LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
cchkbd.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine cchkbd (NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS, ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX, Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK, RWORK, NOUT, INFO)
 CCHKBD More...
 

Function/Subroutine Documentation

subroutine cchkbd ( integer  NSIZES,
integer, dimension( * )  MVAL,
integer, dimension( * )  NVAL,
integer  NTYPES,
logical, dimension( * )  DOTYPE,
integer  NRHS,
integer, dimension( 4 )  ISEED,
real  THRESH,
complex, dimension( lda, * )  A,
integer  LDA,
real, dimension( * )  BD,
real, dimension( * )  BE,
real, dimension( * )  S1,
real, dimension( * )  S2,
complex, dimension( ldx, * )  X,
integer  LDX,
complex, dimension( ldx, * )  Y,
complex, dimension( ldx, * )  Z,
complex, dimension( ldq, * )  Q,
integer  LDQ,
complex, dimension( ldpt, * )  PT,
integer  LDPT,
complex, dimension( ldpt, * )  U,
complex, dimension( ldpt, * )  VT,
complex, dimension( * )  WORK,
integer  LWORK,
real, dimension( * )  RWORK,
integer  NOUT,
integer  INFO 
)

CCHKBD

Purpose:
 CCHKBD checks the singular value decomposition (SVD) routines.

 CGEBRD reduces a complex general m by n matrix A to real upper or
 lower bidiagonal form by an orthogonal transformation: Q' * A * P = B
 (or A = Q * B * P').  The matrix B is upper bidiagonal if m >= n
 and lower bidiagonal if m < n.

 CUNGBR generates the orthogonal matrices Q and P' from CGEBRD.
 Note that Q and P are not necessarily square.

 CBDSQR computes the singular value decomposition of the bidiagonal
 matrix B as B = U S V'.  It is called three times to compute
    1)  B = U S1 V', where S1 is the diagonal matrix of singular
        values and the columns of the matrices U and V are the left
        and right singular vectors, respectively, of B.
    2)  Same as 1), but the singular values are stored in S2 and the
        singular vectors are not computed.
    3)  A = (UQ) S (P'V'), the SVD of the original matrix A.
 In addition, CBDSQR has an option to apply the left orthogonal matrix
 U to a matrix X, useful in least squares applications.

 For each pair of matrix dimensions (M,N) and each selected matrix
 type, an M by N matrix A and an M by NRHS matrix X are generated.
 The problem dimensions are as follows
    A:          M x N
    Q:          M x min(M,N) (but M x M if NRHS > 0)
    P:          min(M,N) x N
    B:          min(M,N) x min(M,N)
    U, V:       min(M,N) x min(M,N)
    S1, S2      diagonal, order min(M,N)
    X:          M x NRHS

 For each generated matrix, 14 tests are performed:

 Test CGEBRD and CUNGBR

 (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'

 (2)   | I - Q' Q | / ( M ulp )

 (3)   | I - PT PT' | / ( N ulp )

 Test CBDSQR on bidiagonal matrix B

 (4)   | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'

 (5)   | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X
                                                  and   Z = U' Y.
 (6)   | I - U' U | / ( min(M,N) ulp )

 (7)   | I - VT VT' | / ( min(M,N) ulp )

 (8)   S1 contains min(M,N) nonnegative values in decreasing order.
       (Return 0 if true, 1/ULP if false.)

 (9)   0 if the true singular values of B are within THRESH of
       those in S1.  2*THRESH if they are not.  (Tested using
       SSVDCH)

 (10)  | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
                                   computing U and V.

 Test CBDSQR on matrix A

 (11)  | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp )

 (12)  | X - (QU) Z | / ( |X| max(M,k) ulp )

 (13)  | I - (QU)'(QU) | / ( M ulp )

 (14)  | I - (VT PT) (PT'VT') | / ( N ulp )

 The possible matrix types are

 (1)  The zero matrix.
 (2)  The identity matrix.

 (3)  A diagonal matrix with evenly spaced entries
      1, ..., ULP  and random signs.
      (ULP = (first number larger than 1) - 1 )
 (4)  A diagonal matrix with geometrically spaced entries
      1, ..., ULP  and random signs.
 (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
      and random signs.

 (6)  Same as (3), but multiplied by SQRT( overflow threshold )
 (7)  Same as (3), but multiplied by SQRT( underflow threshold )

 (8)  A matrix of the form  U D V, where U and V are orthogonal and
      D has evenly spaced entries 1, ..., ULP with random signs
      on the diagonal.

