = pthread_self();
739 __kmp_set_stack_info(gtid, th);
740 __kmp_check_stack_overlap(th);
741 return;
742 }
743
744 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
745
746 KMP_MB(); /* Flush all pending memory write invalidates. */
747
748#ifdef KMP_THREAD_ATTR
749 status = pthread_attr_init(&thread_attr);
750 if (status != 0) {
751 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
752 }
753 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
754 if (status != 0) {
755 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
756 }
757
758 /* Set stack size for this thread now.
759 The multiple of 2 is there because on some machines, requesting an unusual
760 stacksize causes the thread to have an offset before the dummy alloca()
761 takes place to create the offset. Since we want the user to have a
762 sufficient stacksize AND support a stack offset, we alloca() twice the
763 offset so that the upcoming alloca() does not eliminate any premade offset,
764 and also gives the user the stack space they requested for all threads */
765 stack_size += gtid * __kmp_stkoffset * 2;
766
767 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
768 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
769 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
770
771#ifdef _POSIX_THREAD_ATTR_STACKSIZE
772 status = pthread_attr_setstacksize(&thread_attr, stack_size);
773#ifdef KMP_BACKUP_STKSIZE
774 if (status != 0) {
775 if (!__kmp_env_stksize) {
776 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
777 __kmp_stksize = KMP_BACKUP_STKSIZE;
778 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
779 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
780 "bytes\n",
781 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
782 status = pthread_attr_setstacksize(&thread_attr, stack_size);
783 }
784 }
785#endif /* KMP_BACKUP_STKSIZE */
786 if (status != 0) {
787 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
788 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
789 }
790#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
791
792#endif /* KMP_THREAD_ATTR */
793
794 status =
795 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
796 if (status != 0 || !handle) { // ??? Why do we check handle??
797#ifdef _POSIX_THREAD_ATTR_STACKSIZE
798 if (status == EINVAL) {
799 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
800 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
801 }
802 if (status == ENOMEM) {
803 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
804 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
805 }
806#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
807 if (status == EAGAIN) {
808 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
809 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
810 }
811 KMP_SYSFAIL("pthread_create", status);
812 }
813
814 th->th.th_info.ds.ds_thread = handle;
815
816#ifdef KMP_THREAD_ATTR
817 status = pthread_attr_destroy(&thread_attr);
818 if (status) {
819 kmp_msg_t err_code = KMP_ERR(status);
820 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
821 __kmp_msg_null);
822 if (__kmp_generate_warnings == kmp_warnings_off) {
823 __kmp_str_free(&err_code.str);
824 }
825 }
826#endif /* KMP_THREAD_ATTR */
827
828 KMP_MB(); /* Flush all pending memory write invalidates. */
829
830 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
831
832} // __kmp_create_worker
833
834#if KMP_USE_MONITOR
835void __kmp_create_monitor(kmp_info_t *th) {
836 pthread_t handle;
837 pthread_attr_t thread_attr;
838 size_t size;
839 int status;
840 int auto_adj_size = FALSE;
841
842 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
843 // We don't need monitor thread in case of MAX_BLOCKTIME
844 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
845 "MAX blocktime\n"));
846 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
847 th->th.th_info.ds.ds_gtid = 0;
848 return;
849 }
850 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
851
852 KMP_MB(); /* Flush all pending memory write invalidates. */
853
854 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
855 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
856#if KMP_REAL_TIME_FIX
857 TCW_4(__kmp_global.g.g_time.dt.t_value,
858 -1); // Will use it for synchronization a bit later.
859#else
860 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
861#endif // KMP_REAL_TIME_FIX
862
863#ifdef KMP_THREAD_ATTR
864 if (__kmp_monitor_stksize == 0) {
865 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
866 auto_adj_size = TRUE;
867 }
868 status = pthread_attr_init(&thread_attr);
869 if (status != 0) {
870 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
871 }
872 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
873 if (status != 0) {
874 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
875 }
876
877#ifdef _POSIX_THREAD_ATTR_STACKSIZE
878 status = pthread_attr_getstacksize(&thread_attr, &size);
879 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
880#else
881 size = __kmp_sys_min_stksize;
882#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
883#endif /* KMP_THREAD_ATTR */
884
885 if (__kmp_monitor_stksize == 0) {
886 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
887 }
888 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
889 __kmp_monitor_stksize = __kmp_sys_min_stksize;
890 }
891
892 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
893 "requested stacksize = %lu bytes\n",
894 size, __kmp_monitor_stksize));
895
896retry:
897
898/* Set stack size for this thread now. */
899#ifdef _POSIX_THREAD_ATTR_STACKSIZE
900 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
901 __kmp_monitor_stksize));
902 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
903 if (status != 0) {
904 if (auto_adj_size) {
905 __kmp_monitor_stksize *= 2;
906 goto retry;
907 }
908 kmp_msg_t err_code = KMP_ERR(status);
909 __kmp_msg(kmp_ms_warning, // should this be fatal? BB
910 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
911 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
912 if (__kmp_generate_warnings == kmp_warnings_off) {
913 __kmp_str_free(&err_code.str);
914 }
915 }
916#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
917
918 status =
919 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
920
921 if (status != 0) {
922#ifdef _POSIX_THREAD_ATTR_STACKSIZE
923 if (status == EINVAL) {
924 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
925 __kmp_monitor_stksize *= 2;
926 goto retry;
927 }
928 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
929 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
930 __kmp_msg_null);
931 }
932 if (status == ENOMEM) {
933 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
934 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
935 __kmp_msg_null);
936 }
937#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
938 if (status == EAGAIN) {
939 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
940 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
941 }
942 KMP_SYSFAIL("pthread_create", status);
943 }
944
945 th->th.th_info.ds.ds_thread = handle;
946
947#if KMP_REAL_TIME_FIX
948 // Wait for the monitor thread is really started and set its *priority*.
949 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
950 sizeof(__kmp_global.g.g_time.dt.t_value));
951 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
952 &__kmp_neq_4, NULL);
953#endif // KMP_REAL_TIME_FIX
954
955#ifdef KMP_THREAD_ATTR
956 status = pthread_attr_destroy(&thread_attr);
957 if (status != 0) {
958 kmp_msg_t err_code = KMP_ERR(status);
959 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
960 __kmp_msg_null);
961 if (__kmp_generate_warnings == kmp_warnings_off) {
962 __kmp_str_free(&err_code.str);
963 }
964 }
965#endif
966
967 KMP_MB(); /* Flush all pending memory write invalidates. */
968
969 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
970 th->th.th_info.ds.ds_thread));
971
972} // __kmp_create_monitor
973#endif // KMP_USE_MONITOR
974
975void __kmp_exit_thread(int exit_status) {
976 pthread_exit((void *)(intptr_t)exit_status);
977} // __kmp_exit_thread
978
979#if KMP_USE_MONITOR
980void __kmp_resume_monitor();
981
982extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
983 int status;
984 void *exit_val;
985
986 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
987 " %#.8lx\n",
988 th->th.th_info.ds.ds_thread));
989
990 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
991 // If both tid and gtid are 0, it means the monitor did not ever start.
