
nucleardata — provides nuclide information∗

Bill Nettles†

Released 2015/11/18

The nucleardata package provides a method for quickly accessing information
about atomic nuclides (isotopes of elements) by referring to the chemical symbol
and mass number (A) or to the atomic number (Z) and mass number (A). This
information can be inserted and typeset without the user having to search an
outside source. The information available in the current version includes chemical
symbol or name given Z, Z given the chemical symbol or name, atomic mass,
nuclear mass, Q-values for radioactive decay, half-life of ground states, binding
energy, mass excess, and list of known isotopes of an element.

The data is contained in two CSV format files: massdata.csv and
elementlist.csv. These files must be installed in the same directory as the
nucleardata.sty file. They are read during the LATEX compile process and
lookups are done by Python code embedded into the .sty file. Initially, the Python
code loads all the data from the CSV files into Python arrays, nucleardata and
elementdata.

The massdata.csv file was created by the author (Nettles) from ENSDF data
files and the file mass.mas03round from “The Ame2003 atomic mass evaluation
(II)” by G.Audi, A.H.Wapstra and C.Thibault, Nuclear Physics A729 p. 337-676,
December 22, 2003. The elementlist.csv file was created by the author from
public sources.

Using PythonTEX
Because Python is the basis of the lookup engine, the package pythontex is au-
tomatically loaded. The user must follow a three-step compiling sequence to get
a semifinal/final document. For example, if the user’s file is named carbon.tex,
the sequence will be

pdflatex carbon.tex
pythontex carbon.tex
pdflatex carbon.tex

If the user is familiar with PythonTEX this shouldn’t seem unusual.
∗This file describes version v1.00, last revised 2015/11/18.
†E-mail: bnettles@uu.edu

1



A Python Class–Nucdata
Python functions are called by customized LATEX commands to extract the data
from the nucleardata and elementdata arrays, so the user has the capabil-
ity of using these functions to write custom Python routines within the default
PythonTEX environment. The functions belong to a class defined in this package
as Nucdata. The class is instantiated in the package Python code as nuc.

The functions will allow the user to use the data for more specific calculations
such as Q-values of reactions or decay chain behaviors. PythonTEX was designed
for tasks such as this. The user can utilize the functions as part of the nuc
instantiation or can implement their own instance. The data arrays are loaded
external to the class.

Neutron Notation
The neutron doesn’t have a chemical symbol, but in this package the symbol nn
can be used with a mass number, A, of 1. It can also be referenced with Z=0 and
A=1 as arguments.

Rounding Option
Some of the macros below have an optional argument that lets the user spec-
ify rounding of decimal places. The rounding is accomplished using the Python
round(〈float〉,〈places〉) function inside a PythonTEX \py() call. The 〈float〉 ar-
gument is the return value of the main function mentioned in each description.
Rounding is not a part of the definition of the main functions. As an example,
the LATEX command definition for nucamassu is defined as

\newcommand{\nucamassu}[3][6]{\py{round(getMass_u(’#2’,#3),#1)}}

This definition gives a default rounding of six decimal places.

Commands
Command form: \nucsymbol{〈namez〉}.\nucsymbol

Calls a Python function getSymbol(〈namez〉). The argument can be an un-
quoted string (the name of the element) or an integer (atomic number, Z). Returns
a string with the element symbol.

Command form: \nucName{〈namez〉} or \nucname{〈namez〉}.\nucname
\nucName Calls a Python function getName(〈namez〉). The argument can be an un-

quoted string (the symbol of the element) or an integer (atomic number, Z).
\nucName returns a string with the element name capitalized. \nucname returns
the name in lower case.

Command form: \nucz{〈namez〉}.\nucz

2



Calls a Python function getZ(〈namez〉). The argument must be an unquoted
string (the symbol or the name of the element). Returns the atomic number, Z.

Command form: \nuchalflife[〈unit〉]{〈namez〉}{〈A〉}.\nuchalflife
\nuchalfvalue
\nuchalfunit

Calls a Python function getHalfLife(〈namez〉, 〈A〉, 〈unit〉). The optional
argument is an unquoted string specifying the time unit to use for the return
value. The chart below lists valid arguments. The first required argument can be
an unquoted string (the symbol) or an integer (Z). The second required value must
be an integer, the mass number, A. Returns a string with the value and units of
the halflife of the specific nuclide.

There are two variations on this command: \nuchalfvalue returns the nu-
merical portion of the halflife and \nuchalfunit returns the unit portion. They
take the same two arguments as \nuchalflife. If there is no half life listed, the
call returns the None token.

argument unit symbol unit name
ev eV electron-volt
mev MeV mega-electron-volt
kev keV kilo-electron-volt
ps ps picosecond
ns ns nanosecond
us µs microsecond
ms ms millisecond
s s second
m min minute

min min minute
h h hour
hr h hour
d d day

day d day
y yr year
yr yr year
My My megayear
Gy Gy gigayear

Command form: \nucspin{〈namez〉}{〈A〉}, etc.\nucspin
Calls Python function getSpin(〈namez〉, 〈A〉). The first required argument

can be an unquoted string (the symbol) or an integer (Z). The second must be an
integer, the mass number, A. Returns the value of the spin quantum number
and parity of the ground state of the nuclide. If no value has been assigned, it
returns “None.”