 (9)  A matrix of the form  U D V, where U and V are orthogonal and
      D has geometrically spaced entries 1, ..., ULP with random
      signs on the diagonal.

 (10) A matrix of the form  U D V, where U and V are orthogonal and
      D has "clustered" entries 1, ULP,..., ULP with random
      signs on the diagonal.

 (11) Same as (8), but multiplied by SQRT( overflow threshold )
 (12) Same as (8), but multiplied by SQRT( underflow threshold )

 (13) Rectangular matrix with random entries chosen from (-1,1).
 (14) Same as (13), but multiplied by SQRT( overflow threshold )
 (15) Same as (13), but multiplied by SQRT( underflow threshold )

 Special case:
 (16) A bidiagonal matrix with random entries chosen from a
      logarithmic distribution on [ulp^2,ulp^(-2)]  (I.e., each
      entry is  e^x, where x is chosen uniformly on
      [ 2 log(ulp), -2 log(ulp) ] .)  For *this* type:
      (a) CGEBRD is not called to reduce it to bidiagonal form.
      (b) the bidiagonal is  min(M,N) x min(M,N); if M<N, the
          matrix will be lower bidiagonal, otherwise upper.
      (c) only tests 5--8 and 14 are performed.

 A subset of the full set of matrix types may be selected through
 the logical array DOTYPE.
Parameters
[in]NSIZES
          NSIZES is INTEGER
          The number of values of M and N contained in the vectors
          MVAL and NVAL.  The matrix sizes are used in pairs (M,N).
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NVAL
          NVAL is INTEGER array, dimension (NM)
          The values of the matrix column dimension N.
[in]NTYPES
          NTYPES is INTEGER
          The number of elements in DOTYPE.   If it is zero, CCHKBD
          does nothing.  It must be at least zero.  If it is MAXTYP+1
          and NSIZES is 1, then an additional type, MAXTYP+1 is
          defined, which is to use whatever matrices are in A and B.
          This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
          DOTYPE(MAXTYP+1) is .TRUE. .
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix
          of type j will be generated.  If NTYPES is smaller than the
          maximum number of types defined (PARAMETER MAXTYP), then
          types NTYPES+1 through MAXTYP will not be generated.  If
          NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through
          DOTYPE(NTYPES) will be ignored.
[in]NRHS
          NRHS is INTEGER
          The number of columns in the "right-hand side" matrices X, Y,
          and Z, used in testing CBDSQR.  If NRHS = 0, then the
          operations on the right-hand side will not be tested.
          NRHS must be at least 0.
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          On entry ISEED specifies the seed of the random number
          generator. The array elements should be between 0 and 4095;
          if not they will be reduced mod 4096.  Also, ISEED(4) must
          be odd.  The values of ISEED are changed on exit, and can be
          used in the next call to CCHKBD to continue the same random
          number sequence.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.  Note that the
          expected value of the test ratios is O(1), so THRESH should
          be a reasonably small multiple of 1, e.g., 10 or 100.
[out]A
          A is COMPLEX array, dimension (LDA,NMAX)
          where NMAX is the maximum value of N in NVAL.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,MMAX),
          where MMAX is the maximum value of M in MVAL.
[out]BD
          BD is REAL array, dimension
                      (max(min(MVAL(j),NVAL(j))))
[out]BE
          BE is REAL array, dimension
                      (max(min(MVAL(j),NVAL(j))))
[out]S1
          S1 is REAL array, dimension
                      (max(min(MVAL(j),NVAL(j))))
[out]S2
          S2 is REAL array, dimension
                      (max(min(MVAL(j),NVAL(j))))
[out]X
          X is COMPLEX array, dimension (LDX,NRHS)
[in]LDX
          LDX is INTEGER
          The leading dimension of the arrays X, Y, and Z.
          LDX >= max(1,MMAX).
[out]Y
          Y is COMPLEX array, dimension (LDX,NRHS)
[out]Z
          Z is COMPLEX array, dimension (LDX,NRHS)
[out]Q
          Q is COMPLEX array, dimension (LDQ,MMAX)
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.  LDQ >= max(1,MMAX).
[out]PT
          PT is COMPLEX array, dimension (LDPT,NMAX)
[in]LDPT
          LDPT is INTEGER
          The leading dimension of the arrays PT, U, and V.
          LDPT >= max(1, max(min(MVAL(j),NVAL(j)))).
[out]U
          U is COMPLEX array, dimension
                      (LDPT,max(min(MVAL(j),NVAL(j))))
[out]VT
          VT is COMPLEX array, dimension
                      (LDPT,max(min(MVAL(j),NVAL(j))))
[out]WORK
          WORK is COMPLEX array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The number of entries in WORK.  This must be at least
          3(M+N) and  M(M + max(M,N,k) + 1) + N*min(M,N)  for all
          pairs  (M,N)=(MM(j),NN(j))
[out]RWORK
          RWORK is REAL array, dimension
                      (5*max(min(M,N)))
[in]NOUT
          NOUT is INTEGER
          The FORTRAN unit number for printing out error messages
          (e.g., if a routine returns IINFO not equal to 0.)
[out]INFO
          INFO is INTEGER
          If 0, then everything ran OK.
           -1: NSIZES < 0
           -2: Some MM(j) < 0
           -3: Some NN(j) < 0
           -4: NTYPES < 0
           -6: NRHS  < 0
           -8: THRESH < 0
          -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ).
          -17: LDB < 1 or LDB < MMAX.
          -21: LDQ < 1 or LDQ < MMAX.
          -23: LDP < 1 or LDP < MNMAX.
          -27: LWORK too small.
          If  CLATMR, CLATMS, CGEBRD, CUNGBR, or CBDSQR,
              returns an error code, the
              absolute value of it is returned.