992 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
993 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
994 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
995 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
996 return;
997 }
998
999 KMP_MB(); /* Flush all pending memory write invalidates. */
1000
1001 /* First, check to see whether the monitor thread exists to wake it up. This
1002 is to avoid performance problem when the monitor sleeps during
1003 blocktime-size interval */
1004
1005 status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1006 if (status != ESRCH) {
1007 __kmp_resume_monitor(); // Wake up the monitor thread
1008 }
1009 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1010 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1011 if (exit_val != th) {
1012 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1013 }
1014
1015 th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1016 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1017
1018 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1019 " %#.8lx\n",
1020 th->th.th_info.ds.ds_thread));
1021
1022 KMP_MB(); /* Flush all pending memory write invalidates. */
1023}
1024#else
1025// Empty symbol to export (see exports_so.txt) when
1026// monitor thread feature is disabled
1027extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
1028 (void)th;
1029}
1030#endif // KMP_USE_MONITOR
1031
1032void __kmp_reap_worker(kmp_info_t *th) {
1033 int status;
1034 void *exit_val;
1035
1036 KMP_MB(); /* Flush all pending memory write invalidates. */
1037
1038 KA_TRACE(
1039 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1040
1041 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1042#ifdef KMP_DEBUG
1043 /* Don't expose these to the user until we understand when they trigger */
1044 if (status != 0) {
1045 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1046 }
1047 if (exit_val != th) {
1048 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1049 "exit_val = %p\n",
1050 th->th.th_info.ds.ds_gtid, exit_val));
1051 }
1052#else
1053 (void)status; // unused variable
1054#endif /* KMP_DEBUG */
1055
1056 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1057 th->th.th_info.ds.ds_gtid));
1058
1059 KMP_MB(); /* Flush all pending memory write invalidates. */
1060}
1061
1062#if KMP_HANDLE_SIGNALS
1063
1064static void __kmp_null_handler(int signo) {
1065 // Do nothing, for doing SIG_IGN-type actions.
1066} // __kmp_null_handler
1067
1068static void __kmp_team_handler(int signo) {
1069 if (__kmp_global.g.g_abort == 0) {
1070/* Stage 1 signal handler, let's shut down all of the threads */
1071#ifdef KMP_DEBUG
1072 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1073#endif
1074 switch (signo) {
1075 case SIGHUP:
1076 case SIGINT:
1077 case SIGQUIT:
1078 case SIGILL:
1079 case SIGABRT:
1080 case SIGFPE:
1081 case SIGBUS:
1082 case SIGSEGV:
1083#ifdef SIGSYS
1084 case SIGSYS:
1085#endif
1086 case SIGTERM:
1087 if (__kmp_debug_buf) {
1088 __kmp_dump_debug_buffer();
1089 }
1090 __kmp_unregister_library(); // cleanup shared memory
1091 KMP_MB(); // Flush all pending memory write invalidates.
1092 TCW_4(__kmp_global.g.g_abort, signo);
1093 KMP_MB(); // Flush all pending memory write invalidates.
1094 TCW_4(__kmp_global.g.g_done, TRUE);
1095 KMP_MB(); // Flush all pending memory write invalidates.
1096 break;
1097 default:
1098#ifdef KMP_DEBUG
1099 __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1100#endif
1101 break;
1102 }
1103 }
1104} // __kmp_team_handler
1105
1106static void __kmp_sigaction(int signum, const struct sigaction *act,
1107 struct sigaction *oldact) {
1108 int rc = sigaction(signum, act, oldact);
1109 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1110}
1111
1112static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1113 int parallel_init) {
1114 KMP_MB(); // Flush all pending memory write invalidates.
1115 KB_TRACE(60,
1116 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1117 if (parallel_init) {
1118 struct sigaction new_action;
1119 struct sigaction old_action;
1120 new_action.sa_handler = handler_func;
1121 new_action.sa_flags = 0;
1122 sigfillset(&new_action.sa_mask);
1123 __kmp_sigaction(sig, &new_action, &old_action);
1124 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1125 sigaddset(&__kmp_sigset, sig);
1126 } else {
1127 // Restore/keep user's handler if one previously installed.
1128 __kmp_sigaction(sig, &old_action, NULL);
1129 }
1130 } else {
1131 // Save initial/system signal handlers to see if user handlers installed.
1132 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1133 }
1134 KMP_MB(); // Flush all pending memory write invalidates.
1135} // __kmp_install_one_handler
1136
1137static void __kmp_remove_one_handler(int sig) {
1138 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1139 if (sigismember(&__kmp_sigset, sig)) {
1140 struct sigaction old;
1141 KMP_MB(); // Flush all pending memory write invalidates.
1142 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1143 if ((old.sa_handler != __kmp_team_handler) &&
1144 (old.sa_handler != __kmp_null_handler)) {
1145 // Restore the users signal handler.
1146 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1147 "restoring: sig=%d\n",
1148 sig));
1149 __kmp_sigaction(sig, &old, NULL);
1150 }
1151 sigdelset(&__kmp_sigset, sig);
1152 KMP_MB(); // Flush all pending memory write invalidates.
1153 }
1154} // __kmp_remove_one_handler
1155
1156void __kmp_install_signals(int parallel_init) {
1157 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1158 if (__kmp_handle_signals || !parallel_init) {
1159 // If ! parallel_init, we do not install handlers, just save original
1160 // handlers. Let us do it even __handle_signals is 0.
1161 sigemptyset(&__kmp_sigset);
1162 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1163 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1164 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1165 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1166 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1167 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1168 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1169 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1170#ifdef SIGSYS
1171 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1172#endif // SIGSYS
1173 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1174#ifdef SIGPIPE
1175 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1176#endif // SIGPIPE
1177 }
1178} // __kmp_install_signals
1179
1180void __kmp_remove_signals(void) {
1181 int sig;
1182 KB_TRACE(10, ("__kmp_remove_signals()\n"));
1183 for (sig = 1; sig < NSIG; ++sig) {
1184 __kmp_remove_one_handler(sig);
1185 }
1186} // __kmp_remove_signals
1187
1188#endif // KMP_HANDLE_SIGNALS
1189
1190void __kmp_enable(int new_state) {
1191#ifdef KMP_CANCEL_THREADS
1192 int status, old_state;
1193 status = pthread_setcancelstate(new_state, &old_state);
1194 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1195 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1196#endif
1197}
1198
1199void __kmp_disable(int *old_state) {
1200#ifdef KMP_CANCEL_THREADS
1201 int status;
1202 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1203 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1204#endif
1205}
1206
1207static void __kmp_atfork_prepare(void) {
1208 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1209 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1210}
1211
1212static void __kmp_atfork_parent(void) {
1213 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1214 __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1215}
1216
1217/* Reset the library so execution in the child starts "all over again" with
1218 clean data structures in initial states. Don't worry about freeing memory
1219 allocated by parent, just abandon it to be safe. */
1220static void __kmp_atfork_child(void) {
1221 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1222 __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1223 /* TODO make sure this is done right for nested/sibling */
1224 // ATT: Memory leaks are here? TODO: Check it and fix.
1225 /* KMP_ASSERT( 0 ); */
1226
1227 ++__kmp_fork_count;
1228
1229#if KMP_AFFINITY_SUPPORTED
1230#if KMP_OS_LINUX || KMP_OS_FREEBSD
1231 // reset the affinity in the child to the initial thread
1232 // affinity in the parent
1233 kmp_set_thread_affinity_mask_initial();
1234#endif
1235 // Set default not to bind threads tightly in the child (we're expecting
1236 // over-subscription after the fork and this can improve things for
1237 // scripting languages that use OpenMP inside process-parallel code).