Command form: \nucamassu[〈rnd〉]{〈namez〉}{〈A〉}, \nucamassmev[〈rnd〉]{〈namez〉}{〈A〉},\nucamassu
\nucamassmev
\nucamasskev

\nucamasskev[〈rnd〉]{〈namez〉}{〈A〉}.
Calls Python function getMass_u(〈namez〉, 〈A〉) or getMass_mev(. . .) or

getMass_kev(. . .). The optional argument is the number of decimal places for
rounding; the default is 6 (or 3 for keV). The first required argument can be an

3



unquoted string (the symbol) or an integer (Z). The second must be an integer, the
mass number, A. Returns the value of the atomic mass of the nuclide in atomic
mass units (u), MeV/c2 or keV/c2, respectively.

Command form: \nuclearmassu[〈rnd〉]{〈namez〉}{〈A〉}, etc.\nuclearmassu
\nuclearmassmev
\nuclearmasskev

Calls Python function getNuclearMass_u(〈namez〉, 〈A〉), etc. The optional
argument is the number of decimal places for rounding; the default is 6 (or 3
for keV). The first required argument can be a string (the symbol) or an integer
(Z). The second must be an integer, the mass number, A. Returns the value of
the nuclear mass of the nuclide in atomic mass units (u), MeV/c2 or keV/c2,
respectively.

Command form: \nucexcess[〈rnd〉]{〈namez〉}{〈A〉}.\nucexcess
Calls Python function getExcess(〈namez〉,〈A〉). The optional argument is

the number of decimal places for rounding; the default is 3. The first required
argument can be a string (the symbol) or an integer (Z). The second must be an
integer, the mass number, A. Returns the mass excess (∆) in keV/c2. (Atomic
mass = A×931502 + ∆, in keV).

Command form: \nucbea[〈rnd〉]{〈namez〉}{〈A〉}\nucbea
Calls Python function getBea(〈namez〉,〈A〉). The optional argument is the

number of decimal places for rounding; the default is 3. The first required ar-
gument can be a string (the symbol) or an integer (Z). The second must be an
integer, the mass number, A. Returns the binding energy per nucleon in MeV.
(Z*atomic mass(1H)+(A-Z)*mass neutron-atomic mass of nuclide)/A.

Command form: \nucisotopes{〈namez〉}\nucisotopes
Calls Python function getIsotopes(〈namez〉). The argument can be a string

(the element symbol) or an integer (Z). Returns a list of all the isotopes of that
element which have mass information available in the database.

Command form: \nucQ-----[〈rnd〉]{〈namez〉}{〈A〉}\nucQalpha
\nucQbeta
\nucQposi

\nucQec

Call Python functions getQ-----(〈namez〉,〈A〉). The optional argument is
the number of decimal places for rounding; the default is 6. The first required
argument can be an unquoted string (the element symbol) or an integer (Z).
Returns the Q-value of the chosen decay in MeV. Decay type options are alpha,
beta, positron, and electron capture.

Command form: \nucis-----{〈namez〉}{〈A〉}.\nucisalpha
\nucisbeta
\nucisposi

\nucisec

Calls Python functions getQ-----(〈namez〉,〈A〉) and checks for positive value.
The first argument can be an unquoted string (the element symbol) or an integer
(Z). Returns the string True or False depending on whether the Q-value of a
decay is positive or negative. Decay type options are alpha, beta, positron, and
electron capture.

Command form: \nucreactionqu[〈rnd〉] {〈namez1 〉} {〈A1 〉} {〈namez2 〉}\nucreactionqu
\nucreactionqmev
\nucreactionqkev 4



{〈A2 〉} {〈namez3 〉} {〈A3 〉} {〈namez4 〉} {〈A4 〉}, etc.
Calls Python function getReaction_u(〈namez1 〉, 〈A1 〉, 〈namez2 〉, 〈A2 〉,

〈namez3 〉, 〈A3 〉, 〈namez4 〉, 〈A4 〉), etc. The optional argument is the number
of decimal places for rounding; the default is 6 (or 3 for keV). The first required
argument can be a string (the symbol) or an integer (Z). The second must be an
integer, the mass number, A. The numbers after 〈name〉 and 〈A〉 represent

1 – the target nucleus/particle

2 – the projectile nucleus/particle

3 – the ejected nucleus/particle

4 – the resultant nucleus/particle

Returns the Q-value of the reaction in atomic mass units (u), MeV/c2 or
keV/c2, respectively.

5


