LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
ssyevr.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine ssyevr (JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)
  SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices More...
 

Function/Subroutine Documentation

subroutine ssyevr ( character  JOBZ,
character  RANGE,
character  UPLO,
integer  N,
real, dimension( lda, * )  A,
integer  LDA,
real  VL,
real  VU,
integer  IL,
integer  IU,
real  ABSTOL,
integer  M,
real, dimension( * )  W,
real, dimension( ldz, * )  Z,
integer  LDZ,
integer, dimension( * )  ISUPPZ,
real, dimension( * )  WORK,
integer  LWORK,
integer, dimension( * )  IWORK,
integer  LIWORK,
integer  INFO 
)

SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices

Download SSYEVR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SSYEVR computes selected eigenvalues and, optionally, eigenvectors
 of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
 selected by specifying either a range of values or a range of
 indices for the desired eigenvalues.

 SSYEVR first reduces the matrix A to tridiagonal form T with a call
 to SSYTRD.  Then, whenever possible, SSYEVR calls SSTEMR to compute
 the eigenspectrum using Relatively Robust Representations.  SSTEMR
 computes eigenvalues by the dqds algorithm, while orthogonal
 eigenvectors are computed from various "good" L D L^T representations
 (also known as Relatively Robust Representations). Gram-Schmidt
 orthogonalization is avoided as far as possible. More specifically,
 the various steps of the algorithm are as follows.

 For each unreduced block (submatrix) of T,
    (a) Compute T - sigma I  = L D L^T, so that L and D
        define all the wanted eigenvalues to high relative accuracy.
        This means that small relative changes in the entries of D and L
        cause only small relative changes in the eigenvalues and
        eigenvectors. The standard (unfactored) representation of the
        tridiagonal matrix T does not have this property in general.
    (b) Compute the eigenvalues to suitable accuracy.
        If the eigenvectors are desired, the algorithm attains full
        accuracy of the computed eigenvalues only right before
        the corresponding vectors have to be computed, see steps c) and d).
    (c) For each cluster of close eigenvalues, select a new
        shift close to the cluster, find a new factorization, and refine
        the shifted eigenvalues to suitable accuracy.
    (d) For each eigenvalue with a large enough relative separation compute
        the corresponding eigenvector by forming a rank revealing twisted
        factorization. Go back to (c) for any clusters that remain.

 The desired accuracy of the output can be specified by the input
 parameter ABSTOL.

 For more details, see SSTEMR's documentation and:
 - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
 - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   2004.  Also LAPACK Working Note 154.
 - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   tridiagonal eigenvalue/eigenvector problem",
   Computer Science Division Technical Report No. UCB/CSD-97-971,
   UC Berkeley, May 1997.


 Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested
 on machines which conform to the ieee-754 floating point standard.
 SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and
 when partial spectrum requests are made.

 Normal execution of SSTEMR may create NaNs and infinities and
 hence may abort due to a floating point exception in environments
 which do not handle NaNs and infinities in the ieee standard default
 manner.
Parameters
[in]JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
[in]RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found.
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found.
          = 'I': the IL-th through IU-th eigenvalues will be found.
          For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
          SSTEIN are called
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is REAL array, dimension (LDA, N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of A contains the
          upper triangular part of the matrix A.  If UPLO = 'L',
          the leading N-by-N lower triangular part of A contains
          the lower triangular part of the matrix A.
          On exit, the lower triangle (if UPLO='L') or the upper
          triangle (if UPLO='U') of A, including the diagonal, is
          destroyed.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]VL
          VL is REAL
[in]VU
          VU is REAL
          If RANGE='V', the lower and upper bounds of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
[in]IL
          IL is INTEGER
[in]IU
          IU is INTEGER
          If RANGE='I', the indices (in ascending order) of the
          smallest and largest eigenvalues to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
[in]ABSTOL
          ABSTOL is REAL
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to

                  ABSTOL + EPS *   max( |a|,|b| ) ,

          where EPS is the machine precision.  If ABSTOL is less than
          or equal to zero, then  EPS*|T|  will be used in its place,
          where |T| is the 1-norm of the tridiagonal matrix obtained
          by reducing A to tridiagonal form.