1238 if (__kmp_nested_proc_bind.bind_types != NULL) {
1239 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1240 }
1241 for (kmp_affinity_t *affinity : __kmp_affinities)
1242 *affinity = KMP_AFFINITY_INIT(affinity->env_var);
1243 __kmp_affin_fullMask = nullptr;
1244 __kmp_affin_origMask = nullptr;
1245#endif // KMP_AFFINITY_SUPPORTED
1246
1247#if KMP_USE_MONITOR
1248 __kmp_init_monitor = 0;
1249#endif
1250 __kmp_init_parallel = FALSE;
1251 __kmp_init_middle = FALSE;
1252 __kmp_init_serial = FALSE;
1253 TCW_4(__kmp_init_gtid, FALSE);
1254 __kmp_init_common = FALSE;
1255
1256 TCW_4(__kmp_init_user_locks, FALSE);
1257#if !KMP_USE_DYNAMIC_LOCK
1258 __kmp_user_lock_table.used = 1;
1259 __kmp_user_lock_table.allocated = 0;
1260 __kmp_user_lock_table.table = NULL;
1261 __kmp_lock_blocks = NULL;
1262#endif
1263
1264 __kmp_all_nth = 0;
1265 TCW_4(__kmp_nth, 0);
1266
1267 __kmp_thread_pool = NULL;
1268 __kmp_thread_pool_insert_pt = NULL;
1269 __kmp_team_pool = NULL;
1270
1271 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1272 here so threadprivate doesn't use stale data */
1273 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1274 __kmp_threadpriv_cache_list));
1275
1276 while (__kmp_threadpriv_cache_list != NULL) {
1277
1278 if (*__kmp_threadpriv_cache_list->addr != NULL) {
1279 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1280 &(*__kmp_threadpriv_cache_list->addr)));
1281
1282 *__kmp_threadpriv_cache_list->addr = NULL;
1283 }
1284 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1285 }
1286
1287 __kmp_init_runtime = FALSE;
1288
1289 /* reset statically initialized locks */
1290 __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1291 __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1292 __kmp_init_bootstrap_lock(&__kmp_console_lock);
1293 __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1294
1295#if USE_ITT_BUILD
1296 __kmp_itt_reset(); // reset ITT's global state
1297#endif /* USE_ITT_BUILD */
1298
1299 {
1300 // Child process often get terminated without any use of OpenMP. That might
1301 // cause mapped shared memory file to be left unattended. Thus we postpone
1302 // library registration till middle initialization in the child process.
1303 __kmp_need_register_serial = FALSE;
1304 __kmp_serial_initialize();
1305 }
1306
1307 /* This is necessary to make sure no stale data is left around */
1308 /* AC: customers complain that we use unsafe routines in the atfork
1309 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1310 in dynamic_link when check the presence of shared tbbmalloc library.
1311 Suggestion is to make the library initialization lazier, similar
1312 to what done for __kmpc_begin(). */
1313 // TODO: synchronize all static initializations with regular library
1314 // startup; look at kmp_global.cpp and etc.
1315 //__kmp_internal_begin ();
1316}
1317
1318void __kmp_register_atfork(void) {
1319 if (__kmp_need_register_atfork) {
1320 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1321 __kmp_atfork_child);
1322 KMP_CHECK_SYSFAIL("pthread_atfork", status);
1323 __kmp_need_register_atfork = FALSE;
1324 }
1325}
1326
1327void __kmp_suspend_initialize(void) {
1328 int status;
1329 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1330 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1331 status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1332 KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1333}
1334
1335void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1336 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1337 int new_value = __kmp_fork_count + 1;
1338 // Return if already initialized
1339 if (old_value == new_value)
1340 return;
1341 // Wait, then return if being initialized
1342 if (old_value == -1 || !__kmp_atomic_compare_store(
1343 &th->th.th_suspend_init_count, old_value, -1)) {
1344 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1345 KMP_CPU_PAUSE();
1346 }
1347 } else {
1348 // Claim to be the initializer and do initializations
1349 int status;
1350 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1351 &__kmp_suspend_cond_attr);
1352 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1353 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1354 &__kmp_suspend_mutex_attr);
1355 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1356 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1357 }
1358}
1359
1360void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1361 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1362 /* this means we have initialize the suspension pthread objects for this
1363 thread in this instance of the process */
1364 int status;
1365
1366 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1367 if (status != 0 && status != EBUSY) {
1368 KMP_SYSFAIL("pthread_cond_destroy", status);
1369 }
1370 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1371 if (status != 0 && status != EBUSY) {
1372 KMP_SYSFAIL("pthread_mutex_destroy", status);
1373 }
1374 --th->th.th_suspend_init_count;
1375 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1376 __kmp_fork_count);
1377 }
1378}
1379
1380// return true if lock obtained, false otherwise
1381int __kmp_try_suspend_mx(kmp_info_t *th) {
1382 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1383}
1384
1385void __kmp_lock_suspend_mx(kmp_info_t *th) {
1386 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1387 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1388}
1389
1390void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1391 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1392 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1393}
1394
1395/* This routine puts the calling thread to sleep after setting the
1396 sleep bit for the indicated flag variable to true. */
1397template <class C>
1398static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1399 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1400 kmp_info_t *th = __kmp_threads[th_gtid];
1401 int status;
1402 typename C::flag_t old_spin;
1403
1404 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1405 flag->get()));
1406
1407 __kmp_suspend_initialize_thread(th);
1408
1409 __kmp_lock_suspend_mx(th);
1410
1411 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1412 th_gtid, flag->get()));
1413
1414 /* TODO: shouldn't this use release semantics to ensure that
1415 __kmp_suspend_initialize_thread gets called first? */
1416 old_spin = flag->set_sleeping();
1417 TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1418 th->th.th_sleep_loc_type = flag->get_type();
1419 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1420 __kmp_pause_status != kmp_soft_paused) {
1421 flag->unset_sleeping();
1422 TCW_PTR(th->th.th_sleep_loc, NULL);
1423 th->th.th_sleep_loc_type = flag_unset;
1424 __kmp_unlock_suspend_mx(th);
1425 return;
1426 }
1427 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1428 " was %x\n",
1429 th_gtid, flag->get(), flag->load(), old_spin));
1430
1431 if (flag->done_check_val(old_spin) || flag->done_check()) {
1432 flag->unset_sleeping();
1433 TCW_PTR(th->th.th_sleep_loc, NULL);
1434 th->th.th_sleep_loc_type = flag_unset;
1435 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1436 "for spin(%p)\n",
1437 th_gtid, flag->get()));
1438 } else {
1439 /* Encapsulate in a loop as the documentation states that this may
1440 "with low probability" return when the condition variable has
1441 not been signaled or broadcast */
1442 int deactivated = FALSE;
1443
1444 while (flag->is_sleeping()) {
1445#ifdef DEBUG_SUSPEND
1446 char buffer[128];
1447 __kmp_suspend_count++;
1448 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1449 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1450 buffer);
1451#endif
1452 // Mark the thread as no longer active (only in the first iteration of the
1453 // loop).