-----------------------------------------------------------------------

     Some Local Variables and Parameters:
     ---- ----- --------- --- ----------

     ZERO, ONE       Real 0 and 1.
     MAXTYP          The number of types defined.
     NTEST           The number of tests performed, or which can
                     be performed so far, for the current matrix.
     MMAX            Largest value in NN.
     NMAX            Largest value in NN.
     MNMIN           min(MM(j), NN(j)) (the dimension of the bidiagonal
                     matrix.)
     MNMAX           The maximum value of MNMIN for j=1,...,NSIZES.
     NFAIL           The number of tests which have exceeded THRESH
     COND, IMODE     Values to be passed to the matrix generators.
     ANORM           Norm of A; passed to matrix generators.

     OVFL, UNFL      Overflow and underflow thresholds.
     RTOVFL, RTUNFL  Square roots of the previous 2 values.
     ULP, ULPINV     Finest relative precision and its inverse.

             The following four arrays decode JTYPE:
     KTYPE(j)        The general type (1-10) for type "j".
     KMODE(j)        The MODE value to be passed to the matrix
                     generator for type "j".
     KMAGN(j)        The order of magnitude ( O(1),
                     O(overflow^(1/2) ), O(underflow^(1/2) )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 417 of file cchkbd.f.

417 *
418 * -- LAPACK test routine (version 3.4.0) --
419 * -- LAPACK is a software package provided by Univ. of Tennessee, --
420 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
421 * November 2011
422 *
423 * .. Scalar Arguments ..
424  INTEGER info, lda, ldpt, ldq, ldx, lwork, nout, nrhs,
425  $ nsizes, ntypes
426  REAL thresh
427 * ..
428 * .. Array Arguments ..
429  LOGICAL dotype( * )
430  INTEGER iseed( 4 ), mval( * ), nval( * )
431  REAL bd( * ), be( * ), rwork( * ), s1( * ), s2( * )
432  COMPLEX a( lda, * ), pt( ldpt, * ), q( ldq, * ),
433  $ u( ldpt, * ), vt( ldpt, * ), work( * ),
434  $ x( ldx, * ), y( ldx, * ), z( ldx, * )
435 * ..
436 *
437 * ======================================================================
438 *
439 * .. Parameters ..
440  REAL zero, one, two, half
441  parameter( zero = 0.0e0, one = 1.0e0, two = 2.0e0,
442  $ half = 0.5e0 )
443  COMPLEX czero, cone
444  parameter( czero = ( 0.0e+0, 0.0e+0 ),
445  $ cone = ( 1.0e+0, 0.0e+0 ) )
446  INTEGER maxtyp
447  parameter( maxtyp = 16 )
448 * ..
449 * .. Local Scalars ..
450  LOGICAL badmm, badnn, bidiag
451  CHARACTER uplo
452  CHARACTER*3 path
453  INTEGER i, iinfo, imode, itype, j, jcol, jsize, jtype,
454  $ log2ui, m, minwrk, mmax, mnmax, mnmin, mq,
455  $ mtypes, n, nfail, nmax, ntest
456  REAL amninv, anorm, cond, ovfl, rtovfl, rtunfl,
457  $ temp1, temp2, ulp, ulpinv, unfl
458 * ..
459 * .. Local Arrays ..
460  INTEGER ioldsd( 4 ), iwork( 1 ), kmagn( maxtyp ),
461  $ kmode( maxtyp ), ktype( maxtyp )
462  REAL dumma( 1 ), result( 14 )
463 * ..
464 * .. External Functions ..
465  REAL slamch, slarnd
466  EXTERNAL slamch, slarnd
467 * ..
468 * .. External Subroutines ..