          See "Computing Small Singular Values of Bidiagonal Matrices
          with Guaranteed High Relative Accuracy," by Demmel and
          Kahan, LAPACK Working Note #3.

          If high relative accuracy is important, set ABSTOL to
          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that
          eigenvalues are computed to high relative accuracy when
          possible in future releases.  The current code does not
          make any guarantees about high relative accuracy, but
          future releases will. See J. Barlow and J. Demmel,
          "Computing Accurate Eigensystems of Scaled Diagonally
          Dominant Matrices", LAPACK Working Note #7, for a discussion
          of which matrices define their eigenvalues to high relative
          accuracy.
[out]M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
[out]W
          W is REAL array, dimension (N)
          The first M elements contain the selected eigenvalues in
          ascending order.
[out]Z
          Z is REAL array, dimension (LDZ, max(1,M))
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.
          Supplying N columns is always safe.
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
[out]ISUPPZ
          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
          The support of the eigenvectors in Z, i.e., the indices
          indicating the nonzero elements in Z. The i-th eigenvector
          is nonzero only in elements ISUPPZ( 2*i-1 ) through
          ISUPPZ( 2*i ).
          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
[out]WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= max(1,26*N).
          For optimal efficiency, LWORK >= (NB+6)*N,
          where NB is the max of the blocksize for SSYTRD and SORMTR
          returned by ILAENV.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal sizes of the WORK and IWORK
          arrays, returns these values as the first entries of the WORK
          and IWORK arrays, and no error message related to LWORK or
          LIWORK is issued by XERBLA.
[out]IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
[in]LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK.  LIWORK >= max(1,10*N).

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal sizes of the WORK and
          IWORK arrays, returns these values as the first entries of
          the WORK and IWORK arrays, and no error message related to
          LWORK or LIWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  Internal error
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012
Contributors:
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of California at Berkeley, USA
Jason Riedy, Computer Science Division, University of California at Berkeley, USA

Definition at line 329 of file ssyevr.f.