1454 if (!deactivated) {
1455 th->th.th_active = FALSE;
1456 if (th->th.th_active_in_pool) {
1457 th->th.th_active_in_pool = FALSE;
1458 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1459 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1460 }
1461 deactivated = TRUE;
1462 }
1463
1464 KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
1465 KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type);
1466
1467#if USE_SUSPEND_TIMEOUT
1468 struct timespec now;
1469 struct timeval tval;
1470 int msecs;
1471
1472 status = gettimeofday(&tval, NULL);
1473 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1474 TIMEVAL_TO_TIMESPEC(&tval, &now);
1475
1476 msecs = (4 * __kmp_dflt_blocktime) + 200;
1477 now.tv_sec += msecs / 1000;
1478 now.tv_nsec += (msecs % 1000) * 1000;
1479
1480 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1481 "pthread_cond_timedwait\n",
1482 th_gtid));
1483 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1484 &th->th.th_suspend_mx.m_mutex, &now);
1485#else
1486 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1487 " pthread_cond_wait\n",
1488 th_gtid));
1489 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1490 &th->th.th_suspend_mx.m_mutex);
1491#endif // USE_SUSPEND_TIMEOUT
1492
1493 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1494 KMP_SYSFAIL("pthread_cond_wait", status);
1495 }
1496
1497 KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type());
1498
1499 if (!flag->is_sleeping() &&
1500 ((status == EINTR) || (status == ETIMEDOUT))) {
1501 // if interrupt or timeout, and thread is no longer sleeping, we need to
1502 // make sure sleep_loc gets reset; however, this shouldn't be needed if
1503 // we woke up with resume
1504 flag->unset_sleeping();
1505 TCW_PTR(th->th.th_sleep_loc, NULL);
1506 th->th.th_sleep_loc_type = flag_unset;
1507 }
1508#ifdef KMP_DEBUG
1509 if (status == ETIMEDOUT) {
1510 if (flag->is_sleeping()) {
1511 KF_TRACE(100,
1512 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1513 } else {
1514 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1515 "not set!\n",
1516 th_gtid));
1517 TCW_PTR(th->th.th_sleep_loc, NULL);
1518 th->th.th_sleep_loc_type = flag_unset;
1519 }
1520 } else if (flag->is_sleeping()) {
1521 KF_TRACE(100,
1522 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1523 }
1524#endif
1525 } // while
1526
1527 // Mark the thread as active again (if it was previous marked as inactive)
1528 if (deactivated) {
1529 th->th.th_active = TRUE;
1530 if (TCR_4(th->th.th_in_pool)) {
1531 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1532 th->th.th_active_in_pool = TRUE;
1533 }
1534 }
1535 }
1536 // We may have had the loop variable set before entering the loop body;
1537 // so we need to reset sleep_loc.
1538 TCW_PTR(th->th.th_sleep_loc, NULL);
1539 th->th.th_sleep_loc_type = flag_unset;
1540
1541 KMP_DEBUG_ASSERT(!flag->is_sleeping());
1542 KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
1543#ifdef DEBUG_SUSPEND
1544 {
1545 char buffer[128];
1546 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1547 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1548 buffer);
1549 }
1550#endif
1551
1552 __kmp_unlock_suspend_mx(th);
1553 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1554}
1555
1556template <bool C, bool S>
1557void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1558 __kmp_suspend_template(th_gtid, flag);
1559}
1560template <bool C, bool S>
1561void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1562 __kmp_suspend_template(th_gtid, flag);
1563}
1564template <bool C, bool S>
1565void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
1566 __kmp_suspend_template(th_gtid, flag);
1567}
1568void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1569 __kmp_suspend_template(th_gtid, flag);
1570}
1571
1572template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1573template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1574template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1575template void
1576__kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1577template void
1578__kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
1579
1580/* This routine signals the thread specified by target_gtid to wake up
1581 after setting the sleep bit indicated by the flag argument to FALSE.
1582 The target thread must already have called __kmp_suspend_template() */
1583template <class C>
1584static inline void __kmp_resume_template(int target_gtid, C *flag) {
1585 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1586 kmp_info_t *th = __kmp_threads[target_gtid];
1587 int status;
1588
1589#ifdef KMP_DEBUG
1590 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1591#endif
1592
1593 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1594 gtid, target_gtid));
1595 KMP_DEBUG_ASSERT(gtid != target_gtid);
1596
1597 __kmp_suspend_initialize_thread(th);
1598
1599 __kmp_lock_suspend_mx(th);
1600
1601 if (!flag || flag != th->th.th_sleep_loc) {
1602 // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
1603 // different location; wake up at new location
1604 flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1605 }
1606
1607 // First, check if the flag is null or its type has changed. If so, someone
1608 // else woke it up.
1609 if (!flag) { // Thread doesn't appear to be sleeping on anything
1610 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1611 "awake: flag(%p)\n",
1612 gtid, target_gtid, (void *)NULL));
1613 __kmp_unlock_suspend_mx(th);
1614 return;
1615 } else if (flag->get_type() != th->th.th_sleep_loc_type) {
1616 // Flag type does not appear to match this function template; possibly the
1617 // thread is sleeping on something else. Try null resume again.
1618 KF_TRACE(
1619 5,
1620 ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), "
1621 "spin(%p) type=%d ptr_type=%d\n",
1622 gtid, target_gtid, flag, flag->get(), flag->get_type(),
1623 th->th.th_sleep_loc_type));
1624 __kmp_unlock_suspend_mx(th);
1625 __kmp_null_resume_wrapper(th);
1626 return;
1627 } else { // if multiple threads are sleeping, flag should be internally
1628 // referring to a specific thread here
1629 if (!flag->is_sleeping()) {
1630 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1631 "awake: flag(%p): %u\n",
1632 gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1633 __kmp_unlock_suspend_mx(th);
1634 return;
1635 }
1636 }
1637 KMP_DEBUG_ASSERT(flag);
1638 flag->unset_sleeping();
1639 TCW_PTR(th->th.th_sleep_loc, NULL);
1640 th->th.th_sleep_loc_type = flag_unset;
1641
1642 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1643 "sleep bit for flag's loc(%p): %u\n",
1644 gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1645
1646#ifdef DEBUG_SUSPEND
1647 {
1648 char buffer[128];
1649 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1650 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1651 target_gtid, buffer);
1652 }
1653#endif
1654 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1655 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1656 __kmp_unlock_suspend_mx(th);
1657 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1658 " for T#%d\n",
1659 gtid, target_gtid));
1660}
1661
1662template <bool C, bool S>
1663void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1664 __kmp_resume_template(target_gtid, flag);
1665}
1666template <bool C, bool S>
1667void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1668 __kmp_resume_template(target_gtid, flag);
1669}
1670template <bool C, bool S>
1671void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
1672 __kmp_resume_template(target_gtid, flag);
1673}
1674void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1675 __kmp_resume_template(target_gtid, flag);
1676}
1677
1678template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1679template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
1680template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1681template void
1682__kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1683
1684#if KMP_USE_MONITOR
1685void __kmp_resume_monitor() {
1686 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1687 int status;
1688#ifdef KMP_DEBUG
1689 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1690 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1691 KMP_GTID_MONITOR));
1692 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1693#endif
1694 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1695 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1696#ifdef DEBUG_SUSPEND
1697 {
1698 char buffer[128];
1699 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1700 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1701 KMP_GTID_MONITOR, buffer);
1702 }
1703#endif
1704 status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1705 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1706 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1707 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1708 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1709 " for T#%d\n",
1710 gtid, KMP_GTID_MONITOR));
1711}
1712#endif // KMP_USE_MONITOR
1713
1714void __kmp_yield() { sched_yield(); }
1715
1716void __kmp_gtid_set_specific(int gtid) {
1717 if (__kmp_init_gtid) {
1718 int status;
1719 status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1720 (void *)(intptr_t)(gtid + 1));
1721 KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1722 } else {
1723 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1724 }
1725}
1726
1727int __kmp_gtid_get_specific() {
1728 int gtid;
1729 if (!__kmp_init_gtid) {
1730 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1731 "KMP_GTID_SHUTDOWN\n"));
1732 return KMP_GTID_SHUTDOWN;
1733 }
1734 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1735 if (gtid == 0) {
1736 gtid = KMP_GTID_DNE;
1737 } else {
1738 gtid--;
1739 }
1740 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1741 __kmp_gtid_threadprivate_key, gtid));
1742 return gtid;
1743}
1744
1745double __kmp_read_cpu_time(void) {
1746 /*clock_t t;*/
1747 struct tms buffer;
1748
1749 /*t =*/times(&buffer);
1750
1751 return (double)(buffer.tms_utime + buffer.tms_cutime) /
1752 (double)CLOCKS_PER_SEC;
1753}
1754
1755int __kmp_read_system_info(struct kmp_sys_info *info) {
1756 int status;
1757 struct rusage r_usage;
1758
1759 memset(info, 0, sizeof(*info));
1760
1761 status = getrusage(RUSAGE_SELF, &r_usage);
1762 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1763
1764 // The maximum resident set size utilized (in kilobytes)
1765 info->maxrss = r_usage.ru_maxrss;
1766 // The number of page faults serviced without any I/O
1767 info->minflt = r_usage.ru_minflt;
1768 // The number of page faults serviced that required I/O
1769 info->majflt = r_usage.ru_majflt;
1770 // The number of times a process was "swapped" out of memory
1771 info->nswap = r_usage.ru_nswap;
1772 // The number of times the file system had to perform input
1773 info->inblock = r_usage.ru_inblock;
1774 // The number of times the file system had to perform output
1775 info->oublock = r_usage.ru_oublock;
1776 // The number of times a context switch was voluntarily
1777 info->nvcsw = r_usage.ru_nvcsw;
1778 // The number of times a context switch was forced
1779 info->nivcsw = r_usage.ru_nivcsw;
1780
1781 return (status != 0);
1782}
1783
1784void __kmp_read_system_time(double *delta) {
1785 double t_ns;
1786 struct timeval tval;
1787 struct timespec stop;
1788 int status;
1789
1790 status = gettimeofday(&tval, NULL);
1791 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1792 TIMEVAL_TO_TIMESPEC(&tval, &stop);
1793 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1794 *delta = (t_ns * 1e-9);
1795}
1796
1797void __kmp_clear_system_time(void) {
1798 struct timeval tval;
1799 int status;
1800 status = gettimeofday(&tval, NULL);
1801 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1802 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1803}
1804
1805static int __kmp_get_xproc(void) {
1806
1807 int r = 0;
1808
1809#if KMP_OS_LINUX
1810
1811 __kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r));
1812
1813#elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \
1814 KMP_OS_HURD
1815
1816 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1817
1818#elif KMP_OS_DARWIN
1819
1820 // Bug C77011 High "OpenMP Threads and number of active cores".
1821
1822 // Find the number of available CPUs.
1823 kern_return_t rc;
1824 host_basic_info_data_t info;
1825 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1826 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1827 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1828 // Cannot use KA_TRACE() here because this code works before trace support
1829 // is initialized.
1830 r = info.avail_cpus;
1831 } else {
1832 KMP_WARNING(CantGetNumAvailCPU);
1833 KMP_INFORM(AssumedNumCPU);
1834 }
1835
1836#else
1837
1838#error "Unknown or unsupported OS."
1839
1840#endif
1841
1842 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1843
1844} // __kmp_get_xproc
1845
1846int __kmp_read_from_file(char const *path, char const *format, ...) {
1847 int result;
1848 va_list args;
1849
1850 va_start(args, format);
1851 FILE *f = fopen(path, "rb");
1852 if (f == NULL)
1853 return 0;
1854 result = vfscanf(f, format, args);
1855 fclose(f);
1856
1857 return result;
1858}
1859
1860void __kmp_runtime_initialize(void) {
1861 int status;
1862 pthread_mutexattr_t mutex_attr;
1863 pthread_condattr_t cond_attr;
1864
1865 if (__kmp_init_runtime) {
1866 return;
1867 }
1868
1869#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1870 if (!__kmp_cpuinfo.initialized) {
1871 __kmp_query_cpuid(&__kmp_cpuinfo);
1872 }
1873#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1874
1875 __kmp_xproc = __kmp_get_xproc();
1876
1877#if !KMP_32_BIT_ARCH
1878 struct rlimit rlim;
1879 // read stack size of calling thread, save it as default for worker threads;
1880 // this should be done before reading environment variables
1881 status = getrlimit(RLIMIT_STACK, &rlim);
1882 if (status == 0) { // success?
1883 __kmp_stksize = rlim.rlim_cur;
1884 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1885 }
1886#endif /* KMP_32_BIT_ARCH */
1887
1888 if (sysconf(_SC_THREADS)) {
1889
1890 /* Query the maximum number of threads */
1891 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1892 if (__kmp_sys_max_nth == -1) {
1893 /* Unlimited threads for NPTL */
1894 __kmp_sys_max_nth = INT_MAX;
1895 } else if (__kmp_sys_max_nth <= 1) {
1896 /* Can't tell, just use PTHREAD_THREADS_MAX */
1897 __kmp_sys_max_nth = KMP_MAX_NTH;
1898 }
1899
1900 /* Query the minimum stack size */
1901 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1902 if (__kmp_sys_min_stksize <= 1) {
1903 __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1904 }
1905 }
1906
1907 /* Set up minimum number of threads to switch to TLS gtid */
1908 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1909
1910 status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1911 __kmp_internal_end_dest);
1912 KMP_CHECK_SYSFAIL("pthread_key_create", status);
1913 status = pthread_mutexattr_init(&mutex_attr);
1914 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1915 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1916 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1917 status = pthread_mutexattr_destroy(&mutex_attr);
1918 KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1919 status = pthread_condattr_init(&cond_attr);
1920 KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1921 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1922 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1923 status = pthread_condattr_destroy(&cond_attr);
1924 KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1925#if USE_ITT_BUILD
1926 __kmp_itt_initialize();
1927#endif /* USE_ITT_BUILD */
1928
1929 __kmp_init_runtime = TRUE;
1930}
1931
1932void __kmp_runtime_destroy(void) {
1933 int status;
1934
1935 if (!__kmp_init_runtime) {
1936 return; // Nothing to do.
1937 }
1938
1939#if USE_ITT_BUILD
1940 __kmp_itt_destroy();
1941#endif /* USE_ITT_BUILD */
1942
1943 status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1944 KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1945
1946 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1947 if (status != 0 && status != EBUSY) {
1948 KMP_SYSFAIL("pthread_mutex_destroy", status);
1949 }
1950 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1951 if (status != 0 && status != EBUSY) {
1952 KMP_SYSFAIL("pthread_cond_destroy", status);
1953 }
1954#if KMP_AFFINITY_SUPPORTED
1955 __kmp_affinity_uninitialize();
1956#endif
1957
1958 __kmp_init_runtime = FALSE;
1959}
1960
1961/* Put the thread to sleep for a time period */
1962/* NOTE: not currently used anywhere */
1963void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1964
1965/* Calculate the elapsed wall clock time for the user */
1966void __kmp_elapsed(double *t) {
1967 int status;
1968#ifdef FIX_SGI_CLOCK
1969 struct timespec ts;
1970
1971 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1972 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1973 *t =
1974 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1975#else
1976 struct timeval tv;
1977
1978 status = gettimeofday(&tv, NULL);
1979 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1980 *t =
1981 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1982#endif
1983}
1984
1985/* Calculate the elapsed wall clock tick for the user */
1986void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1987
1988/* Return the current time stamp in nsec */
1989kmp_uint64 __kmp_now_nsec() {
1990 struct timeval t;
1991 gettimeofday(&t, NULL);
1992 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1993 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1994 return nsec;
1995}
1996
1997#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1998/* Measure clock ticks per millisecond */
1999void __kmp_initialize_system_tick() {
2000 kmp_uint64 now, nsec2, diff;
2001 kmp_uint64 delay = 100000; // 50~100 usec on most machines.
2002 kmp_uint64 nsec = __kmp_now_nsec();
2003 kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
2004 while ((now = __kmp_hardware_timestamp()) < goal)
2005 ;
2006 nsec2 = __kmp_now_nsec();
2007 diff = nsec2 - nsec;
2008 if (diff > 0) {
2009 kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff);
2010 if (tpms > 0)
2011 __kmp_ticks_per_msec = tpms;
2012 }
2013}
2014#endif
2015
2016/* Determine whether the given address is mapped into the current address
2017 space. */
2018
2019int __kmp_is_address_mapped(void *addr) {
2020
2021 int found = 0;
2022 int rc;
2023
2024#if KMP_OS_LINUX || KMP_OS_HURD
2025
2026 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
2027 address ranges mapped into the address space. */
2028
2029 char *name = __kmp_str_format("/proc/%d/maps", getpid());
2030 FILE *file = NULL;
2031
2032 file = fopen(name, "r");
2033 KMP_ASSERT(file != NULL);
2034
2035 for (;;) {
2036
2037 void *beginning = NULL;
2038 void *ending = NULL;
2039 char perms[5];
2040
2041 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2042 if (rc == EOF) {
2043 break;
2044 }
2045 KMP_ASSERT(rc == 3 &&
2046 KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2047
2048 // Ending address is not included in the region, but beginning is.
2049 if ((addr >= beginning) && (addr < ending)) {
2050 perms[2] = 0; // 3th and 4th character does not matter.
2051 if (strcmp(perms, "rw") == 0) {
2052 // Memory we are looking for should be readable and writable.
2053 found = 1;
2054 }
2055 break;
2056 }
2057 }
2058
2059 // Free resources.
2060 fclose(file);
2061 KMP_INTERNAL_FREE(name);
2062#elif KMP_OS_FREEBSD
2063 char *buf;
2064 size_t lstsz;
2065 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2066 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2067 if (rc < 0)
2068 return 0;
2069 // We pass from number of vm entry's semantic
2070 // to size of whole entry map list.
2071 lstsz = lstsz * 4 / 3;
2072 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2073 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2074 if (rc < 0) {
2075 kmpc_free(buf);
2076 return 0;
2077 }
2078
2079 char *lw = buf;
2080 char *up = buf + lstsz;
2081
2082 while (lw < up) {
2083 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2084 size_t cursz = cur->kve_structsize;
2085 if (cursz == 0)
2086 break;
2087 void *start = reinterpret_cast<void *>(cur->kve_start);
2088 void *end = reinterpret_cast<void *>(cur->kve_end);
2089 // Readable/Writable addresses within current map entry
2090 if ((addr >= start) && (addr < end)) {
2091 if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2092 (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2093 found = 1;
2094 break;
2095 }
2096 }
2097 lw += cursz;
2098 }
2099 kmpc_free(buf);
2100
2101#elif KMP_OS_DARWIN
2102
2103 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2104 using vm interface. */
2105
2106 int buffer;
2107 vm_size_t count;
2108 rc = vm_read_overwrite(
2109 mach_task_self(), // Task to read memory of.
2110 (vm_address_t)(addr), // Address to read from.
2111 1, // Number of bytes to be read.
2112 (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2113 &count // Address of var to save number of read bytes in.
2114 );
2115 if (rc == 0) {
2116 // Memory successfully read.
2117 found = 1;
2118 }
2119
2120#elif KMP_OS_NETBSD
2121
2122 int mib[5];
2123 mib[0] = CTL_VM;
2124 mib[1] = VM_PROC;
2125 mib[2] = VM_PROC_MAP;
2126 mib[3] = getpid();
2127 mib[4] = sizeof(struct kinfo_vmentry);
2128
2129 size_t size;
2130 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2131 KMP_ASSERT(!rc);
2132 KMP_ASSERT(size);
2133
2134 size = size * 4 / 3;
2135 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2136 KMP_ASSERT(kiv);
2137
2138 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2139 KMP_ASSERT(!rc);
2140 KMP_ASSERT(size);
2141
2142 for (size_t i = 0; i < size; i++) {
2143 if (kiv[i].kve_start >= (uint64_t)addr &&
2144 kiv[i].kve_end <= (uint64_t)addr) {
2145 found = 1;
2146 break;
2147 }
2148 }
2149 KMP_INTERNAL_FREE(kiv);
2150#elif KMP_OS_OPENBSD
2151
2152 int mib[3];
2153 mib[0] = CTL_KERN;
2154 mib[1] = KERN_PROC_VMMAP;
2155 mib[2] = getpid();
2156
2157 size_t size;
2158 uint64_t end;
2159 rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2160 KMP_ASSERT(!rc);
2161 KMP_ASSERT(size);
2162 end = size;
2163
2164 struct kinfo_vmentry kiv = {.kve_start = 0};
2165
2166 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2167 KMP_ASSERT(size);
2168 if (kiv.kve_end == end)
2169 break;
2170
2171 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2172 found = 1;
2173 break;
2174 }
2175 kiv.kve_start += 1;
2176 }
2177#elif KMP_OS_DRAGONFLY
2178
2179 // FIXME(DragonFly): Implement this
2180 found = 1;
2181
2182#else
2183
2184#error "Unknown or unsupported OS"
2185
2186#endif
2187
2188 return found;
2189
2190} // __kmp_is_address_mapped
2191
2192#ifdef USE_LOAD_BALANCE
2193
2194#if KMP_OS_DARWIN || KMP_OS_NETBSD
2195
2196// The function returns the rounded value of the system load average
2197// during given time interval which depends on the value of
2198// __kmp_load_balance_interval variable (default is 60 sec, other values
2199// may be 300 sec or 900 sec).
2200// It returns -1 in case of error.
2201int __kmp_get_load_balance(int max) {
2202 double averages[3];
2203 int ret_avg = 0;
2204
2205 int res = getloadavg(averages, 3);
2206
2207 // Check __kmp_load_balance_interval to determine which of averages to use.
2208 // getloadavg() may return the number of samples less than requested that is
2209 // less than 3.
2210 if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2211 ret_avg = (int)averages[0]; // 1 min
2212 } else if ((__kmp_load_balance_interval >= 180 &&
2213 __kmp_load_balance_interval < 600) &&
2214 (res >= 2)) {
2215 ret_avg = (int)averages[1]; // 5 min
2216 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2217 ret_avg = (int)averages[2]; // 15 min
2218 } else { // Error occurred
2219 return -1;
2220 }
2221
2222 return ret_avg;
2223}
2224
2225#else // Linux* OS
2226
2227// The function returns number of running (not sleeping) threads, or -1 in case
2228// of error. Error could be reported if Linux* OS kernel too old (without
2229// "/proc" support). Counting running threads stops if max running threads
2230// encountered.
