81 REAL rw( nmax ), s( nmax )
82 COMPLEX a( nmax, nmax ), b( nmax, nmax ), w( nmax )
98 COMMON / infoc / infot, nout, ok, lerr
99 COMMON / srnamc / srnamt
105 a( 1, 1 ) = ( 1.0e+0, 0.0e+0 )
106 a( 1, 2 ) = ( 2.0e+0, 0.0e+0 )
107 a( 2, 2 ) = ( 3.0e+0, 0.0e+0 )
108 a( 2, 1 ) = ( 4.0e+0, 0.0e+0 )
110 WRITE( nout, fmt = * )
114 IF(
lsamen( 2, c2,
'LS' ) )
THEN
120 CALL cgels(
'/', 0, 0, 0, a, 1, b, 1, w, 1, info )
121 CALL chkxer(
'CGELS ', infot, nout, lerr, ok )
123 CALL cgels(
'N', -1, 0, 0, a, 1, b, 1, w, 1, info )
124 CALL chkxer(
'CGELS ', infot, nout, lerr, ok )
126 CALL cgels(
'N', 0, -1, 0, a, 1, b, 1, w, 1, info )
127 CALL chkxer(
'CGELS ', infot, nout, lerr, ok )
129 CALL cgels(
'N', 0, 0, -1, a, 1, b, 1, w, 1, info )
130 CALL chkxer(
'CGELS ', infot, nout, lerr, ok )
132 CALL cgels(
'N', 2, 0, 0, a, 1, b, 2, w, 2, info )
133 CALL chkxer(
'CGELS ', infot, nout, lerr, ok )
135 CALL cgels(
'N', 2, 0, 0, a, 2, b, 1, w, 2, info )
136 CALL chkxer(
'CGELS ', infot, nout, lerr, ok )
138 CALL cgels(
'N', 1, 1, 0, a, 1, b, 1, w, 1, info )
139 CALL chkxer(
'CGELS ', infot, nout, lerr, ok )
145 CALL cgelss( -1, 0, 0, a, 1, b, 1, s, rcond, irnk, w, 1, rw,
147 CALL chkxer(
'CGELSS', infot, nout, lerr, ok )
149 CALL cgelss( 0, -1, 0, a, 1, b, 1, s, rcond, irnk, w, 1, rw,
151 CALL chkxer(
'CGELSS', infot, nout, lerr, ok )
153 CALL cgelss( 0, 0, -1, a, 1, b, 1, s, rcond, irnk, w, 1, rw,
155 CALL chkxer(
'CGELSS', infot, nout, lerr, ok )
157 CALL cgelss( 2, 0, 0, a, 1, b, 2, s, rcond, irnk, w, 2, rw,
159 CALL chkxer(
'CGELSS', infot, nout, lerr, ok )
161 CALL cgelss( 2, 0, 0, a, 2, b, 1, s, rcond, irnk, w, 2, rw,
163 CALL chkxer(
'CGELSS', infot, nout, lerr, ok )
169 CALL cgelsx( -1, 0, 0, a, 1, b, 1, ip, rcond, irnk, w, rw,
171 CALL chkxer(
'CGELSX', infot, nout, lerr, ok )
173 CALL cgelsx( 0, -1, 0, a, 1, b, 1, ip, rcond, irnk, w, rw,
175 CALL chkxer(
'CGELSX', infot, nout, lerr, ok )
177 CALL cgelsx( 0, 0, -1, a, 1, b, 1, ip, rcond, irnk, w, rw,
179 CALL chkxer(
'CGELSX', infot, nout, lerr, ok )
181 CALL cgelsx( 2, 0, 0, a, 1, b, 2, ip, rcond, irnk, w, rw,
183 CALL chkxer(
'CGELSX', infot, nout, lerr, ok )
185 CALL cgelsx( 2, 0, 0, a, 2, b, 1, ip, rcond, irnk, w, rw,
187 CALL chkxer(
'CGELSX', infot, nout, lerr, ok )
193 CALL cgelsy( -1, 0, 0, a, 1, b, 1, ip, rcond, irnk, w, 10, rw,
195 CALL chkxer(
'CGELSY', infot, nout, lerr, ok )
197 CALL cgelsy( 0, -1, 0, a, 1, b, 1, ip, rcond, irnk, w, 10, rw,
199 CALL chkxer(
'CGELSY', infot, nout, lerr, ok )
201 CALL cgelsy( 0, 0, -1, a, 1, b, 1, ip, rcond, irnk, w, 10, rw,
203 CALL chkxer(
'CGELSY', infot, nout, lerr, ok )
205 CALL cgelsy( 2, 0, 0, a, 1, b, 2, ip, rcond, irnk, w, 10, rw,
207 CALL chkxer(
'CGELSY', infot, nout, lerr, ok )
209 CALL cgelsy( 2, 0, 0, a, 2, b, 1, ip, rcond, irnk, w, 10, rw,
211 CALL chkxer(
'CGELSY', infot, nout, lerr, ok )
213 CALL cgelsy( 0, 3, 0, a, 1, b, 3, ip, rcond, irnk, w, 1, rw,
215 CALL chkxer(
'CGELSY', infot, nout, lerr, ok )
221 CALL cgelsd( -1, 0, 0, a, 1, b, 1, s, rcond, irnk, w, 10,
223 CALL chkxer(
'CGELSD', infot, nout, lerr, ok )
225 CALL cgelsd( 0, -1, 0, a, 1, b, 1, s, rcond, irnk, w, 10,
227 CALL chkxer(
'CGELSD', infot, nout, lerr, ok )
229 CALL cgelsd( 0, 0, -1, a, 1, b, 1, s, rcond, irnk, w, 10,
231 CALL chkxer(
'CGELSD', infot, nout, lerr, ok )
233 CALL cgelsd( 2, 0, 0, a, 1, b, 2, s, rcond, irnk, w, 10,
235 CALL chkxer(
'CGELSD', infot, nout, lerr, ok )
237 CALL cgelsd( 2, 0, 0, a, 2, b, 1, s, rcond, irnk, w, 10,
239 CALL chkxer(
'CGELSD', infot, nout, lerr, ok )
241 CALL cgelsd( 2, 2, 1, a, 2, b, 2, s, rcond, irnk, w, 1,
243 CALL chkxer(
'CGELSD', infot, nout, lerr, ok )
248 CALL alaesm( path, ok, nout )
subroutine cgelsy(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK, LWORK, RWORK, INFO)
CGELSY solves overdetermined or underdetermined systems for GE matrices
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
subroutine cgelsd(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, RWORK, IWORK, INFO)
CGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices ...
logical function lsamen(N, CA, CB)
LSAMEN
subroutine cgelss(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, RWORK, INFO)
CGELSS solves overdetermined or underdetermined systems for GE matrices
subroutine alaesm(PATH, OK, NOUT)
ALAESM
subroutine cgelsx(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK, RWORK, INFO)
CGELSX solves overdetermined or underdetermined systems for GE matrices
subroutine cgels(TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, INFO)
CGELS solves overdetermined or underdetermined systems for GE matrices