329 *
330 * -- LAPACK driver routine (version 3.4.2) --
331 * -- LAPACK is a software package provided by Univ. of Tennessee, --
332 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
333 * September 2012
334 *
335 * .. Scalar Arguments ..
336  CHARACTER jobz, range, uplo
337  INTEGER il, info, iu, lda, ldz, liwork, lwork, m, n
338  REAL abstol, vl, vu
339 * ..
340 * .. Array Arguments ..
341  INTEGER isuppz( * ), iwork( * )
342  REAL a( lda, * ), w( * ), work( * ), z( ldz, * )
343 * ..
344 *
345 * =====================================================================
346 *
347 * .. Parameters ..
348  REAL zero, one, two
349  parameter( zero = 0.0e+0, one = 1.0e+0, two = 2.0e+0 )
350 * ..
351 * .. Local Scalars ..
352  LOGICAL alleig, indeig, lower, lquery, test, valeig,
353  $ wantz, tryrac
354  CHARACTER order
355  INTEGER i, ieeeok, iinfo, imax, indd, inddd, inde,
356  $ indee, indibl, indifl, indisp, indiwo, indtau,
357  $ indwk, indwkn, iscale, j, jj, liwmin,
358  $ llwork, llwrkn, lwkopt, lwmin, nb, nsplit
359  REAL abstll, anrm, bignum, eps, rmax, rmin, safmin,
360  $ sigma, smlnum, tmp1, vll, vuu
361 * ..
362 * .. External Functions ..
363  LOGICAL lsame
364  INTEGER ilaenv
365  REAL slamch, slansy
366  EXTERNAL lsame, ilaenv, slamch, slansy
367 * ..
368 * .. External Subroutines ..
369  EXTERNAL scopy, sormtr, sscal, sstebz, sstemr, sstein,
371 * ..
372 * .. Intrinsic Functions ..
373  INTRINSIC max, min, sqrt
374 * ..
375 * .. Executable Statements ..
376 *
377 * Test the input parameters.
378 *
379  ieeeok = ilaenv( 10, 'SSYEVR', 'N', 1, 2, 3, 4 )
380 *
381  lower = lsame( uplo, 'L' )
382  wantz = lsame( jobz, 'V' )
383  alleig = lsame( range, 'A' )
384  valeig = lsame( range, 'V' )
385  indeig = lsame( range, 'I' )
386 *
387  lquery = ( ( lwork.EQ.-1 ) .OR. ( liwork.EQ.-1 ) )
388 *
389  lwmin = max( 1, 26*n )
390  liwmin = max( 1, 10*n )
391 *
392  info = 0
393  IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
394  info = -1
395  ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
396  info = -2
397  ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
398  info = -3
399  ELSE IF( n.LT.0 ) THEN
400  info = -4
401  ELSE IF( lda.LT.max( 1, n ) ) THEN
402  info = -6
403  ELSE
404  IF( valeig ) THEN
405  IF( n.GT.0 .AND. vu.LE.vl )
406  $ info = -8
407  ELSE IF( indeig ) THEN
408  IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
409  info = -9
410  ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
411  info = -10
412  END IF
413  END IF
414  END IF
415  IF( info.EQ.0 ) THEN
416  IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
417  info = -15
418  END IF
419  END IF
420 *
421  IF( info.EQ.0 ) THEN
422  nb = ilaenv( 1, 'SSYTRD', uplo, n, -1, -1, -1 )
423  nb = max( nb, ilaenv( 1, 'SORMTR', uplo, n, -1, -1, -1 ) )
424  lwkopt = max( ( nb+1 )*n, lwmin )
425  work( 1 ) = lwkopt
426  iwork( 1 ) = liwmin
427 *
428  IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
429  info = -18
430  ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
431  info = -20
432  END IF
433  END IF
434 *
435  IF( info.NE.0 ) THEN
436  CALL xerbla( 'SSYEVR', -info )
437  RETURN
438  ELSE IF( lquery ) THEN
439  RETURN
440  END IF
441 *
442 * Quick return if possible
443 *
444  m = 0
445  IF( n.EQ.0 ) THEN
446  work( 1 ) = 1
447  RETURN
448  END IF
449 *
450  IF( n.EQ.1 ) THEN
451  work( 1 ) = 26
452  IF( alleig .OR. indeig ) THEN
453  m = 1
454  w( 1 ) = a( 1, 1 )
455  ELSE
456  IF( vl.LT.a( 1, 1 ) .AND. vu.GE.a( 1, 1 ) ) THEN
457  m = 1
458  w( 1 ) = a( 1, 1 )
459  END IF
460  END IF
461  IF( wantz ) THEN
462  z( 1, 1 ) = one
463  isuppz( 1 ) = 1
464  isuppz( 2 ) = 1
465  END IF
466  RETURN
467  END IF