2231int __kmp_get_load_balance(int max) {
2232 static int permanent_error = 0;
2233 static int glb_running_threads = 0; // Saved count of the running threads for
2234 // the thread balance algorithm
2235 static double glb_call_time = 0; /* Thread balance algorithm call time */
2236
2237 int running_threads = 0; // Number of running threads in the system.
2238
2239 DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2240 struct dirent *proc_entry = NULL;
2241
2242 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2243 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2244 struct dirent *task_entry = NULL;
2245 int task_path_fixed_len;
2246
2247 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2248 int stat_file = -1;
2249 int stat_path_fixed_len;
2250
2251#ifdef KMP_DEBUG
2252 int total_processes = 0; // Total number of processes in system.
2253#endif
2254
2255 double call_time = 0.0;
2256
2257 __kmp_str_buf_init(&task_path);
2258 __kmp_str_buf_init(&stat_path);
2259
2260 __kmp_elapsed(&call_time);
2261
2262 if (glb_call_time &&
2263 (call_time - glb_call_time < __kmp_load_balance_interval)) {
2264 running_threads = glb_running_threads;
2265 goto finish;
2266 }
2267
2268 glb_call_time = call_time;
2269
2270 // Do not spend time on scanning "/proc/" if we have a permanent error.
2271 if (permanent_error) {
2272 running_threads = -1;
2273 goto finish;
2274 }
2275
2276 if (max <= 0) {
2277 max = INT_MAX;
2278 }
2279
2280 // Open "/proc/" directory.
2281 proc_dir = opendir("/proc");
2282 if (proc_dir == NULL) {
2283 // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2284 // error now and in subsequent calls.
2285 running_threads = -1;
2286 permanent_error = 1;
2287 goto finish;
2288 }
2289
2290 // Initialize fixed part of task_path. This part will not change.
2291 __kmp_str_buf_cat(&task_path, "/proc/", 6);
2292 task_path_fixed_len = task_path.used; // Remember number of used characters.
2293
2294 proc_entry = readdir(proc_dir);
2295 while (proc_entry != NULL) {
2296 // Proc entry is a directory and name starts with a digit. Assume it is a
2297 // process' directory.
2298 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2299
2300#ifdef KMP_DEBUG
2301 ++total_processes;
2302#endif
2303 // Make sure init process is the very first in "/proc", so we can replace
2304 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2305 // 1. We are going to check that total_processes == 1 => d_name == "1" is
2306 // true (where "=>" is implication). Since C++ does not have => operator,
2307 // let us replace it with its equivalent: a => b == ! a || b.
2308 KMP_DEBUG_ASSERT(total_processes != 1 ||
2309 strcmp(proc_entry->d_name, "1") == 0);
2310
2311 // Construct task_path.
2312 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2313 __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2314 KMP_STRLEN(proc_entry->d_name));
2315 __kmp_str_buf_cat(&task_path, "/task", 5);
2316
2317 task_dir = opendir(task_path.str);
2318 if (task_dir == NULL) {
2319 // Process can finish between reading "/proc/" directory entry and
2320 // opening process' "task/" directory. So, in general case we should not
2321 // complain, but have to skip this process and read the next one. But on
2322 // systems with no "task/" support we will spend lot of time to scan
2323 // "/proc/" tree again and again without any benefit. "init" process
2324 // (its pid is 1) should exist always, so, if we cannot open
2325 // "/proc/1/task/" directory, it means "task/" is not supported by
2326 // kernel. Report an error now and in the future.
2327 if (strcmp(proc_entry->d_name, "1") == 0) {
2328 running_threads = -1;
2329 permanent_error = 1;
2330 goto finish;
2331 }
2332 } else {
2333 // Construct fixed part of stat file path.
2334 __kmp_str_buf_clear(&stat_path);
2335 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2336 __kmp_str_buf_cat(&stat_path, "/", 1);
2337 stat_path_fixed_len = stat_path.used;
2338
2339 task_entry = readdir(task_dir);
2340 while (task_entry != NULL) {
2341 // It is a directory and name starts with a digit.
2342 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2343
2344 // Construct complete stat file path. Easiest way would be:
2345 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2346 // task_entry->d_name );
2347 // but seriae of __kmp_str_buf_cat works a bit faster.
2348 stat_path.used =
2349 stat_path_fixed_len; // Reset stat path to its fixed part.
2350 __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2351 KMP_STRLEN(task_entry->d_name));
2352 __kmp_str_buf_cat(&stat_path, "/stat", 5);
2353
2354 // Note: Low-level API (open/read/close) is used. High-level API
2355 // (fopen/fclose) works ~ 30 % slower.
2356 stat_file = open(stat_path.str, O_RDONLY);
2357 if (stat_file == -1) {
2358 // We cannot report an error because task (thread) can terminate
2359 // just before reading this file.
2360 } else {
2361 /* Content of "stat" file looks like:
2362 24285 (program) S ...
2363
2364 It is a single line (if program name does not include funny
2365 symbols). First number is a thread id, then name of executable
2366 file name in paretheses, then state of the thread. We need just
2367 thread state.
2368
2369 Good news: Length of program name is 15 characters max. Longer
2370 names are truncated.
2371
2372 Thus, we need rather short buffer: 15 chars for program name +
2373 2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2374
2375 Bad news: Program name may contain special symbols like space,
2376 closing parenthesis, or even new line. This makes parsing
2377 "stat" file not 100 % reliable. In case of fanny program names
2378 parsing may fail (report incorrect thread state).
2379
2380 Parsing "status" file looks more promissing (due to different
2381 file structure and escaping special symbols) but reading and
2382 parsing of "status" file works slower.
2383 -- ln
2384 */
2385 char buffer[65];
2386 ssize_t len;
2387 len = read(stat_file, buffer, sizeof(buffer) - 1);
2388 if (len >= 0) {
2389 buffer[len] = 0;
2390 // Using scanf:
2391 // sscanf( buffer, "%*d (%*s) %c ", & state );
2392 // looks very nice, but searching for a closing parenthesis
2393 // works a bit faster.
2394 char *close_parent = strstr(buffer, ") ");
2395 if (close_parent != NULL) {
2396 char state = *(close_parent + 2);
2397 if (state == 'R') {
2398 ++running_threads;
2399 if (running_threads >= max) {
2400 goto finish;
2401 }
2402 }
2403 }
2404 }
2405 close(stat_file);
2406 stat_file = -1;
2407 }
2408 }
2409 task_entry = readdir(task_dir);
2410 }
2411 closedir(task_dir);
2412 task_dir = NULL;
2413 }
2414 }
2415 proc_entry = readdir(proc_dir);
2416 }
2417
2418 // There _might_ be a timing hole where the thread executing this
2419 // code get skipped in the load balance, and running_threads is 0.
2420 // Assert in the debug builds only!!!
2421 KMP_DEBUG_ASSERT(running_threads > 0);
2422 if (running_threads <= 0) {
2423 running_threads = 1;
2424 }
2425
2426finish: // Clean up and exit.
2427 if (proc_dir != NULL) {
2428 closedir(proc_dir);
2429 }
2430 __kmp_str_buf_free(&task_path);
2431 if (task_dir != NULL) {
2432 closedir(task_dir);
2433 }
2434 __kmp_str_buf_free(&stat_path);
2435 if (stat_file != -1) {
2436 close(stat_file);
2437 }
2438
2439 glb_running_threads = running_threads;
2440
2441 return running_threads;
2442
2443} // __kmp_get_load_balance
2444
2445#endif // KMP_OS_DARWIN
2446
2447#endif // USE_LOAD_BALANCE
2448
2449#if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2450 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \
2451 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 || \
2452 KMP_ARCH_ARM)
2453
2454// we really only need the case with 1 argument, because CLANG always build
2455// a struct of pointers to shared variables referenced in the outlined function
2456int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2457 void *p_argv[]
2458#if OMPT_SUPPORT
2459 ,
2460 void **exit_frame_ptr
2461#endif
2462) {
2463#if OMPT_SUPPORT
2464 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2465#endif
2466
2467 switch (argc) {
2468 default:
2469 fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2470 fflush(stderr);
2471 exit(-1);
2472 case 0:
2473 (*pkfn)(&gtid, &tid);
2474 break;
2475 case 1:
2476 (*pkfn)(&gtid, &tid, p_argv[0]);
2477 break;
2478 case 2:
2479 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2480 break;
2481 case 3:
2482 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2483 break;
2484 case 4:
2485 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2486 break;
2487 case 5:
2488 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2489 break;
2490 case 6:
2491 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2492 p_argv[5]);
2493 break;
2494 case 7:
2495 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2496 p_argv[5], p_argv[6]);
2497 break;
2498 case 8:
2499 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2500 p_argv[5], p_argv[6], p_argv[7]);
2501 break;
2502 case 9:
2503 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2504 p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2505 break;
2506 case 10:
2507 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2508 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2509 break;
2510 case 11:
2511 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2512 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2513 break;
2514 case 12:
2515 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2516 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2517 p_argv[11]);
2518 break;
2519 case 13:
2520 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2521 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2522 p_argv[11], p_argv[12]);
2523 break;
2524 case 14:
2525 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2526 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2527 p_argv[11], p_argv[12], p_argv[13]);
2528 break;
2529 case 15:
2530 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2531 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2532 p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2533 break;
2534 }
2535
2536 return 1;
2537}
2538
2539#endif
2540
2541#if KMP_OS_LINUX
2542// Functions for hidden helper task
2543namespace {
2544// Condition variable for initializing hidden helper team
2545pthread_cond_t hidden_helper_threads_initz_cond_var;
2546pthread_mutex_t hidden_helper_threads_initz_lock;
2547volatile int hidden_helper_initz_signaled = FALSE;
2548
2549// Condition variable for deinitializing hidden helper team
2550pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2551pthread_mutex_t hidden_helper_threads_deinitz_lock;
2552volatile int hidden_helper_deinitz_signaled = FALSE;
2553
2554// Condition variable for the wrapper function of main thread
2555pthread_cond_t hidden_helper_main_thread_cond_var;
2556pthread_mutex_t hidden_helper_main_thread_lock;
2557volatile int hidden_helper_main_thread_signaled = FALSE;
2558
2559// Semaphore for worker threads. We don't use condition variable here in case
2560// that when multiple signals are sent at the same time, only one thread might
2561// be waken.
2562sem_t hidden_helper_task_sem;
2563} // namespace
2564
2565void __kmp_hidden_helper_worker_thread_wait() {
2566 int status = sem_wait(&hidden_helper_task_sem);
2567 KMP_CHECK_SYSFAIL("sem_wait", status);
2568}
2569
2570void __kmp_do_initialize_hidden_helper_threads() {
2571 // Initialize condition variable
2572 int status =
2573 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2574 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2575
2576 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2577 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2578
2579 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2580 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2581
2582 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2583 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2584
2585 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2586 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2587
2588 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2589 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2590
2591 // Initialize the semaphore
2592 status = sem_init(&hidden_helper_task_sem, 0, 0);
2593 KMP_CHECK_SYSFAIL("sem_init", status);
2594
2595 // Create a new thread to finish initialization
2596 pthread_t handle;
2597 status = pthread_create(
2598 &handle, nullptr,
2599 [](void *) -> void * {
2600 __kmp_hidden_helper_threads_initz_routine();
2601 return nullptr;
2602 },
2603 nullptr);
2604 KMP_CHECK_SYSFAIL("pthread_create", status);
2605}
2606
2607void __kmp_hidden_helper_threads_initz_wait() {
2608 // Initial thread waits here for the completion of the initialization. The
2609 // condition variable will be notified by main thread of hidden helper teams.
2610 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2611 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2612
2613 if (!TCR_4(hidden_helper_initz_signaled)) {
2614 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2615 &hidden_helper_threads_initz_lock);
2616 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2617 }
2618
2619 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2620 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2621}
2622
2623void __kmp_hidden_helper_initz_release() {
2624 // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2625 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2626 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2627
2628 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2629 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2630
2631 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2632
2633 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2634 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2635}
2636
2637void __kmp_hidden_helper_main_thread_wait() {
2638 // The main thread of hidden helper team will be blocked here. The
2639 // condition variable can only be signal in the destructor of RTL.
2640 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2641 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2642
2643 if (!TCR_4(hidden_helper_main_thread_signaled)) {
2644 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2645 &hidden_helper_main_thread_lock);
2646 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2647 }
2648
2649 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2650 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2651}
2652
2653void __kmp_hidden_helper_main_thread_release() {
2654 // The initial thread of OpenMP RTL should call this function to wake up the
2655 // main thread of hidden helper team.
2656 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2657 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2658
2659 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2660 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2661
2662 // The hidden helper team is done here
2663 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2664
2665 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2666 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2667}
2668
2669void __kmp_hidden_helper_worker_thread_signal() {
2670 int status = sem_post(&hidden_helper_task_sem);
2671 KMP_CHECK_SYSFAIL("sem_post", status);
2672}
2673
2674void __kmp_hidden_helper_threads_deinitz_wait() {
2675 // Initial thread waits here for the completion of the deinitialization. The
2676 // condition variable will be notified by main thread of hidden helper teams.
2677 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2678 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2679
2680 if (!TCR_4(hidden_helper_deinitz_signaled)) {
2681 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2682 &hidden_helper_threads_deinitz_lock);
2683 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2684 }
2685
2686 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2687 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2688}
2689
2690void __kmp_hidden_helper_threads_deinitz_release() {
2691 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2692 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2693
2694 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2695 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2696
2697 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2698
2699 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2700 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2701}
2702#else // KMP_OS_LINUX
2703void __kmp_hidden_helper_worker_thread_wait() {
2704 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2705}
2706
2707void __kmp_do_initialize_hidden_helper_threads() {
2708 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2709}
2710
2711void __kmp_hidden_helper_threads_initz_wait() {
2712 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2713}
2714
2715void __kmp_hidden_helper_initz_release() {
2716 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2717}
2718
2719void __kmp_hidden_helper_main_thread_wait() {
2720 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2721}
2722
2723void __kmp_hidden_helper_main_thread_release() {
2724 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2725}
2726
2727void __kmp_hidden_helper_worker_thread_signal() {
2728 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2729}
2730
2731void __kmp_hidden_helper_threads_deinitz_wait() {
2732 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2733}
2734
2735void __kmp_hidden_helper_threads_deinitz_release() {
2736 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2737}
2738#endif // KMP_OS_LINUX
2739
2740// end of file //
#define KMP_INIT_PARTITIONED_TIMERS(name)
Initializes the partitioned timers to begin with name.
Definition: kmp_stats.h:940