469  EXTERNAL alasum, cbdsqr, cbdt01, cbdt02, cbdt03, cgebrd,
472 * ..
473 * .. Intrinsic Functions ..
474  INTRINSIC abs, exp, int, log, max, min, sqrt
475 * ..
476 * .. Scalars in Common ..
477  LOGICAL lerr, ok
478  CHARACTER*32 srnamt
479  INTEGER infot, nunit
480 * ..
481 * .. Common blocks ..
482  COMMON / infoc / infot, nunit, ok, lerr
483  COMMON / srnamc / srnamt
484 * ..
485 * .. Data statements ..
486  DATA ktype / 1, 2, 5*4, 5*6, 3*9, 10 /
487  DATA kmagn / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3, 0 /
488  DATA kmode / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
489  $ 0, 0, 0 /
490 * ..
491 * .. Executable Statements ..
492 *
493 * Check for errors
494 *
495  info = 0
496 *
497  badmm = .false.
498  badnn = .false.
499  mmax = 1
500  nmax = 1
501  mnmax = 1
502  minwrk = 1
503  DO 10 j = 1, nsizes
504  mmax = max( mmax, mval( j ) )
505  IF( mval( j ).LT.0 )
506  $ badmm = .true.
507  nmax = max( nmax, nval( j ) )
508  IF( nval( j ).LT.0 )
509  $ badnn = .true.
510  mnmax = max( mnmax, min( mval( j ), nval( j ) ) )
511  minwrk = max( minwrk, 3*( mval( j )+nval( j ) ),
512  $ mval( j )*( mval( j )+max( mval( j ), nval( j ),
513  $ nrhs )+1 )+nval( j )*min( nval( j ), mval( j ) ) )
514  10 CONTINUE
515 *
516 * Check for errors
517 *
518  IF( nsizes.LT.0 ) THEN
519  info = -1
520  ELSE IF( badmm ) THEN
521  info = -2
522  ELSE IF( badnn ) THEN
523  info = -3
524  ELSE IF( ntypes.LT.0 ) THEN
525  info = -4
526  ELSE IF( nrhs.LT.0 ) THEN
527  info = -6
528  ELSE IF( lda.LT.mmax ) THEN
529  info = -11
530  ELSE IF( ldx.LT.mmax ) THEN
531  info = -17
532  ELSE IF( ldq.LT.mmax ) THEN
533  info = -21
534  ELSE IF( ldpt.LT.mnmax ) THEN
535  info = -23
536  ELSE IF( minwrk.GT.lwork ) THEN
537  info = -27
538  END IF
539 *
540  IF( info.NE.0 ) THEN
541  CALL xerbla( 'CCHKBD', -info )
542  RETURN
543  END IF
544 *
545 * Initialize constants
546 *
547  path( 1: 1 ) = 'Complex precision'
548  path( 2: 3 ) = 'BD'
549  nfail = 0
550  ntest = 0
551  unfl = slamch( 'Safe minimum' )
552  ovfl = slamch( 'Overflow' )
553  CALL slabad( unfl, ovfl )
554  ulp = slamch( 'Precision' )
555  ulpinv = one / ulp
556  log2ui = int( log( ulpinv ) / log( two ) )
557  rtunfl = sqrt( unfl )
558  rtovfl = sqrt( ovfl )
559  infot = 0
560 *
561 * Loop over sizes, types
562 *
563  DO 180 jsize = 1, nsizes
564  m = mval( jsize )
565  n = nval( jsize )
566  mnmin = min( m, n )
567  amninv = one / max( m, n, 1 )
568 *
569  IF( nsizes.NE.1 ) THEN
570  mtypes = min( maxtyp, ntypes )
571  ELSE
572  mtypes = min( maxtyp+1, ntypes )
573  END IF
574 *
575  DO 170 jtype = 1, mtypes
576  IF( .NOT.dotype( jtype ) )
577  $ GO TO 170
578 *
579  DO 20 j = 1, 4
580  ioldsd( j ) = iseed( j )
581  20 CONTINUE
582 *
583  DO 30 j = 1, 14
584  result( j ) = -one
585  30 CONTINUE
586 *
587  uplo = ' '
588 *
589 * Compute "A"
590 *
591 * Control parameters:
592 *
593 * KMAGN KMODE KTYPE
594 * =1 O(1) clustered 1 zero
595 * =2 large clustered 2 identity
596 * =3 small exponential (none)
597 * =4 arithmetic diagonal, (w/ eigenvalues)
598 * =5 random symmetric, w/ eigenvalues
599 * =6 nonsymmetric, w/ singular values
600 * =7 random diagonal
601 * =8 random symmetric
602 * =9 random nonsymmetric
603 * =10 random bidiagonal (log. distrib.)
604 *
605  IF( mtypes.GT.maxtyp )
606  $ GO TO 100
607 *
608  itype = ktype( jtype )
609  imode = kmode( jtype )
610 *
611 * Compute norm
612 *
613  GO TO ( 40, 50, 60 )kmagn( jtype )
614 *
615  40 CONTINUE
616  anorm = one
617  GO TO 70
618 *
619  50 CONTINUE
620  anorm = ( rtovfl*ulp )*amninv
621  GO TO 70
622 *
623  60 CONTINUE
624  anorm = rtunfl*max( m, n )*ulpinv
625  GO TO 70
626 *
627  70 CONTINUE
628 *
629  CALL claset( 'Full', lda, n, czero, czero, a, lda )
630  iinfo = 0
631  cond = ulpinv
632 *
633  bidiag = .false.
634  IF( itype.EQ.1 ) THEN
635 *
636 * Zero matrix
637 *
638  iinfo = 0
639 *
640  ELSE IF( itype.EQ.2 ) THEN
641 *
642 * Identity
643 *
644  DO 80 jcol = 1, mnmin
645  a( jcol, jcol ) = anorm
646  80 CONTINUE
647 *
648  ELSE IF( itype.EQ.4 ) THEN
649 *
650 * Diagonal Matrix, [Eigen]values Specified
651 *
652  CALL clatms( mnmin, mnmin, 'S', iseed, 'N', rwork, imode,
653  $ cond, anorm, 0, 0, 'N', a, lda, work,
654  $ iinfo )
655 *
656  ELSE IF( itype.EQ.5 ) THEN
657 *
658 * Symmetric, eigenvalues specified
659 *
660  CALL clatms( mnmin, mnmin, 'S', iseed, 'S', rwork, imode,
661  $ cond, anorm, m, n, 'N', a, lda, work,
662  $ iinfo )
663 *
664  ELSE IF( itype.EQ.6 ) THEN
665 *
666 * Nonsymmetric, singular values specified
667 *
668  CALL clatms( m, n, 'S', iseed, 'N', rwork, imode, cond,
669  $ anorm, m, n, 'N', a, lda, work, iinfo )
670 *
671  ELSE IF( itype.EQ.7 ) THEN
672 *
673 * Diagonal, random entries
674 *
675  CALL clatmr( mnmin, mnmin, 'S', iseed, 'N', work, 6, one,
676  $ cone, 'T', 'N', work( mnmin+1 ), 1, one,
677  $ work( 2*mnmin+1 ), 1, one, 'N', iwork, 0, 0,
678  $ zero, anorm, 'NO', a, lda, iwork, iinfo )
679 *
680  ELSE IF( itype.EQ.8 ) THEN
681 *
682 * Symmetric, random entries
683 *
684  CALL clatmr( mnmin, mnmin, 'S', iseed, 'S', work, 6, one,
685  $ cone, 'T', 'N', work( mnmin+1 ), 1, one,
686  $ work( m+mnmin+1 ), 1, one, 'N', iwork, m, n,
687  $ zero, anorm, 'NO', a, lda, iwork, iinfo )
688 *
689  ELSE IF( itype.EQ.9 ) THEN
690 *
691 * Nonsymmetric, random entries
692 *
693  CALL clatmr( m, n, 'S', iseed, 'N', work, 6, one, cone,
694  $ 'T', 'N', work( mnmin+1 ), 1, one,
695  $ work( m+mnmin+1 ), 1, one, 'N', iwork, m, n,
696  $ zero, anorm, 'NO', a, lda, iwork, iinfo )
697 *
698  ELSE IF( itype.EQ.10 ) THEN
699 *
700 * Bidiagonal, random entries
701 *
702  temp1 = -two*log( ulp )
703  DO 90 j = 1, mnmin
704  bd( j ) = exp( temp1*slarnd( 2, iseed ) )
705  IF( j.LT.mnmin )
706  $ be( j ) = exp( temp1*slarnd( 2, iseed ) )
707  90 CONTINUE
708 *
709  iinfo = 0
710  bidiag = .true.
711  IF( m.GE.n ) THEN
712  uplo = 'U'
713  ELSE
714  uplo = 'L'
715  END IF
716  ELSE
717  iinfo = 1
718  END IF
719 *
720  IF( iinfo.EQ.0 ) THEN
721 *
722 * Generate Right-Hand Side
723 *
724  IF( bidiag ) THEN
725  CALL clatmr( mnmin, nrhs, 'S', iseed, 'N', work, 6,
726  $ one, cone, 'T', 'N', work( mnmin+1 ), 1,
727  $ one, work( 2*mnmin+1 ), 1, one, 'N',
728  $ iwork, mnmin, nrhs, zero, one, 'NO', y,
729  $ ldx, iwork, iinfo )
730  ELSE
731  CALL clatmr( m, nrhs, 'S', iseed, 'N', work, 6, one,
732  $ cone, 'T', 'N', work( m+1 ), 1, one,
733  $ work( 2*m+1 ), 1, one, 'N', iwork, m,
734  $ nrhs, zero, one, 'NO', x, ldx, iwork,
735  $ iinfo )
736  END IF
737  END IF
738 *
739 * Error Exit
740 *
741  IF( iinfo.NE.0 ) THEN
742  WRITE( nout, fmt = 9998 )'Generator', iinfo, m, n,
743  $ jtype, ioldsd
744  info = abs( iinfo )
745  RETURN
746  END IF
747 *
748  100 CONTINUE
749 *
750 * Call CGEBRD and CUNGBR to compute B, Q, and P, do tests.
751 *
752  IF( .NOT.bidiag ) THEN
753 *
754 * Compute transformations to reduce A to bidiagonal form:
755 * B := Q' * A * P.
756 *
757  CALL clacpy( ' ', m, n, a, lda, q, ldq )
758  CALL cgebrd( m, n, q, ldq, bd, be, work, work( mnmin+1 ),
759  $ work( 2*mnmin+1 ), lwork-2*mnmin, iinfo )
760 *
761 * Check error code from CGEBRD.
762 *
763  IF( iinfo.NE.0 ) THEN
764  WRITE( nout, fmt = 9998 )'CGEBRD', iinfo, m, n,
765  $ jtype, ioldsd
766  info = abs( iinfo )
767  RETURN
768  END IF
769 *
770  CALL clacpy( ' ', m, n, q, ldq, pt, ldpt )
771  IF( m.GE.n ) THEN
772  uplo = 'U'
773  ELSE
774  uplo = 'L'
775  END IF
776 *
777 * Generate Q
778 *
779  mq = m
780  IF( nrhs.LE.0 )
781  $ mq = mnmin
782  CALL cungbr( 'Q', m, mq, n, q, ldq, work,
783  $ work( 2*mnmin+1 ), lwork-2*mnmin, iinfo )
784 *
785 * Check error code from CUNGBR.
786 *
787  IF( iinfo.NE.0 ) THEN
788  WRITE( nout, fmt = 9998 )'CUNGBR(Q)', iinfo, m, n,
789  $ jtype, ioldsd
790  info = abs( iinfo )
791  RETURN
792  END IF
793 *
794 * Generate P'
795 *
796  CALL cungbr( 'P', mnmin, n, m, pt, ldpt, work( mnmin+1 ),
797  $ work( 2*mnmin+1 ), lwork-2*mnmin, iinfo )
798 *
799 * Check error code from CUNGBR.
800 *
801  IF( iinfo.NE.0 ) THEN
802  WRITE( nout, fmt = 9998 )'CUNGBR(P)', iinfo, m, n,
803  $ jtype, ioldsd
804  info = abs( iinfo )
805  RETURN
806  END IF
807 *
808 * Apply Q' to an M by NRHS matrix X: Y := Q' * X.
809 *
810  CALL cgemm( 'Conjugate transpose', 'No transpose', m,
811  $ nrhs, m, cone, q, ldq, x, ldx, czero, y,
812  $ ldx )
813 *
814 * Test 1: Check the decomposition A := Q * B * PT
815 * 2: Check the orthogonality of Q
816 * 3: Check the orthogonality of PT
817 *
818  CALL cbdt01( m, n, 1, a, lda, q, ldq, bd, be, pt, ldpt,
819  $ work, rwork, result( 1 ) )
820  CALL cunt01( 'Columns', m, mq, q, ldq, work, lwork,
821  $ rwork, result( 2 ) )
822  CALL cunt01( 'Rows', mnmin, n, pt, ldpt, work, lwork,
823  $ rwork, result( 3 ) )
824  END IF
825 *
826 * Use CBDSQR to form the SVD of the bidiagonal matrix B:
827 * B := U * S1 * VT, and compute Z = U' * Y.
828 *
829  CALL scopy( mnmin, bd, 1, s1, 1 )
830  IF( mnmin.GT.0 )
831  $ CALL scopy( mnmin-1, be, 1, rwork, 1 )
832  CALL clacpy( ' ', m, nrhs, y, ldx, z, ldx )
833  CALL claset( 'Full', mnmin, mnmin, czero, cone, u, ldpt )
834  CALL claset( 'Full', mnmin, mnmin, czero, cone, vt, ldpt )
835 *
836  CALL cbdsqr( uplo, mnmin, mnmin, mnmin, nrhs, s1, rwork, vt,
837  $ ldpt, u, ldpt, z, ldx, rwork( mnmin+1 ),
838  $ iinfo )
839 *
840 * Check error code from CBDSQR.
841 *
842  IF( iinfo.NE.0 ) THEN
843  WRITE( nout, fmt = 9998 )'CBDSQR(vects)', iinfo, m, n,
844  $ jtype, ioldsd
845  info = abs( iinfo )
846  IF( iinfo.LT.0 ) THEN
847  RETURN
848  ELSE
849  result( 4 ) = ulpinv
850  GO TO 150
851  END IF
852  END IF
853 *
854 * Use CBDSQR to compute only the singular values of the
855 * bidiagonal matrix B; U, VT, and Z should not be modified.
856 *
857  CALL scopy( mnmin, bd, 1, s2, 1 )
858  IF( mnmin.GT.0 )
859  $ CALL scopy( mnmin-1, be, 1, rwork, 1 )
860 *
861  CALL cbdsqr( uplo, mnmin, 0, 0, 0, s2, rwork, vt, ldpt, u,
862  $ ldpt, z, ldx, rwork( mnmin+1 ), iinfo )
863 *
864 * Check error code from CBDSQR.
865 *
866  IF( iinfo.NE.0 ) THEN
867  WRITE( nout, fmt = 9998 )'CBDSQR(values)', iinfo, m, n,
868  $ jtype, ioldsd
869  info = abs( iinfo )
870  IF( iinfo.LT.0 ) THEN
871  RETURN
872  ELSE
873  result( 9 ) = ulpinv
874  GO TO 150
875  END IF
876  END IF
877 *
878 * Test 4: Check the decomposition B := U * S1 * VT
879 * 5: Check the computation Z := U' * Y
880 * 6: Check the orthogonality of U
881 * 7: Check the orthogonality of VT
882 *
883  CALL cbdt03( uplo, mnmin, 1, bd, be, u, ldpt, s1, vt, ldpt,
884  $ work, result( 4 ) )
885  CALL cbdt02( mnmin, nrhs, y, ldx, z, ldx, u, ldpt, work,
886  $ rwork, result( 5 ) )
887  CALL cunt01( 'Columns', mnmin, mnmin, u, ldpt, work, lwork,
888  $ rwork, result( 6 ) )
889  CALL cunt01( 'Rows', mnmin, mnmin, vt, ldpt, work, lwork,
890  $ rwork, result( 7 ) )
891 *
892 * Test 8: Check that the singular values are sorted in
893 * non-increasing order and are non-negative
894 *
895  result( 8 ) = zero
896  DO 110 i = 1, mnmin - 1
897  IF( s1( i ).LT.s1( i+1 ) )
898  $ result( 8 ) = ulpinv
899  IF( s1( i ).LT.zero )
900  $ result( 8 ) = ulpinv
901  110 CONTINUE
902  IF( mnmin.GE.1 ) THEN
903  IF( s1( mnmin ).LT.zero )
904  $ result( 8 ) = ulpinv
905  END IF
906 *
907 * Test 9: Compare CBDSQR with and without singular vectors
908 *
909  temp2 = zero
910 *
911  DO 120 j = 1, mnmin
912  temp1 = abs( s1( j )-s2( j ) ) /
913  $ max( sqrt( unfl )*max( s1( 1 ), one ),
914  $ ulp*max( abs( s1( j ) ), abs( s2( j ) ) ) )
915  temp2 = max( temp1, temp2 )
916  120 CONTINUE
917 *
918  result( 9 ) = temp2
919 *
920 * Test 10: Sturm sequence test of singular values
921 * Go up by factors of two until it succeeds
922 *
923  temp1 = thresh*( half-ulp )
924 *
925  DO 130 j = 0, log2ui
926  CALL ssvdch( mnmin, bd, be, s1, temp1, iinfo )
927  IF( iinfo.EQ.0 )
928  $ GO TO 140
929  temp1 = temp1*two
930  130 CONTINUE
931 *
932  140 CONTINUE
933  result( 10 ) = temp1
934 *
935 * Use CBDSQR to form the decomposition A := (QU) S (VT PT)
936 * from the bidiagonal form A := Q B PT.
937 *
938  IF( .NOT.bidiag ) THEN
939  CALL scopy( mnmin, bd, 1, s2, 1 )
940  IF( mnmin.GT.0 )
941  $ CALL scopy( mnmin-1, be, 1, rwork, 1 )
942 *
943  CALL cbdsqr( uplo, mnmin, n, m, nrhs, s2, rwork, pt,
944  $ ldpt, q, ldq, y, ldx, rwork( mnmin+1 ),
945  $ iinfo )
946 *
947 * Test 11: Check the decomposition A := Q*U * S2 * VT*PT
948 * 12: Check the computation Z := U' * Q' * X
949 * 13: Check the orthogonality of Q*U
950 * 14: Check the orthogonality of VT*PT
951 *
952  CALL cbdt01( m, n, 0, a, lda, q, ldq, s2, dumma, pt,
953  $ ldpt, work, rwork, result( 11 ) )
954  CALL cbdt02( m, nrhs, x, ldx, y, ldx, q, ldq, work,
955  $ rwork, result( 12 ) )
956  CALL cunt01( 'Columns', m, mq, q, ldq, work, lwork,
957  $ rwork, result( 13 ) )
958  CALL cunt01( 'Rows', mnmin, n, pt, ldpt, work, lwork,
959  $ rwork, result( 14 ) )
960  END IF
961 *
962 * End of Loop -- Check for RESULT(j) > THRESH
963 *
964  150 CONTINUE
965  DO 160 j = 1, 14
966  IF( result( j ).GE.thresh ) THEN
967  IF( nfail.EQ.0 )
968  $ CALL slahd2( nout, path )
969  WRITE( nout, fmt = 9999 )m, n, jtype, ioldsd, j,
970  $ result( j )
971  nfail = nfail + 1
972  END IF
973  160 CONTINUE
974  IF( .NOT.bidiag ) THEN
975  ntest = ntest + 14
976  ELSE
977  ntest = ntest + 5
978  END IF
979 *
980  170 CONTINUE
981  180 CONTINUE
982 *
983 * Summary
984 *
985  CALL alasum( path, nout, nfail, ntest, 0 )
986 *
987  RETURN
988 *
989 * End of CCHKBD
990 *
991  9999 FORMAT( ' M=', i5, ', N=', i5, ', type ', i2, ', seed=',
992  $ 4( i4, ',' ), ' test(', i2, ')=', g11.4 )
993  9998 FORMAT( ' CCHKBD: ', a, ' returned INFO=', i6, '.', / 9x, 'M=',
994  $ i6, ', N=', i6, ', JTYPE=', i6, ', ISEED=(', 3( i5, ',' ),
995  $ i5, ')' )
996 *
subroutine cungbr(VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
CUNGBR
Definition: cungbr.f:159
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: claset.f:108
subroutine cunt01(ROWCOL, M, N, U, LDU, WORK, LWORK, RWORK, RESID)
CUNT01
Definition: cunt01.f:128
subroutine clatmr(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER, CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM, PACK, A, LDA, IWORK, INFO)
CLATMR
Definition: clatmr.f:492
subroutine cbdt01(M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK, RWORK, RESID)
CBDT01
Definition: cbdt01.f:148
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine cgebrd(M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)
CGEBRD
Definition: cgebrd.f:208
subroutine slahd2(IOUNIT, PATH)
SLAHD2
Definition: slahd2.f:67
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine cbdt02(M, N, B, LDB, C, LDC, U, LDU, WORK, RWORK, RESID)
CBDT02
Definition: cbdt02.f:121
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:53
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
real function slarnd(IDIST, ISEED)
SLARND
Definition: slarnd.f:75
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
subroutine slabad(SMALL, LARGE)
SLABAD
Definition: slabad.f:76
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:189
subroutine cbdt03(UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK, RESID)
CBDT03
Definition: cbdt03.f:137
subroutine ssvdch(N, S, E, SVD, TOL, INFO)
SSVDCH
Definition: ssvdch.f:99
subroutine cbdsqr(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C, LDC, RWORK, INFO)
CBDSQR
Definition: cbdsqr.f:225

Here is the call graph for this function:

Here is the caller graph for this function: