Safe Haskell | None |
---|---|
Language | Haskell98 |
Math.Algebra.Group.SchreierSims
- cosetRepsGx :: (Show k, Ord k) => [Permutation k] -> k -> Map k (Permutation k)
- schreierGeneratorsGx :: (Show k, Ord k) => (k, Map k (Permutation k)) -> [Permutation k] -> [Permutation k]
- sift :: (Show k, Ord k) => [(k, Map k (Permutation k))] -> Permutation k -> Maybe (Permutation k)
- findBase :: Ord a => [Permutation a] -> a
- sgs :: (Ord a, Show a) => [Permutation a] -> [Permutation a]
- bsgs :: (Show k, Ord k) => [Permutation k] -> [(k, Map k (Permutation k))]
- bsgs' :: (Show k, Ord k) => [k] -> [Permutation k] -> [(k, Map k (Permutation k))]
- newLevel :: (Show a, Ord a) => [a] -> [Permutation a] -> ([a], ((a, Map a (Permutation a)), [Permutation a]))
- newLevel' :: (Show t, Ord t) => t -> [Permutation t] -> ((t, Map t (Permutation t)), [Permutation t])
- ss :: (Show k, Ord k) => [k] -> [Permutation k] -> [((k, Map k (Permutation k)), [Permutation k])]
- ss' :: (Show k, Ord k) => [k] -> [((k, Map k (Permutation k)), [Permutation k])] -> [((k, Map k (Permutation k)), [Permutation k])] -> [((k, Map k (Permutation k)), [Permutation k])]
- isMemberBSGS :: (Show k, Ord k) => [(k, Map k (Permutation k))] -> Permutation k -> Bool
- eltsBSGS :: Num b => [(a, Map k b)] -> [b]
- cartProd :: [[a]] -> [[a]]
- orderBSGS :: [(a1, Map k a)] -> Integer
- isMember :: (Ord t, Show t) => [Permutation t] -> Permutation t -> Bool
- elts :: (Ord t, Show t) => [Permutation t] -> [Permutation t]
- order :: (Ord t, Show t) => [Permutation t] -> Integer
- isSubgp :: (Show k, Ord k) => [Permutation k] -> [Permutation k] -> Bool
- isNormal :: (Show k, Ord k) => [Permutation k] -> [Permutation k] -> Bool
- index :: (Show t1, Show t, Ord t1, Ord t) => [Permutation t] -> [Permutation t1] -> Integer
- reduceGens :: (Show k, Ord k) => [Permutation k] -> [Permutation k]
- reduceGensBSGS :: (Show k, Ord k) => [Permutation k] -> ([Permutation k], [(k, Map k (Permutation k))])
- normalClosure :: (Show k, Ord k) => [Permutation k] -> [Permutation k] -> [Permutation k]
- commutatorGp :: (Show k, Ord k) => [Permutation k] -> [Permutation k] -> [Permutation k]
- derivedSubgp :: (Show k, Ord k) => [Permutation k] -> [Permutation k]
Documentation
cosetRepsGx :: (Show k, Ord k) => [Permutation k] -> k -> Map k (Permutation k) Source
schreierGeneratorsGx :: (Show k, Ord k) => (k, Map k (Permutation k)) -> [Permutation k] -> [Permutation k] Source
sift :: (Show k, Ord k) => [(k, Map k (Permutation k))] -> Permutation k -> Maybe (Permutation k) Source
findBase :: Ord a => [Permutation a] -> a Source
sgs :: (Ord a, Show a) => [Permutation a] -> [Permutation a] Source
Given generators for a permutation group, return a strong generating set. The result is calculated using Schreier-Sims algorithm, and is relative to the base implied by the Ord instance
bsgs :: (Show k, Ord k) => [Permutation k] -> [(k, Map k (Permutation k))] Source
bsgs' :: (Show k, Ord k) => [k] -> [Permutation k] -> [(k, Map k (Permutation k))] Source
newLevel :: (Show a, Ord a) => [a] -> [Permutation a] -> ([a], ((a, Map a (Permutation a)), [Permutation a])) Source
newLevel' :: (Show t, Ord t) => t -> [Permutation t] -> ((t, Map t (Permutation t)), [Permutation t]) Source
ss :: (Show k, Ord k) => [k] -> [Permutation k] -> [((k, Map k (Permutation k)), [Permutation k])] Source
ss' :: (Show k, Ord k) => [k] -> [((k, Map k (Permutation k)), [Permutation k])] -> [((k, Map k (Permutation k)), [Permutation k])] -> [((k, Map k (Permutation k)), [Permutation k])] Source
isMemberBSGS :: (Show k, Ord k) => [(k, Map k (Permutation k))] -> Permutation k -> Bool Source
isMember :: (Ord t, Show t) => [Permutation t] -> Permutation t -> Bool Source
Given generators for a group, determine whether a permutation is a member of the group, using Schreier-Sims algorithm
elts :: (Ord t, Show t) => [Permutation t] -> [Permutation t] Source
Given generators for a group, return a (sorted) list of all elements of the group, using Schreier-Sims algorithm
order :: (Ord t, Show t) => [Permutation t] -> Integer Source
Given generators for a group, return the order of the group (the number of elements), using Schreier-Sims algorithm
isSubgp :: (Show k, Ord k) => [Permutation k] -> [Permutation k] -> Bool Source
isNormal :: (Show k, Ord k) => [Permutation k] -> [Permutation k] -> Bool Source
index :: (Show t1, Show t, Ord t1, Ord t) => [Permutation t] -> [Permutation t1] -> Integer Source
reduceGens :: (Show k, Ord k) => [Permutation k] -> [Permutation k] Source
reduceGensBSGS :: (Show k, Ord k) => [Permutation k] -> ([Permutation k], [(k, Map k (Permutation k))]) Source
normalClosure :: (Show k, Ord k) => [Permutation k] -> [Permutation k] -> [Permutation k] Source
commutatorGp :: (Show k, Ord k) => [Permutation k] -> [Permutation k] -> [Permutation k] Source
derivedSubgp :: (Show k, Ord k) => [Permutation k] -> [Permutation k] Source