468 *
469 * Get machine constants.
470 *
471  safmin = slamch( 'Safe minimum' )
472  eps = slamch( 'Precision' )
473  smlnum = safmin / eps
474  bignum = one / smlnum
475  rmin = sqrt( smlnum )
476  rmax = min( sqrt( bignum ), one / sqrt( sqrt( safmin ) ) )
477 *
478 * Scale matrix to allowable range, if necessary.
479 *
480  iscale = 0
481  abstll = abstol
482  IF (valeig) THEN
483  vll = vl
484  vuu = vu
485  END IF
486  anrm = slansy( 'M', uplo, n, a, lda, work )
487  IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
488  iscale = 1
489  sigma = rmin / anrm
490  ELSE IF( anrm.GT.rmax ) THEN
491  iscale = 1
492  sigma = rmax / anrm
493  END IF
494  IF( iscale.EQ.1 ) THEN
495  IF( lower ) THEN
496  DO 10 j = 1, n
497  CALL sscal( n-j+1, sigma, a( j, j ), 1 )
498  10 CONTINUE
499  ELSE
500  DO 20 j = 1, n
501  CALL sscal( j, sigma, a( 1, j ), 1 )
502  20 CONTINUE
503  END IF
504  IF( abstol.GT.0 )
505  $ abstll = abstol*sigma
506  IF( valeig ) THEN
507  vll = vl*sigma
508  vuu = vu*sigma
509  END IF
510  END IF
511 
512 * Initialize indices into workspaces. Note: The IWORK indices are
513 * used only if SSTERF or SSTEMR fail.
514 
515 * WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
516 * elementary reflectors used in SSYTRD.
517  indtau = 1
518 * WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
519  indd = indtau + n
520 * WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
521 * tridiagonal matrix from SSYTRD.
522  inde = indd + n
523 * WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
524 * -written by SSTEMR (the SSTERF path copies the diagonal to W).
525  inddd = inde + n
526 * WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
527 * -written while computing the eigenvalues in SSTERF and SSTEMR.
528  indee = inddd + n
529 * INDWK is the starting offset of the left-over workspace, and
530 * LLWORK is the remaining workspace size.
531  indwk = indee + n
532  llwork = lwork - indwk + 1
533 
534 * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
535 * stores the block indices of each of the M<=N eigenvalues.
536  indibl = 1
537 * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
538 * stores the starting and finishing indices of each block.
539  indisp = indibl + n
540 * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
541 * that corresponding to eigenvectors that fail to converge in
542 * SSTEIN. This information is discarded; if any fail, the driver
543 * returns INFO > 0.
544  indifl = indisp + n
545 * INDIWO is the offset of the remaining integer workspace.
546  indiwo = indifl + n
547 
548 *
549 * Call SSYTRD to reduce symmetric matrix to tridiagonal form.
550 *
551  CALL ssytrd( uplo, n, a, lda, work( indd ), work( inde ),
552  $ work( indtau ), work( indwk ), llwork, iinfo )
553 *
554 * If all eigenvalues are desired
555 * then call SSTERF or SSTEMR and SORMTR.
556 *
557  test = .false.
558  IF( indeig ) THEN
559  IF( il.EQ.1 .AND. iu.EQ.n ) THEN
560  test = .true.
561  END IF
562  END IF
563  IF( ( alleig.OR.test ) .AND. ( ieeeok.EQ.1 ) ) THEN
564  IF( .NOT.wantz ) THEN
565  CALL scopy( n, work( indd ), 1, w, 1 )
566  CALL scopy( n-1, work( inde ), 1, work( indee ), 1 )
567  CALL ssterf( n, w, work( indee ), info )
568  ELSE
569  CALL scopy( n-1, work( inde ), 1, work( indee ), 1 )
570  CALL scopy( n, work( indd ), 1, work( inddd ), 1 )
571 *
572  IF (abstol .LE. two*n*eps) THEN
573  tryrac = .true.
574  ELSE
575  tryrac = .false.
576  END IF
577  CALL sstemr( jobz, 'A', n, work( inddd ), work( indee ),
578  $ vl, vu, il, iu, m, w, z, ldz, n, isuppz,
579  $ tryrac, work( indwk ), lwork, iwork, liwork,
580  $ info )
581 *
582 *
583 *
584 * Apply orthogonal matrix used in reduction to tridiagonal
585 * form to eigenvectors returned by SSTEIN.
586 *
587  IF( wantz .AND. info.EQ.0 ) THEN
588  indwkn = inde
589  llwrkn = lwork - indwkn + 1
590  CALL sormtr( 'L', uplo, 'N', n, m, a, lda,
591  $ work( indtau ), z, ldz, work( indwkn ),
592  $ llwrkn, iinfo )
593  END IF
594  END IF
595 *
596 *
597  IF( info.EQ.0 ) THEN
598 * Everything worked. Skip SSTEBZ/SSTEIN. IWORK(:) are
599 * undefined.
600  m = n
601  GO TO 30
602  END IF
603  info = 0
604  END IF
605 *
606 * Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
607 * Also call SSTEBZ and SSTEIN if SSTEMR fails.
608 *
609  IF( wantz ) THEN
610  order = 'B'
611  ELSE
612  order = 'E'
613  END IF
614 
615  CALL sstebz( range, order, n, vll, vuu, il, iu, abstll,
616  $ work( indd ), work( inde ), m, nsplit, w,
617  $ iwork( indibl ), iwork( indisp ), work( indwk ),
618  $ iwork( indiwo ), info )
619 *
620  IF( wantz ) THEN
621  CALL sstein( n, work( indd ), work( inde ), m, w,
622  $ iwork( indibl ), iwork( indisp ), z, ldz,
623  $ work( indwk ), iwork( indiwo ), iwork( indifl ),
624  $ info )
625 *
626 * Apply orthogonal matrix used in reduction to tridiagonal
627 * form to eigenvectors returned by SSTEIN.
628 *
629  indwkn = inde
630  llwrkn = lwork - indwkn + 1
631  CALL sormtr( 'L', uplo, 'N', n, m, a, lda, work( indtau ), z,
632  $ ldz, work( indwkn ), llwrkn, iinfo )
633  END IF
634 *
635 * If matrix was scaled, then rescale eigenvalues appropriately.
636 *
637 * Jump here if SSTEMR/SSTEIN succeeded.
638  30 CONTINUE
639  IF( iscale.EQ.1 ) THEN
640  IF( info.EQ.0 ) THEN
641  imax = m
642  ELSE
643  imax = info - 1
644  END IF
645  CALL sscal( imax, one / sigma, w, 1 )
646  END IF
647 *
648 * If eigenvalues are not in order, then sort them, along with
649 * eigenvectors. Note: We do not sort the IFAIL portion of IWORK.
650 * It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do
651 * not return this detailed information to the user.
652 *
653  IF( wantz ) THEN
654  DO 50 j = 1, m - 1
655  i = 0
656  tmp1 = w( j )
657  DO 40 jj = j + 1, m
658  IF( w( jj ).LT.tmp1 ) THEN
659  i = jj
660  tmp1 = w( jj )
661  END IF
662  40 CONTINUE
663 *
664  IF( i.NE.0 ) THEN
665  w( i ) = w( j )
666  w( j ) = tmp1
667  CALL sswap( n, z( 1, i ), 1, z( 1, j ), 1 )
668  END IF
669  50 CONTINUE
670  END IF
671 *
672 * Set WORK(1) to optimal workspace size.
673 *
674  work( 1 ) = lwkopt
675  iwork( 1 ) = liwmin
676 *
677  RETURN
678 *
679 * End of SSYEVR
680 *
subroutine sormtr(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
SORMTR
Definition: sormtr.f:174
subroutine sswap(N, SX, INCX, SY, INCY)
SSWAP
Definition: sswap.f:53
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:53
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine ssytrd(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)
SSYTRD
Definition: ssytrd.f:194
subroutine sstein(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO)
SSTEIN
Definition: sstein.f:176
subroutine sstebz(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)
SSTEBZ
Definition: sstebz.f:265
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
real function slansy(NORM, UPLO, N, A, LDA, WORK)
SLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
Definition: slansy.f:124
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
Definition: tstiee.f:83
subroutine sstemr(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, IWORK, LIWORK, INFO)
SSTEMR
Definition: sstemr.f:314
subroutine ssterf(N, D, E, INFO)
SSTERF
Definition: ssterf.f:88
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:55

Here is the call graph for this function:

Here is the caller graph for this function: